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Abstract: Natural fiber-based biocomposite are increasingly favored in green engineering for their 
sustainable properties. Designing their Supply Chains (SCs) requires strategic decisions around pre-
processing equipment while accounting for environmental, economic, social, and technical criteria. 
This article aims to introduce a comprehensive sustainability-based multicriteria decision-making 
framework for a hemp-based biocomposite SC design, using an Analytical Network Process (ANP) 
model incorporating both inner and outer dependencies among decision criteria and alternatives. 
Also, a nonlinear optimization-based sensitivity analysis model is proposed to assess the robustness 
of the decisions. A combination of full/half screen hammer mill and square/round baler, as pre-
processing equipment options, are evaluated along with input data uncertainty. Evaluating four 
preprocessing scenarios, results show the round baler with half-screen hammer mill as the most 
sustainable option, while the full-screen and square baler setup performs best economically and 
environmentally. The trade-off analysis highlighted key drivers: demand-sensitive pricing, carcinogenic 
impact, job creation, and product quality. 

Keywords: biocomposites; sustainability by design; pre-processing equipment selection; Analytic 
Network Process (ANP); scenario analysis 
 

1. Introduction 

Biocomposites are now well recognized for their role in promoting sustainability across multiple 
manufacturing industries such as automotive, construction, packaging, textiles, etc. [1]. Researchers 
are increasingly focusing on biocomposite material options to meet the demand for lighter structural 
products while addressing environmental concerns. These materials, which combine natural fibers 
such as jute, hemp, flax, and cotton with bio-based polymer matrices, offer a renewable and 
biodegradable alternative to traditional composites [2], [3]. Among plant-based natural fibers, hemp 
with legally permitted cultivation in Canada has gained significant attention for biocomposites 
production due to its potential to drive economic growth and support the Canadian economy [4]. The 
integration of hemp into composite products not only supports sustainability goals, but also presents 
cost-saving opportunities by reducing reliane on synthetic fibers [4]. Moreover, hemp’s strong 
mechanical and thermal properties highlight its potential in eco-friendly, structural (as well as non-
structural) applications, reinforcing the importance of biocomposites in reducing environmental 
footprints [5]. 

Biocomposites production is a multifaceted process that involves interconnected operations 
within each given Supply Chain (SC). A typical SC includes critical stages such as the collection, 
transportation, pre-processing of the agri-industrial feedstock, and conversion of the feedstock to 
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value-added product [6]. The overall effectiveness of the SC depends on strategic decisions regarding 
location, equipment, and materials during production [7]. Notably, the bulk of research published in 
such SC activities has considered purchasing, encompassing supplier sourcing, evaluation, 
development, and logistics between supplier and customer sites (for instance, 41.96% of the research 
has focused primarily on addressing supplier and facility location decisions [8], [9]). In the context of 
biocomposites, the natural fiber pre-processing, comprising particle size reduction and mechanical 
separation decisions, is a critical step in production [10]. Moreover, for the commercial application of 
biocomposites, the economic and environmental viability of these materials throughout the SC and 
during service is crucial [11], which can be assessed by examining Techno-Economic Analysis (TEA) 
and Life Cycle Assessment (LCA) models [12]. While many studies stated that biocomposites are 
more environmentally friendly than fossil fuel-based alternatives, only a limited number have 
utilized these comprehensive tools such as TEA and LCA within the SCs to substantiate these notions 
in detail [2]. A primary focus has been on the functional properties’ assessment of biocomposites [13], 
[14], and separately the economic and environmental aspects [15–17]. The natural fibers in such case 
studies have been considered as reinforcement, including wood fibers [18], bagasse fiber [19], flax 
fiber [20], vine shoots [21], sugarcane [22], etc. The study by Schmehl et al. [23] investigated a bus 
body component made from hemp natural fibers and a vegetable-based thermoset resin, highlighting 
its environmental benefits [23]. Another study by Haylock and Rosentrater [24] conducted a 
combined TEA-LCA to compare energy intensities and environmental impacts only during the 
production of PLA biocomposites, considering different fillers, processing methods, and end-of-life 
options [25]. 

From a managerial perspective, while economic and environmental assessments are often 
addressed in SC design, the lack of uncertainty analysis in defining sustainability metrics can limit 
the strategic insights that could support robust decision-making. This dimension has been also 
overlooked in prior SC methodologies considering biocomposites [26]. 

Furthermore, integrating social considerations, which is similarly largely overlooked [27], 
becomes essential for sustainable SC design of biocomposites, as industries are pressured to reduce 
greenhouse gas emissions in line with the European Green Deal and United Nations (UN) Sustainable 
Development Goals (SDG) [28]. Research on sustainable SC assessment predominantly emphasizes 
environmental (28%) and economic aspects with Net Present Value consideration (9%), with a limited 
focus on the social dimension (5%) [29]. While 17% address the Triple Bottom Line (TBL) approach, 
40% examine the interplay between economic and environmental factors. Moreover, it is important 
to note that sustainability is often assessed using only a single metric, which varies depending on the 
study [29,30]. 

Chen et al. [31] investigated both the economic and social implications of biocomposites derived 
from potato pulp. In addition to TBL impacts (integrating the three sustainability dimensions), the 
life cycle engineering (including the technical or functional aspect) is another critical factor for 
ensuring the success of biocomposites in industrial applications [32,33]. High-performing 
biocomposites must maintain their mechanical properties and durability while offering sustainability 
advantages that attract both consumers and industries [33]. Product quality is essential for ensuring 
the material’s suitability for applications like injection molding. Maintaining quality not only 
contributes to environmental sustainability but also enhances the economic feasibility of 
biocomposites in commercial production [34]. Furthermore, the definition and selection of criteria 
indicators play a critical role in positively influencing the overall sustainability score. These indicators 
can be qualitative or quantitative, adding complexity to the decision-making phase [36]. 

