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Abstract: Objectives: The purpose of the study was to evaluate the effectiveness of dental caries segmentation
on the panoramic radiographs taken from children in primary dentition, mixed dentition, and permanent
dentition with an Artificial Intelligence (AI) models developed using the deep learning method. Methods: This
study used 6075 panoramic radiographs taken from children aged between 4 and 14 to develop the AI model.
The radiographs included in the study were divided into three groups as primary dentition (n: 1857), mixed
dentition (n: 1406), and permanent dentition (n: 2812). U-Net model implemented with PyTorch library was
used for segmentation of caries lesions. Confusion matrix was used to evaluation of model performance.
Results: In the primary dentition group, the sensitivity, precision and F1 scores calculated using the confusion
matrix were found to be 0.8525, 0.9128, and 0.8816, respectively. In the mixed dentition group, the sensitivity,
precision, and F1 scores calculated using the confusion matrix were found as 0.7377, 0.9192, and 0.8185,
respectively. In the permanent dentition group, the sensitivity, precision, and F1 scores calculated using the
confusion matrix were found as 0.8271, 0.9125, and 0.8677, respectively. In the total group including primary,
mixed, and permanent dentition, the sensitivity, precision and F1 score calculated using the confusion matrix
were 0.8269, 0.9123 and 0.8675, respectively. Conclusion: Deep learning-based Al models are promising tools
for the detection and diagnosis of caries in panoramic radiographs taken from children in different dentitions.

Keywords: caries; artificial intelligence; panoramic radiography; deep learning

1. Introduction

Dental caries is a common chronic infectious condition that affects many children, young and
adult individuals in the worldwide [1,2]. Although dental caries usually progress slowly, in the
absence of appropriate early intervention, they can become a serious health issue causing pain,
infection and tooth loss [3]. In clinical dentistry, caries detection involves determination of treatment,
assessment of the level of caries risk and application of preventive methods, and is very important in
guiding clinical planning [4]. Successful treatment requires timely and accurate diagnosis. Various
diagnostic methods are used, including digital subtraction radiography (DSR), optical coherence
tomography (OCT), electrical conductivity measurement (ECM), ultrasonic imaging, fibre-optic
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transillumination (FOTI), laser fluorescence and quantitative light-induced fluorescence (QLF) 5. The
interpretation of the images acquired by these methods is limited by inter-rater disagreement, and
no single method alone can diagnose caries on the entire tooth surface. The ideal method for
diagnosing dental caries has not yet been found. In this quest, interest in caries detection with
computer-aided image analysis is increasing.

The favour of panoramic radiography as an extraoral method has increased owing to its low
radiation dose, less time necessity,—ease of application, and more patient comfort [6]. However,
extraoral imaging methods are associated with distortion and magnification of images [7]. Panoramic
radiography singly is inferior to bitewing radiography in the diagnosis of caries [6,8]. However, with
the technological developments in panoramic radiography devices, it has now become competitive
with intraoral imaging in the diagnosis of caries in panoramic radiographs [9]. Intraoral radiography
necessitates more patient cooperation in comparison with extraoral techniques. Hence, pediatric, and
handicapped patients would be advantageous greatly from an extraoral imaging system.

Artificial Intelligence (AI) methodologies, specifically, deep learning based convolutional neural
networks (CNN), have shown good performance in computer communication including object, face
and activity tracking, recognition, three-dimensional mapping and localisation [10]. Image
processing and image recognition procedures have been applied in medical image segmentation and
diagnosis. The U-Net is a convolutional network architecture used for fast and precise segmentation
of biomedical images, and the U-Net architecture has been reported to achieve successful results in
medical image datasets. The U-Net architecture can run on a trained dataset with fewer images and
provide precise segmentation. However, research on the application of deep CNN infrastructure and
studies on caries diagnostic methods in dentistry has not yet reached a common conclusion. [11]. This
study was performed to evaluate the efficacy of an Al application developed using deep learning
methods for dental caries diagnosis on panoramic radiographs of children in primary, mixed, and
permanent dentition.

2. Materials and Methods

Patient Selection

This study was approved by XXXX University Medical Faculty Clinical Research Ethics
Committee with the decision no. 04/30. Panoramic radiographs of 6075 paediatric patients aged 5-14
years that were available in the radiology archive of XXXXXXX were included in the presented study.
Since this study is an archival study, consent was not obtained from the patients retrospectively.
Panoramic radiographs containing any artefacts were excluded from study dataset. Panoramic
radiographs with caries lesions deep enough to be visible on the radiograph were selected due to
visuality. Panoramic radiographs with orthodontic appliances, types of restorations (stainless steel
crowns, space maintainer), and containing periodontal and periapical lesions were also included in
the dataset. The panoramic radiographs were divided into three groups: primary dentition, mixed
dentition, and permanent dentition. In addition, all radiographs were evaluated in a single category.

