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Abstract: YOLOVS, as an efficient object detection method, can swiftly and precisely identify objects within
images. However, traditional algorithms encounter difficulties when detecting small targets in remote sensing
images, such as missing information, background noise, and interactions among multiple objects in complex
scenes, which may affect performance. To tackle these challenges, we propose an enhanced algorithm optimized
for detecting small objects in remote sensing images, named HP-YOLOVS. Firstly, we design the C2f-D-Mixer
(C2{-DM) module as a replacement for the original C2f module. This module integrates both local and global
information, significantly improving the ability to detect features of small objects. Secondly, we introduce a feature
fusion technique based on attention mechanisms, named Bi-Level Routing Attention in Gated Feature Pyramid
Network (BGFPN). This technique utilizes an efficient feature aggregation network and reparameterization
technology to optimize information interaction between different scale feature maps, and through the Bi-level
Routing Attention (BRA) mechanism, it effectively captures critical feature information of small target objects.
Finally, we propose the Smooth Mean Perpendicular Distance Intersection over Union (SMPDIoU) loss function.
The method comprehensively considers the shape and size of detection boxes, enhances the model’s focus on the
attributes of detection boxes and provides a more accurate bounding box regression loss calculation method. To
demonstrate our approach’s efficacy, we conduct comprehensive experiments across the RSOD, NWPU VHR-10,
and VisDrone2019 datasets. The experimental results show that the HP-YOLOVS achieves 95.11%, 93.05%, and
53.49% in the mAP@0.5 metric, and 72.03%, 65.37%, and 38.91% in the more stringent mAP@0.5:0.95 metric,
respectively.

Keywords: YOLOVS; small object detection; remote sensing images; attention mechanism; feature fusion

1. Introduction

In recent years, with the quantity and quality of remote sensing images have significantly im-
proved, object detection has become crucial for the automated analysis of these images. This technology
not only enables rapid and accurate object classification and tracking but also finds extensive applica-
tions in civil, commercial, and military domains, such as in drones [1-5], intelligent traffic monitoring
[6-10], and aerospace [11-14]. Currently, within the domain of deep learning, object detection tech-
nologies are primarily categorized into two primary categories: region proposal-driven methods,
exemplified by R-CNN and its variants, which operate by identifying potential areas of interest for
detection; and regression-based strategies, such as the SSD and YOLO series, known for their fast
processing speeds and suitability for real-time detection tasks.

Although object detection technologies have seen considerable progress, several challenges still
persist. These challenges include complex backgrounds, low image quality, high diversity in target
arrangement, and arbitrary target orientations. Especially in images with complex backgrounds, low
resolution, and densely distributed targets, the detection of small targets often yields unsatisfactory
results.

In response to these issues, researchers have suggested numerous enhancements. For example,
scaling and merging feature maps successfully preserved small object information while enhancing
feature expressiveness [15]. By combining the deep semantic information with the shallow localization
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information, the effectiveness of feature fusion was significantly improved [16]. Additionally, existing
studies had explored the integration of attention mechanisms, feature embedding, and feature trans-
mission techniques to optimize the feature fusion process [17-19]. Significant progress was achieved by
applying feature pyramid networks (FPN) [20] and transformer models equipped with self-attention
mechanisms [21]. Due to their accuracy and scalability [22], the YOLO algorithm suite had been
extensively applied in object detection [23]. By improving the backbone network structure [24-29],
it was possible to effectively extract attributes from objects with intricate shapes and appearances.
The refined feature fusion method [25,30] also contributed to achieving superior detection results.
Additionally, adjustments to the bounding box regression loss function [31-34] substantially enhanced
the overall performance of the network. Drawing on these advanced technologies, we propose an
improved algorithm named HP-YOLOVS, integrating three core technologies: the C2f-DM module,
BGFPN feature fusion technique, and SMPDIoU loss function, focused on enhancing the detection
precision of small objects within remote sensing images.
Our main contributions are as follows:

* We design and implement the C2f-DM module as a replacement for the current C2f module. The
module efficiently integrates local and global information, significantly improving the ability to
capture features of small objects while effectively mitigating detection accuracy issues caused by
object overlap.

* We propose a feature fusion technique based on the attention mechanism, named BGFPN. This
technique utilizes an efficient feature aggregation network and re-parameterization technology
to optimize the interaction of information between feature maps of different scales. Through the
BRA mechanism, it effectively captures key feature information of small objects.

* We propose a SMPDIoU loss function. This approach thoroughly accounts for the shape and
dimensions of the detection boxes, strengthens the model’s focus on the attributes of detection
boxes, and provides a more accurate bounding box regression loss calculation method.

2. Related Work

Within the realm of remote sensing object detection, key technologies primarily encompass
feature extraction, feature fusion, and the optimization of bounding box regression loss functions.
Feature extraction aims to derive key information from remote sensing images to facilitate accurate
target identification to facilitating accurate target identification. Feature fusion enhances the model’s
recognition and classification capabilities by integrating features from different levels. Furthermore,
the bounding box regression loss function is essential for accurately predicting the position and
dimensions of targets. Together, these technologies improve the precision and effectiveness of remote
sensing object recognition algorithms.