In order to address the current gap on integrating the four sustainability dimensions of the 
biocomposites SC including economic, environmental, social and technical aspects, Multi-Criteria 
Decision Making (MCDM) approaches are deemed the most common tool, helping with resolving 
conflicting criteria and reaching key decisions among the feasible options/alternatives [37,38]. For 
instance, in the study by Chanpuypetch et al. [39], an integrated Analytic Hierarchy Process (AHP)-
TOPSIS framework is used to assess bamboo-based products, highlighting its application in SC 
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management for sustainable materials. By concurrently evaluating criteria such as production cost, 
market demand, and environmental impact, their model provided a systematic approach for product 
selection that could be adopted to biocomposites. Similarly, focusing on product quality, in a recent 
study, Saha et al. [40] employed the VIKOR method to evaluate the properties of different 
biocomposites for use in automobile interiors. By considering tensile strength, thermal stability, and 
moisture resistance, their research highlighted how bamboo-based biocomposites meet both 
performance requirements and sustainability goals [41]. Far too little attention has been paid to 
objectively evaluating the sustainability of biocomposites, focusing on the decisions involved in the 
pre-processing stage of biocomposite production [42]. These assessments are crucial for the 
industrial production and application of hemp, as they offer valuable sustainable insights into the 
research and capital investments needed to develop the infrastructure required to expand the 
industry [43]. 

Among different MCDM methods, some studies have applied the Analytic Network Process 
(ANP) method as an effective and well-established tool based on pairwise comparisons to address 
the interdependencies between decision factors [44]. ANP integrates both quantitative and 
qualitative criteria, yielding more realistic outcomes and providing managerial insights when 
systematically selecting suppliers, for example in [19,45]. The use of ANP in SC decision-making 
underscores its importance in navigating complex trade-offs, making it a valuable tool in 
biocomposite production [17]. 

In MCDM models, especially involving both qualitative and quantitative factors, results are 
often influenced by input data affected by personal opinions, cognitive biases, and measurement 
errors [46]. Hence, in such cases, sensitivity analysis is crucial for understanding how changes in 
criteria weights would impact decision rankings [47]. Several researchers have developed sensitivity 
analysis models for MCDM methods. For example, Masuda [48] and Huang [49] proposed models 
for AHP, while Chen and Kocaoglu [50] introduced an algorithm for hierarchical decision models. 
More recently, studies by Badi et al. [51] and Bouraima et al. [52] analyzed the effects of adjusting the 
most important criteria weights on the rankings of alternatives, offering insight into the stability of 
MCDM models. In other studies, weight fluctuations are examined, calculating the range within 
which rankings remained consistent [29], while some researchers introduced more advanced 
techniques including standard deviation to compare variations of alternative scores across MCDM 
methods [53,54]. 

Despite these advances in analyzing the sensitivity analysis results, most methods employed 
have been based on adjusting criteria weights manually, and few studies employed optimization 
models to calculate the minimum changes necessary to shift the ranking of alternatives. Wolters and 
Mareschal [55] and Sowlati and Asadi [56] addressed this by developing Linear Programming (LP) 
models for PROMETHEE and AHP, respectively, to calculate the minimum required changes in 
criteria weights to alter the top-ranked alternative. However, ANP remains underexplored in this 
area of research due to its complexity in modeling dependencies among elements. This highlights the 
need for a more systematic sensitivity analysis approach within ANP, providing decision-makers 
with a robust method to address uncertainties and interdependencies in ANP-based decision models, 
particularly for emerging SC designs including those of biocomposites. 

Objective and Contribution of the Present Study 

Further to the above review, no recent studies have investigated the sustainability criteria and 
assessment of biocomposites SC with a focus on cuncurrent economic, environmental, social, and 
technical criteria, while also incorporating possible interdependencies among these decision attributes 
themselves under an MCDM framework [36]. The only exception is the study by Ribeiro et al. [57], 
which focused on flax-fiber based biocomposites. Their analysis was limited to product cost under 
the economic category, environmental impacts on human health, ecosystems, and resources, and 
technical factors including product weight and performance. Finally, to the best of our knowledge, 
in the biocomposites area, there is a notable gap in sustainability decision-based studies focusing on 
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the role of feedstock pre-processing equipment in a holistic view of the SC in order to achieve the 
sustainability across operations among entities. 

Accordingly, this paper aims to develop a Analytic Network Process MCDM-based pre-
processing equipment selection framework, through a hemp-based biocomposite SC design example. 
All the four sustainability dimensions/criteria are considered (economic, environmental, social, and 
technical), while also incorporating possible mutual interdependencies among the SC criteria as well 
as alternatives. The specific pre-processing equipment alternatives for biomass size reduction and 
collection are: (A) Full-screen hammer mill and Round baler combination (Full-Round), (B) Full-
screen hammer mill and Square baler (Full-Square), (C) Half-screen hammer mill and Round baler 
(Half-Round), (D) Half-screen hammer mill and Square baler (Half-Square). Finally, a novel Non-
Linear Programming (NLP)-based sensitivity analysis has been conducted over the ANP model, for 
automatically identifying potential decision rank reversal scenarios, and thereby assessing the 
robustness limit of the proposed framework. 

2. Materials and Methods 

Overview: The proposed scenario-based framework of sustainability assessment consisted of a 
two-stage approach: 1) identification of a set of alternatives and criteria relevant to the selected case 
study (Section 2.1), and 2) the selection of the best alternative using an MCDM model coupled with 
the evaluation of solution robustness using sensitivity analysis (Section 2.2). The foundational 
frameworks of sustainability assessment is often defined by four pillars: economic, environmental, 
and social, with also incorporating underlying technical performance criteria in decision-making [58], 
[59]. In this work, economic and environmental criteria are derived from the earlier studies of the 
authors using techno-economic analysis (TEA) and life cycle assessment (LCA) modeling within the 
same case study [60,61], while social and technical indicators relied on industry expert interviews 
and literature. Given the requirement for balancing conflicting criteria under inter-dependencies, an 
ANP model is used, as a commonly known advanced decision tool for complex systems [62]. Then, 
an NLP model is developed for the sensitivity analysis of the ANP, namely to determine the 
minimum changes in the criteria weights that would make a second-ranked alternative to be the top-
ranked one (i.e., rank reversal analysis). A representation of thesis entire model is shown in Figure 1 
conceptually, and more detailed explanations for each phase will be presented in the following sub-
sections. 