Radiographic Data

All images used in this study were acquired at 65 kVp, 8 mA and 16 s using the Planmeca Promax
2D Panoramic system (Planmeca, Helsinki, Finland).

Image Evaluation

Each caries label on panoramic images was annotated with polygonal tool by a research assistant
(E.A.) with 3 years of experience and a pedodontist (M.K.) with 10 years of experience using the
Colabeler labeling software (MacGenius, Blaze Software, Californation, USA.) (Figure 1). In the
study, all panoramic radiographs were evaluated by two specialists separately, initially. Then these
radiographs were evaluated together again by two specialists and last common decision were taken.
All panoramic radiographs in which the specialists did not agree were excluded from the dataset to
minimize the possibility of missing caries lesion on panoramic radiographs.
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Figure 1. Caries labeling on panoramic images with polygonal tool using the Colabeler labeling
software (MacGenius, Blaze Software, Californation, USA..).

Deep Convolutional Neural Network Architecture U-Net architecture was used as Deep
Convolutional Neural Network Architecture. The U-Net architecture is used for semantic
segmentation tasks. Our encoder-decoder type consisted of four block levels, including two
convolutional layers, with a max-pooling layer in the encoding part and up convolutional layers in
the decoding part. Each block had 32, 64, 128 or 256 convolutional filters. Besides the bottleneck, the
layer contained 512 convolutional filters [12].

Model Pipeline

The Python open-source programming language (v.3.6.1; Python Software Foundation,
Wilmington, DE, USA) and the PyTorch library (version 1.4.0) were used for model development.
Model training was conducted on a computer equipped with 16 GB RAM and an NVIDIA GeForce
GTX 1060Ti graphics card. Prior to training, all panoramic radiographs were resized from 2943 x 1435
to 1024 x 512 pixels.

Primary Dentition:

The dataset consisted of 1857 images, with 1497 images (12203 labels) in the training set, 180
images (1276 labels) in the validation set and 180 images (1551 labels) in the testing set. More than
one labeling was done on a tooth. Caries in separate areas was evaluated as separately. The
panoramic radiographs were randomly distributed. Two hundred epochs were trained with the
PyTorch U-Net model; epoch 149 showed the best performance and was therefore used in the model
(Figure 2).
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Figure 2. Diagram of the development stages of the Al models for primary dentition, mixed dentition
and permanent dentition.

Mixed Dentition:

The dataset consisted of 1406 images, with 1126 images (6252 labels) in the training set, 140
images (674 labels) in the validation set and 140 images (760 labels) in the testing set. The images
were randomly distributed. Two hundred epochs were trained with the PyTorch U-Net model; epoch
176 showed the best performance and was therefore used in the model (Figure 2).

Permanent Dentition:
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The dataset consisted of 2812 images, with 2242 images (10152 labels) in the training set, 285
images (1130 labels) in the validation set and 285 images (1102 labels) in the testing set. The images
were randomly distributed. Two hundred epochs were trained with the PyTorch U-Net model; epoch
155 showed the best performance and was therefore used in the model (Figure 2).

Total (Primary Dentition + Mixed Dentition + Permanent Dentition)

The dataset consisted of 4875 images, with 2242 images (28014 labels) in the training set, 600
images (3567 labels) in the validation set and 600 images (3463 labels) in the testing set. The images
were randomly distributed. One hundred epochs were trained with the PyTorch U-Net model; epoch
75 showed the best performance and was therefore used in the model (Figure 2).

Statistical Analysis

A confusion matrix was used to assess the model performance. The metrics used in this matrix
were as follows: TP (true positive), the rate of positive cases correctly predicted; FN (false negative),
the ratio of negative values incorrectly classified as positive; and FP (false positive), the rate of
negative cases correctly classified. The metrics used to evaluate the model success were as follows:
precision, a measure of how many correct predictions are made out of all classes (TP/TP + FP);
sensitivity, an indicator of the model efficacy in predicting the positive class label from the inputs
(TP/TP + EN); F1 score, the harmonic mean of precision and sensitivity.

3. Results

The success of the Al model in caries diagnosis was evaluated in each of the groups.

Primary Dentition:

Among the 1276 caries labels on 180 images in the testing set, the Al system evaluated 1006 as
TP, 96 as FP and 174 as FN (Figure 3). The sensitivity, precision and F1 score calculated using the
confusion matrix were 0.8525, 0.9128 and 0.8816, respectively (Table 1).
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Figure 3. Caries segmentation using Al model on panoramic radiographs of children in primary
dentition, mixed dentition, and permanent dentition.

Table 1. Estimated caries segmentation performance measurements of the Al model on panoramic
radiographs of children in primary dentition, mixed dentition, and permanent dentition using
confusion matrix in primary dentition, mixed dentition, and permanent dentition.

