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Abstract 

The Standard Model (SM) fails to account for either the triplication of fermion families or chiral symmetry 

breaking in the electroweak sector. Here we show that both phenomena arise from the approach to chaos 

of quantum theory near the Fermi scale.  
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1. Introduction 

Iterated maps of the unit interval are generic models of dynamical systems in discrete 

time [7-8]. The standard representation of these models is based on first order difference 

equations having the form  

 1 ( , )n nx f x + =
  (1) 

where 1,2,...n =  is the iteration index and   a control parameter. The dynamics expressed 

by (1) can be either conservative or dissipative. In the former case, the function (1) is 

monotonic and describes a one-to-one mapping, whereas in the latter case is non-
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monotonic and describes a two-to-one mapping. Typical examples of dissipative systems 

include the quadratic map and unimodal maps [1-5]. In 1978, Feigenbaum has 

discovered that the onset of chaos in quadratic maps occurs through period-doubling 

bifurcations driven by changes of the control parameter [1-2]. It was later shown that the 

period-doubling transition to chaos with the same universal attributes develops in many 

multi-dimensional dissipative nonlinear systems [3-5] In particular, unimodal maps of 

the form [8-9]  

 ( ) ( )f x f x =   (2) 

 [ 1,1]x −  ;  (0) 1f =  ;   1    (3) 

exhibit the following behavior: for small values of  , (2) has a single stable fixed point 

and all nearby points converge to it under multiple iterations given by (1). Ramping up   

to a critical value 1  makes the fixed point unstable and produces a new stable pair of 

points of period 2. Further increasing   to another value 2( )  bifurcates this cycle into a 

cycle of period 4. The bifurcation process continues with a new sequence of cycles of 

period 2 j , 3j  , eventually leading to a Cantor set structure that attracts almost all the 

points of the interval [ 1,1]− . On letting   increase beyond an endpoint value N , with

1N  , stable periodic orbits surface again and split up in a similar way. In the new 

sequence,   scans another series of critical values corresponding to cycles of period 3 2 j  

, 0,1,2,...j = and so on [8-9]. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 November 2020                   doi:10.20944/preprints202011.0376.v1

https://doi.org/10.20944/preprints202011.0376.v1


3 |  
 

2. Chaotic behavior of quantum theory near the Fermi scale  

Quantum Mechanics contains many instances where unimodal functions of the type (2) 

show up. For example, a quantum wave packet initially centered at 0x =  [10] 

 
2

( ,0) exp( )
2

x
x = −   (3) 

evolves in time according to 

 
2

( , ) exp( ) ( ,0) exp( )exp( )
2 2 2

i t i t x
x t x

 
 = − = − −   (4) 

Another example is a wavefunction localized in x  space as in [10] 

 0

0

sin ( )
( )

( )

K x x
x

x x




−
=

−
 , 1K    (5) 

whose momentum space representation is  

 0exp( )
( )

2

ikx
k



−
=   (6) 

Gauge theory demands the description of physical phenomena related to (4) or (5) to be 

independent of any arbitrary phase factor exp( )i− added to either one of them. With 

reference to (4), a global gauge transformation defined by the complex parameter

exp( )c i = −  assumes the form  

 '( , ) ( , ) exp( ) ( , )cx t x t i x t    = = −   (7) 
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Following a standard procedure, we pass from Lorentzian to Euclidean coordinates using 

the prescription 

 ' ( ' )Et i t  = = −   (8) 

 'E Et = −   (9) 

The Euclidean control parameter in the small angle approximation may be presented as 

 exp( ' )E Et = − ≈ 1 'Et− ,   ' 1Et =        (10) 

In the context of the minimal fractal manifold (MFM) [11], (10) highlights the connection 

between the Euclidean control parameter 
E  and the scale-dependent deviation from  

spacetime dimensionality ( ) 4 ( ) 1D  = −  . One concludes from (10) that the behavior 

of (7) is controlled by a parameter that runs with the energy scale as in ( )E E  = . The 

salient point here is that, on time scales commensurate or shorter than the inverse of the 

electroweak scale ( 1' ( )EWt O M − ), (8) and (10) undergo fast fluctuations inherent in the 

uncertainty principle.   

