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Article 

Optimal Spot Market Participation of PV + BESS: 
Impact of BESS Sizing in Utility-Scale and 
Distributed Configurations 
Andrea Scrocca, Roberto Pisani, Diego Andreotti, Giuliano Rancilio *, Maurizio Delfanti  
and Filippo Bovera 

Department of Energy, Politecnico di Milano, Via Lambruschini 4a, Milan 20156, Italy 
* giuliano.rancilio@polimi.it 

Abstract 

Recent European regulations promote distributed energy resources as alternatives to centralized 
generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with 
battery energy storage systems (BESS) in the Italian electricity market, analyzing different battery 
sizes. A multistage stochastic MILP model, using Monte Carlo PV production scenarios, optimizes 
day-ahead and intraday market offers while incorporating forecast updates. In real time, battery 
flexibility reduces imbalances. Here we show that, to ensure dispatchability—defined as annual 
imbalances below 5% of PV output—a 1 MW PV system requires 200 kWh of storage for utility-scale 
and 100 kWh for distributed systems, increasing LCOE by 12.6% and 3.8% respectively. NPV is 
negative for BESS performing imbalance netting only. Therefore, a multiple service-strategy, 
including imbalance netting and energy arbitrage, is introduced. However, maintaining 
dispatchability while performing arbitrage reaches economic optimum with a 1.7 MWh BESS for 
utility-scale systems and 1.1 MWh BESS for distributed systems. These results show lower PV firming 
costs than previous studies, and highlight that under a multiple-service strategy, better economic 
outcomes are obtained with larger storage capacities. 

Keywords: PV firming; BESS sizing; power imbalance; stochastic optimization; PV scenario 
generation; distributed energy resources; Italian electricity market 
 

Nomenclature 

Table 1. Nomenclature. 

Sets  𝑆𝑂𝐶௠௔௫ 
Maximum state of charge 

[%] 

q Quarter-of-hour of the 

day (from 1 to 96) 
𝜂௖௛௔௥௚௘ Charging efficiency [-] 

i Photovoltaic scenario 

(from 1 to 6) 
𝜂ௗ௜௦௖௛௔௥௚௘ Discharging efficiency [-] 

Parameters  𝐵𝐸𝑆𝑆௣೘ೌೣ  
Battery maximum power 

[MW] 

€ ௤஽஺ெ 
DAM price at interval 

q [€/MWh] 
𝑃 ௜,௤௉௏ PV power at interval q in 

scenario i [MW] 

€ ௤ூ஽ெ 
IDM price at interval q 

[€/MWh] 
Variables  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 June 2025 doi:10.20944/preprints202506.1758.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1758.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 29 

 

𝜆 ௤௜௠௕೙೐೒ೌ೟೔ೡ೐  
Negative imbalance 

penalty at interval q 

[€/MWh] 

𝑝 ௤஽஺ெ 
DAM power offer at 

interval q [MW] 

𝜆 ௤௜௠௕೛೚ೞ೔೟೔ೡ೐  Positive imbalance 

penalty at interval q 

[€/MWh] 

𝑝 ௤ூ஽ெ 
IDM power offer at 

interval q [MW] 

€௠௘௔௡஽஺ெ  
Mean DAM price used 

as reference [€/MWh] 
𝑝 ௜,௤௜௠௕೙೐೒ೌ೟೔ೡ೐  Negative imbalance 

power at interval q in 

scenario i [MW] 

€ ௤௜௠௕ 
Real imbalance price 

[€/MWh] 
𝑝 ௜,௤௜௠௕೛೚ೞ೔೟೔ೡ೐  

Positive imbalance power 

at interval q in scenario i 

[MW] 

𝜋௜ Scenario i probability 

[%] 
𝑝 ௜,௤௖௛௔௥௚௘ 

Charging power at 

interval q in scenario i 

[MW] 

∆ Time interval length [h] 𝑝 ௜,௤ௗ௜௦௖௛௔௥௚௘  
Discharging power at 

interval q in scenario i 

[MW] 

𝑆𝑂𝐶௜௡௜௧௜௔௟ Initial state of charge 

[%] 
𝑠𝑜𝑐௜,௤ 

State of charge at interval 

q in scenario i [%] 

𝐵𝐸𝑆𝑆௖௔௣௔௖௜௧௬ 
Battery capacity 

[MWh] 
𝑦௜,௤௜௠௕೙೐೒ೌ೟೔ೡ೐ , 𝑦௜,௤௜௠௕೛೚ೞ೔೟೔ೡ೐  Binary variables defining 

if the imbalance is 

negative or positive [-] 

 𝑆𝑂𝐶௠௜௡ 
Minimum state of 

charge [%] 
𝑦௜,௤௖௛௔௥௚௘ , 𝑦௜,௤ௗ௜௦௖௛௔௥௚௘ 

Binary variables defining 

if the battery is charging 

or discharging [-] 

 

1. Introduction 

1.1. Motivation 

In recent decades, policymakers have intensified efforts to reduce carbon emissions, leading to 
significant transformations particularly in the energy production sector, which accounts for more 
than three-quarters of total global greenhouse gas emissions [1]. A key outcome of these efforts has 
been the widespread deployment of Renewable Energy Sources (RES) worldwide, gradually 
replacing conventional thermal power plants. This transition has been driven by substantial public 
and private investments, as well as by international agreements aimed at facilitating the energy 
transition such as the Paris Agreement [2] and the European Green Deal [3]. Between 2015 and 2024, 
the effects of these global commitments became evident, as the share of electricity generated from 
RES surpassed 30% in 2023, a notable increase from 23% in 2015 [4]. This progress has been primarily 
driven by the expansion of solar photovoltaic (PV) and wind energy, with PV alone accounting for 
11% of total electricity production in Europe in 2024 [5]. 

This ongoing transition is also driving the decentralization of electricity generation, with 
increasing numbers of small- and medium-scale production units connected to distribution grids. 
This trend is particularly pronounced in the European solar power sector, where distributed 
installations accounted for 58% of new PV capacity added in 2024 [6]. Consequently, decentralized 
energy systems are gaining prominence in European regulatory frameworks. In Italy, the integration 
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of Distributed Energy Resources (DERs) into electricity markets has been formalized through the 
Testo Integrato del Dispacciamento Elettrico (TIDE) [7], which establishes market-based mechanisms 
to compensate DERs similarly to utility-scale generation units. This national framework aligns with 
broader European legislation, notably Directive 2019/944 [8], which sets out specific guidelines for 
DERs participation in electricity markets. Central to these regulations is the role of aggregators, who 
coordinate and manage multiple DERs within Virtual Power Plants (VPPs), enabling their efficient 
and effective market participation. 

However, the increasing penetration of non-programmable renewable resources (NP-RES) 
introduces new challenges for grid stability. The inherent uncertainty associated with these energy 
sources complicates the real-time balance between electricity generation and consumption. 
Additionally, the low inertia of NP-RES reduces the system’s ability to counteract frequency 
fluctuations, thereby impacting overall grid reliability. As a result of the increased demand for real-
time balancing energy and of the greater difficulty in finding flexible resources, the costs of ancillary 
services are expected to increase in future years [9]. These services, purchased by the Transmission 
System Operator (TSO), are essential for maintaining voltage and frequency stability and preventing 
grid disturbances or blackouts [10]. 

One of the most effective solutions to address these challenges is the integration of Battery 
Energy Storage Systems (BESS) with NP-RES, enhancing system flexibility by decoupling energy 
generation from consumption throughout the day. BESS can be installed in two main configurations: 
front-of-the-meter (FTM) and behind-the-meter (BTM) [11]. FTM batteries, typically large-scale 
systems connected directly to transmission or distribution networks, contribute to grid stability by 
enabling energy shifting, supporting peak demand reduction, and facilitating renewable energy 
integration [12]. These systems also participate in wholesale markets and deliver critical ancillary 
services such as frequency regulation, voltage control, and black-start capabilities [13]. With 
advanced inverters, they can enhance system inertia and fault response, helping stabilize increasingly 
decarbonized power systems [14]. In contrast, BTM batteries are deployed at residential, commercial, 
or industrial sites and primarily serve end-users [12]. They help optimize self-consumption of onsite 
renewable generation, reduce electricity bills via peak shaving and time-of-use arbitrage, and ensure 
supply reliability during outages [15]. Additionally, BTM systems can support local grid operations 
by providing flexibility services to Distribution System Operators (DSOs), easing network 
constraints, and deferring infrastructure upgrades [12]. 

Given the central role that PV systems play in energy transition—both as utility-scale assets and 
as distributed generation aggregated through VPPs—it becomes increasingly important to assess the 
economic and operational value of integrating BESS with PV installations. Such coupling not only 
has the potential to improve the financial viability of PV projects, but also helps reduce output 
uncertainty and enhance the reliability of the electrical system. 

1.2. Literature Review and Research Gaps 

Several studies focus on the development of optimization models for the participation of PV 
systems in electricity markets, aiming to enhance their integration into the power system. Due to the 
inherent variability of solar irradiance throughout the day, scenarios generation to represent possible 
PV production profiles is a crucial starting point in many of these works. Scientific literature presents 
a wide range of methodologies for this purpose, with Monte Carlo methods being among the most 
commonly employed. Zheng et al. [16] explore various approaches for modelling the power output 
of PV systems under diverse meteorological conditions, emphasizing that Monte Carlo methods are 
particularly effective in generating representative probabilistic production scenarios for DERs. To 
mitigate the computational complexity of handling large scenario sets while preserving key statistical 
attributes, Shi et al. [17] propose an approach that integrates a reduced Monte Carlo method with k-
means clustering. Similarly, Falabretti et al. [18] apply this combined methodology to construct input 
scenarios for a stochastic mixed-integer linear programming (MILP) model, designed to optimize the 
bidding strategy of a VPP in both the Day-Ahead Market (DAM) and the real-time market. By 
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explicitly accounting for PV production uncertainty, their study demonstrates significant 
improvements in profitability while effectively mitigating imbalance costs. 

