
Article Not peer-reviewed version

Enhancing the Accuracy of Monopole

and Dipole Source Identification with

Vision Transformer

Junwen Chen , Bohan Ma , Cheng Wei Lee , Xun Liu , Wei Ma *

Posted Date: 25 September 2025

doi: 10.20944/preprints202509.2056.v1

Keywords: microphone array; monopole and dipole identification; vision transformer; beamforming

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4761186
https://sciprofiles.com/profile/4129791
https://sciprofiles.com/profile/2453334


 

 

Article 

Enhancing the Accuracy of Monopole and Dipole 

Source Identification with Vision Transformer 

Junwen Chen 1, Bohan Ma 1, Cheng Wei Lee 1, Xun Liu 2 and Wei Ma 1,* 

1 School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China 

2 Shanghai KeyGo Technology Company Limited, Shanghai, China 

* Correspondence: mawei@sjtu.edu.cn 

Abstract 

Identifications of mixed monopole and dipole sound sources under highly randomized acoustic 

environments are of interest in many industrial applications. The DAMAS–MS method is one of the 

few methods that has been explicitly developed to address this problem. However, it suffers from a 

critical constraint in that it consistently exhibits limited accuracy in identifying monopole sources, 

which leads to their underestimation in the final results. To overcome this constraint, this paper 

proposed a novel identification framework that integrates vision transformer (ViT) with 

beamforming techniques. The framework leverages preliminary beamforming results to construct 

input features by extracting the real and imaginary components of the cross-spectral matrix at target 

frequencies and incorporating spatial position encodings derived from estimated source locations. 

To ensure adaptability to varying source densities, multiple ViT sub-models are trained on 

representative scenarios. This strategy enables effective generalization across the target range and 

supports multi-label identification of monopole and dipole sources with varied configurations. 

Furthermore, anechoic chamber experiments with synthesized monopole and dipole emitters 

validate the method’s stability under single-frequency excitation. Compared to the DAMAS–MS 

method, the proposed method achieves significantly improved identification accuracy for monopole 

sources, while maintaining comparable performance in dipole source identification, underscoring its 

potential for practical applications. 

Keywords: microphone array; monopole and dipole identification; vision transformer; beamforming 

 

1. Introduction 

With the rapid development of low-altitude air mobility in urban transportation, logistics, and 

emergency response, structural noise generated by aircraft operations has become a major barrier to 

further development [1,2]. Accurate identification of monopole and dipole sources is fundamental to 

effective structural noise control in low-altitude aviation. Designing effective noise mitigation 

strategies requires a clear understanding of the underlying acoustic generation mechanisms [3]. 

Among various contributors, monopole and dipole sources have been identified as dominant 

components in the radiated field [4].  

Consistently, Zhang and Liu [5] validate a fast multipole Ffowcs Williams and Hawkings (FW-

H) solver, demonstrating that monopole and dipole sources dominate the radiated field and thereby 

proving their fundamental importance. Relying solely on acoustic imaging [6] often fails to 

distinguish monopole and dipole sources, leading to misinterpretation of source characteristics and 

suboptimal noise control. Relying identification of these elementary source types, particularly 

monopoles and dipoles, is a prerequisite for meaningful aeroacoustic analysis and targeted noise 

reduction.  

Beamforming methods are widely applied to source localization tasks, however, conventional 

methods face intrinsic constraints in identification monopole and dipole sources, especially under 

turbulent or highly randomized acoustic conditions. These methods are generally formulated under 
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monopole assumptions and thus struggle to characterize directionally radiating sources such as 

dipoles. These constraints severely hinder source-type identification in complex field conditions. To 

enhance identification capability, hybrid approaches have been proposed by integrating spherical 

harmonic decomposition [7,8] or transfer function correction techniques [9–11] into beamforming 

frameworks. However, the former depends on coaxial symmetry in the source field, while the latter 

heavily relies on prior acoustic models and shows poor adaptability to varying environments. 

Despite advances in multipole beamforming—such as direction decomposition and source-

component separation by Liu et al. [10] and Suzuki [12], or the stability-enhancing deconvolution 

and directional weakening strategies by Demyanov et al.  [13] and Pan et al. [14] —still require prior 

knowledge of the source type. As a result, these methods remain insufficient for application in 

acoustically complex, source-diverse environments. 

