Pre prints.org

Article Not peer-reviewed version

Balanced Teams Formation using
Hybrid Graph Convolution Networks and
MILP

Mohamed A. Sharaf " and Turki G. Alghamdi

Posted Date: 13 January 2025
doi: 10.20944/preprints202501.0931.v1

Keywords: Team Formation Problem; graph neural network; graph convolution network; 8 Mixed Integer
Linear Programming; node embeddings

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/2855764
https://sciprofiles.com/profile/4154169

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 January 2025 d0i:10.20944/preprints202501.0931.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Balanced Teams Formation Using Hybrid Graph
Convolution Networks and MILP

Mohamed A. Sharaf * and Turki G. Alghamdi

Al Jouf University, Saudi Arabia
* Correspondence: masharaf@ju.edu.sa

Abstract: In this paper, we propose a novel model that is based on a hybrid paradigm composed
of graph convolution network and Integer Programming solver. The model utilizes the potential of
graph neural networks that have the ability to capture complex relationships and preferences among
nodes. As the graph neural network forms node embeddings that are fed as input to the next layer of
the model, the introduced MILP solver works to solve the team formation problem. Eventually, the
experimental work shows that the outcome of the model is balanced teams.

Keywords: team formation problem; graph neural network; graph convolution network; mixed integer
linear programming; node embeddings

1. Introduction

Effective team building is crucial for successful projects. Research indicates that well-composed
teams increase productivity, motivation, job satisfaction, and overall project outcomes [1]. This complex
issue is relevant across diverse fields like education, healthcare, sports, and software development,
wherever group work is necessary. However, teams often perform poorly despite individual efforts
due to issues such as poor communication, conflict, ineffective knowledge sharing, ambiguous goals,
and unclear roles. The Team Formation Problem (TFP) is a challenging optimization problem focused
on creating effective teams while considering numerous factors. Defining "effective" varies by context;
some projects prioritize maximizing combined skills, while others focus on minimizing conflict or
enhancing adaptability. Team composition can also vary depending on the task, with some favoring
heterogeneous teams based on demographics, personality, or past performance, and others preferring
homogeneous groups. The TFP’s complexity increases with the pool of potential members and
the number of constraints, making it computationally challenging (NP-hard). Various solutions
exist, from simple brute-force methods to complex metaheuristics like Particle Swarm Optimization,
Genetic Algorithms, and others. This research aims to categorize the most common optimization
techniques used to solve the TFP based on their approach (exact, approximation, or hybrid) and
application domain (e.g., education, sports, healthcare). Despite extensive research, a clear overview
of existing literature is lacking due to varying results. This review synthesizes and evaluates the
literature to highlight the most effective and frequently used techniques. These classifications will help
professionals select appropriate algorithms for their projects based on the specific application domain.

In addition and under various names, such as coalition structures (CS), one can find out that the
topic has been extensively studied in intelligent agents (LA) [2—4]. Research on IA aims to maximize
utility for both individual agents and teams (either the total team’s utility or the average utility of each
team member), specifically the likelihood of agents leaving their current group to join another. This
problem, whether referred to as Team Formation (TFP) or Coalition Structure (CS) formation, remains
NP-hard.

However, as a classification of the majority of algorithms proposed to solve the TFP, we reach the
conclusion that approximate algorithms constitute the largest group of techniques employed to address
the Team Formation Problem (TFP) due to their reduced computational demands. These algorithms

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202501.0931.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 January 2025 d0i:10.20944/preprints202501.0931.v1

20f12

prioritize finding a satisfactory solution rather than the absolute best. Typically non-deterministic and
operating in polynomial time, they are favored when dealing with a large number of potential solutions.
This category is broadly divided into heuristics and metaheuristics (MH). Metaheuristics are further
classified as single-solution MH and population-based MH. Single-solution algorithms iteratively
refine a single solution and target to converge on a local optimum. These are suitable for single-team
formation scenarios. In contrast, population-based algorithms concurrently modify multiple solutions.
As their convergence rate is generally slower than that of single-solution algorithms, they are better
suited for problems involving the formation of multiple teams. Population-based techniques can be
further subdivided into evolutionary algorithms (including the widely used Genetic Algorithm) and
swarm-based or animal-inspired algorithms, such as Ant Colony Optimization (ACO), Bee Colony
Optimization (BCO), and Crow Search Algorithm (CSA). Finally, hybrid algorithms combine distinct
approaches, such as exact methods and MHs, or two different MH techniques.