Given the uncertainty in PV power output, other studies apply stochastic or robust optimization 
models to maximize revenues from PV participation in electricity markets, demonstrating superior 
performances over traditional deterministic approaches. Stochastic optimization aims to find 
solutions that perform well on average by incorporating the probability distributions of uncertain 
parameters. In contrast, robust optimization seeks solutions that remain effective under worst-case 
scenarios within a defined uncertainty set, without requiring probabilistic information [19]. For 
instance, Nemati et al. [20] propose a regret-based flexible robust optimization model for a VPP 
composed of wind, solar PV, and flexible demand, simulated in a southern Spain scenario. The VPP 
participates simultaneously in the day-ahead and secondary reserve markets, while accounting for 
imbalance penalties. Their model allows the operator to control the level of conservatism using a 
monetary regret limit rather than traditional uncertainty budgets. Results show that the model is 
economically effective and that it can adapt to different levels of forecast error and market penalties. 
In contrast Silva et al. [21] develop a multistage stochastic decision-aid algorithm to optimize the 
bidding strategy of a VPP composed of wind, solar PV, and storage across day-ahead, intraday, and 
balancing markets. Unlike previous studies focusing mainly on day-ahead and balancing markets, 
their approach explicitly includes intraday market participation to better manage forecast 
uncertainty. Results show that engaging in all three markets increases VPP profits by 10.1% and 
reduces imbalances by 63.8%, highlighting the value of coordinated multi-market strategies under 
uncertainty and the relevance of near-real-time re-scheduling possibility for NP-RES. Similarly, 
Visser et al. [22] propose an operational bidding strategy that optimizes the participation of a PV 
power plant in electricity spot markets, considering day-ahead, intraday, and imbalance markets. 
Particularly, they develop a multistage stochastic optimization method using a scenario generation 
algorithm. The method is evaluated using both technical and economic metrics, demonstrating a 
significant improvement over a reference strategy. The study shows that extending market 
participation to intraday increases revenues by 22% and reduces imbalance by 50%. 

While the optimization of utility-scale PV + BESS systems for participation in electricity markets 
has been widely studied, the optimization of residential PV + BESS systems also offers significant 
benefits, particularly in enhancing energy flexibility and improving economic performance [23]. Li 
[24] develops a genetic algorithm-based method for the optimal sizing of grid-connected PV + BESS 
systems in residential buildings, incorporating a time-of-use electricity tariff scheme to maximize cost 
savings. Results show that jointly optimizing PV and battery sizes significantly reduces electricity 
imports and costs, though optimal system size varies with household consumption profiles and price 
conditions. Duman et al. [25] propose an optimal PV + BESS sizing model for prosumers equipped 
with Home Energy Management Systems (HEMS), emphasizing the role of day-ahead load 
scheduling in increasing self-consumption. The developed MILP model incorporates optimal PV tilt 
angle selection and load scheduling of various controllable appliances, while accounting for battery 
degradation and vehicle-to-home functionality. It first minimizes daily electricity costs through 
demand response and self-consumption, then simulates one year of HEMS operation to evaluate the 
Net Present Value (NPV) of different PV + BESS configurations. The optimal design is identified as 
the configuration yielding the highest NPV. Similarly, Zhou et al. [26] explore the allocation of PV 
and battery capacity in a smart home environment, explicitly considering the impact of electricity 
pricing mechanisms on system performance and cost-effectiveness. Particularly, the study accounts 
for various electricity pricing mechanisms—time-of-use (TOU), real-time pricing (RTP), and stepwise 
power tariffs (SPT)—as well as PV subsidies and uncertainties in solar generation and seasonal load 
profiles. A hybrid optimization approach, combining a cataclysmic genetic algorithm with the 
DICOPT solver in GAMS [27], is employed to identify the optimal configuration. Through six case 
studies and sensitivity analyses, the results reveal that under SPT and sufficient subsidies, installing 
only PV is optimal, whereas under RTP and TOU, both PV and BESS are necessary to achieve 
maximum profits. Rezaeimozafar et al. [28] propose a two-stage stochastic optimization framework 
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for operating behind-the-meter PV + BESS systems, aiming to minimize daily grid consumption and 
battery degradation while accounting for PV output uncertainty. A feed-forward neural network 
combined with a statistical error analysis technique is used to generate accurate PV output scenarios, 
which are then reduced using a backward scenario reduction method to mitigate dimensionality 
issues in the optimization model. The reduced scenarios are input into the two-stage model to 
estimate expected electricity costs and degradation. The approach is validated with real-world data 
from a household in Ireland, demonstrating strong performance under PV variability and results 
comparable to an ideal forecast scenario. 

A key aspect when optimizing commercial PV programs is to assess the economic impact of 
imbalances. Guo et al. [29] propose an optimal real-time operational framework aimed at minimizing 
imbalance costs of a VPP. The study highlights that the effectiveness of the adopted strategy depends 
on the specific imbalance settlement mechanisms in place. Similarly, Marneris et al. [30] investigate 
the rationale behind strategic bidding and the necessity of accurate forecasting under different 
imbalance settlement schemes. Their study presents a comprehensive approach to determine the 
optimal bidding strategy for a RES aggregator operating in the day-ahead and ancillary services 
markets, where prices are taken as given. To ensure precision in the optimization process, the 
interactions between the day-ahead market, ancillary services, and real-time balancing mechanisms 
are explicitly modelled. 

Imbalance costs, and price signals coming from different energy markets, should correctly reflect 
the impact of PV-induced imbalances on the working operations of the power system managed by 
the TSO. Pierro et al. present a structured analysis addressing the challenges of integrating high 
shares of PV generation into the Italian power system [31–33]. In their earliest work [31], they propose 
two complementary strategies to mitigate the impacts of rising PV penetration on imbalance 
volumes: improving PV and net load day-ahead forecasts, and converting conventional PV systems 
into “flexible PV” plants equipped with remote curtailment capabilities and cost-optimized battery 
storage. Both strategies are shown to significantly reduce imbalance volumes and costs, with the 
second capable of eliminating imbalance impacts entirely, all at a cost lower than current imbalance 
management practices. Building on this foundation, Pierro et al. in [32] outline a broader roadmap to 
achieve a 100% renewable electricity mix in Italy by transforming intermittent PV production to firm 
24/365 power generation. In their most recent contribution [33], the authors focus on the system-wide 
implementation of flexible PV plants to provide ancillary services through proactive curtailment and 
battery support. They show that such plants can reduce the national imbalance by 36% compared to 
2016 levels with only 6% curtailment of PV production. This can be achieved at or below current 
dispatching costs. Moreover, a geographically distributed fleet of flexible PV plants ensures optimal 
regulation performance, with the sizing strategy found to be robust against year-specific variations 
in load, generation, and market conditions. 

Complementing this system-level perspective, Lazard offers a widely referenced benchmark for 
the cost of transforming PV generation into firm power through battery storage [34]. According to 
their last report, the Levelized Cost of Electricity (LCOE) for standalone PV in the CAISO market [35] 
is approximately $43/MWh. When battery-based firming is included, this cost rises to $141/MWh. 
The firming cost is defined as the additional expense required to compensate for the non-firm portion 
of PV output using a firm resource—assumed in this case to be a 4-hour lithium-ion battery with a 
power rating equal to 50% of the installed PV capacity. This definition highlights the context-specific 
nature of firming and distinguishes it from broader concepts such as dispatchability. Consequently, 
firming cost estimates must be interpreted with caution, as they depend heavily on local assumptions 
about resource adequacy, system needs, and market design. 

The optimization of bidding strategies for PV plants has been extensively explored in the 
literature, with various studies addressing participation to different stages of the electricity market. 
However, very few studies have specifically analyzed the benefits of PV systems participation in IDM 
focusing on economic profitability and imbalance management. Additionally, while numerous 
optimization models incorporate the minimization of imbalance quantities and, consequently, 
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imbalance costs, they rarely integrate this aspect with the optimization of BESS sizing. However, 
these two dimensions are strongly interrelated, as the extent of imbalances is inherently influenced 
by storage capacity, given that BESS can mitigate forecasting errors. This comes at the expense of 
investment and operational costs associated with storage infrastructure which must be carefully 
evaluated. Moreover, no study has assessed the difference between utility-scale and distributed PV 
configurations when it comes to market participation and imbalance management, with possible 
different impacts on the optimal BESS size. The technical and economic performance of distributed 
PV systems has been widely examined in scientific literature. However, direct comparisons with 
utility-scale PV power plants, which currently represent the predominant form of PV generation in 
the power system [36], remain limited. 

1.3. Contribution and Novelty 

This research investigates the optimal participation of PV + BESS systems within the Italian 
electricity market. Specifically, it focuses on the optimization of DAM and IDM bidding strategy 
through a multistage stochastic MILP, followed by a real-time operation phase, in which the 
flexibility of the battery is leveraged to minimize imbalances. The optimization framework is 
implemented in Python, using Pyomo library for mathematical modelling [37] and Gurobi as the 
solver [38]. To generate PV production scenarios, a Monte Carlo method is applied in combination 
with k-means clustering. 

Two different system configurations are analyzed in this study: 
1. a distributed system of fixed rooftop PV systems located at the Leonardo campus of Politecnico 

di Milano [39]; 
2. a simulated utility-scale plant situated at the same location. 