 

Figure 1. The proposed sustainable decision-making framework for SC pre-processing equipment selection. 
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2.1. Case Study 

The global adoption of biocomposite pellets (for efficient downstream manufacturing processes 
like injection molding and sheet extrusion) is increasing, especially in automotive industry, due to 
their multiple benefits including the preservation of natural fibre resources, and the utilization of 
environmentally friendly constituents [69]. Canada is one of the highest producers of industrial hemp 
in the world. Approximately 34,262 hectares (84,660 acres) of hemp were farmed in 2015. Also, hemp 
stands out as a promising material for biocomposites due to its superior tensile properties and 
modulus as well as high growing period (70-140 days) compared to many other natural fibers [43]. 
These characteristics, coupled with its bio-based nature, make hemp an ideal choice for use as either 
a matrix or reinforcement component in sustainable composite materials [88]. To exemplify the 
application potential, in Saskatchewan, Canada, seedlings occurred on about 15,335 hectares (37,892 
acres) with over 400 total licenses issued to grow hemp in 2015 [89]. 

In this industrial case study, it has been of interest to produce and scale up a commercial plant 
producing sustainable (bio)plastics from hemp feedstock, for downstream 3D printing products in 
20-years planning horizon. These bioplastics need to be non-toxic, biodegradable, and carbon-
negative with engineered-grade quality (i.e., strong, not flammable, high heat and moisture 
resistance), which help mitigate climate change and environmental issues. In our case study, the 
production of biocomposite pellets focused on two primary components derived from hemp: 
hemicellulose and lignin. This assumption is based on that the entire hemp plant is used for 
biocomposites production. A facility with an input capacity of 300 tonnes/day of hemp for extracting 
lignin and hemicellulose is considered, based on insights from an interview with company 
executives. 

The process flow diagram for the ligno-chemical biorefinery commercial plant located in 
Saskatchewan, Canada, is shown in Figure 2. The activity starts with the harvesting of the entire hemp 
plant and then baling it using baler machines. For the purposes of this study, it is assumed that hemp 
availability is consistent across all seasons, ensuring a continuous supply for the production process. 
No resource shortages are considered in the model, as it is assumed that sufficient quantities of hemp 
are readily accessible in the region throughout the year. Next, the baled hemp is transported to an 
intermediate facility, where is size-reduced using a hammer mill (25% of hemp used as the 
composites reinforcement) and shredder (75% of hemp to be processed for the biopolymer 
conversion) before undergoing the biopolymer conversion process. 

 
Figure 2. Overview of the supply chain activities and the different alternatives considered in the current study 
(encircled by the dotted line). 
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Pre-processing at the field or facility could reduce the SC costs and provide higher-value 
feedstock. The majority of previous studies focused on using hammer mills due to lower maintenance 
than any other size reduction machine [90]. Self-unloading trucks are used to transport and unload 
hemp bales. The travel distance is assumed to be around 50 km. In the biorefinery facility, hemp 
ingredients including lignin and cellulose/hemicellulose are extracted, and then the biopolymer is 
produced with further processing of the cellulose/hemicellulose [91]. To enhance the mechanical 
properties of biocomposites, natural fibers are recognized as one of the most effective green fillers for 
polymer matrices [92,93]. Ultimately, the blend of ground hemp (biofiller), lignin, and the biopolymer 
undergo compounding and extrusion processes, which yield biocomposite pellets. 

2.1.1. Biomass Harvesting and Collection 

Regarding the biomass collection, baling can be performed using square or round balers [63]. 
Round balers require smaller tractors compared to large-square balers, which is an advantage for 
smaller farms [64]. However, square balers have a wider pickup area, leading to higher efficiency 
than round balers [39,65,66]. Also, the wrap and eject time of round balers reduces their throughput 
capacity to 50%. These differences in baler efficiency result in variations in the amount of biomass 
fed into each type. While square balers consume approximately 1.25 times more energy per hour than 
round balers, their higher throughput makes them more energy-eficient on a per-tonne basis, as 
demonstrated in a study by Lemos et al. [67]. Additionally, round balers produce bale with lower 
density, facilitating better drying in the field, which improves biomass quality, a critical factor in 
enhancing the overall quality of the final biocomposite [43]. In contrast, square balers compress 
biomass into “flakes” before forming compact bales [63]. 

2.1.1. Biomass Pre-Processing 

From the perspective of the size reduction activity, two types of hammer mills including full-
screen and half-screen can be used for crushing purposes to produce biofillers as biocomposite 
reinforcement [68,69]. Hammer mills are energy-intensive machines, and factors such as screen size 
and particle size affect their energy requirement [70]. The finer the output particle size, the higher the 
energy needed to achieve a micrometric particle size [21]. Full-screen hammer mills require less 
power and energy along with higher throughput and efficiency compared to all hammer mill styles 
[70]. The energy consumption of half-screen hammer mill can be at least five times higher than that 
of the full-screen hammer mill [69,71]. When the screen size increases from 1 mm to 1.5 mm, the 
production efficiency increases by at least 50% [72]. Also, decreasing the screen size mesh reduces the 
production capacity arising from the increased residence time during the grinding [73]. Moreover, 
the maintenance cost for equipment that produces finer particles is nearly double than equipment 
handling larger particles [65]. On the other hand, finely ground hemp used as a reinforcement in 
biocomposite presents many benefits for sample preparation because it increases homogeneity and 
surface area, which improves extraction efficiency [74]. Therefore, evaluating the economic 
performance of different hammer mill and baler equipment combinations is crucial in decision-
making. 