This work is different from the work proposed by Farasat and Nikolaev [5] in that Farasat and
Nikolaev aim is to capture the social structure in terms of forming different graph representations,
namely network structure measures (NSMs). Then, they the feed the formed NSMs to the proposed
mathematical model to form teams. From our point of view, the goal of capturing social structure
among other features, such as preferences and complex interactions, could be easily addressed using
GNNSs.

Thus, the contribution of this work is three-fold. First, we introduce the concept of balanced
team formation and employ GCNs to form node embeddings and capture the important features of
the participating peers. Second, we introduce a mathematical model that appears in the novel MILP
solver to help form balanced teams. Third, we reinforce this with experimental results to validate the
proposed model.

2. Related Work

The work of Bhowmik et al. [6] propose a simulated annealing algorithm (SA) to the problem of
team formation. They deal with the problem as a submodular function optimization (SFO). In general,
SFO is an NP-hard problem. Bhowmik et al. formulate the problem as a graph network, G = (V,E, W),
where V denotes the set of experts, E denotes the set of edges between the experts and W denotes the
communication cost between the experts. Then, they introduce the principle of submodularity (SM) in
three major areas, e.g., skill coverage. In addition, they argue that the SM is satisfied for skill coverage
if for every project P that requires a set of skills, the formed team T has coverage for all required skills
in the project. The downside of the proposed work is that SA in general suffers from slow convergence
and sensitivity to parameter choice. In addition, the weighted edges model the communication costs
among the experts and overlook the integration of roles or preferences.

However, the wok proposed by Farasat and Nikolaev [5] proposes a mathematical model for
the team formation problem (TFP). In addition, they extend the TFP by embedding a social structure
(SS) which yields the problem (TFP-SS). Also, they express the TFP-SS as an undirected graph with
a disregard to edges’ weights, G = (V, E). They propose an Integer Programming (IP) algorithm to
solve the proposed TFP-SS.

Chalkiadakis and Boutilier [7] address the TFP in different context. They propose a model to solve
coalition formation problem in multi-agent applications using a Bayesian reinforcement learning-based
model. Their proposed model exhibits a tradeoff between exploration (of new partners for potential
coalition formation) and exploitation of the existing coalition.

In addition, Yeh [8] proposes a dynamic programming algorithm to address the complete set
partitioning problem. However, the algorithms that are proposed in [8] can be adapted to solve the
Coalition Structure Generation (CSG) problem.

Sen and Dutta [9] study the formation of coalitions in IA using order-based genetic algorithm
(OBGA).The authors introduce a new algorithm called the "Optimal Bi-level Genetic Algorithm"
(OBGA). This algorithm uses a genetic algorithm approach, which is a type of search algorithm

https://doi.org/10.20944/preprints202501.0931.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 January 2025 d0i:10.20944/preprints202501.0931.v1

30f12

inspired by natural selection. Here’s how it works: Bi-level Structure: The OBGA has two levels.
The outer level: This level searches through the space of possible coalition structures. It represents
each coalition structure as a "chromosome" (a string of information).Then, the inner level: For each
coalition structure generated by the outer level, the inner level calculates the value or utility of that
structure. This is often done by solving a subproblem related to how the agents within each coalition
will cooperate.

Sharaf and El-Ghazawi [10] propose a coalition fromation model to serve in the domain of fog
computing. They propose a model that is based on Markov Chain Monte Carlo (MCMC). The model
can incorporate a set of nodes’ preferences that guide the formations of coalitions.

The work by Zhang and Hu [11] follows the same goal of coalition formation stated by Sharaf and
El-Ghazawi [10] to utilize the coalition formation to serve computational aspects at the edge. Zhang
and Hu propose a model that is based on M-ary discrete particle swarm optimization (MDPSO).

