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Abstract: Inferring forest properties is crucial for the timber industry, enabling efficient monitoring, 

predictive  analysis,  and  optimized  management.  Nondestructive  testing  (NDT)  methods  have 

proven to be valuable tools for achieving these goals. Recent advancements in data analysis, driven 

by machine  learning  (ML)  algorithms,  have  revolutionized  this  field.  This  study  analyzed  492 

eucalyptus trees, aged 3 to 7 years, planted in São Paulo, Brazil. Data from forest inventories were 

combined with  results  from ultrasound, drilling  resistance,  sclerometric  impact,  and penetration 

resistance tests. Seven machine learning algorithms were evaluated to compare their generalization 

capabilities with  conventional  statistical methods  for predicting  basic wood density. Among  the 

models, Extreme Gradient Boosting (XGBoost) achieved the highest accuracy, with a coefficient of 

determination  (R²)  of  89%  and  a  root mean  square  error  (RMSE)  of  10.6  kg∙m⁻³.  In  contrast,  the 

conventional statistical model, using the same parameters, yielded an R² of 33% and an RMSE of 26.4 

kg∙m⁻³. These  findings highlight  the  superior performance of machine  learning  in nondestructive 

inference of wood properties, paving the way for its broader application in forest management and 

the timber industry. 
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1. Introduction 

Despite advances in genetic engineering and cloning, the properties of wood are still influenced 

by various factors (climate, soil, altitude, etc.) related to the development of trees. These influences 

result  in significant variability  in  the wood produced  in  the  forest, making  it difficult  to establish 

important  reference values  for  the production  line of  forest companies  linked  to pulp and paper, 

wood‐based products  (fiberboards and particleboards), as well as roundwood or processed wood 

used in solid or engineered forms (glued laminated timber or cross‐laminated timber) in construction. 

The prediction of tree properties in the forest has been a recurring topic  in both national and 

international  publications,  with  non‐destructive  techniques  being  a  viable  alternative  to  this 

challenge. By not affecting the material, these techniques allow tests to be repeated during the treeʹs 

growth. They can be performed directly on standing trees [1,2], and since no sampling or tree cutting 

is required, they are more economical, simpler, and faster, enabling increased sampling. Thus, several 

research groups have been developing  studies using various nondestructive  techniques aimed at 

inferring  properties  such  as  wood  density  (basic  or  apparent)  and  stiffness  [3–12].  These 

nondestructive methods  include  those  that use wave propagation  (ultrasound and  stress waves), 

resistance to drilling, resistance to penetration, mass spectrometry, among others. Regardless of the 

type of equipment or technique used, the focus of the research is to correlate the measured parameters 

in trees with wood properties, with statistical modeling being the tool typically used to obtain the 
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relationship between variables  to predict  results. Classical statistical  tools are no  longer  the most 

suitable when  the  volume  of  data  is  very  large,  and machine  learning  algorithms  are  currently 

recommended for such cases. 

The  adoption  of  non‐destructive  techniques  as  a  tool  for  evaluating  the  quality  of  wood 

produced  in  forests stems  from  the possibility of obtaining correlations between  the  responses of 

these methods  and  the physical  and mechanical properties of  the  fibers, which  are used  for  the 

selection and classification of  forest products. Thus,  the adoption of such  techniques  in  the wood 

production chain represents a fast and effective means of assessing wood quality, with the potential 

to enhance inference models already employed by companies in the forestry sector [13–15]. 

The  literature  review  indicated  that  in Brazil,  studies  related  to machine  learning  are more 

strongly focused on estimating tree volume [16–20]. In other countries, [21] and [22] researches were 

the closest to our objective, as the authors studied different machine learning algorithms in inferring 

density, with superior results to those obtained using classical multiple regression. In field trials, [21] 

and [22] used dendrometric measurements of trees (height and diameter at breast height (DBH), NDT 

techniques (stress wave propagation and resistance to drilling (only [21]), and extracted cores with 

an increment borer for density measurement using X‐ray densitometry. 

The main  objective  of  this  research was  to  evaluate whether machine  learning  algorithms, 

utilizing data collected from standing trees (forest inventory and non‐destructive inspections), can 

provide accurate predictions of wood basic density compared to conventional statistics methods. 