2.1. Feature Extraction

The architecture of backbone networks is designed to efficiently capture and combine informa-
tion from multiple scales. For instance, YOLOV2 [35] significantly improved its feature extraction
capabilities by substituting its original network with DarkNet-19, which enhanced both detection
precision and speed. YOLOvV3 [36] implemented a multi-scale prediction approach similar to FPN
and introduced a more robust backbone network, DarkNet-53, further boosting the efficiency and
accuracy of feature extraction. YOLOVS integrated Focus and CSP modules into its backbone network,
enhancing detection speed and precision through advanced training optimization strategies. LSKNet
[37], a lightweight large selective kernel network, dynamically adjusted the spatial receptive field to
better accommodate diverse objects in remote sensing images. YOLOVS replaced the earlier C3 module
with the C2f module, maintaining the network’s lightweight structure while facilitating a richer flow
of gradient information. Specifically targeting micro unmanned aerial vehicle detection, YOLO-Drone
[24] incorporated the SPD-Conv module. In the identification of small objects within remote sensing
imagery, LAR-YOLOVS [25] replaced the C2f modules in the YOLOv8 backbone with DCN-C2f mod-
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ules. In further research based on the YOLOv8 model, we introduce the C2f-DM module to replace the
C2f module before the detection head, significantly enhancing the capability to capture features of
small objects and effectively mitigating issues of detection accuracy caused by object overlaps.

2.2. Feature Fusion

FPN effectively integrates features of different resolutions from the backbone network, achieving
multi-scale feature fusion and significantly enhancing network performance and robustness. Given
the complex backgrounds and noise inherent in remote sensing images, implementing an attention
mechanism can more effectively isolate critical features of small target objects. By dynamically learning
the distribution or weights of attention, this mechanism enabled the model to adaptively concentrate
on essential information as dictated by the context and task requirements, thus greatly enhancing the
precision of object detection.

Methods for feature fusion and attention mechanisms have progressed from focusing solely on
either spatial or channel attention to incorporating a mix of both channel and spatial attentions, along
with the adoption of self-attention mechanisms. For example, TPH-YOLOVS5 [38] incorporated the
CBAM, successfully pinpointing attention regions in densely populated scenes. Similarly, YOLO-Drone
[24] improved drone detection performance by integrating the GAM into the neck section. Moreover,
the SuperYOLO [39] fused multimodal data and super-resolution technology, enhancing the ability
to detect small objects. LAR-YOLOVS [25] designed a bi-directional feature pyramid network that
effectively extracted shallow features using the attention mechanism and optimized feature fusion. In
this paper, we introduce a feature fusion method named BGFPN that utilizes attention mechanisms.
This approach leverages an efficient feature aggregation network and reparametrization techniques to
enhance the exchange of information across feature maps of varying scales. Additionally, it adeptly
captures essential feature information of small target objects using the BRA mechanism.

2.3. Optimization of Bounding Box Regression Loss Function

In tasks related to object detection, the loss function for bounding box regression is crucial.
Previously, a widely utilized method was the Intersection over Union (IoU) [40], which evaluates
overlap by measuring the ratio of the shared area to the combined area of the predicted and true
boxes. However, IoU exhibited clear limitations when addressing small objects, particularly when
the predicted and true boxes had no intersection, yielding an IoU value of zero, which could lead to
gradient vanishing and hinder the model from effectively learning the features of small objects. To
address these issues, researchers proposed several improvements, such as GloU [41], DIoU [42], and
CloU. GloU introduced the concept of the smallest enclosing box to compute a non-zero loss value,
solving the gradient vanishing issue When no overlap existed between the predicted and further
boxes. DIoU and CloU actual considered the differences in aspect ratio and center distance to enhance
regression precision. Additionally, Cascade R-CNN [31] consisted of a series of detectors that used
progressively increasing IoU thresholds during training to more stringently exclude neighboring false
positives. CenterNet [32] adopted a corner-based keypoint detection approach, thereby circumventing
the traditional requirement for anchor boxes. While these methods made progress in handling small
objects and bounding boxes with extreme aspect ratios, they primarily focused on the geometric
relationships between bounding boxes and overlooked the potential impact of the bounding boxes’
shapes and scales on regression effectiveness. To enhance small object detection further, we introduce
a novel approach: SMPDIoU. This method combines the advantages of SioU [43] and MPDIoU [44],
comprehensively considering the shape and proportion of bounding boxes, effectively compensating
for the shortcomings of IoU and its derivative methods.

3. Fundamentals of the YOLO v8 Model

Since the YOLO model was first introduced, the series has undergone multiple updates and
iterations, with continually enhanced performance. As the most recent development in the YOLO
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model series, the YOLOVS represents the current pinnacle of technology. Its architecture, depicted in
Figure 1, comprises three main components: the Backbone, the Detection Head, and the Neck.

Backbone Neck Head

Upsample

Figure 1. Structure of YOLOVS.

Backbone: This section mainly conducts feature extraction using a sequence of C2f modules,
Conv modules, and SPPF modules. YOLOVS introduces a new C2f module to replace the previous C3
module, which, while maintaining a lightweight structure, promotes richer gradient information flow.