To sum up, generating coalition structures and TFP both are computationally complex (NP-hard)
problems [2,12,13], making the search for optimal solutions impractical due to their exponential time
requirements. Consequently, much research has focused on finding good, but not necessarily perfect,
solutions. One such attempt is the work of Chalkiadakis et al. [14] where they propose a greedy algorithm
for the set-covering problem. However, the proposed model solves a variant of the problem, namely the
ovelapping coalition formation (OCF). Therefore, Chalkiadakis” algorithm is not suitable to our problem
because our approach requires teams to be disjoint (i.e., no player can belong to multiple teams).

3. Graphical Convolutional Network

Graph Neural Networks (GNNs) have emerged as a powerful tool for analyzing data represented
as graphs. The foundational work on GNNs was presented by Gori et al. in 2005 [15]. Subsequent
research by Scarselli et al. [16] and Gllicchio et al. [17] further developed and clarified the GNN
concept. These early GNN models relied on an iterative message-passing process, where information is
exchanged between neighboring nodes until a stable state is reached. However, this iterative approach
proved to be computationally expensive. A significant breakthrough came with the introduction of
Graph Convolutional Networks (GCNs) by Kipf and Welling in 2016 [18]. GCNs offer a more efficient
way to aggregate information from neighboring nodes, drawing an analogy to Convolutional Neural
Networks (CNNs) used for image processing. Just as CNNs use kernels to aggregate information
from neighboring pixels, GCNs aggregate information from neighboring nodes as shown in Figure
1. Bronstein et al. [19] highlighted the importance of adapting neural network architectures to non-
Euclidean data structures, where graph representations are particularly suitable, citing examples in
social networks, molecular chemistry, and gene expression. While GNNs have demonstrated great
potential in tasks like classification and link prediction, graph clustering remains a challenging task
for existing approaches as they often struggle to outperform even basic algorithms like K-means, see
Tsitsulin [20].

@ ®

Figure 1. Aggregation in GCN and CNN (a) Graphs Nodes (b) Images Pixels.

https://doi.org/10.20944/preprints202501.0931.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 January 2025 d0i:10.20944/preprints202501.0931.v1

40f12

4. Proposed GCN-MILP Model

In balanced coalitions and teams, we aim at having groups of balanced potentials and equal at
best. While grouping candidates by features might not yield homogeneous teams, we argue that GNN
can provide more accurate approach for the following reasons:

e Each candidate is represented as a node with features like skill, experience, position, power, etc.
* GNN can learn rich representations for each candidate by considering their relationships(edges)
with other candidates along with their individual features(attributes).

We formulate the problem as a clustering problem with constraints. Once the GNN model
has learned the node embeddings, clustering algorithms can be applied to group candidates into
teams/coalitions. However, we constrain the formation by ensuring that the embeddings among
teams/ coalitions are as similar as possible to provide for balanced and homogeneity as possible.

4.1. GNN Architecture for Balanced Teams Formation

In this work, we consider the graph-convolutional network (GCN) as the most suitable GNN
architecture due to its ability to capture the underlying structure of the candidates in the network.

A GCN builds node embeddings by combining information from neighboring nodes. This is
shown in Equation 1.

HOH = 5(D*%AD*%H<’>W<Z>), (1)

where:

e A= A+ I: Adjacency matrix with self-loops.

e D: Degree matrix of A.

e H®": Node embeddings at layer I (H(®) = X).

o W: Learnable weight matrix for layer I.

® 0: Activation function (e.g., ReLU).

Next, we explore the Components of a GCN for TFP:
1. Input:

* Each candidate is represented as a node with a feature vector containing attributes specific
to the case; see Experimental section.
® The relationships among candidates are defined as an adjacency matrix.
2. Firstlayer:

¢ GCNConv(input_dim, hidden_dim): This layer propagates information along edges, aggre-
gating information from neighboring nodes.
¢ This helps in capturing higher-order relationships between candidates
e FErelu(x): It applies a ReLU activation function to introduce non-linearity.
3. Second layer:

e GCNConv(hidden_dim, output_dim): this layer, node embedding, is generated for each
candidate in which the importance of each candidate within the network is captured.
e Frelu(x): Another ReLU activation is applied.