2.1.1. Biocomposites Production 

Finally, within biorefinery facility, lignin is extracted through the organosolv technique mixing 
with an organic solvent including ethanol in the bio-reactor, known as the company’s proprietary 
solvent, then the mixed product is cooked in the bio-reactor under pressure and the extracted black 
liquor solution is cooled down, followed by filtering and drying processes for lignin production. The 
hemp components are then washed with water to extract a cellulose/hemicellulose solution, which 
undergoes fermentation with the aid of bacteria to produce a biopolymer. This biopolymer is 
subsequently polymerized and utilized in bioplastic compounding. For producing biocomposites 
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pellets, the lignin and biopolymers along with biofillers (hemp grinds) are compounded using a 
compounder (twin-screw extruder). 

2.1.1. Supply Chain Configurations (Alternatives) Considered 

Given the difference of the pre-processing equipment for biomass collection and size-down, 
particularly in terms of energy consumption, efficiency, and capacity [75], a combination of 
square/round balers and half/full-screen balers, was considered, affecting the total SC costs [76]. 
These assumptions resulted in the definition of four alternative configurations for the SC: 1) Full-
screen hammer mill with Round baler (Full-Round), 2) Full-screen hammer mill with Square baler 
(Full-Square), 3) half-screen hammer mill with round baler (Half-Round), and 4) half-screen hammer 
mill with square baler (Half-Square). 

It should be noted that the capacities of the full-screen hammer mill and square baler were 
established based on the daily demand/production and industry expert recommendations. 
Subsequently, the capacities and energy requirements for the other options were adjusted relative to 
these benchmarks, using data from previous studies. The key parameters of different balers and 
hammer mill types are listed in Table 1. 

Table 1. Parameter values for each baler and hammer mill type. 

Alternatives  Capacity  Efficiency 
Energy consumption  
(diesel/electricity)  

Full-screen hammer mill 3.5 (tonne/hour)1 90% [72] 160 (KWh/tonne) [69] 
Half-screen hammer mill  1.5 (tonne/hour)1 70% [72] 900 (KWh/tonne) [69] 
Round baler  7.2 (tonne/hour)1 50% [65] 20 (liter/tonne)1 

Square baler 37.5 (tonne/hour)1 65% [65] 1 (liter/tonne)1 
1Data is retrieved from industry experts or adjusted based on the daily productions. 

2.1.1. Identification of Decision Criteria and Sub-Criteria 

The process of selecting suitable criteria plays a paramount role in any multicriteria decision-
making endeavors [77]. Identified sub-criteria for each sustainability dimension in the present case 
study was as follows: 

Economic: to define economic factors and select the relevant sub-criteria under this category, 
different deterministic engineering economics methods were used for comparing different options. 
For performing a detailed techno-economic study in Akbarian-saravi et al. [60], Net Present Value 
(NPV), Annual Worth (AW), Internal Rate of Return (IRR), Return on Investment (RoI), and payback 
period of each alternative were calculated through developing spreedsheet-based calculator. To do 
so, data and information on technical aspects and costs were required (as shown in Table A1–Table 
A3 in Appendix A). The costs include capital costs such as equipment purchase, installation, and 
engineering costs as well as operational costs including biomass purchase, energy, maintenance, and 
labor costs. All technical and economic data including bioplastic demand, total hemp area 
availability, equipment efficiency, capital costs, and per unit costs (e.g., for feedstock, energy, labour, 
and maintenance) were obtained from the literature and industry experts. Since this is a new 
development project, the demand was assumed to be equal to the considered production capacity. 
The results of the economic model are also presented in Table A4 in the Appendix A. To examine the 
uncertainty issues in TEA, Monte Carlo (MC) simulation was employed. The finalized economic 
metrics using stochastic TEA include the mean NPV, NPV under risk, including the average of worst-
case scenarios which are quantified using the Conditional Value at Risk (CVaR)-NPV metric, along 
with the selling price range given the unstable market and demand. CVaR is used to calculate the 
expected worst outcome (potential profit loss) under market instability and fluctuating demand [60]. 

Environmental: For the environmental impacts, the LCA model using TRACI method based on 
ISO 14,044 was implemented in Akbarian-Saravi et al. [61]. The input parameters data for the 
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environmental assessment is presented in Table A5 along with the results presented in Appendix B. 
The most contributing impact categories (5% cut-off) are selected in this study as the environmental 
criteria, relating to human and ecosystem impacts, which consist of carcinogenic, non-carcinogenic, 
ecotoxicity, and eutrophication impact categories. 

Social: the perceived number of created jobs under each decision scenario is considered as a 
social factor in this study (as a sample representative of social factors). The social impact is 
predominantly influenced by activities within the agricultural sector, which accounts for the highest 
proportion of employment hours [31]. In this study, social factors are assessed by estimating the 
number of jobs created under different operational configurations. Specifically, these jobs are 
calculated based on biomass pre-processing equipment usage, including the capacity and hours of 
operation per machine (such as hammer mills or balers) and the number of shifts assumed per day 
for each piece of equipment. The total number of employment hours needed for equipment operation 
is determined based on the amount of material required to meet the production demand for each 
configuration. Once the equipment hours are estimated, the number of workers needed for each 
configuration is calculated. This approach links the operational requirements directly to job creation, 
which is considered a key social factor in this study. Therefore, the number of jobs created is 
considered a proxy for social impacts. 

Technical: Another key characteristic of a sustainable SC is the technical aspect, for which 
product quality, system reliability, and Technology Readiness Level (TRL) are included in the present 
problem. From the current literature, clearly there is an essential variability in the quality of the 
processed biocomposites as well as system reliability and TRL under different pre-processing 
equipment [78]. All the qualitative data are collected using industry experts’ opinion as shown in 
Table 2. These experts provided insights based on their experience and knowledge of the equipment 
and processes involved in biocomposite material production. 

Table 2. The decision matrix with criteria values for the four selected SC alternatives. 