Detection Head: YOLOV8 has added a Decoupled Head module, an innovative design that
separates classification and localization tasks, effectively mitigating potential conflicts between these
two tasks and thereby enhancing the overall efficacy of the model.

Neck: YOLOVS follows the PA-FPN design philosophy but simplifies the convolution process in
the upsampling stage to enhance performance.

Overall, YOLOvVS not only inherits the efficiency of the YOLO series but also innovates in model
structure and algorithm, making it perform exceptionally well in handling complex detection tasks.

4. Methodology

4.1. Framework Overview

YOLOvVS8 demonstrates outstanding performance across multiple application domains. However,
in remote sensing object detection, challenges persist in accurately detecting small objects. These
challenges manifest primarily in two aspects: First, when neural networks extract features from
images, features of small objects may be obscured by larger surrounding objects, causing a loss of
critical information. This can result in small objects being overlooked during the learning phase, thus
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impacting the precision of detection. Second, in complex scenes with multiple object interactions,
Small objects are more susceptible to false positives and omissions. Compared to larger objects, they
are more likely to be obscured or overlap with other objects, making visual distinction and localization
more difficult. To tackle these challenges, we introduce HP-YOLOVS, an improved version of the
YOLOVS algorithm specifically designed for detecting small objects in remote sensing. (as depicted in
Figure 2).

Fusion

Upsample

cow J— |{ BiFormer

C2F

Upsample

BiFormer

Fusion

Upsample

o e o o o e

Figure 2. Structure of HP-YOLOVS.

Firstly, we design a continuously stacking and fusing module named C2f-DM (detailed in Sec-
tion 4.2). The C2f-DM module, by integrating local and global information, enhances the capability to
capture features of small objects and effectively alleviates the detection accuracy problems caused by
object overlaps. Secondly, we introduce an attention-based feature fusion technique, named BGFPN
(detailed in Section 4.3). This technique utilizes an efficient feature aggregation network and reparame-
terization technology to optimize the interaction of information between feature maps at various scales.
Additionally, by introducing the BRA mechanism, BGFPN can more effectively capture critical feature
information of small target objects. Lastly, we introduce a novel IoU loss function calculation method
named SMPDIoU (detailed in Section 4.4). This method comprehensively considers the shape and
size of detection boxes, thereby strengthening the model’s focus on the attributes of detection boxes.
It not only adjusts the shape and position of bounding boxes more accurately but also adapts the
regression strategy according to the varying sizes of objects. Moreover, SMPDIoU, by considering the
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perpendicular distance between two target boxes, provides a more precise bounding box regression
loss calculation method.

4.2. C2f-DM Module

The YOLOvVS backbone network mainly consists of stacks of simple convolutional modules. This
design can cause small object features to be overshadowed by those of larger surrounding objects
during image extraction, leading to the loss of crucial information. To improve the network’s capability
to process small objects, we have introduced a novel module called C2f-DM which replaces the existing
C2f module before the detection head.

As illustrated in Figure 3, the C2f-DM module embeds the Dual Dynamic Token Mixer (D-Mixer)
[45] into the bottleneck structure. This configuration merges the benefits of both convolution and self-
attention mechanisms while introducing a robust inductive bias for handling uniformly segmented
feature segments. It achieves dynamic integration of local and global information, considerably
extending the network’s effective field of view. The module processes the input feature map in
two segments: one via Input-dependent Depth-wise Convolution (IDConv) and the other through
Overlapping Spatial Reduction Attention (OSRA). Subsequently, the outputs of these two parts are

merged.
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Figure 3. Comparison of C2f and C2f-DM Structure.

Specifically, consider a feature map X of dimensions RE*H*W_ This map is initially split into two
sub-maps, {Xj, Xz}, along the channel dimension, each with dimensions RC/2xHXW Subsequently,
X1 is processed by the OSRA, while X» is handled by IDConv, resulting in new feature maps { X}, X} }
of the same dimensions. These maps are subsequently combined along the channel dimension,
resulting in the final output feature map X’ with dimensions R©*H*W_ Finally, the Compression
Token Enhancer (STE) enables efficient local token aggregation. The D-Mixer performs the following
sequence of operations:

X1, Xp = Spllt(X)
X" = Concat(OSRA(X; ), IDConv(X5)) (1)
Y = STE(X')
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In the IDConv module, the input feature map X with dimensions R©*H*W initially undergoes
adaptive average pooling to gather spatial context and reduce spatial dimensions to K?. Following this,
the map is passed through two consecutive 1 x 1 convolution layers to create an attention map A’ of
dimensions R(GXC)*K* where G represents the quantity of attention groups. The map A’ is reshaped
to RG*C*K? and a softmax function is applied across the G dimension to produce the attention weights
Ain RGXCxK? These weights A are then multiplied element-wise with a set of learnable parameters P
also in RO*C*K? and aggregated over the G dimension to form the tailored deep convolution kernel
W in ROK*, The entire process of IDConv can be expressed as:

A’ = Convt/17(Gx0) (Conv$ :¢/" (AdaptivePool (X)))

1x1
A = Softmax(Reshape(A’)) ()
G
W=) DA
i=0

In OSRA, a technique known as Overlapping Space Reduction (OSR) is employed to improve the
spatial structure representation within the self-attention mechanism. This technique employs larger,
overlapping patches to more effectively capture spatial information near the boundaries of the patches,
thus enhancing feature representation. The entire process of OSRA can be expressed as:

Y = OSR(X)

Q = Linear(X)

K,V = Split(Linear(Y + LR(Y))) (©)
_ QKT >

Z= Softmax(\/a+ 5 Vv

where B denotes the relative position bias matrix, d represents the number of channels per atten-
tion head, and LR(-) refers to the Local Refinement Module, implemented using 3 x 3 depthwise
convolution.