2. Materials and Methods 

The sampling comprised 491 eucalyptus  trees planted  in  the state of São Paulo, Brazil, aged 

between  3  and  7  years.  In  addition  to  the  data  collected  in  the  conventional  inventory  of  the 

partnering company (Suzano S.A.) (diameter at breast height, total height, and pylodin penetration), 

data  from  ultrasonic wave  propagation  tests  in  the  longitudinal  and  radial  directions,  drilling 

resistance, sclerometric impact, and sample retrieval with the Pressler probe were added (Figure 1). 

From each plot, 3 trees were chosen according to their DBH class (1: 8±4cm, 2: 12±4cm, 3: 16±4cm) 

and cut for determination of basic density in the laboratory of the partnering company. The data were 

compiled  into a single database, containing  the  inventory results and additional  tests,  to which 7 

machine learning algorithms were applied, selected with the aim of predicting basic density from the 

other variables, following a sequence of steps (Figure 2). The basic density of the trees that were not 

cut was estimated using a model adopted by the partnering company. 

 
(a) 

 
(b) 
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(c)  (d) 

Figure  1.  Ultrasonic  wave  propagation  test  in  the  longitudinal  direction  (a),  drilling  resistance  test  (b), 

sclerometric impact test (c), and sample retrieval by Pressler probe (d). 

 

Figure 2. Sequence of steps performed during the modeling of machine learning algorithms. 

The process of splitting the data into training and testing sets was carried out to ensure that the 

models were  trained with distinct datasets  in  each  training  round. This approach  increases  their 

generalization capacity and reduces the likelihood of overfitting. The normalization step was critical 

to  prevent  dimensional  differences  between  variables  from  being  incorporated  into  the models. 

Moreover,  some  algorithms  operate  more  effectively  with  normalized  data,  enhancing  their 

performance. 

The feature selection process aimed to identify the most relevant variables for predicting basic 

density  in  eucalyptus  forests,  optimizing model performance  and  reducing data dimensionality. 

Initially, the ExtraTreeRegressor algorithm was used  to calculate  feature  importance based on  the 

variance reduction provided by tree splits. Subsequently, other methods, such as Random Forest and 

XGBoost, were applied  to validate  the results and ensure robustness  in  the selection process. The 

most  relevant  variables were  then  selected  to  form  the  final  set  of  features used  in  training  the 

predictive models. 

To  prevent  data  leakage  and  ensure model  reliability,  the  feature  importance  analysis was 

conducted exclusively on the training set after splitting the data. Only the variables selected based 

on the training data were used in the testing set. This approach ensures that model evaluation reflects 

performance on truly unseen data, simulating practical application scenarios [23]. 

All  data  mining  methods  were  configured  following  the  guidelines  of  [24–26]  for 

hyperparameter tuning. Individual adjustments were made for each model to mitigate the risks of 

overfitting  and underfitting. During hyperparameter optimization, different  seeds were used  for 

initializing  evaluations,  allowing  the  assessment  of  varying  model  behaviors.  A  10‐fold  cross‐

validation strategy (cv=10) was also employed. Overfitting occurs when a model fits the training data 

exceptionally well but fails to generalize to new data. Conversely, underfitting happens when the 
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model cannot capture relationships between the variables in the training set, causing the process to 

terminate prematurely, even before testing [26].   

The variables selected by machine learning algorithms were also evaluated using conventional 

statistical software (Statgraphics Centurion XV 15.1.02) to identify the best model for inferring wood 

basic  density.  This  process  involved  applying  classical  statistical modeling  techniques,  such  as 

multiple regression and models automatically suggested by the software, aiming to maximize the 

coefficient of determination (R2) and minimize the root mean square error (RMSE). 

After the prediction step, each model was evaluated using the following metrics: coefficient of 

determination (R²), adjusted coefficient of determination (adjusted R²), Mean Absolute Error (MAE), 

and Root Mean Squared Error (RMSE). 

3. Results 

3.1. Laboratory and Field Results 

The mean values,  standard deviation,  coefficient of variation,  skewness, and kurtosis of  the 

numerical variables evaluated in this research are presented in Table 1. As mentioned previously, we 

can notice the difference between the scales of the variables and that is why it is important to carry 

out the normalization step.   

Table 1. Mean values, standard deviation, coefficient of variation, skewness, and kurtosis of the parameters. 