The dataset for estimating daily PV power production profiles is sourced from the EU 
Photovoltaic Geographical Information System (PVGIS) [40]. To ensure comparability between the 
distributed and the utility-scale configurations, a fixed installed peak capacity of 1 MW is considered. 
By clustering 12 groups of days (corresponding to four seasons and three different irradiance 
conditions per season), the annual performance of the two configurations is assessed. The BESS size 
is varied from 0 to 5 MWh to assess its impact on both system’s economic performance and the 
resulting imbalance volumes. 

This work contributes to the existing literature by providing a comparative analysis of two 
distinct PV system configurations—utility-scale and distributed—using a consistent methodological 
framework. While these configurations are not mutually exclusive, the study highlights their 
respective strengths and limitations in terms of profitability and dispatchability. The analysis 
evaluates system economic performance in electricity spot markets as a function of BESS capacity, 
offering insights into optimal BESS sizing and bidding strategies for each configuration. Furthermore, 
the study explores the trade-off between economic optimization and dispatchability requirements, 
assessing how an imposed imbalance threshold of 5% influence battery sizing and key economic 
metrics such as LCOE and NPV. This comprehensive approach provides a deeper understanding of 
the value of BESS integration in PV systems under varying operational constraints. 

Although this study is conducted within the Italian electricity market and focuses on Milan’s PV 
generation, findings can be easily extended to other regulatory contexts and alternative geographical 
locations. The remainder of this paper is structured as follows: Chapter 2 provides an overview of 
the Italian electricity market, with a particular emphasis on the TIDE regulatory framework. Chapter 
3 details the methodological approach, from scenario generation to the mathematical model used for 
optimization. Chapter 4 presents the case study and discusses the results obtained. Finally, Chapter 
5 summarizes the key findings and outlines potential directions for future research. 

2. Italian Electricity Market 

This research considers the Italian context within the framework of the new TIDE regulatory 
initiative, ensuring alignment with the evolving European energy landscape. The section begins by 
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outlining the core principles and objectives of TIDE, providing the necessary foundation for 
understanding its implications on market operations. It then offers an overview of the structure of 
the Italian electricity spot markets. The Ancillary Services Market (ASM) is excluded from the 
analysis, as it lies beyond the scope of this study. 

2.1. TIDE 

TIDE [7], introduced in January 2025, represents a significant step toward aligning the Italian 
electricity market with the EU regulatory landscape. Developed in compliance with EU Regulation 
2017/2195 [41] and other European directives, TIDE establishes new principles and operational 
frameworks aimed at enhancing competition and liquidity in electricity markets. Particularly, TIDE 
aims to support the evolving needs of the electricity system as the share of non-dispatchable 
renewable energy sources continues to grow. Its primary objective is to implement an economically 
efficient dispatch model in which all network resources—including consumption units—can, in 
principle, serve a dual role: their primary function as energy producers or consumers, managed by 
Balance Responsible Parties (BRPs), and an additional function of providing flexibility services, 
managed by Balance Service Providers (BSPs). The model promotes competition among all types of 
resources, centralized or distributed, through organized market platforms that select the most 
efficient providers of flexibility services. This selection adheres to the principle of technological 
neutrality, meaning services are procured regardless of the providing technology as long as technical 
and cost criteria are met. 

A key regulatory development introduced by TIDE is the formal recognition of Virtual 
Aggregated Units (Unità Virtuali Abilitate, UVA) as market participants, enabling aggregated DERs 
to compete alongside conventional power plants. This allows for greater flexibility in the 
participation of decentralized assets, ensuring that even small-scale resources can contribute to 
system balancing and market liquidity. 

In summary, TIDE fosters a more inclusive and competitive electricity market by integrating 
RES, storage, and distributed systems and simultaneously enhancing system flexibility. This 
transformation includes a restructuring of market mechanisms, particularly within the spot markets, 
which are central to this study. The following sections outline the Italian electricity market structure, 
focusing on DAM, IDM and imbalance settlement within this new regulatory framework. 

2.2. Day-Ahead Market and Intra-Day Market 

The first phase of the Italian electricity spot market is the DAM, where market participants must 
submit their energy bids by 12:00 on the previous day (D-1), with market-clearing results published 
at 12:55 on D-1. Following the DAM, the IDM provides market participants with the opportunity to 
adjust their commercial positions by submitting additional supply offers or purchase requests. The 
IDM consists of three scheduled auctions (CRIDA) and a continuous trading session (IDM-XBID) 
[42]. 

The three intraday auction sessions are structured as follows: 
• CRIDA1: Opens at 12:55 on D-1 and closes at 15:30 on D-1. 
• CRIDA2: Opens at 12:55 on D-1 and closes at 22:00 on D-1. 
• CRIDA3: Opens at 12:55 on D-1 and closes at 10:00 on D. 

Prior to the introduction of TIDE, the resolution of spot market transactions was one hour, but 
starting in 2025, this transitioned to a 15-minute resolution to with the ASM. Consequently, a market 
time unit (MTU) of 15 minutes is adopted in this research. 

In terms of spatial granularity, the Italian electricity market is divided into seven market zones: 
North (NORD), North-Central (CNOR), South-Central (CSUD), South (SUD), Calabria (CALA), Sicily 
(SICI), and Sardinia (SARD) [43]. 

In the DAM, operators submit bids that include: the MTU of delivery, the sale or purchase 
quantities and the respective price. Offers are accepted based on the auction results after the market 
closes. All supply offers accepted in the DAM are valued at the marginal clearing price of their 
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respective zones. This price is determined for each MTU by the intersection of demand and supply 
curves and varies across zones when transit limits are saturated. With the introduction of TIDE, all 
purchasing offers are valued at the PUN Index, calculated by GME ex-post as the average of zonal 
prices, weighted by purchased quantities in each market zone. 

In the CRIDA, demand bids and supply offers are selected on the basis of the same criterion as 
described for the DAM, employing a system marginal pricing method. In contrast, in the IDM-XBID, 
bids are matched immediately whenever a sell offer is priced lower than—or equal to—a 
corresponding buy bid. 

This study considers a PV + BESS system that participates in the DAM and adjusts its commercial 
output in CRIDA2, based on improved PV forecast accuracy between 12:55 (D-1), the gate closure 
time (GTC) of the DAM, and 22:00 (D-1), the GTC of CRIDA2. 

2.3. Imbalance Settlement 

The nodal imbalance volume for a single unit is calculated for each Imbalance Settlement Period 
(ISP)—the time interval over which a BRP imbalance volume is financially settled—as the difference 
between the actual energy exchanged with the grid and the scheduled energy resulting from market 
clearing. This deviation, measured in MWh, indicates whether the unit has a positive (overproduction 
or underconsumption) or negative (underproduction or overconsumption) imbalance. In addition to 
nodal imbalances, macrozonal imbalances are also considered, which represent the net imbalance 
volume across all units within the same macrozone, which is defined as the aggregation of one or more 
pricing area. 

Currently, in Italy is employed a static scheme with two macrozones: a North Macrozone 
corresponding to the ’NORD’ market zone and a South macrozone corresponding to the six 
remaining market zones. Imbalance volumes are calculated for each 15-minute ISP and are 
economically settled using the Single Pricing methodology. This pricing mechanism, established by 
ARERA (the Italian Regulatory Authority for Energy, Networks and Environment) through 
Deliberation 523/2021/R/eel [44], ensures alignment with European regulatory requirements [41]. 
Under the single pricing mechanism, the imbalance price for each ISP is calculated based on the 
overall macrozonal imbalance volume. Therefore, a uniform imbalance price is applied to all market 
participants in a given macrozone, regardless of whether they contribute positively or negatively to 
the overall imbalance. Particularly, the macrozonal imbalance price is determined as the volume-
weighted average price of balancing energy activated by the TSO in response to system needs. 
Consequently, in a macrozone with positive imbalance, the imbalance price tends to be lower than 
the DAM price, whereas in a macrozone with negative imbalance, it tends to be higher than the DAM 
price. This design benefits participants unbalancing in the opposite direction of the macrozone 
imbalance volume: those who help mitigate it are rewarded with better prices than DAM prices, 
while those who worsen it face penalties. However, it must be noted that, since the imbalance price 
depends on real-time system conditions and balancing actions, it is not known during real-time 
operations. Instead, Terna, the Italian TSO, publishes the official imbalance prices on the day 
following market execution. 

3. Methodology 

This section outlines the modeling approach used to simulate the PV + BESS system operations 
and its interactions with electricity markets. The process begins with the generation of PV production 
scenarios using a Monte Carlo random sampling method, widely recognized in scientific literature 
for its flexibility in handling uncertainty and ease of implementation [45]. To manage computational 
complexity, a scenario reduction technique is also applied, specifically the k-means clustering 
algorithm. After generating PV scenarios for both DAM and IDM, the next step is to realistically 
model the knowledge of electricity prices, with particular attention to how imbalance prices are 
represented at different stages of the optimization. The final step involves the optimization of the PV 
+ BESS system’s market participation through a multistage stochastic MILP. Given the inherent 
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uncertainties in PV generation, the stochastic approach is considered the most suitable solution. The 
decision to adopt a multistage model is based on the progressive refinement of available information 
throughout the day, with improved PV production forecasts between DAM and IDM and the 
resolution of uncertainty during real time operation. 

3.1. PV Scenario Generation 

3.1.1. Day-Ahead Market PV Scenarios 

Generating PV scenarios is essential to accurately capture the uncertainty associated with solar 
radiation during the considered day. As previously mentioned, the adopted methodology combines 
the Monte Carlo method with k-means clustering, following an approach similar to that described in 
reference [18]. To ensure a robust dataset, the study utilizes three years of historical PV production 
data with a 15-minute resolution. 