Metrics and Primary Mixed Permanent (Prima +l\rl/;(i);:::l+Permane
Measurements Dentition Dentition Dentition y nb)
True positive (TP) 1006 467 866 2653
False positive (FP) 96 41 83 255
False negative
174 1 181
(EN) 66 8 555
Sensitivity 0,8525 0,7377 0,8271 0.8269
Precision 0,9128 0,9192 0,9125 0.9123
F1 score 0,8816 0,8185 0,8677 0.8675

Note: Two professional editors, both native speakers of English. For a certificate, please see:
http://www.textcheck.com/certificate/S3SDGHG

Mixed Dentition:

Among the 674 caries labels on 140 images in the testing set, the Al system evaluated 467 as TP,
41 as FP and 166 as FN (Figure 3). The sensitivity, precision and F1 score calculated using the
confusion matrix were 0.7377, 0.9192 and 0.8185, respectively (Table 1).

Permanent Dentition:
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Among the 1130 caries labels on 285 images in the testing set, the Al system evaluated 866 as TP,
83 as FP and 181 as FN (Figure 3). The sensitivity, precision and F1 score calculated using the
confusion matrix were 0.8271, 0.9125 and 0.8677, respectively (Table 1).

Total (Primary Dentition + Mixed Dentition + Permanent Dentition):

Among the 3463 caries labels on 600 images in the testing set, the Al system evaluated 2653 as
TP, 255 as FP and 555 as FN (Figure 3). The sensitivity, precision and F1 score calculated using the
confusion matrix were 0.8269, 0.9123 and 0.8675, respectively (Table 1). Area Under Curve (AUC)
value was found as 0.76. (Figure 4).
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Figure 4. ROC and Precision-Recall Curve for total caries segmentation model including primary

dentition, mixed dentition and permanent dentition.
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Figure 5. Diagram of the development stages of the Al models for total.

4. Discussion

If dental caries is not detected correctly and early, the lesion may gradually extend into the
dentin, enamel and even the tooth pulp, resulting in severe pain and consequently the loss of dental
function. Artificial intelligence-based systems are often used in dentistry for the design of automated
software to facilitate diagnosis and data management [13]. These are often clinical decision support
systems that help and guide professionals to make better decisions. These systems have been used to
improve diagnosis, treatment planning and prediction of prognosis [14]. This study was performed
to examine the success of an artificial intelligence application developed using deep learning in the
diagnosis of dental caries on panoramic radiographs of primary, mixed and permanent dentition.

Various diagnostic methods are being developed and improved to overcome clinical and
radiographic diagnostic limitations [5]. The techniques now used in clinical settings include digital
subtraction radiography (DSR), optical coherence tomography (OCT), laser fluorescence, electrical
conductivity measurement (ECM), ultrasonic imaging methods, digital imaging fibre-optic
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transillumination (DIFOTI) and quantitative light-induced fluorescence (QLF) [15,16]. Takeshita et
al. demonstrated that DSR had high sensitivity and specificity in diagnosing interproximal caries [17].
In this method, however, it is important to acquire standard and good quality radiographs via film
holders. The use of artificial intelligence has great potential for eliminating errors that may not be
noticed or may be overlooked by the human eye [18]. Laitala et al. evaluated the validity of the
DIFOTI method by comparison with visual inspection and bitewing radiography, but found that the
method had low sensitivity and was subjective [19]. Subjectivity in a method prevents the application
of a standard procedure for that method. In the present study, we reduced subjectivity through an
artificial intelligence system developed using deep learning on standardised panoramic radiographs.
DIAGNOdent Pen, a laser fluorescence (LF) device with no X-ray exposure, is used for caries
detection [20]. However, it has been reported that LF-derived scores are weakly associated with caries
histology [21]. In addition, this LF device can produce FP responses as it is affected by discolouration
of the tooth surface and dental plaque [22,23]. Radiographs reflect structural changes in the tooth
without being affected by discolouration or plaque. This feature can increase the reliability of the
results achieved on panoramic images. The study by Mansour et al. using LF and OCT diagnostic
methods established that LF could detect caries at restoration margins, but not underneath
restorations [24]. These differences among caries detection methods suggest that the reliability of a
method alone is not sufficient [25].

Panoramic radiography is one of the most preferred methods for patient evaluation in a routine
pediatric examination, as it is well tolerated by children and gives an image area that dominates all
mouth [26]. Panoramic radiography can increase the accuracy and reliability of caries diagnosis
through artificial intelligence applications compared to bitewings as these radiographs provide the
data needed by deep learning methods as a whole.