To address the remaining constraints of these advanced methods, recent research has proposed 

two major categories of deep learning–based frameworks, beamforming-driven methods and 

Bayesian inference–based methods. 

 Within the beamforming category, as one of the few methods explicitly developed for highly 

randomized and complex environments, Lobato et al.  [15], inspired by the neural network for sound 

source localization proposed by Ma and Liu [16], proposed the DAMAS-MS method. This method 

enhances real-time performance via compression-driven grid refinement and targets the 

identification of monopole and dipole sources in randomized acoustic fields. However, its 

identification performance is hindered by a systematic bias toward dipole sources, resulting in 

frequent overestimation of dipole components and underrepresentation of monopole contributions. 

In parallel, an unrolled Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) applied to the 

cross-spectral matrix (CSM) was proposed to improve reconstruction stability in single-shot scenarios 

[17]. Building on this insight, Goudarzi [18] developed the Broadband CLEAN-SC method, which 

directly utilizes the raw CSM as input and integrates global optimization, local optimization, and a 

meshless neural network. This method eliminates the need for predefined source-type assumptions 

and demonstrates strong performance for broadband dipole identification in controlled 

configurations. However, it has not been validated in scenarios involving mixed source types, spatial 

randomness, or turbulent fields. Importantly, its direct use of the CSM as model input provides 

methodological inspiration for the present paper.  

Bayesian inference–based methods have recently emerged as a class of data-driven approaches 

for acoustic source identification [19]. Among them, Pan et al.  [20] proposed a representative sparse 

bayesian learning framework based on a multipole transfer matrix model, enabling simultaneous 

identification of monopole and dipole sources without predefined source-type assumptions. 

However, these methods typically rely on dense microphone arrays to ensure observability and 

remain limited in low-frequency, low-SNR, or spatially randomized environments, restricting their 

practicality in real-world scenarios. 

To address the limitations of DAMAS-MS under highly randomized conditions, this paper 

leverages the global representation capability of deep learning models. In particular, the vision 

transformer (ViT) has demonstrated outstanding performance in global feature modeling [21,22], 

making it well-suited for complex source identification. Inspired by the work of Goudarzi [18], 

guided by the findings of Jekosch and Sarradj [23] that the CSM inherently contains dipole orientation 

information. This paper adopts the CSM as the primary feature representation to retain and exploit 

its directional content. Localization results are used to extract CSM data at target frequencies, forming 

a three-channel input of real part, imaginary part, and spatial positional encoding. This preserves the 

spatial and spectral structure for ViT-based global feature modeling, yielding higher monopole 

accuracy and maintaining competitive dipole performance, extending CSM based learning to 

practical airframe noise identification. 

This paper is organized as follows. In Section 2, key challenges in monopole and dipole 

identification are discussed. Section 3 introduces the proposed methodology and its theoretical 

foundation. Section 4 presents simulations under the same core parameters as DAMAS-MS and 
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reports the corresponding results. Section  5 presents experimental verification conducted in an 

anechoic chamber. Finally, conclusions are drawn in Section 6. 

2. Problem Statement 

2.1. Constraints of Conventional Monopole and Dipole Identification Methods Without Prior Source Type 

Assumptions 

Conventional monopole and dipole identification methods are ineffective when no prior 

assumptions regarding source types are made, primarily for two reasons. First, the Green’s function 

matrix for combined monopole and dipole sources remains undetermined, thereby preventing the 

formulation of governing equations for the sound field. 

This limitation originates from the fundamental mathematical model commonly used in acoustic 

inverse problems and source localization [24], given by 

𝐩(𝑓) = 𝐆𝐪 + 𝐯   (1) 

Here, 𝐪  denotes the unknown source strengths, while 𝐯  represents noise in the pressure 

measurements. Once sound pressure data are collected using a microphone array, the time-domain 

signals are transformed into the frequency domain through the fast Fourier transform (FFT), yielding 

the frequency-domain sound pressure vector 𝐩(𝑓) . Conventional approaches require a prior 

assumption about the source types. With such assumptions specified, the structure of the Green’s 

function matrix 𝐆 can then be constructed, for example, as [𝐆mono 𝐆dip  ]. 