The first step of the methodology involves classifying days by season. Within each seasonal 
group, k-means clustering is applied to group days based on solar radiation conditions. This 
clustering technique partitions a dataset of n observations into k clusters by assigning each 
observation to the cluster with the nearest mean, which serves as the cluster’s representative. The k-
means clustering technique has been selected because it is particularly effective for extracting 
meaningful patterns from data, enabling the identification of trends in time-series behavior. By 
grouping similar data points, it reduces computational complexity while preserving the key statistical 
characteristics of the dataset [46]. 

To determine the optimal number of clusters for each season, the Elbow Method is applied. This 
technique, widely used in the literature, helps identifying the appropriate number of clusters by 
analyzing the within-cluster sum of squares (WCSS), which quantifies the total squared distance 
between each point in a cluster and its centroid. The Elbow Method involves plotting the WCSS on 
the y-axis against the number of clusters on the x-axis. The “elbow point”—where the decrease in 
WCSS starts to plateau—indicates the optimal number of clusters. 

To maintain consistency and ensure computational efficiency, a common number of clusters is 
adopted across all four seasons. This choice is justified by the similarity in optimal cluster values 
obtained for each season and the benefits of uniformity in the subsequent analysis. As a result, the 
profiles are organized into 4×N matrices, where 4 represents the seasons and N denotes the number 
of clusters. 

Once the clusters have been identified, the following steps are carried out for each cluster: 
1. Calculation of the average profile of the cluster being analyzed. 
2. Derivation of error profiles as the difference between the various historical profiles and the 

average profile, with a 15-minutes resolution. 
3. Application of the Monte Carlo method through a random addition of errors to the average 

profile. The selected errors must respect the time constraint (an error obtained in a given quarter 
hour can only be added to the PV production value of the average profile in the same quarter 
hour) but can belong to different error profiles. The process continues iteratively until the 
convergence criterion is satisfied. 
Scenario generation is terminated when the uncertainty, defined as in eq. (1), reaches a value 

lower than the imposed threshold: 

𝜉௉ುೇሺ𝑖ሻ = 1𝐸௜ [𝑃௉௏] ∗  ඨ∑ ሺ𝑃௉௏ሺ𝑘ሻ − 𝐸௜ [𝑃௉௏]ሻଶ௜௞ୀଵ 𝑖 , (1)

where i is the number of scenarios generated so far, 𝑃௉௏ሺ𝑘ሻ represents the PV production profile 
for the k-th scenario, while 𝐸௜ [𝑃௉௏]  denotes the average PV production profile over the first i 
scenarios. 

Once the iterations are completed and all scenarios have been generated, a scenario reduction 
method is applied to limit computational efforts. The optimal number of reduced scenarios is 
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determined using the elbow method, which is reapplied to assess the trade-off between the number 
of scenarios and the retained variance. After establishing a common number of reduced scenarios for 
each cluster, the k-means clustering method is employed to group similar scenarios based on daily 
PV power production. This process results, for each cluster in each season, in a final set of 
representative scenarios, each assigned a probability, ensuring that the reduced set accurately reflects 
the statistical properties of the original distribution. 

3.1.2. Intra-Day Market Improved PV Scenarios 

The main difference between DAM and IDM optimization lies in the improvement in PV forecast 
accuracy that occurs between the DAM GTC (12:55 on D-1) and the CRIDA2 GTC (22:00 on D-1). 
However, due to the lack of historical forecast data, this improvement is synthetically simulated. The 
steps applied, starting from the real profiles, remain the same, except for an additional step 
introduced between the Monte Carlo method and scenario reduction. Specifically, a subset of the 
newly generated profiles is selected based on a predefined filtering criterion. The goal is to retain 
only those scenarios that match more closely the actual PV production for the day being simulated—
representative of the specific combination of season and irradiance conditions under analysis—while 
discarding those that deviate significantly. To achieve this, the normalized Root Mean Square Error 
(nRMSE) is used as the filtering metric, and an appropriate threshold is chosen to ensure that only 
the most realistic scenarios are retained. Equation (2) shows the calculation of the nRMSE: 

𝑛𝑅𝑀𝑆𝐸 = ට1𝑁 ∗  ∑ ൫𝑃௤௚௘௡ −  𝑃௤௥௘௔௟൯ଶே௤ୀଵ1𝑁 ∗  ∑ 𝑃௤௥௘௔௟ே௤ୀଵ , (2)

𝑁  represents the number of time intervals (96 quarter-hour periods), 𝑃௤௚௘௡  is the power at 
interval q of the generated scenario, and 𝑃௤௥௘௔௟ is the real power production. 

This parameter was chosen as it effectively balances differences in both absolute value and 
shape, making it well-suited for assessing forecast accuracy. Its widespread use in the literature as a 
standard metric for evaluating forecasting model performance further supports its application in this 
study. For instance, [47] applies nRMSE to assess the accuracy of solar radiation forecasts, particularly 
in comparing different forecasting methodologies, while [48] analyzes various studies that frequently 
adopt nRMSE for performance evaluation, highlighting its relevance across different forecasting 
applications. 

3.2. Mathematical Model 

Once the scenarios have been generated, they serve as inputs for the mathematical optimization 
models that simulate the participation of the PV + BESS system in the electricity market. Figure 1 
illustrates the sequence of the different optimization phases, along with the respective inputs and 
outputs. The process begins with the optimization of the DAM commercial program using the 
generated PV scenarios. This is followed by a refinement step in the IDM, leveraging more accurate 
PV forecasts. It is important to note that in both stages, the actual imbalance prices are not used. 
Instead, penalties are applied to both positive and negative imbalances to discourage intentional 
deviations, reflecting the operator’s uncertainty regarding future imbalance prices. Finally, based on 
the commercial program defined at IDM closure, the real-time operation of the plant is simulated. 
The objective in this phase is to minimize imbalances. At this stage, the simulation allows the 
calculation of daily profits using actual imbalance volumes and prices. 
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Figure 1. Optimization sequence. 

3.2.1. Day-Ahead Market 

The initial PV scenarios, produced using the procedure outlined in section 3.1.1, along with 
DAM prices and imbalance penalties, are used as input for the MILP model that optimizes the 
bidding strategy in the DAM. 

Equations (3)-(6) represent the objective function of the first stage of the mathematical model. 
As shown, the optimal solution corresponds to maximizing the DAM expected profit, while 
accounting for imbalance costs and battery costs. maxሺ𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑓𝑖𝑡 − 𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡 − 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑜𝑠𝑡ሻ (3)

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑓𝑖𝑡 =  ෍ € ௤஽஺ெ௤ୀଽ଺
௤ୀଵ ∗ 𝑝 ௤஽஺ெ ∗ ∆ (4)

𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡 =  ෍ 𝜋௜ ∗ ( ෍  𝜆 ௤௜௠௕೙೐೒ೌ೟೔ೡ೐௤ୀଽ଺
௤ୀଵ

௜ୀ௡ೞ೎
௜ୀଵ ∗ 𝑝 ௜,௤௜௠௕೛೚ೞ೔೟೔ೡ೐ ∗ ∆      

−  ෍  𝜆 ௤௜௠௕೙೐೒ೌ೟೔ೡ೐ ∗ 𝑝 ௜,௤௜௠௕೛೚ೞ೔೟೔ೡ೐௤ୀଽ଺
௤ୀଵ  ∗ ∆) 

(5)
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𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑜𝑠𝑡 = ෍ 𝜋௜ ∗ €௠௘௔௡஽஺ெ ∗  (𝑆𝑂𝐶௜௡௜௧௜௔௟ −  𝑠𝑜𝑐௜,௤ୀଽ଺) ∗ 𝐵𝐸𝑆𝑆௖௔௣௔௖௜௧௬௜ୀ௡ೞ೎
௜ୀଵ  (6)

The expected profit is calculated as the revenue derived from selling bids submitted in the DAM. 
Unlike the other two equations, this is not a weighted average across different possible outcomes, 
since the energy offered in the DAM remains the same across all PV scenarios. In contrast, imbalance 
quantities and BESS operations vary based on the assumed PV power production profile. The aim of 
the optimization is to define a strategy to be submitted to the DAM, representing the best possible 
compromise for all potential PV daily outcomes before uncertainty is resolved. The term associated 
with the DAM bid is multiplied by the time interval length (0.25 h) to maintain unit consistency. 
DAM prices are modeled under a price-taker assumption, given the high market liquidity, and are 
considered perfectly known in this study. This approach is commonly adopted in the literature for 
simplifying market modeling and optimizing bidding strategies [49]. Given that the system operates 
at a 15-minute resolution, whereas prices are still at an hourly resolution, a linear interpolation is 
applied to obtain intermediate values. This choice anticipates the changes expected under TIDE, 
which will standardize all markets to a single MTU of 15 minutes. 

As described in section 2.2, Italy follows a single pricing system for imbalance settlement, 
meaning that imbalance prices depend on the real-time system position for each quarter-hour. 
However, if perfect foresight were assumed, this pricing mechanism could lead the optimizer to 
deliberately create imbalances in order to exploit potential advantages over the DAM price. Since 
such behavior is unrealistic, given that operators can hardly know imbalance prices in advance, 
penalties are introduced for both positive and negative imbalances during the DAM and IDM 
optimization phases. The calculation of the imbalance penalties follows these steps: 
1. Collection of annual DAM prices and imbalance prices. 
2. Calculation of the difference between imbalance prices and DAM prices over each quarter of an 

hour of the year. 
3. Computation of the annual average imbalance price deviations for each quarter-hour, separately 

for negative and positive system imbalances. 
4. Finally, each time a day is simulated, imbalance penalties are computed for each quarter-hour 

by adding the average imbalance price deviations to the actual daily DAM price profile. 
Finally, the battery cost is a fictitious compensation term, preventing artificial profits from the 

energy initially stored in the battery. The calculation assumes that the cost of restoring the initial SOC 
is based on the DAM annual average price. 