Metrics A: Full-
Round B: Full-Square C: Half-Round D: Half-Square Type of Criteria1 

Economic [60]  
Selling Price (SP) Range ($) (C1) 5,531 4,604 5,948 4,990 - (cost-like) 
Mean Net Present Value (NPV) (Million $) (C2) 61.65 53.96 65.28 57.25 + (benefit) 
Conditional Value at Risk (CVaR) - NPV (Million $) (C3) -11.18 -9.73 -11.26 -10.02 + 
Environmental [61]  
Carcinogenic Potential (CTUh) (C4) 0.00076 0.00049 0.00084 0.00054 - 
Non-carcinogenic Potential (CTUh) (C5) 0.015 0.0097 0.0175 0.01 - 
Eutrophication Potential (kg N eq) (C6) 34.98 26.05 37.51 27.61 - 
Ecotoxicity Potential (CTUe) (C7) 78,763 53,656 87,393 58,914 - 
Social [60]  
Job quantities (C8) 13 3 14 4 + 
Technical (experts opinion)       
System reliability (C9) High  Low Medium Very Low + 
Product (mechanical) quality expected (C10) Medium Very Low High Low + 
Technology Readiness Level (C11) 4 6 4 7 + 

1The effect (direction) of each sustainable SC parameter on the performance of SC is indicated with “+” or “-” 
sign. For instance, to ensure the sustainability of biocomposites upscale production, it would require a higher 
Mean NPV(C2+) and a lower Carcinogenic impact (C4-). 

Product quality: Product quality in biocomposites is significantly influenced by the properties of 
base biofillers used as reinforcement [79]. Namely, the mechanical characteristics of these biofillers 
are affected by various factors across multiple stages including filler production (grinding) and the 
hemp storage processes. The quality of biofillers, such as hemp grinds, particularly plays a crucial 
role in determining the modulus (stiffness) of the final biocomposite product. A higher-quality 
biofiller, with smaller particle size and well-preserved fiber integrity, can enhance the modulus of the 
composite by providing better reinforcement to the polymer matrix. Conversely, poor-quality 
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biofillers, with irregularities or degradation due to improper handling, may result in weaker bonding 
with the matrix, reducing the product’s stiffness and overall mechanical performance [80]. 

System reliability: Reliability is often quantified as the percentage of time the system operates 
without failure within that period. One key reliability metric, Mean Time To Repair (MTTR), measures 
the average time required to restore the system to full functionality after a failure [81]. For instance, 
comparing the maintenance time of square and round balers, the criteria have been assessed. It 
indicates the level at which the system maintains the level of quality over time. Square baler needs 
more maintenance and repair compared to round baler leading to higher maintenance cost of square 
baler compared to the round baler. Due to less complicated handling system for round balers to tie 
the bales, they require less frequent maintenance [67]. Besides, storage of square bales is more difficult 
than round bales because they must be under a structure or out of the weather to decrease mass loss 
due to weathering [82]. Failure of the equipment on the other hand can be a major contribution to the 
maintenance costs [83]. Therefore, the equipment with the most maintenance costs has less reliability. 
From the hammer mill’s perspective, the components of a hammer mill that experience the most wear 
are its screens, which may appear costly to replace at first glance. Typically, depending on factors 
like the material being processed and screen hole size, a set of high-quality, hard-faced hammer mill 
screens will wear out after 2-4 replacements before the hammers need attention. Smaller screen hole 
sizes may necessitate even more frequent replacements [84], which makes the half-screen hammer 
mill system less reliable compared to full-screen hammer mill according to MTTR factor. 

Technology Readiness Level (TRL): Another qualitative technical factor considered is the TRL, 
which is a framework that has been used in many variations across industries to provide a 
measurement of technology maturity from idea generation (basic principles) to commercialization 
[85]. TRL can also be adapted to support understanding of capabilities and resources required to 
develop technologies at different stages of development. The TRL stages are based on the 
Government of Canada assessment [86]. As shown in Table 2, when evaluating the qualitative criteria 
for the combination of the hammer mill and baler equipment, the baler’s importance is deemed more 
significant than the hammer mill due to the proportion of raw materials processed by each. 
Specifically, only 25% of the raw materials are processed using the hammer mill. The TRL stages are 
based on the Government of Canada assessment [87]. The evaluation for the analysis shown in Table 
2 is based on the expert evaluation. 

The MCDM methods systematically account for the abovementioned influential factors and their 
relative significance in prioritizing alternatives. While using such methods, the account of inter-
dependence between some criteria can also be critical [87,88]. For instance, as concluded in the TEA 
model, the selling price range significantly impacts both the mean NPV and CVaR-NPV, as variability 
in prices directly affects the expected value and risk-adjusted outcomes. 

2.2. Analytical Network Process (ANP) MCDM Model 

The ANP, introduced by Saaty [89], is a MCDM method to address the limitations of the AHP, 
by incorporating interdependencies and feedback among decision criteria and alternatives. While 
AHP uses a strict hierarchical structure to analyze decision-making problems, ANP allows for the 
modeling of a decision problem using a network-based structure [89]. 

In this work, we have adopted the ANP-based valuation framework for the selection of best SC 
alternative. ANP is widely used in the literature due to the following reasons [90]: 1) analyzing 
complex (network-based) multi-criteria decision problems, 2) incorporating interdependencies 
among decision factors (instead of some independency assumptions e.g., in AHP), 3) subjectiveness 
of some of the criteria can make it challenging for a decision maker to directly derive a weighting for 
each criterion. The basic assumption of this study is that economic, environmental, social, and 
technical can be seen as subsystems of a larger, integrated performance management system, hence 
potentially making the ANP a suitable MCDM candidate. 

The method first involves pairwise comparisons to quantify the relative importance of criteria 
and alternatives, using Saaty’s fundamental scale as shown in Table 3 [91]. A supermatrix is 
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constructed to capture the interrelationships among the sustainability pillars, with a specific focus on 
the economic cluster. This matrix is then normalized and raised to successive powers until 
convergence, providing global priorities for the alternatives. For detailed explanations and 
mathematical formulations, readers are referred to Saaty’s works [72,91], and other foundational 
studies [92,93]. Here, through criteria inner-dependence (looping) feature of the ANP [87], the 
correlation between the selling price range, the mean NPV and CVaR-NPV criteria were considered. 

Table 3. Saaty’s fundamental scale [91]. 