In STE, a 3 x 3 depthwise convolution enhances local relationships, 1 x 1 convolutions for
channel squeezing and expansion reduce computational cost, and a residual connection maintains
representational power.STE can be represented as:

STE(X) = Conv{/17¢(Conv{ </ (DWConvsys(X))) + X (4)

This design not only retains the inductive bias advantages of convolutional networks but also
enhances the model’s adaptability to input variations. Through embedding the D-Mixer, the DM-
bottleneck module combines self-attention mechanisms and input-dependent deep convolutions to
achieve dynamic integration of features. This allows the model to adjust its processing strategy based
on different inputs, particularly suitable for detecting small objects. By merging local specifics with
broader contextual data, this module successfully boosts the identification of small objects, markedly
enhancing the precision and efficiency of detecting small objects.

4.3. Bi-Level Routing Attention in Gated Feature Pyramid Network

4.3.1. Improved Feature Fusion Method

FPNs achieve multi-scale feature fusion by aggregating different resolution features from the
backbone network. This approach not only boosts network performance but also improves its robust-
ness, and has been proven to be extremely crucial and effective in object detection. Nonetheless, the
current YOLOv8 model only adopts the PANet structure. This approach can be easily disrupted by
normal-sized targets when processing small-sized targets, potentially leading to a gradual reduction
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or even complete disappearance of small object information. Additionally, there are issues with the
accuracy of target localization in this model. To tackle these challenges, we propose BGFPN, a new
feature fusion method.

We incorporate a top-down pathway to transmit high-level semantic feature information, guiding
subsequent network modules in feature fusion and generating features with enhanced discriminative
capacity. Additionally, a BRA [46] mechanism has been introduced to extract information from very
small target layers (as shown in Figure 4). This is a structure that uses sparse operations to efficiently
bypass the most irrelevant areas, creating powerful discriminative target features.

! Fusion
Block

]

A

Fusion
Block

Figure 4. Bi-Level Routing Attention in Gated Feature Pyramid Network.

BGFPN innovates on the basis of RepGFPN [47] through an efficient feature aggregation network
and reparameterization techniques, optimizing the information interaction between different scale fea-
ture maps. This architecture improves the model’s handling of multi-scale information and efficiently
merges spatial details with low-level high-level semantic information. Although a large number of
upsampling and downsampling operations are introduced to enhance interactions between features, a
method has been adopted to remove additional upsampling operations that cause significant latency,
improving real-time detection speed.

When dealing with feature fusion issues between different scales, the model eliminates traditional
3x3 convolution modules and introduces CSPStage modules with a reparameterization mechanism.
This module uses an efficient layer aggregation network connection as a feature fusion block, utilizing
Concat operations to connect inputs from different layers. This allows the model to integrate shallow
and deep feature maps, thereby obtaining rich semantic and positional information and high pixel
points, enhancing the receptive field and improving model precision. RepConv [48], as a representative
of the reparameterized convolution module, achieves branch fusion during inference, which not only
reduces inference time but also increases inference speed.
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Furthermore, to more precisely address the detection of small targets, we have introduced dilated
convolution technology [49]. This technology enhances feature extraction capabilities by expanding
the convolution kernel’s receptive field without adding extra computational burden. This approach
bypasses pooling operations, thus maintaining the high resolution of the feature maps. This is critical
to precise localization and identification of small objects within images, greatly enhancing the model’s
detection precision in intricate scenes, particularly those with visual noise.

4.3.2. Bi-Level Routing Attention

In remote sensing images, complex backgrounds and severe noise often obscure small target
objects. Incorporating an attention mechanism into the network greatly enhances the capture of
essential feature information, thus enhancing object detection precision. However, traditional attention
mechanisms impose a considerable computational load when dealing with extremely small target
layers, especially at high resolutions. To mitigate this, we have integrated a BRA mechanism tailored
for vision transformers into the Neck structure of YOLOvS. As shown in Figure 5, this mechanism first
filters out irrelevant large-area features at a coarser region level, then focuses at a finer token level,
and dynamically selects the most pertinent key-value pairs for each query. This strategy not only
saves computational and memory resources but also greatly improves the precision of detecting small

objects.
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Figure 5. Bi-Level Routing Attention.
Initially, we divide a two-dimensional input feature map X € R**W*Cinto S x S non-overlapping

. . . . . s2xHY <o . .
regions, with each containing %ZV feature vectors. This reshapes X into X" € R” *'s2 “. Linear projec-

2 HW
tions then generate the queries, keys, and values tensors Q, K,V € RS X2 <€

a directed graph that maps the attention relations between these regions. We average the regions
within Q and K to create region-level queries and keys Q", K" € RS**C_ The adjacency matrix for the
region-to-region affinity graph is subsequently computed by multiplying the transpose of Q" with K".