Parameters  Mean  Stand. Dev.  C.V.  Skewness  Kurtosis 

Age [years]  5,31  1,48  27,49%  ‐3,4048  ‐5,4858 

DBH [cm]  13,86  3,40  24,53%  1,031  0,457 

H [m]  21,71  5,18  23,86%  ‐1,048  ‐3,688 

VL [m.s‐1]  4317,61  566,70  13,13%  ‐4,367  2,101 

VR [m.s‐1]  1946,18  278,91  14,33%  1,849  10,786 

SI [%]  26,51  5,95  22,44%  5,777  31,211 

DR [%]  24,30  3,35  13,79%  ‐1,311  ‐0,498 

BdSU [kg.m‐3]  441,90  32,24  7,30%  3,622  ‐3,341 

BdV [kg.m‐3]  386,34  34,12  8,83%  3,063  ‐0,407 

VITCC [m3]  0,165  0,108  65,45%  9,664  4,362 

VITCCR [m3]  231,24  93,32  40,36%  ‐0,961  ‐5,416 

IMATCC [m3/ha.year]  46,28  8,66  18,71%  ‐3,551  ‐1,945 

Note: DBH = diameter at breast height, H = height, VL =  longitudinal ultrasonic pulse velocity, VR =  radial 

ultrasonic pulse velocity, SI = sclerometric impact, DR = drilling resistance, BdSU = basic density provided by 

Suzano, BdV = basic density obtained by borer, VITCC = total volume with bark, VTCCR = total volume of the 

production unit, IMATCC = annual mean increment. 

3.2. Feature Selection 

During the feature selection stage, the following variables were selected: DBH, H, VL, DR, AGE, 

and IMATCC. AGE, DBH, H, and IMATCC are already part of the inference models employed by 

companies. Conversely, VL and DR stood out as the non‐destructive methods with the highest levels 

of  importance within  the models.  It  is also well‐known  that  the  individual use of DBH and H  in 

models can  lead to autocorrelation  issues, as observed  in Table 2. Variance Inflation Factors  (VIF) 

were calculated for each variable, and although there is no definitive consensus on acceptable VIF 

limits, we  adopted  the  criterion  that  values  exceeding  5  should be  excluded or  transformed. To 

address multicollinearity, these variables were combined (H/DBH). 

Table 2. Variance Inflation Factors of the variables, before and after the creation of a new variable. 

Original variables  Original VIF  Combined variables  Combined VIF 

Const.  133,22  Const.  132,02 
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Age  3,09  Age  1,84 

DBH  6,43  H/DBH  1,87 

H  13,55 ‐ ‐

VL  1,60  VL  1,56 

DR  1,89  DR  1,39 

IMATCC  1,80  IMATCC  1,39 

3.3. Hyperparameter Optimization 

The hyperparameter tuning process was conducted using multiple random seeds to initialize 

the evaluations and a 10‐fold cross‐validation strategy (cv=10) (Table 3). The coefficient of variation 

(CV) for  the  evaluation metrics  – mean  absolute  error  (MAE),  root mean  squared  error  (RMSE),

coefficient of determination (R²), and adjusted coefficient of determination (R² adj) – reached up to

21% across different random seeds (Table 4).

Table 3. Optimized hyperparameters for each algorithm evaluated. 

Model  Optimized hyperparameters 

KNN  n_neighbors: 3.0 

Decision Tree  max_depth: 11.0, min_samples_split: 3.0, min_samples_leaf: 6.0 

Random Forest 
max_depth: 11.0, min_samples_split: 6.0, min_samples_leaf: 2.0, n_estimators: 

225.0 

Gradient 

Boosting 

max_depth: 8, min_samples_split: 8, min_samples_leaf: 6, n_estimators: 175, 

learning_rate: 0.1, max_features: None, subsample: 1.0 

Extreme 

Gradient 

Boosting 

max_depth: 3.0, n_estimators: 100.0, learning_rate: 0.2, subsample: 0.8, 

colsample_bytree: 0.8, min_child_weight: 1.0, gamma: 5.0 

SVM  kernel: rbf, C: 100, gamma: 1, epsilon: 0.5 

ANN  hidden layer sizes: (200,), max_iter: 600, alpha: 0.0001, batch_size: 32  

Table 4. Mean and coefficient of variation of the evaluation metrics for the algorithms. 

Algorithm  RSME  MAE  R2  R2 adj. 