A review by Schwendicke et al. reported that classification and segmentation could be
performed using CNNs on periapical, bitewing, CBCT, and panoramic radiographs for detection of
caries and anatomical structures and that the most used method was panoramic radiography [27].
Although radiographic methods, such as bitewing radiography, are commonly used in caries
detection, these methods only detect caries in a certain area and are therefore insufficient for
assessment of caries for all teeth, as is the case with panoramic radiography [28]. Vinayahalingam et.
al.[29], obtained demonstrable accuracy in their study named the classification of caries in third
molars on panoramic radiographs using deep learning. The present study evaluated caries detection
via application of artificial intelligence in panoramic radiography that provided information about
all teeth for caries risk assessment.

In the area of machine learning and, especially, the problem of statistical category, the confusion
matrix, also known as an error matrix, is a specific table layout that allows visualisation of the
performance of an algorithm by summarising predicted and actual instances [30]. Yasa et al. used a
confusion matrix in their study, and evaluated the performance of a model using TP, FP and EN, but
not true negative (TN), as metrics [31]. The present study also employed the confusion matrix using
TP, FP and EN to evaluate the performance for caries detection. TN could not to counted, because of
the presented Al model was developed to segment caries lesion. Only decayed teeth were labelled
on panoramic images. Healthy teeth were not labelled in any way. In future studies, AI models
should be developed to classify teeth that have caries or not have caries. Cascade networks should
be developed to classify teeth and segment caries lesion. U-Net is a convolutional network
architecture used for fast and precise segmentation of biomedical images [32]. Nishitani et al.
reported that the U-Net deep learning algorithm is suitable for segmentation of teeth on panoramic
images [33]. Therefore, in the present study, the U-Net model, which has a high rate of success in
medical image segmentation, was preferred for segmentation in the deep learning model.

Major deep learning libraries consist of layer-based frameworks, such as Caffe, and graph-based
frameworks, such as PyTorch, TensorFlow and MXNet [34]. Torch is an open source library
developed to support deep learning and machine learning [35]. This library is used frequently in
image processing [36] and has been shown to simplify complex operations [37]. Therefore, the present
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study used the Python open-source programming language and PyTorch deep learning library,
which were shown to be successful in the development of artificial intelligence models.

There are studies in the literature in which Al is used in the detection of dental caries. However,
it is necessary to increase the number of these studies in order to reach a common conclusion. Lee et
al. reported that dental caries could be detected with deep learning-based CNN applications on 3000
periapical images [38]. They stated that the diagnostic accuracy was 82.0%, sensitivity 81.0%,
specificity 83.0% in premolars and molars. Schwendicke et al. used DIAGNOcam and detected caries
on 217 images by deep CNNs [39]. Devito et al. applied a multilayer artificial neural network for
proximal caries diagnosis on bitewing radiographs of 160 extracted teeth [40]. The present study used
6057 panoramic images. This high number of images in our dataset increases the reliability of our
results compared to previous studies.

In the present study, the sensitivity, precision and F1 score were high for primary and permanent
dentition, while these scores were lower for mixed dentition. High scores for permanent and primary
dentition may have resulted from a clearer reading of images due to the uniform dentition in
permanent dentition and the smaller size of the permanent tooth germs in primary dentition
compared to the germs in mixed dentition. In mixed dentition, developing permanent tooth germs
and root resorption in primary teeth may have adversely affected the image clarity. This may explain
the higher sensitivity rate for primary and permanent dentition than for mixed dentition.

This study had some limitations. Application of a method in clinical procedures requires
achieving results of > 90% [41]. Our Al method needs to be improved to achieve such results. In
addition, our findings were not compared with different radiographic caries detection methods.
Therefore, the use of more cases to train deep learning-based CNN systems as well as more advanced
algorithms will increase the success of caries detection on panoramic radiographs and ensure a place
for these systems in routine clinical practice. Because of the lack of comparisons in Al applied in
dentistry, comparative studies in the latter are required. In the presented study, cascade network was
not developed. To remove the limitation, cascade Al networks should be developed to classify teeth
and segment caries lesion in the future studies. Beside, histological confirmations of caries and further
extension of labelled data are required, to tide over the model’s limits in the presented study. Again,
comparing this study with a clinical caries detection method may provide clearer results.

5. Conclusions

The deep learning-based artificial intelligence algorithm reported here showed average
performance in detecting dental caries on panoramic radiographs. Prospective studies should focus
on caries staging. The promising results of this study on the use of artificial intelligence to interpret
dental radiographic images will encourage further studies of this issue.

Main Points

This study sheds light on the use of artificial intelligence, which is a current topic, in dentistry.
it is also one of the first studies on children's OPTs. Gives the results of a large number of OPT scans
to the literature. In this study, the dental structure of the children was evaluated as a whole as well
as separately. (permanent dentition, mixed dentition and primary dentition) There are also promising
results in the use of artificial intelligence in dentistry. This study, in which panoramic films are
evaluated, can minimize the problems that will occur during the examination in pediatric dentistry
through artificial intelligence.
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