To ensure consistency between the physical power flows processed by the PV + BESS system 
and the commercial dispatch schedule, the following constraint must be imposed: 𝑃 ௜,௤௉௏ −  𝑝 ௜,௤௖௛௔௥௚௘ +  𝑝 ௜,௤ௗ௜௦௖௛௔௥௚௘ = 𝑝 ௤஽஺ெ −  𝑝 ௜,௤௜௠௕೙೐೒ೌ೟೔ೡ೐ ∗ 𝑦௜,௤௜௠௕೙೐೒ೌ೟೔ೡ೐ +  𝑝 ௜,௤௜௠௕೛೚ೞ೔೟೔ೡ೐ ∗ 𝑦௜,௤௜௠௕೛೚ೞ೔೟೔ೡ೐ . (7)

In equation (7), the DAM bids remain constant across all scenarios, while the other variables are 
scenario-dependent. The two variables 𝑦௜,௤௜௠௕೙೐೒ೌ೟೔ೡ೐ e 𝑦௜,௤௜௠௕೛೚ೞ೔೟೔ೡ೐  are binary variables that take a value 
of 1 depending on the type of imbalance. It is important to note that, in this study, the battery is 
assumed to be charged exclusively by PV power production, with no electricity being withdrawn 
from the grid. 

BESS operations are governed by the following five constraints: 𝑠𝑜𝑐௜,௤  ≥  𝑆𝑂𝐶௠௜௡, (8)𝑠𝑜𝑐௜,௤  ≤  𝑆𝑂𝐶௠௔௫, (9)

𝑠𝑜𝑐௜,௤ =  𝑠𝑜𝑐௜,௤ିଵ + ∆ ∗  𝜂௖௛௔௥௚௘ ∗  𝑝 ௜,௤௖௛௔௥௚௘ ∗  𝑦௜,௤௖௛௔௥௚௘𝐵𝐸𝑆𝑆௖௔௣௔௖௜௧௬ −  (10)
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∆ ∗  𝑝 ௜,௤ௗ௜௦௖௛௔௥௚௘ ∗  𝑦௜,௤ௗ௜௦௖௛௔௥௚௘𝜂ௗ௜௦௖௛௔௥௚௘ ∗  𝐵𝐸𝑆𝑆௖௔௣௔௖௜௧௬, 
𝑝 ௜,௤௖௛௔௥௚௘  ≤ 𝐵𝐸𝑆𝑆௉௠௔௫, (11)𝑝 ௜,௤ௗ௜௦௖௛௔௥௚௘  ≤ 𝐵𝐸𝑆𝑆௉௠௔௫. (12)

The SOC of the battery can neither exceed 100% nor fall below the 0% threshold in any scenario 
for any quarter-hour. Excess or insufficient power is converted into positive and negative imbalances, 
respectively, thereby introducing an economic penalty. Equation (10) defines the SOC update for each 
quarter-hour based on the BESS processed power. Two binary variables 𝑦௜,௤௖௛௔௥௚௘ and 𝑦௜,௤ௗ௜௦௖௛௔௥௚௘ are 
defined to represent if the BESS is charging or discharging. The final two constraints ensure that 
power flows remain within the maximum allowable limits imposed by the technical specifications of 
the BESS. 

3.2.2. Intra-Day Market 

The second stage of the stochastic MILP model consists of solving the IDM. The primary 
distinction between the two phases is the improvement in PV forecasts. The newly refined forecast 
scenarios are incorporated as inputs into the model, alongside IDM prices, imbalance penalties, and 
the bids already submitted in the DAM. 

The methodology remains largely unchanged. The objective function follows the same structure 
of eq. (3), with the only variation concerning the expected profit component, as shown in eq. (13): 

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑓𝑖𝑡 =  ෍ € ௤஽஺ெ௤ୀଽ଺
௤ୀଵ ∗ 𝑃 ௤஽஺ெ ∗ ∆ + ෍ € ௤ூ஽ெ௤ୀଽ଺

௤ୀଵ ∗ 𝑝 ௤ூ஽ெ ∗ ∆. (13)

In this stage, the additional revenue from IDM transactions is incorporated, complementing the 
earnings already secured in the DAM. The IDM prices are assumed to be known in advance for the 
same reasons outlined in the first stage. Given that this study focuses exclusively on participation in 
the CRIDA2 auction, the corresponding prices are used. To achieve adjustment to the DAM 
submitted commercial program, IDM bids can take both positive and negative values. A positive 
IDM bid reflects an additional purchase or an increase in energy injection to compensate for an 
underestimated DAM position, whereas a negative IDM bid corresponds to a reduction in energy 
injection or an increase in energy withdrawal, correcting an overestimated DAM position. These 
adjustments must always remain within the nominal power limits of the system, ensuring feasibility. 
Additionally, the sum of DAM and IDM bids must never be negative, preserving operational 
consistency. 

Finally, the power balance equation is modified as follows: 𝑃 ௜,௤௉௏ −  𝑝 ௜,௤௖௛௔௥௚௘ + 𝑝 ௜,௤ௗ௜௦௖௛௔௥௚௘ = 𝑃 ௤஽஺ெ + 𝑝 ௤ூ஽ெ −  𝑝 ௜,௤௜௠௕೙೐೒ೌ೟೔ೡ೐ + 𝑝 ௜,௤௜௠௕೛೚ೞ೔೟೔ೡ೐ . (14)

3.2.3. Real-Time Operation 

The last stage of the mathematical model does not involve an optimization process but rather an 
operational strategy for real-time management. At this stage, the actual PV power production for 
each quarter-hour is revealed, fully eliminating uncertainty. Unlike the previous phases, where 
forecasts and stochastic scenarios influenced decision-making, the real-time strategy relies solely on 
known values, with no probabilistic components to consider. At each quarter-hour, the model 
minimizes imbalance quantities as defined in the objective function expressed in eq. (15): min௤ ቀ𝑝௤௜௠௕೙೐೒ೌ೟೔ೡ೐ + 𝑝௤௜௠௕೛೚ೞ೔೟೔ೡ೐ቁ. (15)
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Rather than optimizing for the entire day at once, the model operates sequentially, updating at 
each time step q. The battery SOC is carried forward from one interval to the next, reflecting a realistic 
operational framework in which PV production is not known in advance but uncertainty is resolved 
progressively. To reduce imbalances, the model utilizes the battery’s flexibility. However, due to its 
physical constraints, long or short imbalances may still occur when the battery reaches either its 
maximum or minimum SOC. 

4. Case Studies and Results 

4.1. Analyzed Case Studies 

PV production data is sourced from PVGIS [40], a widely used tool that offers significant 
flexibility in various aspects: 
• It allows users to specify the exact geographical location of the PV system; in this study, Piazza 

Leonardo da Vinci in Milan is selected. 
• The time period can vary between 2005 and 2024. In this study, the range 2021–2023 is chosen to 

ensure a comprehensive representation of production profiles. 
• The system type can be customized by selecting fixed panels or tracking systems, allowing 

further customization of tilt and orientation. 
• The installed peak power and system losses can be defined. 

The distributed PV power plant analyzed in this study consists of eight fixed rooftop 
installations located across the Politecnico di Milano Leonardo Campus, with an overall peak power 
of 1MW and the characteristics summarized in Table 2. The systems employ three main mounting 
configurations, reflecting the architectural diversity and structural constraints of the selected 
rooftops. The majority of the systems are rooftop-coplanar, where PV modules are installed flush 
with the slope and orientation of the existing roof surfaces. Two installations use a ballasted 
mounting system on flat roofs; in this configuration, modules are secured by weight rather than 
mechanical anchoring, enabling flexible placement without compromising the roof structure [50]. 
Finally, one installation is mounted on a barrel-shaped roof, approximated using a simplified model 
with three tilt sections to represent the curved geometry: 
• 50% of the panels positioned at 0° inclination, 
• 25% at 15° inclination, 
• 25% at -15° inclination (equivalent tilt but opposite azimuth). 

Additionally, Figure 2 illustrates the geographical distribution of these rooftop PV systems 
providing an overview of their spatial layout within the university campus. However, it is important 
to note that, due to the close proximity of the buildings, PVGIS does not account for localized 
differences in solar irradiance across the campus. As a result, all rooftop systems are treated as if they 
are located at the same geographical point, and temporal variations in cloud cover across individual 
buildings are not captured. Despite this limitation, each system retains its unique tilt and azimuth 
values, which result in distinct PV production profiles even under the same irradiance conditions. 
The losses were estimated by observing the actual performances of the systems installed across the 
university. 

Once the system parameters are defined, PVGIS is used to simulate daily PV production profiles 
for the period 2021–2023. The output from the eight rooftop systems is then aggregated to generate 
the overall 1 MW production profile representing the distributed PV configuration. 

Table 2. PV power plants installed at Politecnico di Milano’s Leonardo campus. 