Value  Definition  Explanation  
1 Equal importance/contribution/relation Two elements contribute equally 
3 Weak importance/contribution/relation Judgment slightly favors one activity over another  
5 Strong importance/contribution/relation Judgment strongly favors one activity over another 

7 Very strong importance/contribution/relation 
An activity is strongly favored, and its dominance demonstrated in 
practice  

9 
Extremely strong 
importance/contribution/relation 

The evidence favoring one activity over another is of the highest 
possible order of affirmation 

To capture the inner-dependence among economic criteria, pairwise comparisons were 
conducted using Saaty’s 1–9 fundamental scale to reflect the perceived influence each criterion has 
over the others within the economic cluster. Three local pairwise comparison matrices were 
developed where each criterion was treated as a controlling element in turn. For instance, when Mean 
NPV is the controlling factor, the Selling Price Range has a greater influence (entry value is 5) 
compared to CVaR-NPV (entry value as 1). Each local matrix was then normalized by column, and 
the resulting eigenvectors (average of each row in the normalized matrix) were computed, 
representing the relative influence of other economic criteria under the control of each criterion. These 
eigenvectors form the columns of the unweighted supermatrix for the economic cluster. 

By incorporating these numbers into the supermatrix structure, the model reflects the internal 
feedback (looping) between the economic sub-criteria, a key advantage of ANP over traditional AHP. 
This structured approach ensures that the model captures the dynamic interdependencies among 
economic indicators. 

2.3. Incorporating Qualitative (Expert Opinion-Based) Data Uncertainty Under ANP’s  
Outer-Dependence Feature 

Theoretically, an ANP network could be applicable compared to a hierarchy-based framework 
(e.g., AHP) in cases where the expert during qualitative data collection in evaluating a given 
alternative may have more/less reliable data/confidence compared to the other alternatives, under a 
same given criterion. Accrodngly, the decision maker may wish to assign a varying weight to this 
crierion for a more reliable decision making (note that in the standard MCDM methods, the weight 
of a given criterion is fixed regardless of alternatives, and it cannot vary with respect to one 
alternative to another; this is where ANP present a great advantage over many MCDM methods [45]). 

To better exemplify, assume we are comparing two alternatives for a SC strategy (A1 and A2) 
under two criteria (C1 and C2) with the goal of choosing the better strategy. Inspired by the work of 
Milani et al. [55], the expert prefers to use the additional information (e.g., past data 
availability/experience/reliability/etc.) they may have and define a higher weight for 𝐶ଵ  while 
scoring 𝐴ଵ (as more reliable alternatively, i.e., with more certain data), while considering a lower 
weight for 𝐶ଵ while scoring A2 (less reliable alternative). In the present decision-making case study, 
the level of confidence of the decision-maker (e.g., during qualitative data collection) is likely to be 
influenced by how the combination of pre-processing equipment contributes to the overall 
performance under specific criteria, such as product quality. For example, the combination of the 
half-screen hammer mill and round baler (Alternative C) demonstrates consistently high product 
quality for both equipment components, leading to a high overall score and greater confidence in its 
selection. In contrast, the full-screen hammer mill and round baler (Alternative A) presents a mix 
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of extremes, with high quality for the round baler but low quality for the full-screen hammer mill, 
making it difficult to determine whether the overall performance is medium or low. This variability 
introduces uncertainty and lowers confidence in evaluation of this alternative. Similarly, the half-
screen hammer mill and square baler (Alternative D) exhibits a trade-off, where the high product 
quality of the half-screen hammer mill is offset by the lower quality of the square baler, resulting in 
uncertainty about whether the overall score should be medium, low, or even different, ultimately 
depending on the decision-maker’s confidence level. By dynamically adjusting the weights based on 
system reliability and product quality qualitative criteria, the model allows decision-makers to 
prioritize specific criteria and balance trade-offs, ensuring decisions align with their confidence in the 
robustness and performance of the selected supply chain configuration. In this case, for an ANP 
model, the adjusted aggregated score for each alternative 𝑖 is as follows [93]. 𝑈௜௝ = 𝑤௝  × 𝑟௜௝ (1) 

Adjusted 𝑈௜௝ = 𝑤௝ × 𝜑௜௝  × 𝑟௜௝ (2) 
where 𝑈௜௝ is the weighted metrics for the alternatives 𝑖  and criteria 𝑗 based on the normalized 
pairwise metrics in ANP model (elements from supermatrix in ANP), 𝑟௜௝ is the average performance 
value 𝐴௜ under criteria 𝐶௝ ; 𝜑௜௝ defined as Unreliability Factor (UF) is the adjusting weight 
representing the extent to the unreliability of 𝑤௝ for 𝐴௜; 0 ≤ 𝜑௜௝ ≤ 1. Therefore, in this case study, 
ANP is used to not only respond to the interdependency of criteria but also to the unreliability in 
assessing some alternatives under specific criteria. Note that the 𝑤௝ depends on the alternative. In 
this case, lower weights (𝑤௝ × 𝜑௜௝) are assigned to alternatives with lower confidence. For example, 
Alternative A (full-screen hammer mill and round baler) and Alternative D (half-screen hammer mill 
and square baler) receive reduced weights (reflected by multiplying with UF) because their product 
quality varies, one equipment performs well while the other does not. Conversely, Alternative C 
(half-screen hammer mill and round baler), which demonstrates consistently high product quality, is 
assigned higher weights, reflecting greater confidence in its performance.This decision-making 
flexibility is a key advantage of the ANP approach, which is often unattainable using earlier MADM 
SC selection methods. Additionally, ANP can accommodate a large number of criteria and 
alternatives simultaneously, making it possibly suitable for complex networks and large scale. 

Incorporating the UF into the decision-making process introduces a practical and adaptive 
approach to account for uncertainties in data quality or external dependencies. By using UF to adjust 
the criteria weights for specific alternatives, the model can better reflect real-world decision-making 
conditions where not all criteria are equally reliable or equally relevant for every alternative. This 
method allows for a more flexible evaluation of alternatives, adapting to different degrees of 
reliability or uncertainty associated with the criteria. 