Then, according to the expression, 

𝐏mono,dip = [𝐆mono 𝐆dip  ] ⋅ [𝐪mono 𝐪dip ]
T

       (2) 

The strengths of individual monopole and dipole sources can be computed. 

In this work, the superscript (⋅)T denotes the standard transpose operation, used to arrange 

complex-valued signals or steering vectors into column vectors.  

However, in the absence of prior knowledge regarding source types, the arrangement of Green’s 

functions within the 𝐆  remains ambiguous. It is not feasible to determine the distribution and 

strength of monopole and dipole sources in complex acoustic fields based on the equation. 

2.2. Ill-Posedness of the Inverse Problem 

The second challenge stems from the ill-posedness of the inverse problem. Inferring source 

characteristics from acoustic measurements represents a classic inverse problem, which involves 

deducing the source distribution, field properties, or other unknown parameters from limited 

measured data. This process typically contains a large number of unknowns, such as the strength and 

position of equivalent sources. 

When the number of measurement points is limited, the resulting system of equations tends to 

be underdetermined, meaning that multiple equivalent source or parameter distributions can 

produce the same external sound field. Under such conditions, there is no unique mapping between 

the sound field solution and the model parameters. 

If the measurement points are located in the far field and the number of sensors is further 

reduced, the problem becomes more severe, resulting in solution instability and physical distortion. 

These issues severely limit the reliability and accuracy of source-type identification. 

2.3. Proposed Framework of This Paper 

To address the two key challenges mentioned above, this study develops a monopole and dipole 

identification framework that leverages the CSM as a discriminative representation and employs a 

ViT architecture to capture spatially coherent patterns from complex acoustic fields.  
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In the task of identifying mixed monopole and dipole sources within complex multi-source 

fields, constructing intermediate features that accurately represent source characteristics and are 

suitable for neural network input is essential. Among various representations, in beamforming 

localization, CSM is widely used in beamforming which is based localization due to its ability to 

characterize frequency-domain coherence between signals recorded by different microphones in an 

array, which encodes both phase and amplitude correlations across sensor pairs, forming the 

foundation for spatial filtering, directional response estimation, and source localization. 

In this study, we repurpose the CSM from a localization-oriented tool into a feature 

representation for source-type identification. By reshaping the CSM into an image-like structure, we 

leverage capabilities of deep neural networks in pattern identification to extract spatially 

discriminative features from complex sound fields. 

The process begins with spatial sampling of the sound pressure field using a planar microphone 

array. The array comprises 𝑁 microphones, each recording time-domain acoustic signals 𝑥(𝑡), the 

measured pressure signal is divided into 𝐾 snapshots. These signals are first transformed into the 

frequency domain via FFT, yielding the frequency-domain pressure vector, 

𝒑(𝜔)(𝑘) = [𝑝1(𝜔)(𝑘) … , 𝑝𝑛(𝜔)(𝑘), ⋯ , 𝑝𝑁(𝜔)(𝑘)] (3) 

where 𝒑(𝜔)(𝑘) ∈ ℂ𝑁×1 denotes the complex pressure spectrum at the 𝑁-th microphone position 𝑟𝑁, 

𝑝𝑛(𝜔)(𝑘)  is the frequency-domain spectrum at angular frequency 𝜔  measured by the 𝑛 -th 

microphone at the 𝑘-th snapshot. 

The CSM is the fundamental data representation in array acoustics, defined as: 

𝑪(𝑓) =
1

𝐾
∑𝑘=1

𝐾  𝒑(𝜔)(𝑘)∗𝒑(𝜔)(𝑘)     (4) 

The diagonal elements of 𝑪(𝑓)  are usually set to zero in order to remove the influence of 

background noise. The superscript (⋅)∗ indicates complex conjugation, as employed in cross-spectral 

computation.  

The CSM encodes dipole orientation [23], motivating our identification using CSM. While 

Goudarzi [18] demonstrated the use of CSM input combined with global and local optimization as 

well as meshfree neural networks for fixed-source scenarios, its applicability has not yet been 

extended to mixed or highly randomized source conditions. The ViT architecture, with its strong 

global modeling capability and contextual sequence learning [22,25,26], offers powerful tools for 

learning complex spatial relationships. It can directly map source types to spatial phase and sound 

pressure features derived from the CSM and positional encoding, without explicitly constructing a 

physical propagation model. This method effectively avoids the traditional dependence on strong 

physical priors and enables identification under conditions of high randomness. 