Power 
Plant 

Type Peak power 
[kW] 

Losses 
[%] 

Tilt [°] Azimuth [°] 

1 Rooftop - Coplanar 199.30 12.85 6 90 
2 Rooftop - Coplanar 165.56 12.43 9 90 
3 Rooftop - Barrel shaped 84.36 12.57 0 90 
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42.18 12.57 15 90 
42.18 12.57 -15 -90 

4 Rooftop - Coplanar 
46.40 13.73 15 0 
13.59 19.90 27 0 
0.62 17.72 15.9 90 

5 Rooftop - Coplanar 139.19 12.95 15.9 90 

6 Flat Roof - Ballasted 
50.22 13.74 9 -15 
50.22 13.74 9 -168.46 
54.72 13.74 9 80 

7 Rooftop - Coplanar 82.25 11.71 10 0 
8 Flat Roof - Ballasted 29.53 11.43 30 0 

 

Figure 2. Map showing the geographical distribution of rooftop PV systems installed at the Politecnico di Milano 
Leonardo Campus. 

The utility-scale plant considered in this study is a hypothetical ground-mounted system, 
located at the same geographical site as the rooftop installations and designed with the same peak 
power of 1 MW to enable a consistent comparison. Unlike the fixed rooftop systems, this 
configuration employs a horizontal single-axis tracking system, which allows the PV modules to 
rotate along a north–south axis. This tracking mechanism follows the sun’s movement from east to 
west throughout the day, increasing solar exposure and thereby enhancing power production 
compared to fixed systems [51]. The system is assumed to be installed on flat ground, typical of 
utility-scale deployments, and system losses are set to 14%, in line with the default value in PVGIS 
and the assumptions made in ref. [21]. 

The original PVGIS dataset has an hourly resolution. However, given the 15-minutes resolution 
required for this study, a linear interpolation method was applied. As a result, two matrices were 
constructed, each with dimensions 1095 × 96 (corresponding to three years of daily production 
profiles, with a 15-minute resolution). These matrices represent the complete production datasets for 
both the rooftop and utility-scale systems. 

Once the two matrices have been obtained, they are divided into four seasonal subsets. For each 
season, the Elbow method is applied to determine the optimal number of clusters for further 
partitioning the sub-matrices. Figure 3 provides a graphical example of this process for Autumn. 
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Figure 3. Determination of the optimal number of clusters for Autumn using the Elbow method. 

The analysis identifies three optimal clusters per season, each corresponding to different total 
radiation levels, influenced by seasonal variations and climatic conditions. Particularly, clusters were 
defined as Sunny (highest production, clear-sky conditions), Variable (intermediate production, 
mixed weather), and Cloudy (lowest production, cloudy). This classification led to 4 x 3 = 12 clusters 
per plant configuration. From each of these 12 clusters, one representative day from 2023 is selected 
to simulate the market participation of the PV + BESS system. Rather than simulating all days in the 
year, the analysis is performed only on these 12 representative days, each assumed to typify the 
operational and production conditions of its corresponding cluster. This methodological choice was 
driven by both computational and time constraints, allowing for a feasible simulation process while 
still preserving the seasonal and weather-related variability in solar production. The selected 
representative days are shown in Table 3. 

Table 3. Selected representative days. 

Season Sunny Weather Variable Weather Cloudy Weather 
Winter 01/03/2023 24/01/2023 21/12/2023 
Spring 06/05/2023 29/04/2023 30/03/2023 
Summer 20/07/2023 23/08/2023 15/09/2023 
Autumn 03/10/2023 31/10/2023 26/10/2023 

To reconstruct a full-year performance profile from these limited simulations, an occurrence 
probability is assigned to each cluster based on how frequently it occurs within the three analyzed 
years. The results obtained from each simulated representative day are then weighted by this 
probability and scaled to 365 days, effectively allowing the model to approximate annual 
performance and market participation outcomes from a limited set of representative days. To verify 
the effectiveness of the method adopted, the Capacity Factor (CF) is calculated as 18.6% for the utility-
scale plant and 14.2% for the distributed system, values that are consistent with real-world 
performance expectations for similar PV installations. 

4.2. PV Scenario Generation and Market Data 

The first phase of simulating market participation involves generating PV scenarios for DAM 
using the Monte Carlo method, followed by scenario reduction through k-means clustering, as 
described in Section 3.1. This process is carried out separately for each selected representative day. It 
is important to clarify that the scenario generation method from Section 3.1 is applied using all PV 
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production profiles within the same cluster—meaning all days from the 2021–2023 period that fall 
under the same category (Sunny, Variable, or Cloudy) and season as the representative day. 

To ensure convergence in scenario generation, an uncertainty threshold of 1% is imposed. If this 
threshold is not reached, the process is automatically terminated after generating 2000 scenarios. 
These parameters are set to strike a balance between accuracy and computational effort, in line with 
the values used in similar works [18]. 

After completing the scenario generation phase, the number of profiles is reduced using the 
Elbow method to identify representative cases. Unlike the seasonal clustering, the WCSS curves do 
not display a clear elbow point, making it challenging to determine the optimal number of scenarios. 
Nevertheless, six clusters are selected, as this number provides the best trade-off between capturing 
the key variability in the data and maintaining computational efficiency, with reference to the 
approach adopted in [18]. As a result, six representative PV production profiles are selected for each 
of the 12 representative days and for both plant configurations. These profiles represent the 
forecasted possible PV power generation scenarios used in the DAM simulation. 

To generate the scenarios for the IDM simulation, as detailed in section 3.1.2., a filtering criterion 
is introduced. A nRMSE threshold is imposed, varying for each cluster and plant configuration. This 
differentiation is necessary because a fixed threshold would not be equally effective across all 
conditions. A threshold that is highly selective for a cloudy day might fail to filter any Monte Carlo-
generated scenarios for a sunny day. Conversely, a threshold suitable for a sunny day would 
eliminate almost all scenarios generated for variable or cloudy clusters. Similarly, the two plant 
configurations require distinct nRMSE thresholds for the same cluster. To ensure uniformity in the 
filtering process across all days, the nRMSE threshold is set to retain between 1% and 5% of the 
generated scenarios. The final step in scenario processing involves further reducing the filtered 
scenarios using k-means clustering, obtaining six representative scenarios, matching the number 
used for the DAM, to serve as inputs for the IDM optimization stage. 

Figure 4 provides an example of the various processing steps applied to four representative 
days. The thicker blue line shows the actual PV production on the representative day for the given 
cluster and is therefore identical for both the DAM and IDM stages. What differs are the six reduced 
PV scenarios used as inputs for the two stages of the stochastic optimization: the IDM scenarios, 
produced after the filtering process, are much closer to the actual production profile, while the DAM 
scenarios show greater deviations since they result from non-filtered Monte Carlo profiles. 

 

Figure 4. PV scenario generation process. 

Finally, it is necessary to collect real market price data to provide all the required inputs for the 
multistage stochastic optimization. The real DAM and IDM prices for the analyzed days were 
collected from the Italian Energy Market Operator (GME) [52]. The imbalance prices were instead 
retrieved from Terna’s official database [53]. 
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4.3. Techno-Economic Analysis of PV + BESS Market Participation 

The objective of this study is to determine the optimal battery size from both a profitability and 
a dispatchability perspective. To achieve this, it is crucial to obtain results across a wide range of 
storage capacities, allowing for a comprehensive evaluation. To avoid excessive computational effort, 
the Energy-to-Power Ratio (EPR) is fixed at 2. Consequently, storage capacity is varied between 0 and 
5 MWh, in steps of 100kWh. This results in a total of 4 (seasons) × 3 (clusters) × 51 (battery sizes) = 612 
market participation simulation, repeated for both plant configurations. At each iteration, the three 
mathematical models described in Section 3.2. are solved and optimized. Finally, the total profit is 
computed as follows: 𝑝𝑟𝑜𝑓𝑖𝑡௧௢௧௔௟ = 𝑝𝑟𝑜𝑓𝑖𝑡஽஺ெ + 𝑝𝑟𝑜𝑓𝑖𝑡ூ஽ெ −  𝑐𝑜𝑠𝑡௜௠௕ − 𝑐𝑜𝑠𝑡௙௜௡௔௟ೄೀ಴ , (16)

𝑝𝑟𝑜𝑓𝑖𝑡஽஺ெ =  ෍€௤஽஺ெ ∗ 𝑝௤஽஺ெ ∗ ∆ଽ଺
௤ୀଵ , (17)

𝑝𝑟𝑜𝑓𝑖𝑡ூ஽ெ =  ෍€௤ூ஽ெ ∗ 𝑝௤ூ஽ெ ∗ ∆ଽ଺
௤ୀଵ , (18)

𝑐𝑜𝑠𝑡௜௠௕ =  ෍€௤௜௠௕ ∗ 𝑃௤௜௠௕೙೐೒ೌ೟೔ೡ೐ − €௤௜௠௕ ∗ 𝑃௤௜௠௕೛೚ೞ೔೟೔ೡ೐ଽ଺
௤ୀଵ , (19)

𝑐𝑜𝑠𝑡௙௜௡௔௟ೄೀ಴ =  €௠௘௔௡஽஺ெ ∗  (𝑆𝑂𝐶௜௡௜௧௜௔௟ −  𝑆𝑂𝐶௤ୀଽ଺) ∗ 𝐵𝐸𝑆𝑆௖௔௣௔௖௜௧௬ , (20)

where 𝑃௤௜௠௕೙೐೒ೌ೟೔ೡ೐  and 𝑃௤௜௠௕೛೚ೞ೔೟೔ೡ೐ are the residual imbalances following the system real-time 
operations. 

The total profit is initially calculated for each of the 12 representative days across the different 
battery sizes. To estimate the annual total profit for each BESS capacity, these daily profits are 
combined using a weighted average. The weights correspond to the occurrence probabilities of each 
cluster, which represent how frequently each type of day (Sunny, Variable, or Cloudy) in each season 
(Winter, Spring, Summer, Autumn) occurs during the 2021–2023 period used to generate the PV 
scenarios. The occurrence percentages of each cluster, for both the utility-scale plant and the 
distributed PV system, are presented in Table 4. It is important to note that these percentages differ 
slightly between the two configurations because the clustering process was performed separately 
based on their respective PV production profiles. However, since both systems are modeled at the 
same geographical location, the percentages are quite similar, reflecting consistent radiation level 
patterns. 

