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Abstract

The Standard Model (SM) fails to account for either the triplication of fermion families or chiral symmetry
breaking in the electroweak sector. Here we show that both phenomena arise from the approach to chaos

of quantum theory near the Fermi scale.
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1. Introduction

Iterated maps of the unit interval are generic models of dynamical systems in discrete
time [7-8]. The standard representation of these models is based on first order difference

equations having the form

Xn+l =f (Xn ’ ﬂ') (1)

where n=1,2,... isthe iteration index and A a control parameter. The dynamics expressed

by (1) can be either conservative or dissipative. In the former case, the function (1) is

monotonic and describes a one-to-one mapping, whereas in the latter case is non-
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monotonic and describes a two-to-one mapping. Typical examples of dissipative systems
include the quadratic map and unimodal maps [1-5]. In 1978, Feigenbaum has
discovered that the onset of chaos in quadratic maps occurs through period-doubling
bifurcations driven by changes of the control parameter [1-2]. It was later shown that the
period-doubling transition to chaos with the same universal attributes develops in many
multi-dimensional dissipative nonlinear systems [3-5] In particular, unimodal maps of

the form [8-9]

f,()=21(x) (2)

xe[-1,1]; f(0)=1; A<1 (3)

exhibit the following behavior: for small values of 4, (2) has a single stable fixed point
and all nearby points converge to it under multiple iterations given by (1). Ramping up A
to a critical value 4, makes the fixed point unstable and produces a new stable pair of
points of period 2. Further increasing A to another value (4,) bifurcates this cycle into a
cycle of period 4. The bifurcation process continues with a new sequence of cycles of
period 2, j>3, eventually leading to a Cantor set structure that attracts almost all the
points of the interval [-1,1]. On letting A increase beyond an endpoint value 4, , with
N >>1, stable periodic orbits surface again and split up in a similar way. In the new

sequence, A scans another series of critical values corresponding to cycles of period 3.2’

, j=0,1,2,...and so on [8-9].
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2. Chaotic behavior of quantum theory near the Fermi scale

Quantum Mechanics contains many instances where unimodal functions of the type (2)

show up. For example, a quantum wave packet initially centered at x=0 [10]
X2
p(%.0)=exp(-=) (3)
evolves in time according to
it it X2
w(xt) =exp(- 7) v (x,0)=exp(- 7) exp(— ?) (4)

Another example is a wavefunction localized in X space as in [10]

sin K(x—
W(X)=J , K>>1 (5)
(X —Xy)
whose momentum space representation is
exp(—ikx,) 6)

Gauge theory demands the description of physical phenomena related to (4) or (5) to be

independent of any arbitrary phase factor exp(—iy) added to either one of them. With

reference to (4), a global gauge transformation defined by the complex parameter

A. =exp(—iy) assumes the form

' (1) = Ly (x D)=exp(=iz) w(x1) (7)
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Following a standard procedure, we pass from Lorentzian to Euclidean coordinates using

the prescription
y=ot'=o(-it.) (8)
Xe =—otg )
The Euclidean control parameter in the small angle approximation may be presented as
e =exp(-otL) = 1- ot., |ot|=c<<1 (10)

In the context of the minimal fractal manifold (MFM) [11], (10) highlights the connection

between the Euclidean control parameter A. and the scale-dependent deviation from
spacetime dimensionality £(u)=4-D(u)<<1. One concludes from (10) that the behavior
of (7) is controlled by a parameter that runs with the energy scale as in A = A (1) . The

salient point here is that, on time scales commensurate or shorter than the inverse of the

electroweak scale (t'<O(M ;,)), (8) and (10) undergo fast fluctuations inherent in the

uncertainty principle.
Taken together, all these observations indicate that (7) undergoes period-doubling

transition to chaos upon letting 4. scan a continuous range of values. In particular, as

shown in [6],

1) Gauge bosons develop from the 2! bifurcation pattern, while fermions from the
3.2 pattern. The first stage of the fermion sector (j=0)contains a triplication of

fermion generations, in full agreement with the experimental basis of the SM.
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2) The neutrino-antineutrino branch developed at j=0 displays an intrinsic chiral

asymmetry upon applying the CPT operator, which entails that only one of the Left (L)
and Right (R) neutrino states exist. It follows that chiral symmetry breaking is rooted
in the neutrino sector and stems from the transition to chaos driven by the global

gauge transformation (7).

Both findings are consistent with [11-12], where the SM is conjectured to represent a self-
contained multifractal set, whose composition is constrained by the so-called “sum-of-
squares” relationship. The violation of chiral symmetry falls in line with spacetime
anisotropy induced by fractional differential and integral operators near or above the
Fermi scale [13].

In the same context, we point out that the sequential generation of SM families may be
interpreted from a different vantage point. As discussed in [20], the quartet of
electroweak bosons bifurcates into the gluon octet and the lepton multiplet into the quark

multiplet according to

(» W= W Z°)=(gluons, ;) (11)
(ve v. v. e p r)+antiparticles=(u d ¢ s b t) +antiparticles (12)

In particular, (11) shows that the dynamical transition U(1)xSU(2)=SU(3) is a

transformation of a stable cycle of period 4 in the electroweak sector to a stable cycle of
period 8 in the strong sector. It is apparent that this viewpoint complies with the gauge

group structure of the SM.
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In closing, we note that the wide window separating the gauge boson and fermion
bifurcation patterns may be likely attributed to the Cantor Dust composition of Dark

Matter [14-19]
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