KNN  20,77 (7,0%)  14,87 (8,0%)  56% (11,1%)  54% (11,8%) 

Decision Tree  14,96 (14,8%)  8,63 (14,9%)  77% (8,2%)  76% (8,6%) 

Random Forest  12,91 (9,6%)  8,53 (10,2%)  83% (4,4%)  82% (4,6%) 

Gradient Boosting  12,18 (12,7%)  7,84 (10,3%)  85% (4,6%)  84% (4,8%) 

Xtreme Gradient Boosting  12,05 (9,0%)  8,07 (7,3%)  85% (3,1%)  85% (3,2%) 

Support Vector Machine  20,79 (5,5%)  14,85 (7,5%)  56% (8,8%)  54% (9,4%) 

Artificial Neural Network  26,19 (2,2%)  21,58 (2,75%)  28% (18,9%)  25% (21,5%) 

3.4. Classical Statistics 

The model obtained by classical statistics (Equation 1) was evaluated by parametrical statistics 

(Statgraphics Centurion XV 15.1.02), using the same variables previously selected. In this study, the 

classical  statistical  model  was  selected  using  the  best‐fit  model  proposed  by  the  Statgraphics 

software, ensuring the most appropriate approach was utilized for comparison.   

DbSU = 300,823 + 6,11588*AGE + 4,89593*H/DAP + 0,0170558*VL + 0,0270439*DR ‐ 

0,832398*IMATCC 
(1)

3.5. Optimal Metrics 

Table  5  presents  the  best  values  obtained  by  the  algorithms  evaluated  in  this  research  with  
respect to the assessment metrics. 
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Table 5. Evaluation metrics of the best assessed algorithms. 

Algorithm  RMSE  MAE  R2  R2 adj 

Classical Statistics  26,40  21,66  33%  32% 

KNN (K‐Nearest Neighbor)  18,82  12,85  66%  65% 

Decision Tree  12,38  7,34  81%  80% 

Random Forest  11,59  8,14  83%  82% 

Gradient Boosting  10,20  7,10  87%  86% 

Extreme Gradient Boosting  10,64  7,67  89%  88% 

SVM (Superior Vector Machine)  18,68  13,25  67%  66% 

ANN (Artificial Neural Network)  25,53  20,62  19%  16% 

In addition to the metrics (Table 5), two graphs were generated for each model: one showing the 

dispersion  of predicted  values  versus  observed  values,  and  the  other  showing  the dispersion  of 

residuals (Figures 3 and 4). The points representing the estimated and actual values are concentrated 

around the 45° line, indicating their proximity (Figure 3).   

 

Figure 3. Results predicted vs observed graph for the Extreme Gradient Boosting algorithm. 

 

Figure 4. Residuals graph for the Extreme Gradient Boosting algorithm. 
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4. Discussion 

4.1. Laboratory and Field Results 

Some parameters do not have a normal distribution because skewness and/or kurtosis values 

are  outside  the  expected  range  of  ‐2  to  2  for  this  type  of distribution  (Table  1).  For  evaluations 

involving conventional parametric statistics, it sometimes necessary to attempt transformations, as 

for  example  in  the  case  of  statistics  related  to mean  comparisons.  In  the  case  of multiple  linear 

regressions, normality must be present in the residuals (errors) of the model, not necessarily in the 

independent or dependent variables [27,28]. 

4.2. Hyperparameter Optimization 

During the hyperparameter optimization stage, we observed that the maximum coefficient of 

variation was  21%  among  all  evaluated  seeds.  This  result  indicates moderate  variability  in  the 

modelʹs performance, suggesting that random initialization and variations in data splits may have a 

noticeable, though not critical, impact. Nonetheless, the CV values are within an acceptable range, 

indicating that the models provide reasonably consistent outcomes. This variability emphasizes the 

importance of using multiple seeds and cross‐validation to ensure reliable and generalizable results. 

Overall, the models remain suitable for the proposed task of basic density prediction in eucalyptus 

forests [26]. 

4.3. Classical Statistics 

The  use  of  predictive  models  evaluated  through  classical  statistical  techniques  is  a  well‐

established method. Thus, to confirm the hypothesis of this research, we obtained Equation 1. This 

approach  aligns  with  methodologies  employed  in  other  studies.  For  instance,  [29]  evaluated 

Eucalyptus camaldulensis samples using ultrasound and developed density inference models with a 

determination  coefficient  of  34%.  Similarly,  [30]  assessed  three  conifer  species  using  drilling 

resistance, which  is  also  one  of  the methods  evaluated  in  this  research,  achieving  basic density 

inference models with determination coefficients ranging from 25% to 52%. 