. We proceed to construct

A= QKT ©)
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From here, we identify the top-k regions highest similarity for each region in the adjacency matrix
through row-wise operations. These indices are then annotated in the region-to-region routing index
matrix, where top-k indicates the number of regions of interest within BGFPN.

I" = topkIndex(A") (6)

Utilizing the inter-region routing index matrix I, we then implement fine-grained token-to-
token attention. Initially, we gather the key and value tensors, denoted as V8 = gather(V,I") and
K8 = gather(K,I"). Following the integration of Local Context Enhancement (LCE), attention is
directed towards these gathered key-value pairs to generate the output:

O = Attention(Q, K8, V&) + LCE(V) (7)

Depicted in Figure 2, in the BGFPN structure, we incorporate the BRA mechanism after each
C2F module during the upsampling process, before downsampling, and before feature fusion. By
adding the BRA module before the upsampling step, the features can be focused on earlier, allowing
for more precise handling of small object information, significantly enhancing the object’s recognition
and localization performance. Moreover, by introducing the BRA module after each C2F module
during the downsampling process, it ensures that even after feature simplification, the model can still
sensitively capture details, strengthening the recognition of key information. Especially by introducing
the BRA module before feature fusion, this can screen key areas at the macro level and conduct in-
depth detail attention at the token level, ensuring the network prioritizes key information in the image
before integrating features, further improving the detection precision of small objects. This integrated
attention mechanism effectively isolates crucial information in intricate settings while amplifying focus
on fundamental features, thereby markedly boosting the precision of detecting small objects.

4.4. Smooth Mean Perpendicular Distance Intersection over Union

The bounding box regression loss function is crucial in object detection tasks. Researchers are
consistently proposing various improved methods, such as GloU [41], DIoU [42], and CloU. While
these approaches have enhanced the handling of small objects and bounding boxes with extreme aspect
ratios, they still mainly emphasize the geometric relationship between bounding boxes, overlooking
the influence of the bounding box’s own shape and scale on regression results.

To enhance small object detection, we introduce a new method called SMPDIoU. This method com-
bines the advantages of SioU [43] and MPDIoU [44], comprehensively considering the shape and scale
of the bounding boxes, thus addressing the deficiencies of IoU and its improved versions.Furthermore,
SMPDIoU incorporates a detailed regression loss calculation method centered on the vertical distance
between two bounding boxes. This approach not only markedly enhances the precision of detecting
large objects but also excels in detecting small objects, efficiently addressing prevalent issues in small
object detection. The specific calculation formula is provided below:

A+Q ) . (IOU + (1 — Dperpendiculurnorm)) ®)

SMPDIoU = & - <IOU - +(1—a) 7

where, a is a weight parameter, used to balance the influences of SIOU and MPDIoU, which can be
adjusted according to specific application scenarios. In this model, distance loss (A) and shape loss ()
play a key role. By measuring the spatial distance and shape discrepancies between the actual and
Ipredicted boxes, SMPDIoU effectively reduces the angular differences between the anchor and true
boxes in the horizontal or vertical directions, thus accelerating the convergence process of bounding
box regression. The distance loss (A) is defined by the following equation:

A= Z (1_6_')’Pt) (9)

t=w,h
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where ¥ = 2 — A, and p; is the standardized distance between the centers of the true and predicted
bounding boxes, calculated as follows:

pre gt 2 pre gt 2
_ X X — (Y —Yc 10
Ox ( W, ) /Py ( T > ( )

As shown in Figure 6, x!"* and y!"* are the center coordinates of the predicted bounding box, while
x$ and yc are the center coordinates of the true bounding box. Additionally, hE", wh’e, né t, and w
denote the respective heights and widths of the predicted and actual bounding boxes. The coefficient
7 related to the angle is calculated by the following equation:

A =1—2%sin? (arcsin(hc> — n) = Cos <2 * <arcsin(hc> — 7()) (11)
o 4 o 4

where ¢ denotes the Euclidean distance from the center of the predicted bounding box to the center of
the true bounding box, calculated as follows:

o - 2

where h. represents the discrepancy in the y-axis distances between the minimum and maximum

extents of the true and predicted, expresed as:

he = maX(y§t,yfr ) — mln(yc ,yfre) (13)
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Figure 6. Distance Loss Diagram and MPD Schematic Diagram.

The equation for shape loss (Q)) is given below:

Q= Z (1—€7wt)9 (14)

t=w,h

where 0 = 4 and w; represents the proportional variances in height and width across the bounding
boxes, calculated in the following manner:

re t re t
Wy = f —w§ wy = hf _h§ (15)
w — | T o of. |’ - 71‘
max(wf”d, w‘ft) max(h!", ")
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In order to enhance the precision of assessing the spatial alignment between true and predicted
bounding boxes, the model integrates the computation of the vertical distance separating their centers.