4. Output: The final output is the node embeddings.
Figure 2 shows the proposed model.

https://doi.org/10.20944/preprints202501.0931.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 January 2025 d0i:10.20944/preprints202501.0931.v1

50f12

Define GNN Model

l

Define MILP Model

|

Create Tensor

Representation of
Graph

l

Create tensor

Representation of
MNodes Features

!

Initialize the GNN Model and
Dispatch the Model to the
device (CUDA or CPU)

!

Start Training and Select

Optimization Function and
Tune Hyper Parameters, i.e.,
Learing Rate and Epochs

I

Mormalize Nodes Embedings
and Reduce the Embeddings
to 1D{norm) for MILP

i

Create and Solve the
MILP Model

Figure 2. GCN-MILP Flowchart.

After obtaining the node embeddings, we have to work around the possible clustering of imbal-
anced teams. The approach we apply to achieve this goal relies on constraint-based clustering in which
we employ Integer Programming (IP). Therefore, we formulate the last phase of team formation as
an IP problem in which we can define several constraints as team size, minimum skill level, etc. In
addition, constraint propagation and backtracking is necessary to find feasible solutions that satisfy
the constraints.

4.2. MILP Model

The main objective function of this model is to minimize the difference in cumulative potential
levels between teams, DCPLT for short. Then, we introduce the mathematical formulation of the
proposed MILP model. First, we define the decision variables.

Decision Variables:

* x;: Binary variable, 1 if player i is assigned to team j, 0 otherwise.

https://doi.org/10.20944/preprints202501.0931.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 January 2025 d0i:10.20944/preprints202501.0931.v1

6 of 12

Parameters:

e n: Number of players.

e m: Number of teams.

* p: Number of players per team.

e s;:skill level of the player i.

* «: Weighting factor for relative importance.

Objective Function:

Minimize:

+(1—a) iglf (li Sixij> (2)

Constraints:

1. Player assignment:

m
Y xj=1, Vi=1,...,n (3)
j=1
2. Team size:
n
xij=p, Vi=1...,m 4)
i=1
3. Binary restriction:
xijE{O,l}, Vizl,...,n,ijl,...,m (5)

Where the noTms is the required number of teams, noCnd is the total number of candidates,
cEmbed denotes the computed candidate embeddings and tAssign represents a two-dimensional
matrix of assignment of size (noCnd, noTms). In the assignment matrix, a cell has a value one if the
candidate is a member of the team or zero if it is not a member. The first constraint represents a validity
check that must be satisfied by having each candidate as a member of one team at most. While the
second constraint verifies that each team has p members at most.

We use PuLP [21] which includes a default solver algorithm, CBC (COIN-OR Branch-and-Cut)
[22]. PuLP is an open-source solver capable of treating a broad range of LP problems. In addition,
PuLP allows the usage of APIs to enable the usage of other solvers (GUROBI, GLPK, CPLEX, etc.).
Figure 3 shows the model pipeline and the collaboration between GCN and the MILP solver.

GCN Constraint-based Clustering
Vocdan Layer Hicden Loye
e (e—e) ¢ % 1 Normalize ’ . g
o 2 1 2 '
L e . \ gt e Embeddings MILP P 1 0 0 0
R [l (RO PR POV PR L X | 1 — », 0 1 0
e lx - e O e T Solver : : ‘ ‘ :
S, \ \ . . P, 0 o 0 1
v - s -l 5 Embedding
g 7l i =* | to 1D(norm)
il L] J \ L J a7 B) o) W e
a) Input graph b) Nodes embeddings c) Preprocessing embedding and MILP Solver ~ d) Balanced teams with players assignments

Figure 3. The proposed GCN-MILP model interaction.

5. Proposed Balanced Teams Formation Algorithm

Generally, we consider TFP as a variation of the Set Partition Problem (SPP), see [23] for more
details on SPP. In addition, SPP is a variation of the Set Covering Problem (SCP). Also, set covering
problem is considered since all the constraints are 0-1 integer problems see [24] for more details on

https://doi.org/10.20944/preprints202501.0931.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 January 2025 d0i:10.20944/preprints202501.0931.v1

7 of 12

constraint programming. We occasionally use ILP (Interger Linear Programming) to solve SPP, see [25]
for more details.