4.4. Optimal Metrics 

Comparing  the MAE  to  the mean  laboratory value of basic density  contextualizes  the  error, 

highlighting its practical relevance and confirming the modelʹs robustness  in handling the natural 

variability of basic density. Evaluating the MAE as a percentage of the mean basic density obtained 

from  laboratory  tests,  values  ranged  from  1.61%  to  4.90%  (Table  5).  These  results  indicate  low 

estimation errors relative to the coefficient of variation of basic density. Such findings suggest that 

the model effectively captures the variability of the data and provides accurate predictions that align 

with the observed dispersion of actual values. 

When modeling a variable in relation to others, it is essential to always consider the composition 

of the dataset, its size, and how the variables within the dataset relate to each other. It is important to 

highlight  that  this  study  utilized  a  dataset  consisting  of  trees  planted  at  varying  spacings  and 

locations—factors that significantly influence density. However, these variables were not explicitly 

modeled  in  this phase of  the research. While  the model could potentially be  improved by adding 

these  factors  to  the  dataset,  this  was  not  the  objective  of  this  paper,  which  aims  to  compare 

conventional techniques and machine learning approaches in modeling data for density inference. 

When graphically analyzing the dispersion of predicted versus actual data (Figure 3), where the 

intersection of the data is concentrated near the 45‐degree line dividing the graph, it suggests that the 

model  is  capable  of  generalizing  the  data  effectively  and  predicting  new  data with  efficiency. 

Furthermore,  the  residuals  are  randomly  distributed  and  do  not  show  a  trend  (Figure  4).  This 

indicates that the model does not exhibit bias, overfitting, or underfitting issues, further supporting 

its robustness and reliability [25]. 
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[20] presented predicted vs. observed plots and residual analyses that were comparable to those 

obtained in this study (Figures 3 and 4). Although their study utilized a database approximately 4.5 

times  larger  than  ours—resulting  in  a  more  robust  training  dataset—and  included  additional 

variables such as basal area and number of stems per hectare, it did not incorporate nondestructive 

testing  results. Despite working with a smaller database, our study achieved metrics of a similar 

magnitude, demonstrating the effectiveness of the selected variables and modeling approaches. 

For species different than those examined in this research (e.g., Douglas‐fir, fir hybrids, acacias, 

and species from the Brazilian Cerrado), with tree ages ranging from 32 to 50 years, the  literature 

reports  R²  values  between  50%  and  80%.  These  studies  employed  various  algorithms  and 

architectures such as Artificial Neural Networks (ANN), Classification and Regression Trees (CART), 

and  Support Vector Machines  (SVM)  [21,22,31,32]. These performance  ranges  are  closer  to  those 

obtained in the present study, where R² values ranged from 19% to 89% (Tables 2 and 3). 

The  results  from  the  literature make  it  clear  that  the  database  size  and  variable  selection 

significantly  impact  model  performance,  and  that  the  incorporation  of  nondestructive  testing 

methods provides a novel contribution of this study to the field. In addition to enhancing predictive 

accuracy, nondestructive testing data introduce information about the quality of the fiber produced, 

which is not captured by traditional models based solely on mass and volumetric variables [13; 14, 

15]. This added dimension positions nondestructive methods as valuable tools for advancing wood 

quality assessments, addressing gaps in current modeling approaches. 

5. Conclusions 

Machine  learning  algorithms,  when  applied  to  databases  derived  from  measurements  on 

standing trees and enhanced with data from nondestructive techniques, enable the development of 

suitable models for accurately inferring the basic density of wood. 

This study highlighted the superior performance of machine learning models compared to those 

derived  from  classical  statistical  approaches.  While  classical  methods  offer  simplicity  and 

interpretability, machine learning models demonstrated significantly higher predictive accuracy and 

better generalization. Moreover, integrating data from nondestructive methods into the models not 

only  improved  performance  but  also  incorporated  valuable  information  about  fiber  quality—an 

aspect overlooked by traditional mass and volumetric models. 

These  findings  underscore  the  importance  of  leveraging  advanced modeling  techniques  in 

conjunction  with  robust  datasets  and  interpretable  frameworks.  Such  an  approach  enhances 

confidence in machine learning applications and supports their integration into forest management 

and  industrial decision‐making, offering a pathway  toward more efficient and  sustainable use of 

timber resources. 
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