_ IoU+ (1 - Dperpendicular_norm) (16)

SMP 5

where Dperpendicular_norm 18 the normalized vertical distance, which varies between 0 and 1. This
normalized distance is derived from the Euclidean distance D perpendicuiar between the true and pre-
dicted bounding box centers, relative to the maximum distance Dmax that serves as the normalization

reference:

Dperpendicular
Dperpendicular_norm = D
max

(17)

t t

Dperpendiculur - \/(xfre - x§ )2 + (yfre - yig )2

e (xizre_i_xgre) e (y]fre_i_ygre)

Xe =—F—"—, Y = —/—"—
zgt gt gtz gt (18)

gt _ (7 ) o (g +in)

S B R

5. Experiments

5.1. Experimental Setup

Experimental Environment. All experiments described in this paper are conducted using a
defined system setup to ensure effective implementation and reproducibility of outcomes. For detailed
specifics, refer to Table 1.

Hyperparameter Settings. During our experimental procedures, throughout the training phase,
we apply a learning rate decay method. We perform the training over 200 epochs to maintain stability,
during which the learning rate progressively reduces. Additionally, other configurations adhere to the
default settings of the original YOLOVS. The specifics of the training hyperparameters can be found in
Table 2.

Table 1. Experimental Environment Configuration Table.

Configuration Item ‘ Name Specification
GPU NVIDIA GeForce RTX 3080
Hardware environment CPU Intel Core i7-11700K
ardware environme VRAM 12G
RAM 64G
Operating System Ubuntu 18.04
. Python 3.8.12
Software environment Pytorch 1100
CUDA 10.4
cuDNN 7.6.5
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Table 2. Model Training Hyperparameter Settings.

Hyperparameter Options | Setting

Epochs 200
Initial Learning Rate 0 0.01
Learning Rate Float 0.01
Input Resolution 640x640x3
Weight_decay 0.0005
Momentum 0.937
Batch_size 4

Datasets. In our experiments, we employed three publicly available datasets: RSOD [50], NWPU
VHR-10 [51], and VisDrone2019 [52]. These datasets were randomly split into training, validation, and
test sets in a 6:2:2 ratio.

The RSOD dataset includes four annotated object categories: airplanes, oil tanks, overpasses,
and playgrounds, totaling 976 images. The NWPU VHR-10 dataset originates from Google Earth and
focuses on remote sensing applications, containing about 800 images with a resolution of 1000x1000
pixels, covering ten different categories. VisDrone2019 is an aerial drone dataset jointly developed by
Tianjin University and the AISKYEYE data mining team, consisting of 288 video clips and 10,209 static
images, totaling 261,908 frames. These data were captured by various drones under different angles,
scenes, and tasks, including ten distinct categories such as cars, pedestrians, and bicycles.

Evaluation Metrics. For assessing the proposed HP-YOLOv8 model, we utilize three commonly
employed metrics in object detection: Recall, Precision, and Mean Average Precision (mAP). The
formulas are as follows:

TP TP

P=1p7rp R=TPrEN
AP = / P(R)dR, mAP ==Y AP,
0 N =

where N denotes the total number of classes. The mAP metric assesses the mean AP across all classes.
mAP@0.5 represents the average precision at an IoU threshold of 0.5, while mAP@0.5:0.95 computes
the average precision over IoU thresholds from 0.5 to 0.95, incrementally increasing by 0.05. This
metric provides a more comprehensive performance evaluation, covering a spectrum from looser to
stricter matching criteria.

5.2. Overall Performance of HP-YOLOv8

Classification Evaluation. We extensively experimented with the RSOD dataset to evaluate how
the performance of the traditional YOLOv8 model compares to our newly developed HP-YOLOVS
model in remote sensing images. As depicted in Table 3, HP-YOLOvVS8 outperforms YOLOVS in all
tested categories. Particularly in the Overpass category, HP-YOLOVS increased the AP from 68.87 to
87.46, an improvement of 18.59 percentage points, demonstrating its high efficiency in handling small
and structurally complex objects. Additionally, HP-YOLOVS raised the AP to 95.82 in the Aircraft
category, to 98.25 in the Oiltank category, and to 98.93 in the Playground category, further showcasing
the model’s significant advantages in detecting small-sized and hard-to-reconize objects.
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Table 3. Peformance of HP-YOLOv8 and YOLOv8 on RSOD.

Model | Class Aircraft Oiltank Overpass Playground

P 96.52 97.83 71.92 95.31

YOLOvV8 R 91.62 94.34 70.21 96.82
AP 95.34 97.05 68.87 98.02

P 97.23 96.85 87.42 96.65

HP-YOLOvS8 | R 90.76 92.23 81.94 97.23
AP 95.82 98.25 87.46 98.02

Furthermore, to assess the HP-YOLOvV8 model’s robustness, we performed experiments on the
NWPU VHR-10 and VisDrone2019 datasets, as detailed in Table 4 and Table 5. The experimental results
indicate that in the WPU VHR-10 dataset, HP-YOLOVS significantly outperformed the traditional
YOLOvVS8 model in the detection of most object categories. Particularly in the Ground Track Field,
Airplane, Basketball Court, and Vehicle categories, HP-YOLOv8 demonstrated significant performance
improvements. For example, in the Ground Track Field category, HP-YOLOVS increased the AP from
64.73 to 95.45, and in the Airplane category, the AP was raised from 92.54 to 99.33, nearly achieving
perfect detection results. Additionally, even in generally moderate-performing categories such as
Basketball Court and Vehicle, there were notable improvements, with APs rising from 85.28 to 91.84
and from 67.99 to 88.63, respectively. Although there was a slight performance decline in the Ship
and Harbor categories, HP-YOLOVS8 overall still demonstrated superior detection capabilities and