Table 4. Occurrence probabilities of each cluster for both the utility-scale and distributed PV configurations. 

Season Cluster Occurrence probability  
utility-scale [%] 

Occurrence probability  
distributed system [%] 

Winter 
Sunny 6.94 7.95 

Variable 9.04 9.50 
Cloudy 8.67 7.21 

Spring 
Sunny 15.07 16.26 

Variable 5.39 6.12 
Cloudy 4.75 2.83 

Summer 
Sunny 10.59 11.69 

Variable 10.41 9.41 
Cloudy 4.20 4.11 

Autumn Sunny 6.03 6.58 
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Variable 9.86 9.86 
Cloudy 9.04 8.50 

In the following sections, we present the results of our analysis assessing the economic impact 
and improved dispatchability achieved through BESS installation for both configurations. The 
analysis consists of three steps. First, we determine the minimum BESS size required to reduce annual 
imbalance volumes—relative to the PV plant’s total production—to below 5%. This threshold is based 
on [32], which reports that imbalances in Italy accounted for 5.6% of national demand in 2016. To 
isolate the effect on dispatchability, we run simulations using constant DAM and IDM prices across 
both stages, so that the optimization focuses solely on minimizing imbalances, excluding any gains 
from energy arbitrage. This allows us to estimate the net cost of making the PV system dispatchable. 
In the second step, recognizing that a BESS cannot be financially justified if used solely to reduce 
imbalances, we assess the system economic performance when the storage is optimally used also for 
energy arbitrage in DAM and IDM. This allows us to identify the optimal BESS size and associated 
revenues for both the utility-scale and distributed configurations. Finally, we combine the two 
perspectives to evaluate the optimal BESS size when a 5% imbalance constraint is enforced. The 
economic analysis is based on two indicators: the LCOE, which is used to capture the system cost 
increase due to BESS installation; and the NPV, which estimates the economic returns over the 
system’s lifetime. 

The LCOE is computed as in eq. (21) over a 30-year horizon aligned with the PV plant’s expected 
lifetime: 

𝐿𝐶𝑂𝐸 = 𝐶𝐴𝑃𝐸𝑋௉௏ + ∑ 𝑂𝑃𝐸𝑋௉௏(1 + 𝑖)௧ଷ଴௧ୀଵ + ∑ 𝐶𝐴𝑃𝐸𝑋஻ாௌௌ(1 + 𝑖)ଵ଴௧ଶ௧ୀ଴ + ∑ 𝑂𝑃𝐸𝑋஻ாௌௌ(1 + 𝑖)௧ଷ଴௧ୀଵ∑ 𝑃𝑉𝑃𝑜𝑤𝑒𝑟௦௢௟ௗ(1 + 𝑖)௧ଷ଴௧ୀଵ . (21)

PV CAPEX and OPEX are taken from [54]: the Commercial PV category is used for the distributed 
system (CAPEX = €1300k/MW, OPEX = €15k/MW), while the Utility Scale category is used for the 
utility-scale system with tracking (CAPEX = €950k/MW, OPEX = €17.5k/MW). BESS is assumed to 
have a 10-year lifetime, requiring two replacements over 30 years and ending without any residual 
value. BESS CAPEX is modeled as in [55], with an energy-related cost of €250k/MWh (battery banks) 
and a power-related cost of €80k/MW (inverter and grid integration). OPEX is estimated at 
€5k/MWh/year. The LCOE denominator includes only the energy exchanged with the grid—i.e., net 
of BESS round-trip losses in PV + BESS configurations. 

Based on these parameters and assuming a 5% discount rate—consistent with values used in 
similar studies [56–58]—the NPV can be calculated over a 10-year horizon as follows: 

𝑁𝑃𝑉 = −𝐶𝐴𝑃𝐸𝑋஻ாௌௌ + ෍𝛥ோ௘௩௘௡௨௘௦  ൤ €𝑦𝑒𝑎𝑟൨ − 𝑂𝑃𝐸𝑋஻ாௌௌ(1 + 𝑖)௧ଵ଴
௧ୀଵ  . (22)

This NPV formulation evaluates whether the BESS investment adds economic value to the 
system. It accounts only for the BESS-related CAPEX and OPEX, and the incremental annual revenues 
generated with BESS compared to the baseline case without storage. 

4.3.1. Economic Impact of Dispatchability Constraints 

Assuming that only the PV plant participates in the DAM and IDM and using the PV production 
scenarios described in Section 4.2., the annual imbalance volume for the utility-scale configuration 
with horizontal single-axis tracking amounts to approximately 13% of total energy production, while 
for the distributed configuration it is around 11%. If a BESS is added solely to reduce imbalance 
volumes below the 5% threshold, the required storage capacity is 200 kWh for the utility-scale system 
and 100 kWh for the distributed one, reducing imbalance levels to 4.7% and 3.8%, respectively. 
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Figure 5 shows the LCOE for both configurations in the base case (without BESS) and in the 
firmed cases described above. The cost of firming is approximately €6/MWh for the utility-scale 
system, resulting in a 12.6% increase in LCOE, and around €3/MWh for the distributed system, with 
a 3.8% increase. 

However, it is important to highlight that installing such battery sizes solely to minimize 
imbalances does not generate sufficient revenues to recover the BESS investment costs. Specifically, 
calculating the NPV using the formulation in Eq. (22), under current BESS costs, yields –55k€ for the 
utility-scale system and –42k€ for the distributed one, highlighting the need to explore additional 
uses for the BESS, such as its potential for arbitrage in the DAM and IDM. 

 
Figure 5. LCOE increase required to achieve dispatchability without market-based optimization. 

4.3.2. Unconstrained Optimal BESS Sizing 

This section analyzes the optimal operation of the PV+BESS system in electricity markets under 
varying BESS size and without imposing any constraints on imbalance volumes. Figure 6 presents 
the annual profit trend and its derivative as battery capacity increases. 

 

Figure 6. Annual profit as a function of BESS size under optimal market participation. 

As expected, the profit generated by the PV + BESS system increases with battery size. However, 
the rate of increase is not uniform: for smaller storage capacities, profit grows significantly, whereas 
for larger capacities, the marginal benefit decreases. This decreasing revenue suggests that increasing 
BESS capacity beyond a certain threshold no longer provides proportional economic benefits. 

To assess the economic feasibility of BESS installation we compute the NPV as in eq. (22). The 
results indicate that, for any battery size, the NPV remains negative. This suggest that, under 2023 
electricity market conditions and assumed battery costs, for a participation limited to DAM and IDM, 
a battery does not generate sufficient revenue to fully recover its costs. From a strictly economic 
perspective, the most financially advantageous solution is to operate without a BESS, for both system 
configurations. 

Therefore, we identify the maximum battery bank cost at which at least one PV+BESS 
configuration remains economically viable, defined as achieving a positive NPV. This threshold is 
approximately half the current cost, around 125 k€/MWh. Figure 7 shows the total 10-year revenue 
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for each battery size after accounting for this reduced BESS cost. The optimal battery sizes that 
maximize net profit fall within the 1–2 MWh range for both configurations, though differences in 
profitability within this range are minimal and difficult to distinguish visually. Specifically, the 
highest net profit is achieved with a 1.4 MWh BESS for the utility-scale system and a 1.3 MWh BESS 
for the distributed system. For comparison, under current BESS costs, these same configurations 
would result in NPVs of –239 k€ and –221 k€, respectively. 

The shaded areas in Figure 7 highlight the configurations where the PV+BESS system 
outperforms the PV-only baseline under the assumed BESS cost scenario. These areas largely overlap, 
with the utility-scale system exhibiting a slightly broader profitable range. In both cases, installing 
more than 2 MWh of storage does not provide economic benefits. 

 

Figure 7. Overall net profit as a function of BESS capacity considering 125k€/MWh battery bank cost under 
optimal market participation. 

4.3.3. Optimal BESS Sizing Under Dispatchability Constraint 

This study also aims to investigate how the dispatchability of the system is influenced by 
increasing battery size. To achieve this, annual normalized imbalance volumes under optimal market 
participation are presented for each considered BESS capacity for both the utility-scale plant and the 
distributed system. 

Figure 8 illustrates the normalized imbalance volumes as BESS capacity increases. The graph 
shows that the utility-scale plant exhibits higher normalized imbalanced volumes than the 
distributed system for most of the BESS size range. 

 
Figure 8. Normalized imbalance volume as a function of BESS capacity under optimal market participation. 
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To investigate the reasons behind the imbalance volume differences between the two 
configurations, we analyze the days with the largest imbalance discrepancies. For this analysis, we 
select a BESS capacity of 1.4 MWh, identified in the previous section as an optimal size. With this 
fixed capacity, we collect the seven components of the system’s energy balance at 15-minute 
resolution across 12 representative days: solar production, charging power, discharging power, DAM 
bids, IDM bids, and both short and long imbalance volumes. Figures 9 and 10 display the 
corresponding diagrams for the utility-scale and the distributed configurations operating on the 
representative autumn day with variable conditions. 

 
Figure 9. Energy balance on Autumn Variable Weather Day for a utility-scale system with a 1.4MWh BESS under 
optimal market participation. 

 
Figure 10. Energy balance on Autumn Variable Weather Day for a distributed system with a 1.4MWh BESS 
under optimal market participation. 