3. Detailed Architecture of the ViT Algorithm Model 

As introduced in Section 2.3, this study proposes a ViT-based framework that leverages the CSM 

as its core input representation to address the challenge of identifying monopole and dipole sources 

in complex acoustic fields. The method operates on frequency-domain data derived from 

beamforming and constructs a three-channel CSM image that integrates the real and imaginary 

components with a spatial positional encoding derived from source localization. A multi-label neural 

network architecture is then employed to handle scenarios involving multiple sources with high 

spatial randomness.  

This chapter first introduces the construction process of the CSM image, including the extraction 

of matrices at characteristic frequencies, the real and imaginary component input format, and the 

position encoding strategy that incorporates source localization information. These components are 

ultimately combined to form a three-channel image representation suitable for ViT input. The chapter 

subsequently details the design of the ViT based multi-label recognition network, including input 

formatting, network structure, task modeling, and training procedures. 
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3.1. Input for ViT: CSM with Positional Encoding 

In this work, the cross-spectral matrix 𝑪(𝑓0) ∈ ℂ𝑁×𝑁 at a characteristic frequency 𝑓₀ is selected 

based on source localization results. To preserve complex acoustic features and enhance the model’s 

spatial awareness, the real part 𝕽(𝑪(𝑓₀))  and imaginary part 𝕴(𝑪(𝑓₀))  are extracted and 

normalized as the first two channels of the image. 

Meanwhile, based on preliminary beamforming localization results, the estimated coordinates 

of all sources in the current sample are normalized and mapped onto an 𝑁 ×  𝑁 scanning grid, 

yielding a positional encoding matrix 𝐏 ∈ ℝ𝑁×𝑁 that reflects the prior spatial distribution of the 

sources. 

In this work, the number of microphones is fixed at 𝑁 = 56 . This choice is made to ensure a 

direct and fair comparison with the study of Lobato et al. [15], which also employed a 56-element 

array for multipole source identification. By adopting the same array configuration, the simulation 

setup in this study maintains consistency with Lobato et al. [15], thereby allowing a more reliable 

evaluation of the performance differences between the proposed CSM–ViT framework and the 

DAMAS–MS baseline. Finally, these three types of information are combined into a three-channel 

image tensor: 

𝐗CSM = [𝕽(𝐂(𝑓0)), 𝕴(𝐂(𝑓0)), 𝐏] ∈ ℝ3×𝑁×𝑁            (5) 

The tensor with dimensions 3 × 56 × 56  serves as the input to the subsequent ViT model, 

enabling it to jointly learn phase and amplitude features, while incorporating positional information 

related to source layout. This enhances the model’s identification performance under complex, multi-

source, and non-ideal acoustic conditions. 

3.2. Design of the ViT-Based Multi-Label Identification Network 

The ViT is a significant recent breakthrough in the field of computer vision. Its core idea is to 

introduce the ViT architecture—originally developed for natural language processing—into image 

processing tasks. Since it was first proposed by Dosovitskiy et al. [27] in 2021, ViT has demonstrated 

outstanding performance and strong global modeling capabilities in tasks such as image 

identification and object detection [21,22,25]. Unlike traditional convolutional neural networks 

(CNN), which primarily rely on local receptive fields [28,29], ViT divides the input image into fixed-

size patches and employs a multi-head self-attention mechanism to model global features. It is 

especially effective in handling structured and spatially correlated image data, gradually becoming 

one of the mainstream techniques in visual recognition [30]. 

To achieve efficient identification of multiple source types in complex sound fields, this study 

designs a multi-label identification model based on the ViT. The model takes the image constructed 

from the CSM as input and leverages ViT’s strength in capturing global dependencies to jointly 

identify different physical source types (monopole and two directional dipoles). 

The input size of the model is 3 × 56 × 56. ViT first divides the input into non-overlapping 

image patches, each of size 9 × 9, resulting in 6 × 6 =  36 patches. Each patch is linearly projected 

into a 768-dimensional embedding vector through a Conv2D, forming a token sequence of length 36. 