The proposed Algorithm 1 addresses the formulated problem and provides a novel model and
takes into account additional constraints. The goal is to create a partition that matches the features of
the group members (players). In addition, there are roles that are represented in players’ features and
preferences that must be adhered to in order to form balanced teams.

Algorithm 1: GCN and MILP Algorithm
Input: Nodes and edge connections as a tensor, N, number of teams, num and number of

players per team ppr;
Initialize: Create a Data object;
Create GCN model:
model = teamGCN (params);
Select device:
device = torch.device
(‘cuda’ if torch.cuda.is_available() else ‘cpu’) ;

/* transfer the entire Data to the specified device x/
data = data.to(device);

/* transfer the model parameters and buffers to the specified device x/
model = model.to(device);

/* Initialize optimizer (Adam optimizer) and loss function x/

optimizer = Adam(model.parameters(),lr = learning_rate) ;

loss = MSELoss();

for epoch = 0 to epochs do

/* Set the model to training mode x/
model.train();

/* Reset gradients to avoid accumulation during backpropagation. x/
gradientReset();
/* Feed nodes features and edges into the model x/

out = model(data.x, data.edge_index);

/* Calculate MSE */

loss = F.mse_loss(out, torch.ones_like(out));

/* Backpropagation: Compute the gradients of the loss with respect to the
model’s parameters x/

loss.backward();

/* Use the computed gradients and learning rate to update the model’s

parameter x/
optimizer.step()

end
/* Compute node embeddings x/
node_embeddings = getEmbeddings(data.x, data.edge_index);
/* Normalize input features: L2 normalization x/
embeddings = normalize(..);
/* Reduce embeddings x/
reduced = reduceEmbeddings(embeddings);
/* Create and solve MILP model */

solve MILP (reduced, num_teams, members);

https://doi.org/10.20944/preprints202501.0931.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 January 2025 d0i:10.20944/preprints202501.0931.v1

8 of 12

5.1. Experimental Work

For experimental purposes, we have designed a network of fifteen players. Each player has a set of
skills represented in vector format. The skills are ['Attack’, ‘Defense’, ‘Speed’, ‘Stamina’, “Teamwork’].
Then, we compute a one-dimensional skill based on weights (preferences) that sum to one, e.g. [0.2, 0.3,
0.1, 0.2, 0.2] as shown in Equation 8. In this setting, we prefer the defense skill more than the others.

To sum up the proposed pipeline from end to end, the workflow fits together as follows:

1. Input: Graph G = (V, E) is represented in adjacency matrix A and a feature matrix X.

e A:|V] x |V| matrix, where A;; = 1 if there is an edge between node i and node j, otherwise
0.
e X:|V| x F matrix is the number of features per node.

2. GCN: Generate node embeddings.
Optimizer: Use embeddings to form balanced teams.

@

4. Output: Team assignments and skill balance metrics.

Therefore, the pipeline outcome is a function of every stage performance. Thus, a well-trained
GCN is mandatory to ensure the best encoding of the nodes to facilitate the work of the second
stage, i.e., the MILP optimizer. In the proposed model, the GCN provides the node embeddings
that encapsulate both node features and the graph structure as input to the oprimizer. However, the
quality of the embedding is key in several factors: GCN architecture (e.g., number of layers, hidden
dimensions), training process (e.g., loss function, optimization algorithm), and input graph structure
and node’s features.

5.2. Experimental Results and Analysis

One of the measures that we employ to gauge the dynamic of teams and the diversity of skills
that could be required for certain applications is the Gini coefficient, ratio, or index; see Equation 6.
Originally, Gini ratio is used in economics as an indicator of income equality. Practical results indicate
that the lower the Gini ratio, the better the equality. Since we have two factors that are addressed in
this work, i.e., teams homogeneity and diversity, we can interpret the Gini ratio as follows:
* Alow Gini ratio indicates that all members of the team have the same skills. This could be in
favor of homogeneity.
* A high Gini ratio indicates that all team members have different skills, i.e., due to the need for
different roles within the team. This could be in favor of diversity.

B i1 Z?:l |x; — x]-\
N 2n%u

G , (6)

where 1 represents number of team members, x;, x; both represent skills of members i and j, respec-
tively and u represents the average skill level of the team.