It can be seen that the horizontal tracking system of the utility-scale plant produces sharper 
profiles with two peaks in power production throughout the day. In contrast, the distributed system 
generally exhibits smoother profiles, with a smaller volume of generated energy. This is further 
illustrated in Figure 11, which shows the percentage difference in annual PV production between the 
two systems as function of time. It is clear that the largest production difference occurs at the 
beginning and end of the day, with the distributed system generating significantly less energy during 
these periods. This suggests that the utility-scale plant benefits from a longer daily production 
window, enabling a wider range of production patterns and introducing greater forecast uncertainty. 
As a result, there is a higher likelihood of committing to a commercial schedule that leads to 
unavoidable imbalances. 
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Figure 11. Average percentage difference in solar power output between the distributed and utility-scale 
configurations over the year. 

Referring back at Figure 8, we observe that the minimum BESS sizes required to meet the 
imposed 5% imbalance threshold, under optimal BESS market participation, are 1.1 MWh for the 
distributed system and 1.7 MWh for the utility-scale system. This indicates that the dispatchability 
constraint does not limit the economic optimum for the distributed configuration, as its optimal BESS 
size (1.3 MWh) exceeds the minimum required (1.1 MWh). In contrast, for the utility-scale system, 
the optimal size (1.4 MWh) falls below the 1.7 MWh needed for dispatchability, meaning that 
enforcing this constraint reduces profitability. 

As a final step, we aim to determine the cost of making a PV system dispatchable defined as 
achieving an annual imbalance volume below 5% of total annual production under the condition that 
the installed BESS must also engage in energy arbitrage to recover its investment costs. Therefore, 
Figure 12 compares the LCOE of the PV-only system with that of the PV+BESS systems for both the 
utility-scale and distributed configurations, using the minimum BESS sizes required to keep the 
relative imbalance below the 5% threshold (respectively 1.7MWh and 1.1MWh) and employing 
current BESS costs. 

 
Figure 12. LCOE increase required to achieve dispatchability with market-based optimization. 

It is clear that the LCOE is significantly higher for BESS-integrated solutions in both 
configurations. For the utility-scale system, the LCOE increases from 46€/MWh to 95€/MWh, while 
for the distributed system, it rises from 76€/MWh to 119€/MWh. Therefore, if the BESS is also used to 
maximize system profit through spot market arbitrage, the relative increase in LCOE amounts to 
104% for the utility-scale system and 57% for the distributed one. 

The LCOE increase reflects the cost of firming which the two systems must bear to minimize 
imbalances at a negligible level when performing energy arbitrage. If the additional profits generated 
by a larger BESS compensate for this cost increase, the system achieves an optimum in both 
profitability and dispatchability. For the PV + BESS configurations reported in Figure 12, the NPV 
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under current BESS costs is negative in both cases and worse than in the pure firming scenario 
presented in Section 3.1: –295 k€ for the utility-scale system compared to –55 k€, and –191 k€ for the 
distributed system compared to –42 k€. However, assuming reduced BESS costs, as discussed in 
Section 3.2, could make larger BESS capacities more economically viable. 

It is also important to note that this analysis considers only revenues from participation in the 
day-ahead and intraday markets. Additional revenue streams—such as ancillary services—could 
further improve the economic performance, particularly if the battery is underutilized in the current 
configuration. To evaluate this, we compute the battery’s Capacity Factor (CF) as follows: 

𝐶𝐹 [%] = ∑ 𝜋ௗ ∑ 𝑃ௗ,௤௖௛௔௥௚௘ ∗ ∆ + 𝑃ௗ,௤ௗ௜௦௖௛௔௥௚௘ ∗ ∆ ଽ଺௤ୀଵଵଶௗୀଵ 𝐵𝐸𝑆𝑆௉ ௠௔௫ ∗ 24ℎ ∗ 100 . (23)

Here, d represents the 12 selected typical days. A weighted average of the daily contributions is 
used to determine the total energy exchanged by the battery over an average day. The denominator 
accounts for the maximum theoretically exchangeable energy in a single day. For battery sizes 
ensuring imbalance percentages around 5%, the calculated CF values are 18.6% for the utility-scale 
plant and 14.2% for the distributed system. These values confirm that the battery is not fully utilized 
across all operational hours, indicating strong potential for additional service provision. 

5. Discussion 

This study develops a multistage stochastic optimization framework to assess the participation 
of a 1 MW PV system coupled with a BESS in the Italian electricity spot markets, accounting for both 
DAM and IDM operations. Two configurations—utility-scale and distributed—are analyzed to 
determine the optimal battery size for each. 

To explore the technical and economic interplay between storage sizing and system 
performance, the study investigates the trade-off between dispatchability and profitability. When 
considering PV-only systems, the LCOE is calculated at 46.39 €/MWh for the utility-scale system and 
75.83 €/MWh for the distributed one. Introducing a BESS used solely to meet the 5% annual imbalance 
threshold—without optimizing for market revenues—requires 200 kWh of storage for the utility-
scale system and 100 kWh for the distributed system. This increases the LCOE to 52.24 €/MWh and 
78.77 €/MWh, respectively, which remain significantly below the firmed PV LCOE estimated by 
Lazard in the CAISO context (141 $/MWh) [34]. For a better comparison, it should be noted that, for 
the same PV peak power, Lazard’s study assumes a 2MWh BESS. However, this strategy proves 
economically inefficient with respect to PV stand-alone, as minimizing imbalances alone does not 
yield sufficient revenue to offset current storage costs, resulting in negative NPVs of –55 k€ and –42 
k€, respectively. 

An alternative approach is to leverage the BESS for energy arbitrage in both DAM and IDM, 
while also minimizing imbalances in real time. Yet, under current market conditions and battery 
costs, BESS operation results in negative NPVs across all tested sizes—making PV-only systems the 
most economically viable option. Nevertheless, future reductions in battery CAPEX, as well as access 
to additional revenue streams (e.g., frequency regulation services), could significantly improve the 
financial viability of PV + BESS systems. 

To simulate such a future scenario, we assume a 50% reduction in battery bank investment 
costs—from 250 k€/MWh to 125 k€/MWh—representing the break-even threshold at which at least 
one BESS size yields a positive NPV for both configurations. In this scenario, the optimal BESS size 
(without dispatchability constraints) becomes 1.4 MWh for utility-scale and 1.3 MWh for distributed 
systems, yielding slightly positive NPVs. For reference, under current BESS costs, the same 
configurations would result in NPVs of –239 k€ and –221 k€. 

Finally, we reintroduce the 5% imbalance constraint while maintaining energy arbitrage 
strategies. For the utility-scale system, this raises the minimum required BESS size to 1.7 MWh, 
resulting in a return to negative NPV, even under reduced battery costs. In contrast, the distributed 
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system with a 1.3 MWh BESS remains within the dispatchability threshold, as the minimum required 
size to meet firm operation is 1.1 MWh. Therefore, no resizing is needed. 

Calculating the LCOE under current BESS costs for these minimum dispatchable configurations 
yields 94.53 €/MWh for the utility-scale system with a 1.7 MWh BESS, and 118.94 €/MWh for the 
distributed system with a 1.1 MWh BESS. These higher LCOE values reflect the trade-off between 
system firmness and storage utilization. Using the BESS solely for imbalance minimization would 
require smaller storage capacities, resulting in lower LCOE but also negative NPVs. Conversely, 
leveraging the BESS for energy arbitrage—assuming it generates enough revenue to offset its cost—
leads to higher LCOE values, but potentially enables positive NPVs. 

These findings highlight that distributed systems—due to smoother production profiles—
benefit from improved forecast accuracy when using a Monte Carlo scenario generation approach. 
This allows them to achieve dispatchability with smaller storage capacities. In contrast, utility-scale 
systems face more variability and require larger batteries to meet the same dispatchability targets, 
making investment recovery more difficult. 

Several directions for future research emerge from this work. First, incorporating the ancillary 
services market, and particularly the provision of frequency regulation services, would provide a 
more complete assessment of BESS revenue streams. Second, battery degradation modeling should 
be introduced to evaluate long-term performance and cost recovery. Third, considering a variable 
BESS EPR could provide deeper insights into the balance between storage capacity and power 
availability. Finally, scenario generation could be refined by using historical PV forecasts and actual 
plant data, allowing for more realistic DAM-IDM transitions and better modeling of forecast 
uncertainty across time horizons. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

ASM Ancillary Services Market 
BESS Battery Energy Storage System 
BTM Behind-The-Meter 
CF Capacity Factor 
CRIDA Complementary Regional Intra-Day Auction 
DAM Day-Ahead Market 
DER Distributed Energy Resource 
EPR Energy to Power Ratio 
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EU European Union 
FTM Front-of-The-Meter 
GTC Gate Time Closure 
HEMS Home Energy Management System 
IDM Intra-Day Market 
ISP Imbalance Settlement Period 
LCOE Levelized Cost Of Electricity 
MILP Mixed-Integer Linear Programming 
MTU Market Time Unit 
NP-RES Non-Programmable Renewable Energy Sources 
NPV Net Present Value 
nRMSE normalized Root Mean Square Error 
PV Photovoltaic 
PVGIS Photovoltaic Geographical Information System  
RES Renewable Energy Sources 
RTP Real-Time Pricing 
SOC State Of Charge 
SPT Stepwise Power Tariff 
TIDE Testo Integrato del Dispacciamento Elettrico 
TOU Time Of Use 
TSO Transmission System Operator 
VPP Virtual Power Plant 
UVA Unità Virtuale Abilitata 
WCSS Within-Cluster Sum of Squares  
XBID Cross-Border Intra-Day 
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