A learnable identification token (CLS) is prepended to the sequence, and positional embeddings are 

added element-wise to explicitly provide positional information. The resulting sequence of length 37 

is then input into the stacked ViT encoder for feature modeling. 

The ViT encoder consists of 12 identical encoder blocks. Each block contains 12 multi-head 

attention mechanisms and a multilayer perceptron (MLP) module. The embedding dimension is 768, 

and the hidden dimension of the MLP is 3072 (MLP ratio of 4). Each block uses residual connections 

and layer normalization. During encoding, the multi-head attention mechanism effectively captures 

global dependencies between patches and models the spatial distribution characteristics of 

frequency-domain interference patterns. 

After feature extraction, the first token in the output sequence is used as the global 

representation of the entire image. This token is passed through MLP heads to predict the source 
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types. There are s parallel identification heads in total, each corresponding to a specific source 

location, and outputting its type prediction. Here, 𝑠 ∈ {2, 5, 10}, representing the number of sources 

in the sample. Each identification head consists of two fully connected layers with channels 

768→384→3, using GELU activation and dropout for regularization. Finally, a softmax layer outputs 

the source type at each location (0: monopole, 1: 𝑥-direction dipole, 2: 𝑦-direction dipole). 

The overall architecture of the ViT and its model configuration are illustrated in Figure 1 and 

Table 1, respectively. 

Table 1. ViT model configuration. 

Layer no. Layer type Kernel number Kernel size Stride Activation Padding Output size 

1 Patch Embedding 768 9×9 9×9 Linear No 6x6×768 

2 Add CLS Token - - - - - (6×6+1)×768 

3 Add Positional Encoding - - - - - 37×768 

4 Dropout - - - - - 37×768 

5-16 Transformer Block x12 12 heads - - GELU - 37×768 

17 Layer Norm - - - - - 37×768 

18 CLS token extract - - - - - 1×768 

19-23 MLP Classifier×S 384→3 
Linear        

layers 
 GELU - S×3 

 

Figure 1. ViT architecture. 

3.3. Training Details 

During the model training phase, the Adam W optimizer is employed to update network 

weights, with an initial learning rate set to 1×10⁻⁴. A Cosine Annealing Warm Restarts (CAWR) 

scheduler is used to dynamically adjust the learning rate, enhancing convergence stability. The 

training is performed with a batch size of 64 for up to 200 epochs, and an early stopping strategy is 

applied on the validation set to prevent overfitting. To mitigate the impact of label uncertainty on 

model training, the loss function adopts label smoothing cross-entropy, which improves the model’s 

generalization in multi-class source identification tasks. Throughout training, the loss and accuracy 

curves for both the training and validation phases are recorded in real time. The model parameters 

corresponding to the lowest validation loss are saved for subsequent performance evaluation. 

4. Simulations 
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To comprehensively evaluate the applicability and robustness of the proposed CSM–ViT–based 

source-type identification method under acoustically complex conditions, multiple simulations were 

designed and implemented. The simulations were conducted with fixed source counts of 2, 5, and 10. 

By verifying the identification performance under 2, 5, and 10 source conditions respectively, a 

representative subset of the source-count space is covered; integrating sub-models trained at these 

discrete counts allows the construction of a generalized framework capable of recognizing mixed 

monopole and dipole sources across arbitrary counts ranging from 2 to 10, with randomized locations 

and types. 

4.1. Simulation Setup and Evaluation Metrics 

In each case, both source types and spatial positions were randomly generated following a 

consistent rule: the simulation plane was divided into a 64 × 64 uniform grid. Each sample contained 

three possible source types: monopole, 𝑥-direction dipole, and 𝑦-direction dipole. 

The microphone array layout is shown in Figure 2, while Figure 3 illustrates a randomized 

source configuration. Monopoles occupy a single red grid cell, whereas dipoles span two adjacent 

cells—horizontally for x-direction and vertically for y-direction dipoles—visually distinguished by 

blue horizontal and vertical pairs, respectively, to emphasize their directional characteristics. Each 

sample was guaranteed to contain at least one monopole and one dipole, with dipole types selected 

randomly. Overlapping of grid cells between different sources was not permitted. 