However, the Gini ratio alone may not provide enough insight into team dynamics. For this
purpose, we add other complementary metrics, such as variance of skills within each team, average
skill level per team, and the standard deviation of skills. In addition, some auxiliary plots can help
us perceive the skill distribution across multiple dimensions for each formed team. However, we
encountered some limitations in the experimental work due to the adoption of norm-based reduction.
while reducing the embedding vectors to 1D can facilitate the work of the MILP model because it
effectively captures the magnitude of the feature vectors and simplifies the computational complexity,
such reduction leads to loss of directional information as we only retain the magnitude. To illustrate
the idea, we consider three-player features represented in the following listing.
import numpy.linalg as nl
Example embeddings:

(3 players, 5 skill dimensions)

https://doi.org/10.20944/preprints202501.0931.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 January 2025 d0i:10.20944/preprints202501.0931.v1

9of 12

[Defense, Attack, Stamina, Teamwork, and
Speed]
player_features = np.array ([
[0.8, 0.7, 0.9, 0.85, 0.7],
[0.6, 0.9, 0.8, 0.75, 0.7],
[0.7, 0.65, 0.85, 0.8, 0.75]

D

Compute the L2 Norm for each player
norms = nl.norm(player_features, axis=1)

The L2 Norm will look like:

Expected output

Player norms: [1.77552809
1.69189243
1.68448805]

The above feature vectors are replaced by feature norms (e.g., L2 norm) as a scalar as shown in Equation

7.
d
skill norm[i] = ||x;]|2 = xi2,j’ 7
j=1

where d denotes the feature vector dimension, i denotes player i. The resulting player norms shown
in the listing clearly reflect the fact that the variations/strengths across the five dimensions have
dissolved when we opted for the magnitude only. However, simplifying the MILP is possible while
retaining some vector information. This can be achieved by dimensionality reduction techniques, for
example, Principal Component Analysis (PCA), or autoencoders, or weighted norms, as shown in

d
Weighted skill norm[i] = |[xi||w = ,|) wjx% J (8)
j=1

The subtle difference between Equation 7 and Equation 8 is the emphasis on specific skills over

Equation 8.

the others when forming teams or coalitions.

5.3. Experimental Analysis

The first experiment that we present has an optimal solution. The first experiment has the
following settings:

Skills

skills = ["Attack’, ’“Defense’, ’'Teamwork’]
num_players = 9

num_skills = 3

num_teams = 3

skill_vectors =[
[0.7,0.4, 0.80], [0.70,0.40, 0.80],
[0.70,0.40, 0.80],[0.80,0.60,0.40],
[0.80,0.60,0.40], [0.80,0.60,0.40],
[0.50,0.90,0.40], [0.50,0.90,0.40],
[0.50,0.90,0.40]]

https://doi.org/10.20944/preprints202501.0931.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 January 2025 d0i:10.20944/preprints202501.0931.v1

10 of 12

The results shown in Figure 4 confirm that the teams formed are balanced. Moreover, we calculate
the Gini Coef. and tabulate the results in Table 1. The Gini ratios demonstrate homogeneity and
equality among teams.

Skill Distribution Heatmap Fairness: Mean Skill Distance

e

n

=]
o
i
v

0.533333 0.466667 0.266667

Team 1

-0.45

o
N
o

o
-
v

0.533333 0.466667 0.266667 -0.40

skill Level

Team 2
Distance from Overall Mean

o
=
5]

-0.35

0.533333 0.466667 0.266667

Team 3

o

W

5}
o o
))
5]]

i
Attack Defense Teamwork

0.5 1.0 15 2.0 25
Teams
Cohesion: Within-Team Variance Skill Distribution Across Teams
0.10 4 0.9 Skill Dimesnsion
m Attack
[Defense
0.8 B Teamwork
0.08 7
v 0.7 9
g 0.06 1 8
2]
8 =
2 Z
¥ 0.6
0.04
0.5
0.02 q
0.4+
0.00 . . ‘
1.0 Team 1 Team 2 Team 3
Teams Teams

Figure 4. A sample run where an optimal solution exists.

Table 1. Gini Coeficient.