The rationale behind using UF to modify the criteria weights is that it allows decision-makers to 
systematically explore how increasing or decreasing uncertainty impacts the performance of 
alternatives. By scaling the importance of specific criteria according to their unreliability (i.e., using 
smaller UF values to represent greater uncertainty), the model becomes more realistic in handling 
external factors that might not always be predictable or stable. The UF can be derived from expert 
confidence levels, depending on the decision context. This integration enables decision-makers to 
prioritize robustness, rather than just optimality, especially in sustainable SC design where data 
uncertainty and system variability are inherent. 

After adjusting the criteria weights with the UF, these modified weights are integrated into the 
supermatrix to calculate the final results. The supermatrix in ANP captures the outerdependencies 
among criteria and alternatives, and by incorporating UF-adjusted weights, the model dynamically 
reflects how changes in uncertainty affect the relative importance of each criterion for each 
alternative. 

An interdependencies among the network elements under economic criteria is assumed in this 
case study. The focus of the study is on specific relationships within one cluster (e.g., economic 
impact), and limited data or expert judgment are available for other clusters. These interdependencies 
modify the priority weights assigned to each criterion in the network. Unlike the traditional AHP 
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(where criteria are assumed independent), ANP allows these relationships to modify the relative 
importance of each criterion dynamically. 

The evaluation issue was addressed using two different scenarios through Excel spreadsheet 
and a Python programming-based model. Scenario 1 allows interdependencies between variables 
and alternatives; to be represented in the next section. Scenario 2, on the other hand, assumes that the 
explanatory variables are independent, structuring the evaluation problem as a hierarchical model 
and solving it using AHP. 

2.3.1. Supply Chain Configuration Scenario 1 

In this scenario, it is assumed that the expert and decision maker have unequal preference over 
criteria and that their relative importance can change from one alternative to another depending on 
the specific unreliability factors raised in assessing those alternatives (refer to Equation (2)). For this 
case, we developed an ANP framework to evaluate the sustainable performance of SC as shown in 
Figure 3. 

 
Figure 3. Analytic Network Process (ANP) used for scenario 1. 

Focusing on one cluster, the interdependencies among the mean NPV, CVaR-NPV, and selling 
price range are determined using expert opinion and the TEA results. A higher Mean NPV indicates 
greater profitability, which generally reduces financial risk (CVaR) and allows for more flexible 
pricing and larger selling price range. CVaR-NPV measures the risk of extreme losses; higher CVaR 
suggests greater uncertainty, which can lower NPV as future cash flows are discounted more heavily. 
This risk could also limit the Selling Price Range, leading to more conservative pricing to avoid losses. 
Finally, the selling price range impacts both mean NPV and CVaR-NPV. A wider range or higher 
prices improve revenue and NPV, while a narrower or lower range increases financial risk, raising 
CVaR. In summary, a high NPV reduces risk (CVaR-NPV) and results in higher pricing flexibility 
and range, while higher prices boost NPV and affect risk. 
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2.3.1. Supply Chain Configuration Scenario 2 

In this scenario, it is assumed that the decision-maker has no preference for one criterion over 
another one and no additional information on each alternative is present. Hence, the question of e.g., 
comparing 𝐶ଵ to 𝐶ଶ with respect to 𝐴ଵ yields a similar value for all alternatives (refer to Figure 4). 

 

Figure 4. The Analytic Hierarchy Process (AHP) used for scenario 2. 

2.3. Nonlinear programming model used for sensitivity analysis 

After ranking alternatives using ANP method and determining the rank of alternatives, the 
proposed nonlinear mathematical model can be used to assess the extent to which the weight of each 
criterion has to change so as to make an alternative the top-ranked one by ANP. The proposed 
approach is inspired by a similar analysis for AHP, originally pioneered by Sowlati and Asadi [56] 
for decision-making problems in management. Such results can provide valuable insights into the 
robustness of the rankings by a given MCDM method. The objective function and required constraint 
for performing the sensitivity analysis are shown in Equations (8)–(14). Table 4 lists the sets, 
parameters, and variables used in the model. 

Table 4. The sets, parameters, and variables used in the mathematical model. 

Sets Description 𝑖 Set of alternatives 𝑗 Set of criteria types 
Parameters Description  𝑤௜௝ ,𝑤௝ Weights of criteria 𝑗 under alternative 𝑖 or weight of criteria 𝑗 independent from alternative type 

(for ANP and AHP model respectively) 𝑀 Number of criteria or attributes used for the evaluation (e.g., sub-criteria of economic, 
environmental, social, and technical factors) 𝑁 Number of alternatives being evaluated (e.g., different supply chain configurations) 
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𝑘 Power of convergence of super matrix to build limit matrix in ANP 
Variables Description 𝑑௝ି ,𝑑௜௝ି  Negative deviations from the importance of criteria 𝑗 under alternative 𝑖; or deviations of criteria 𝑗 𝑑௝ା,𝑑௜௝ା  Positive deviations from the importance of criteria 𝑗 under alternative 𝑖; or deviations of criteria 𝑗 

Objective function: 

𝑀𝑖𝑛 ሺ𝑍ଵሻ = ෍෍(𝑑௜௝ାே
௜ୀଵ + 𝑑௜௝ିெ

௝ୀଵ )  (3) 

Constraints: 𝐿𝑖𝑚𝑖𝑡 𝑀𝑎𝑡𝑟𝑖𝑥௔௝                             ∀𝑖,∀𝑗       > 𝐿𝑖𝑚𝑖𝑡 𝑀𝑎𝑡𝑟𝑖𝑥௜௝                          i ≠ a (4)

෍൫𝑤௜௝ + 𝑑௜௝ା − 𝑑௜௝ି൯ = 1                                      ∀𝑖ெ
௝ୀଵ  (5)

𝑤௜௝ + 𝑑௜௝ା − 𝑑௜௝ି ≤ 1                                                   ∀𝑖, 𝑗 (6)𝑤௜௝ + 𝑑௜௝ା − 𝑑௜௝ି ≥ 0                                                                 ∀𝑖, 𝑗 (7)