Model performance was evaluated using precision, recall, F1-score, and confusion matrix 

metrics within a multi-label identification framework, enabling a thorough assessment of 

identification accuracy and generalization capability across varied complex mixtures. 

 

Figure 2. Microphone array layout. 

 

Figure 3. Example of the randomized source layout. 
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The simulation cases were as follows: 

 Case 1: Two sources with random positions and types (monopole–dipole identification across 

three labels); 

 Case 2: Five sources with random positions and types (three-label identification); 

 Case 3: Ten sources with random positions and types (three-label identification). 

To ensure comparability among simulations, all three cases shared consistent core parameters, 

as summarized in Table 2. A custom array file, Acoular_modify_array_56.xml is used, which retains 

the original Acoular layout but rescales the array dimensions to match the physical aperture 

described in the DAMAS-MS study. 

Table 2. Overview of simulation parameter settings. 

Parameter Category Parameter Value 

Source Frequency 3000 Hz 

Microphone Array Acoular_modify_array_56.xml 

Source-to-Array Distance 3 m 

Scanning Plane 2 m × 2 m 

Grid Spacing 0.03125 m 

Grid Resolution 64 × 64 

4.2. Simulation Analysis of Case 1 

In this section, we conduct simulation under the condition of a fixed number of two sound 

sources. For each sample, two sources are included, with both their spatial positions and types 

(monopole, 𝑥 -direction dipole, 𝑦 -direction dipole) randomly generated to simulate real-world 

scenarios characterized by high uncertainty in source distribution and type. The corresponding ViT 

sub-model is trained to perform a multi-label identification task, identifying the source type at each 

of the two positions. 

The overall confusion matrix results are shown in Figure 4 which indicates that the model 

achieves excellent differentiation among the three source types. The number of correctly identified 

monopoles, 𝑥-direction dipoles, and 𝑦-direction dipoles reached 487 out of 490, 508 out of 510, and 

492 out of 498, respectively. The overall misidentification rate is extremely low, with minor confusion 

observed only between 𝑥 - and 𝑦 -direction dipoles. Notably, no systematic misidentification of 

monopoles as dipoles is observed. 

 

Figure 4. Confusion matrix for two-source identification. 

Furthermore, the identification metrics—precision, recall, and F1-score are shown in Figures 5 

and 6, remaining above 0.990 across all categories, with the highest F1-score reaching 0.998 for the 𝑥-
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direction dipole, demonstrating the model’s stable and fine-grained identification capability under 

complex input structures. The F1-score heatmap further shows consistent performance across the two 

sources, with no noticeable variation due to spatial differences. Similarly, the heatmaps of precision 

and recall confirm that the internal attention mechanism effectively captures the structural 

association between source type features and spatial patterns in the CSM image. 

  
(a) Precision heatmap by source and class (b) Recall heatmap by source and class 

Figure 5. Precision and recall heatmap for two-source identification. 

 

Figure 6. F1-Score heatmap for two-source identification. 

In summary, under the condition of two-source training, the proposed ViT-based architecture 

exhibits strong identification accuracy for randomly located and mixed-type sources, highlighting its 

modeling advantages and practical value under spatial uncertainty. 

4.3. Simulation Analysis of Case 2 

The results under the setting of five fixed sound sources are shown below. The confusion matrix 

is illustrated in Figure 7, the number of correctly identified sources for each class is as follows: 470 

out of 485 for monopoles, 475 out of 504 for 𝑥-direction dipoles, and 478 out of 511 for 𝑦-direction 

dipoles. The overall misidentification rate remains low, though slightly higher than that observed in 

the two-source scenario, with a noticeable increase in mutual misidentification s between dipole types. 

The F1-score heatmap further is shown in Figure 8 which reveals the identification performance 

distribution of each source across different categories, with scores generally ranging from 0.926 to 

0.980. Monopoles remain the most consistently recognized category, while the F1-scores for x- and 

𝑦-direction dipoles are slightly lower, primarily due to the similarity in their spatial radiation patterns. 
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Figure 7. Confusion matrix for five-source identification. 

 

Figure 8. F1-Score heatmap for five-source identification. 