adaptability.
Table 4. Peformance of HP-YOLOvS8 and YOLOv8 on NWPU VHR-10.
Model ‘ Class Bridge Ground Track Field Ship Baseball Diamond Airplane Basketball Court Vehicle Tennis Court Harbor Storage Tank
P 95.95 76.84 98.65 93.89 94.56 89.94 90.12 93.21 98.45 92.82
YOLOv8 R 80.23 54,76 94.78 92.56 85.80 70.64 64.87 85.46 99.25 82.98
AP 90.73 64.73 99.01 95.30 92.54 85.28 67.99 91.84 96.17 86.56
P 96.87 97.56 98.4 92.34 96.45 94.87 91.96 95.45 98.78 93.71
HP-YOLOvV8 | R 86.65 97.50 93.97 93.48 97.89 87.62 73.45 78.21 83.45 80.67
AP 91.15 95.45 98.32 96.66 99.33 91.84 88.63 87.84 92.13 89.20

Table 5. Peformance of HP-YOLOv8 and YOLOvVS8 on VisDrone2019.

Model ‘Class Van Pedestrian Car Bicycle Person Motor Bus Tricycle Truck Awning-Tricycle

P 48.47 46.87 84.98 13.78 38.07 50.26  61.72 31.88 42.87 17.87

YOLOVS R 38.74 35.89 71.28 8.32 26.81 41.63 5242 23.69 30.76 10.43
AP 42.75 41.37 76.89 11.35 29.78 4482  56.32 26.93 35.49 14.10

P 62.86 63.56 9243  42.65 53.78 63.41  73.90 44.98 47.88 37.65

HP-YOLOvVS8 | R 52.56 58.72 90.02  35.62 44.69 5832 67.54 34.12 41.42 28.64
AP 57.45 60.30 90.05  37.55 48.22 60.41  69.77 37.62 43.33 30.27

Convergence Analysis. To assess how well the HP-YOLOv8 model converges on datasets,
comprehensive comparisons were conducted between YOLOvV8 and HP-YOLOVS using the RSOD
training and validation sets. The investigation centers on evaluating convergence trends for four
critical performance metrics: recall, precision, mAP@0.5, and mAP@[0.5:0.95].

As shown in Figure 7, approximately 15 epochs after training begins, HP-YOLOVS8 outperforms
YOLOVS across all metrics and stabilizes around 50 epochs. These results clearly demonstrate that
HP-YOLOvV8 demonstrates superior convergence performance over the traditional YOLOv8 model,
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providing more stable and reliable performance enhancements. Additionally, the precision-recall (PR)
curves offer a direct comparison of model performance, as depicted Figure 8.
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Figure 7. Evaluation of Trends in Recall, Precision, mAP@0.5, and mAP@[0.5:0.95] for YOLOv8 and
HP-YOLOVS8 on the RSOD Validation Dataset
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Figure 8. Precision-Recall Curves for RSOD Datasets.

5.3. Ablation Experiment
We conducted multiple training sessions and tests using the RSOD dataset to assess how three
optimization strategies—namely, the C2f-DM module, BGFPN feature fusion method, and SMPDIoU
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optimization loss function—affect the performance of the YOLOVS baseline model. The experimental
findings present the performance results of different combinations of modules, detailed in Table 6.

Table 6. Ablation Experiment of Different Componets in HP-YOLOvVS.

YOLOWE  C2 f_ml/}/["d;éFPN SMPDIoU | Pa@ms FPS P R mAP@05 mAP@0.5:0.95
v 4341IM 7578 89.18 8927  8§9.82 57.01
v v 414M 6335 89.86 9136 9152 64.23
v v 2461IM 6049 9178 9241 9256 67.78
v v 436IM 7578 9005 9154 9145 64.12
v v v 2852M 5546 91.89 9378 9398 69.78
v v v v 2852M 5546 9221 9422 9511 72.03

In our study, the incorporation of the C2{-DM into the backbone network led to improvements in
the model’s mAP@0.5 from its initial 89.82% to 91.52%, and the mAP@0.5:0.95 also rose from 57.01% to
64.23%. This enhancement validates the efficacy of the C2f-DM module in combining global and local
information to enhance the detection of small objects. Substituting the original PANet with BGFPN
raised the mAP@0.5 to 92.56% and mAP@0.5:0.95 to 67.78%, while reducing the model’s parameter
count by 43.31%. This change demonstrates that BGFPN, with its efficient hierarchical aggregation of
network connections, not only significantly boosted mAP performance but also effectively reduced
the model’s parameter size. Introducing the SMPDIoU optimization loss function increased the
mAP@0.5 to 91.45% and mAP@0.5:0.95 to 64.12%. When combining the C2f-DM module and BGFPN,
performance further improved, with mAP@0.5 rising to 93.98% and mAP@0.5:0.95 to 69.78%. By
employing all three techniques together, the model achieved its highest performance, with mAP@0.5
reaching 95.11% and mAP@0.5:0.95 reaching 72.03%. These findings demonstrate that HP-YOLOvVS
effectively enhances the original YOLOvVS performance. HP-YOLOVS, in contrast to the original
YOLOVS, is lighter and more suitable for deployment on hardware-constrained devices.