Taken together, all these observations indicate that (7) undergoes period-doubling 

transition to chaos upon letting 
E  scan a continuous range of values. In particular, as 

shown in [6], 

1)  Gauge bosons develop from the 2 j  bifurcation pattern, while fermions from the 

3 2 j  pattern. The first stage of the fermion sector ( 0)j = contains a triplication of 

fermion generations, in full agreement with the experimental basis of the SM.  
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2) The neutrino-antineutrino branch developed at 0j =  displays an intrinsic chiral 

asymmetry upon applying the CPT operator, which entails that only one of the Left (L) 

and Right (R) neutrino states exist. It follows that chiral symmetry breaking is rooted 

in the neutrino sector and stems from the transition to chaos driven by the global 

gauge transformation (7).   

Both findings are consistent with [11-12], where the SM is conjectured to represent a self-

contained multifractal set, whose composition is constrained by the so-called “sum-of-

squares” relationship. The violation of chiral symmetry falls in line with spacetime 

anisotropy induced by fractional differential and integral operators near or above the 

Fermi scale [13]. 

In the same context, we point out that the sequential generation of SM families may be 

interpreted from a different vantage point. As discussed in [20], the quartet of 

electroweak bosons bifurcates into the gluon octet and the lepton multiplet into the quark 

multiplet according to 

 ( )0

1 8( )W W Z gluons − +

−   (11) 

 ( ) ( )
,e r g

e antiparticles u d c s b t antiparticles      +  +   (12) 

In particular, (11) shows that the dynamical transition (1) (2) (3)U SU SU   is a 

transformation of a stable cycle of period 4 in the electroweak sector to a stable cycle of 

period 8 in the strong sector. It is apparent that this viewpoint complies with the gauge 

group structure of the SM. 
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In closing, we note that the wide window separating the gauge boson and fermion 

bifurcation patterns may be likely attributed to the Cantor Dust composition of Dark 

Matter [14-19] 

References  

1. M. J. Feigenbaum, “Quantitative universality for a class of nonlinear transformations”, 

J. Stat. Phys. 19:25–52 (1978). 

2. M. J. Feigenbaum, “The universal metric properties of nonlinear transformations”, J. 

Stat. Phys. 21:669–706 (1979). 

3. P. Cvitanovic (ed.), “Universality in Chaos”, 2nd Ed. (Adam Bilger, Boston, 1989).  

4. P. Collet, J.-P. Eckmann, and H. Koch, “Period Doubling Bifurcations for Families of 

Maps on Rn”, J. Stat. Phys. 25:1–14 (1981) 

5. http://spkuz.narod.ru/2005JSP.pdf 

6. E. Goldfain, “A Bifurcation Model of the Quantum Field”, Physica A 165: 399-419 

(1990). A copy of this reference is available at: 

https://www.academia.edu/38767540/A_bifurcation_model_of_the_quantum_field 

7. P.Collet, J.-P. Eckman, “Iterated Maps on the Interval as Dynamical Systems”, 

(Birkhäuser, Boston, 1980)   

8. E. A. Jackson, “Perspectives of nonlinear dynamics”, (Cambridge Univ. Press, 1991). 

9. K. J. Falconer, “The geometry of fractal sets”, (Cambridge Univ. Press, 1988). 

10. D. Bohm, “Quantum Theory”, (Dover, New York, 1989). 

11.  Available at the following sites: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 November 2020                   doi:10.20944/preprints202011.0376.v1

http://spkuz.narod.ru/2005JSP.pdf
https://www.academia.edu/38767540/A_bifurcation_model_of_the_quantum_field
https://doi.org/10.20944/preprints202011.0376.v1