The precision and recall heatmaps are shown in Figure 9 which provide a more detailed analysis 

of identification performance. Some source positions exhibit a clear drop in Precision for x- and 𝑦-

direction dipoles (as low as 0.905). Although recall at these positions remains above 0.922, the 

imbalance between these two metrics suggests issues related to confidence disparities and ambiguous 

boundary decisions when distinguishing adjacent source types. Nevertheless, the overall 

performance significantly surpasses that of traditional methods and remains consistent under multi-

source excitation and structural randomness, indicating that the ViT architecture possesses a certain 

degree of robust spatial awareness and can stably extract discriminative features from local cross-

spectral patterns. 
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(a) Precision heatmap by source and class (b) Recall heatmap by source and class 

Figure 9. Precision and recall heatmap for five-source identification. 

In summary, the proposed method maintains high accuracy and strong adaptability when 

extended to five-source complex scenarios, demonstrating certain generalization capability and 

potential for practical engineering applications. 

4.4. Simulation Analysis of Case 3 

For the case with a fixed source count of ten, the confusion matrix is presented in Figure 10, 

showing that the model maintains a prominent diagonal dominance. The numbers of correctly 

identified monopoles, 𝑥-direction dipoles, and 𝑦-direction dipoles are 433 out of 479, 449 out of 495, 

and 465 out of 526, respectively. However, the misidentification rate increases compared to the 

previous two cases, with a certain degree of cross-type misidentification occurring between 

monopoles and dipoles. This indicates that under high source density, the decision boundaries 

between source types begin to be affected by spatial aliasing and feature ambiguity, revealing a 

degree of boundary generalization error in the model structure. 

 

Figure 10. Confusion matrix for ten-source identification. 

The F1-score heatmap is shown in Figure 11 which further highlights the performance variability 

across source points. Compared to low-density scenarios, the F1-scores for each class are distributed 

in the range of 0.850–0.930, demonstrating relatively strong identification stability. 
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Figure 11. F1-Score heatmap for ten-source identification. 

The precision and recall heatmaps are shown in Figure 12 which exhibit more pronounced 

metric fluctuations. For 𝑥-direction dipoles, the minimum precision is 0.827, and the minimum recall 

is 0.867, indicating that this category poses greater challenges for structural discrimination under 

complex configurations. In contrast, although monopoles also experience some misidentification, 

their precision and recall remain relatively stable overall, reaffirming the distinctiveness of their 

radiation characteristics. 

  
(a) Precision heatmap by source and class (b) Recall heatmap by source and class 

Figure 12. Precision and recall heatmap for ten-source identification. 

It is noteworthy that despite a certain performance degradation, all overall indicators remain 

above 0.850. The model still successfully performs multi-label identification even under the extreme 

condition of ten highly interfering sources, demonstrating that the proposed identification 

framework which based on three-channel CSM construction and the ViT architecture which exhibits 

strong anti-interference capabilities and generalization, making it suitable for practical engineering 

applications in densely distributed multi-source scenarios. 

4.5. Summary 

The combined results from the three simulation cases with different numbers of sound sources 

(2, 5, and 10) demonstrate that the proposed method exhibits excellent identification performance in 

complex acoustic scenarios characterized by highly randomized source positions and types. 
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Although each sub-model is trained under a fixed source count setting, all are capable of stably and 

accurately identifying the specific type of each source in multi-label identification tasks, with key 

performance metrics including precision, recall, and F1-score, consistently maintained at high levels. 

As the number of sources increases, slight misidentification between dipole categories is observed; 

however, the overall model architecture still demonstrates strong anti-interference capability and 

effective spatial feature decoupling. 

Furthermore, compared with the results of DAMAS-MS in [15], which yields a precision of about 

0.90 and a recall of approximately 0.82, the proposed method achieves significantly higher accuracy 

in monopole identification while maintaining the inherent advantages of DAMAS-MS in dipole 

identification. In the two-source case, the model exhibits near-perfect stability, with precision, recall, 

and F1-scores all exceeding 0.990. For the five-source case, performance remains excellent, with 

precision ranging from 0.905–0.980, recall above 0.922, and F1-scores between 0.926–0.980. Even 

under the challenging ten-source case, where slight category confusion occurs, the method maintains 

precision no lower than 0.827, recall above 0.867, and F1-scores between 0.850–0.930. This indicates 

that our method not only enhances performance where conventional methods struggle but also 

preserves their strengths in scenarios where they perform well. 