5.4. Comparison with Other Models

To illustrate the strengths of our proposed HP-YOLOv8 model, we execute comparative exper-
iments utilizing the RSOD dataset, comparing its performance with that of YOLOVS, traditional
detection algorithms (such as Dynamic R-CNN [53], CenterNet [32], Fast R-CNN [54], Cascade R-
CNN [31]), and algorithms specifically designed for remote sensing object detection (like LSKNet
[37], SuperYOLO [39], TPH-YOLO [38], LAR-YOLOVS [25]). All models are trained and tested under
the same conditions, and the comparative outcomes are displayed in Table 7, the evaluation criteria
encompass metrics such as mAP@0.5, mAP@0.5:0.95, parameter count, and FPS. Although the FPS
of HP-YOLOVS is slightly lower than that of the TPH-YOLO and YOLOVS, it outperforms other
algorithms in this regard. HP-YOLOv8'’s parameter count stands at 27.52M, which is lower than
many models with higher mAPs, such as Cascade R-CNN and SuperYOLO, demonstrating that our
model achieves high-precision detection at a lower computational cost. Importantly, HP-YOLOvS
demonstrates notable advantages in mAP@0.5 and mAP@0.5:0.95, as well as in parameter efficiency.
Specifically, in mAP@0.5:0.95, HP-YOLOVS records a significant increase of 17.58% compared to the
least effective model, Faster R-CNN, conclusively establishing our model’s superior performance and
practical value.
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Table 7. Comparison with Different Models.

Model | mAP@0.5 mAP®@0.5:0.95 Params FPS
Faster R-CNN [54] 85.46 54.45 42.47M  31.73
Cascade R-CNN [31] 86.21 55.31 70.62M  26.48
CenterNet [32] 87.79 56.14 33.34M  34.37
Dynamic-RCNN [53] 85.30 55.86 42.78M  31.35
LSKNet [37] 87.74 56.35 29.88M  48.75
TPH-YOLO [38] 90.46 57.32 53.59M  56.26
SuperYOLO [39] 90.78 59.30 54.66M  32.21
LAR-YOLOVS [25] 92.92 61.55 28.56M  54.89
YOLOVS 89.82 57.76 44.60M 75.78
HP-YOLOvVS8(Ours) 95.11 72.03 27.52M  55.46

5.5. Experimental Results Presentation

Ultimately, to visually highlight HP-YOLOV8’s improved detection capabilities, we display the
detection outcomes of YOLOvV8 and HP-YOLOvVS8 on the RSOD, NWPU VHR-10, and VisDrone2019
datasets. Reviewing Figure 9, we observe the following points: First, the comparison between
Figure a(1) and Figure A(1) reveals that due to the significant resemblance between the object and
the background, the YOLOv8 model fails to detect the aircraft. However, the HP-YOLOvV8 model
demonstrates its enhanced detection capabilities by not only successfully identifying the object but
also clearly distinguishing the background from the foreground, showcasing HP-YOLOVS8's significant
advantage in handling background noise. Second, the contrast between Figure ¢(2) and Figure C(2)
reveals that due to partial occlusion of some objects, YOLOV8 exhibits certain missed and false
detections. However, HP-YOLOVS effectively resolves this issue, accurately identifying primary
objects and detecting small objects partially obscured by crowds, vehicles, and trees, especially in cases
of significant overlap between objects. These experimental results convincingly prove the significant
effectiveness of our proposed HP-YOLOvS8 model in enhancing the precision of remote sensing object
extraction.
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M

Figure 9. Detection outcomes on the RSOD, NWPU VHR-10, and VisDrone2019 datasets are depicted.
Panels (a), (b), and (c) show the results using YOLOvVS, whereas panels (A), (B), and (C) illustrate the
results from HP-YOLOvS.

6. Conclusions

This paper presents a small-size object detection algorithm for remote sensing images, which
builds on the existing YOLOvVS8 framework by incorporating the newly proposed C2f-DM module,
BGFPN feature fusion technology, and SMPDIoU loss function. Through these innovations, we
have developed HP-YOLOVS and addressed issues present in YOLOvVS and other current small-size
object detection algorithms. Additionally, we conducted extensive testing and comparisons on the
RSOD, NWPU VHR-10, and VisDrone2019 datasets. Analysis and experimental validation confirm
the effectiveness of each optimized component. HP-YOLOvVS outperforms other detectors in both
precison and processing speed, particularly in capturing small objects across various complex scenarios,
significantly enhancing the model’s mean mAP Moving forward, we plan to continue our in-depth
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research on target detection technologies, striving to surpass existing detectors in precision across all
object sizes.
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