Team Gini Coef.
Team 1 0.89
Team 2 0.89
Team 3 0.89

Next, we present a second experiment with the following settings: a pool of twenty players; each
has three skills. The objective is to form four teams each of size five.
The results of the experiment are shown in Table 2.

Table 2. Result of Second Experiment.

Metric Value
Team 1 [7,8,9,16,19]
Team 2 [3,11,12,15,17]
Team 3 [4,10, 13,14, 18]
Team 4 [0,1,2,5,6]
Mean Skill Distance 0.6222
Within-Team Variance 1.6956
Skill Balance 0.1052

Interpretation of metrics:

1. Mean Skill Distance (MSD): Lower values signify fair skill distribution.

https://doi.org/10.20944/preprints202501.0931.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 January 2025 d0i:10.20944/preprints202501.0931.v1

11 of 12

2. Within-Team Variance (WTV): Lower values signify cohesive teams.
3. Skill Balance (SB): Lower values signify balanced teams.

First, the MSD score of 0.6222 indicates, on average, that individuals are close to the average skill
level of their respective teams. This suggests that the teams formed are homogeneous in terms of
individual skill levels. Second, the WTV score of 1.695 confirms that the teams are fairly homogeneous.
Finally, the SB score of 0.1052 is a favorable low value that indicates that the average skill levels among
all teams are very similar. Thus, we can deduce that the proposed model successfully generates teams
with a balanced distribution of skills.

6. Discussion

Using GNNs to better represent relationships and preferences in team formation has the potential
to produce a solution with the best needed quality. The merits introduced by GNN models exceed the
basic skill-based comparisons. Our approach aims to form balanced teams that witness a minimization
of the variance in skill levels between the teams.

7. Conclusion and future work

Graph neural networks have shown flexibility in understanding relationships between entities,
incorporating preferences, and learning complex interactions between domain-specific nodes. Using
graph convolution networks (GCNs) to address the team formation problem offers the advantage of
flexibility and adaptability in terms of its ability to reflect network dynamics and relationships. In
this work, we propose a hybrid model of GCN and MILP to solve the team formation problem. Based
on experimental work, the proposed model is capable of obtaining the optimal solution if it exists. A
possible shift to heuristic, metaheuristic or greedy approaches can provide a near optimal solution in a
reasonable time even if they are not guaranteed to provide the optimal solution. Future work may
see the employment of graph attention networks (GATs) as GATs use an attention mechanism that
provides the ability to provide better feature learning and dynamic weighting. Additionally, GATs
have better interoperability, flexibility (diverse relationships between nodes and inductive bias), and
performance.

References

1. Kumar, S.; Deshmukh, V.; Adhish, V.S. Building and leading teams. Indian journal of Community medicine
2014, 39, 208-213.

2. Dang, V.D.; Dash, RK.; Rogers, A.; Jennings, N.R. Overlapping coalition formation for efficient data fusion
in multi-sensor networks. In Proceedings of the AAAI 2006, Vol. 6, pp. 635-640.

3. Su, Z.; Zhang, G.; Yue, F.; He, J.; Li, M,; Li, B.; Yao, X. Finding the largest successful coalition under the strict
goal preferences of agents. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 2020, 14, 1-33.

4. Rahwan, T.; Ramchurn, S.D.; Dang, V.D.; Giovannucci, A.; Jennings, N.R. Anytime optimal coalition
structure generation. In Proceedings of the AAAI, 2007, Vol. 7, pp. 1184-1190.

5. Farasat, A.; Nikolaev, A.G. Social structure optimization in team formation. Computers & Operations Research
2016, 74, 127-142. https://doi.org/https://doi.org/10.1016/j.cor.2016.04.028.

6. Bhowmik, A, Borkar, V; Garg, D.; Pallan, M., Submodularity in Team Formation Problem.
In Proceedings of the 2014 SIAM International Conference on Data Mining (SDM); pp. 893-901,
[https:/ /epubs.siam.org/doi/pdf/10.1137/1.9781611973440.102]. https:/ /doi.org/10.1137/1.978161
1973440.102.

7. Chalkiadakis, G.; Boutilier, C. Sequentially optimal repeated coalition formation under uncertainty. Au-
tonomous Agents and Multi-Agent Systems 2012, 24, 441-484.