These findings suggest that the proposed method is capable of accurately identifying arbitrary 

combinations of 2 to 10 mixed sources with random locations and types, thereby validating the 

effectiveness of representative sub-model training for generalization. The results also highlight the 

strong robustness and engineering applicability of the method in densely populated multi-source 

sound fields. 

5. Experimental Verification 

To assess the practical applicability and generalization of the proposed method, an acoustic 

experiment was conducted in an anechoic chamber. This experiment aims to extend the theoretical 

framework developed in simulation to engineering application scenarios, thereby assessing the 

method’s robustness and identification performance under real environmental conditions. 

5.1. Experimental Environment and Source Configuration 

The experimental setup is shown in Figure 13. The experiment employed the DES-T144 portable 

high-resolution acoustic camera developed by KeyGo Technology, which integrates a 144-channel 

microphone array and an array imaging module. A ViT sub-model was retrained to adapt to the 

structure of the DES-T144 array shown in Figure 14(a) and a two-source setup with random positions 

and random types was selected as the core experimental scenario. 

In terms of source construction, as shown in Figure 14(b), the monopole source was simulated 

using a single independent Bluetooth speaker (Thinkplus BT version Speaker K30), which emitted a 

3000 Hz sine wave utilizing its point-like radiation characteristics. The dipole source was constructed 

using two identical speakers that emitted out-of-phase signals at the same frequency, thereby forming 

an approximately ideal dipole radiation field (see Figure 14(C)). The x-direction and 𝑦-direction 

dipoles were implemented by placing the dual-speaker structure horizontally or vertically, 

respectively. All source signals were uniformly controlled via an external smartphone to ensure 

accurate phase alignment between the two sources and consistency with the main frequency used in 

the simulation. 
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Figure 13. Experimental setup. 

During the experiment, the distance between the sound sources and the microphone array was 

fixed at 3m. By manually changing the positions of the sources to simulate random locations, 20 sets 

of test samples were constructed with different combinations of monopoles and dipoles in various 

directions to simulate random types. Each group of experiments was conducted under independent 

conditions for data acquisition and frequency-domain processing, and the processed data were fed 

into the trained ViT model for identification.  

   

(a) Microphone array (b) Monopole source (c) X-Dipole source 

Figure 14. Experimental equipment. 

5.2. Experimental Results and Analysis 

The experimental results are shown in the Figure 15. The overall confusion matrix demonstrates 

that the model has strong identification ability for the three types of sources. The monopole was 

correctly identified in 12 out of 15 cases, with most misidentifications occurring as 𝑦 -direction 

dipoles. The 𝑥-direction dipole was correctly recognized in 11 out of 13 cases, with only minor 

misjudgments. The 𝑦-direction dipole was correctly identification in 9 out of 12 cases, with some 

misidentification s as monopoles or 𝑥 -direction dipoles. Overall, the model exhibits good 

discriminative performance under real acoustic conditions, and the slight confusion between dipole 

types is mainly attributed to their similarity in radiation direction. 
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Figure 15. Confusion matrix for anechoic chamber experiment. 

6. Conclusions 

This paper proposes a novel sound-source type identification framework that integrates 

beamforming-derived CSM and a ViT identifier, aiming to address the challenge of identifying 

monopole and dipole sources under unknown source type, position, and number. To the best of our 

knowledge, this is the first study that systematically applies ViT-based deep learning to multipole 

acoustic source identification using CSM inputs. 

Simulations with fixed source counts (2,5,10) and randomized locations and types demonstrate 

consistently high identification accuracy across a wide range of configurations. Experimental 

verification in an anechoic chamber with physical monopole and dipole realizations further confirms 

the robustness of the model. 

By combining sub-models trained on different source counts, the approach can generalize to 

arbitrary 2-10 source configurations. Even under limited microphone number, ViT can capture spatial 

phase and pressure correlations within CSM. Its robustness to local disturbances and input order 

makes it effective for recognizing source types and positions in highly randomized acoustic fields. 

The model outperforms the DAMAS-MS baseline in monopole identification accuracy. Importantly, 

it bypasses the ill-posedness of traditional inverse problems by learning directly from CSM, offering 

a practical and scalable solution for complex acoustic environments. 
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