7 |  
 

http://www.aracneeditrice.it/aracneweb/index.php/pubblicazione.html?item=9788854

889972 

https://www.researchgate.net/publication/278849474_Introduction_to_Fractional_Fi

eld_Theory_consolidated_version 

12. https://www.researchgate.net/publication/343426122_Derivation_of_the_Sum-of-

Squares_Relationship 

13. https://www.sciencedirect.com/science/article/abs/pii/S1007570406001183 

14. Available at the following site: 

https://www.researchgate.net/publication/300402085_Fractional_Field_Theory_and

_Physics_of_the_Dark_Sector 

15. Available at the following site: 

https://www.researchgate.net/publication/343426110_Fractional_Spacetime_the_Em

ergence_of_the_Dark_Sector_II#fullTextFileContent 

16. Available at the following site: 

https://www.researchgate.net/publication/343425902_Fractional_Spacetime_the_Em

ergence_of_the_Dark_Sector_I 

17. Available at the following site: 

https://www.researchgate.net/publication/343426172_Anyon_Physics_and_the_Topo

logy_of_Dark_Matter 

18. Available at the following site: 

https://www.researchgate.net/publication/343426202_Minimal_Fractal_Manifold_an

d_the_Dual_Nature_of_Dark_Matter 

19. Available at the following site: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 November 2020                   doi:10.20944/preprints202011.0376.v1

http://www.aracneeditrice.it/aracneweb/index.php/pubblicazione.html?item=9788854889972
http://www.aracneeditrice.it/aracneweb/index.php/pubblicazione.html?item=9788854889972
https://www.researchgate.net/publication/278849474_Introduction_to_Fractional_Field_Theory_consolidated_version
https://www.researchgate.net/publication/278849474_Introduction_to_Fractional_Field_Theory_consolidated_version
https://www.researchgate.net/publication/343426122_Derivation_of_the_Sum-of-Squares_Relationship
https://www.researchgate.net/publication/343426122_Derivation_of_the_Sum-of-Squares_Relationship
https://www.sciencedirect.com/science/article/abs/pii/S1007570406001183
https://www.researchgate.net/publication/300402085_Fractional_Field_Theory_and_Physics_of_the_Dark_Sector
https://www.researchgate.net/publication/300402085_Fractional_Field_Theory_and_Physics_of_the_Dark_Sector
https://www.researchgate.net/publication/343426110_Fractional_Spacetime_the_Emergence_of_the_Dark_Sector_II#fullTextFileContent
https://www.researchgate.net/publication/343426110_Fractional_Spacetime_the_Emergence_of_the_Dark_Sector_II#fullTextFileContent
https://www.researchgate.net/publication/343425902_Fractional_Spacetime_the_Emergence_of_the_Dark_Sector_I
https://www.researchgate.net/publication/343425902_Fractional_Spacetime_the_Emergence_of_the_Dark_Sector_I
https://www.researchgate.net/publication/343426172_Anyon_Physics_and_the_Topology_of_Dark_Matter
https://www.researchgate.net/publication/343426172_Anyon_Physics_and_the_Topology_of_Dark_Matter
https://www.researchgate.net/publication/343426202_Minimal_Fractal_Manifold_and_the_Dual_Nature_of_Dark_Matter
https://www.researchgate.net/publication/343426202_Minimal_Fractal_Manifold_and_the_Dual_Nature_of_Dark_Matter
https://doi.org/10.20944/preprints202011.0376.v1


8 |  
 

https://www.researchgate.net/publication/336287017_Cantor_Dust_as_Underlying_

Texture_of_Fuzzy_Dark_Matter 

20. Available at the following site: 

https://www.researchgate.net/publication/343403707_Emergence_of_Lie_Groups_G

auge_Symmetries_from_Complex_Dynamics 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 November 2020                   doi:10.20944/preprints202011.0376.v1

https://www.researchgate.net/publication/336287017_Cantor_Dust_as_Underlying_Texture_of_Fuzzy_Dark_Matter
https://www.researchgate.net/publication/336287017_Cantor_Dust_as_Underlying_Texture_of_Fuzzy_Dark_Matter
https://www.researchgate.net/publication/343403707_Emergence_of_Lie_Groups_Gauge_Symmetries_from_Complex_Dynamics
https://www.researchgate.net/publication/343403707_Emergence_of_Lie_Groups_Gauge_Symmetries_from_Complex_Dynamics
https://doi.org/10.20944/preprints202011.0376.v1