8. Yun Yeh, D. A dynamic programming approach to the complete set partitioning problem. BIT Numerical
Mathematics 1986, 26, 467-474.

9. Sen, S.; Dutta, P.S. Searching for optimal coalition structures. In Proceedings of the Proceedings Fourth
International Conference on MultiAgent Systems. IEEE, 2000, pp. 287-292.

https://doi.org/https://doi.org/10.1016/j.cor.2016.04.028
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611973440.102
https://doi.org/10.1137/1.9781611973440.102
https://doi.org/10.1137/1.9781611973440.102
https://doi.org/10.20944/preprints202501.0931.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 January 2025 d0i:10.20944/preprints202501.0931.v1

12 of 12

10. Sharaf, M.; EI-Ghazawi, T. Preference-based and homogeneous coalition formation in fog computing. In
Proceedings of the 2019 IEEE Conference on Standards for Communications and Networking (CSCN). IEEE,
2019, pp. 1-6.

11. Zhang, K;; Hu, Y,; Tian, F; Li, C. A Coalition-Structure’s Generation Method for Solving Cooperative
Computing Problems in Edge Computing Environments. Information Sciences 2020, 536. https://doi.org/10
.1016/j.ins.2020.05.061.

12. Sandholm, T.; Larson, K.; Andersson, M.; Shehory, O.; Tohmé, F. Coalition structure generation with worst
case guarantees. Artificial intelligence 1999, 111, 209-238.

13. Shehory, O.; Kraus, S. Methods for task allocation via agent coalition formation. Artificial intelligence 1998,
101, 165-200.

14. Chalkiadakis, G.; Elkind, E.; Markakis, E.; Polukarov, M.; Jennings, N.R. Cooperative games with overlapping
coalitions. Journal of Artificial Intelligence Research 2010, 39, 179-216.

15. Gori, M.; Monfardini, G.; Scarselli, F. A new model for learning in graph domains. In Proceedings of the
Proceedings. 2005 IEEE international joint conference on neural networks, 2005. IEEE, 2005, Vol. 2, pp.
729-734.

16. Scarselli, F; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE
transactions on neural networks 2008, 20, 61-80.

17. Gallicchio, C.; Micheli, A. Graph echo state networks. In Proceedings of the The 2010 international joint
conference on neural networks (IJCNN). IEEE, 2010, pp. 1-8.

18. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907 2016.

19. Bronstein, M.M.; Bruna, J.; LeCun, Y.; Szlam, A.; Vandergheynst, P. Geometric deep learning: going beyond
euclidean data. IEEE Signal Processing Magazine 2017, 34, 18-42.

20. Tsitsulin, A.; Palowitch, J.; Perozzi, B.; Miiller, E. Graph clustering with graph neural networks. J. Mach.
Learn. Res. 2024, 24.

21. Mitchell, S. PuLP: A linear programming toolkit for Python. https://optimization-online.org/wp-content/
uploads/2011/09/3178.pdf, 2011.

22. COIN-OR Foundation. COIN-OR Branch-and-Cut. https://www.coin-or.org/Cbc/, 2024. Accessed
2024-11-23.

23. Balas, E.; Padberg, M.W. Set partitioning: A survey. SIAM review 1976, 18, 710-760.

24. Wallace, M. Practical applications of constraint programming. Constraints 1996, 1, 139-168.

25. Bjerndal, M,; Jornsten, K. A partitioning method that generates interpretable prices for integer programming
problems. Handbook of power systems 1I 2010, pp. 337-350.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.1016/j.ins.2020.05.061
https://doi.org/10.1016/j.ins.2020.05.061
https://optimization-online.org/wp-content/uploads/2011/09/3178.pdf
https://optimization-online.org/wp-content/uploads/2011/09/3178.pdf
https://www.coin-or.org/Cbc/
https://doi.org/10.20944/preprints202501.0931.v1

	Introduction
	Related Work
	Graphical Convolutional Network
	Proposed GCN-MILP Model
	GNN Architecture for Balanced Teams Formation
	MILP Model

	Proposed Balanced Teams Formation Algorithm
	Experimental Work
	Experimental Results and Analysis
	Experimental Analysis

	Discussion
	Conclusion and future work
	References