෍𝑑௜௝ା − 𝑑௜௝ି = 0                                                                         ∀𝑖ெ
௝ୀଵ  (8)

𝑑௜௝ା ,𝑑௜௝ି  ≥ 0                                                                                   ∀ 𝑖, 𝑗 (9)

Objective function (3) minimizes the sum of deviations of the new weights from the existing 
weights of criteria. Constraint (4) guarantees that the new global weight of alternative 𝑎  under 
criterion 𝑗 in the limit matrix (𝐿𝑖𝑚𝑖𝑡 𝑀𝑎𝑡𝑟𝑖𝑥௜௔) must be greater than the [94] osite weight of any 
other alternative 𝑧 (𝐿𝑖𝑚𝑖𝑡 𝑀𝑎𝑡𝑟𝑖𝑥௭௝) under the same criterion 𝑗. As the final step of the ANP model, 
the supermatrix is raised to powers through multiplication until it converges into a limit matrix 
( 𝐿𝑖𝑚𝑖𝑡 𝑀𝑎𝑡𝑟𝑖𝑥௜௝ = ሾ𝑆𝑢𝑝𝑒𝑟𝑚𝑎𝑡𝑟𝑖𝑥ሿ௞) . Convergence indicates that the values in each row have 
stabilized, reflecting the long-term influence priorities [62]. Constraint (5) ensures that the summation 
of new weight of all criteria is equal to 1. Constraint (6) and (7) ensure that each new criteria weight 
under the specific alternative must be within a range of 0 and 1. Constraint (8) specifies that under 
each alternative, any increase in the weight of one criterion must be offset by a corresponding 
decrease in the weight of another criterion to maintain the overall balance. Lastly, the non-negativity 
constraint for criteria weights changes is also stated in constraint (9). 

The specified NLP formulation includes 2 × 𝑀 × 𝑁 variables and approximately 2 × 𝑀 × 𝑁 +(2 × 𝑁 − 1)  constraints excluding variable bounds. To solve the mathematical model, Python 
programming was employed, and the corresponding code is publicly available [62] he author’s 
GitHub repository [94]. The open-source Python script used for the robustness analysis is freely 
accessible in the author’s GitHub repository and can be applied to replicate the procedure with any 
generic dataset, ensuring transparency and reproducibility. Due to the non-linear nature of the 
model, the “IPOPT” solver was used to handle its non-linearity. 

The percentage variation in the weight of each criterion (∆CW) required to make the second 
alternative a top-ranked one can be calculated using Equation (10). 
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∆W = 𝑑௜௝ା − 𝑑௜௝ି𝑤௜௝ × 100                                                ∀𝑖, 𝑗 (10)

To compare the robustness of ANP with AHP, the Linear Programming (LP) mathematical 
optimization model shown in Eqs. (11)-(17), inspired by Sowlati and Asadi [95], is utilized 
(specifically for AHP) and developed using Python programming [94,96]. In this model, due to the 
linear nature of the model, the “GLPK (GNU Linear Programming Kit)” solver can be used, which is 
an open-source solver designed for linear programming problems. 𝑀𝑖𝑛 (𝑍ଶ) = ෍(𝑑௝ା + 𝑑௝ି )ெ

௝ୀଵ  (11)

෍𝐴𝑊௔௝(𝑊௝ெ
௝ୀଵ + 𝑑௝ା − 𝑑௝ି ) > ෍𝐴𝑊௜௝(𝑊௝ெ

௝ୀଵ + 𝑑௝ା − 𝑑௝ି )                                                        ∀ 

                                                                                                                                                                   i ≠ a𝑖 (12)

෍(𝑊௝ெ
௝ୀଵ + 𝑑௝ା − 𝑑௝ି ) = 1                                                                                                   ∀𝑗    (13)

𝑊௝ + 𝑑௝ା − 𝑑௝ି ≤ 1                                                                                   ∀𝑗  (14)𝑊௝ + 𝑑௝ା − 𝑑௝ି ≥ 0                                                                                      ∀𝑗 (15)

෍(ெ
௝ୀଵ 𝑑௝ା − 𝑑௝ି ) = 0 (16)

𝑑௝ା,𝑑௝ି ≥                                                                          ∀𝑗    (17)

where 𝐴𝑊௔௝ is the weight of alternative 𝑎 under criteria 𝑗. 
Similar to the ANP-based sensitivity analysis model, the objective is to minimize changes in criteria 

weights (as per constraint (11)), while ensuring that the second alternative ranks first (constraint (12)), the 
total weight distribution remains balanced (constraint (13), and individual weights are non-negative and 
do not exceed 1, maintaining logical consistency and preventing any disproportionate influence 
(constraints (14)–(17)). Also, the percentage variation in the weight of each criterion (∆CW) required to 
make an alternative a top-ranked one can be calculated using Equation (18). 

∆CW = 𝑑௝ା − 𝑑௝ି𝑤௝ × 100                                                                                       ∀𝑗   (18)

3. Results and Discussion 

As discussed in Section 2, ANP is an extension of the AHP that incorporates feedback loops 
(inner dependence) and interactions (outer dependence) between decision elements. Following the 
screening of alternatives and the selection of relevant criteria as discussed previously in Table 2, a 
normalized decision matrix was created from raw data in Table 2 by converting all cost-related 
criteria into benefit-related criteria. Following, each row is normalized by dividing by the sum of the 
values. The resulting normalized values are presented in Table 5. Subsequently, pairwise 
comparisons between the alternatives for each criterion were calculated directly from the normalized 
decision matrix by determining the ratio of values for each pair of alternatives based on the 
corresponding criterion. 
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Table 5. The normalized decision matrix (converted to benefit type). 

Criteria  Alternatives  Full-Round Full-Square Half-Round Half-Square 
   Index A B C D 
Selling price range  C1 0.2359 0.2834 0.2193 0.2614 
Mean Net Present Value (NPV) C2 0.2589 0.2266 0.2741 0.2401 
Conditional Value at Risk- NPV C3 0.2348 0.2699 0.2332 0.2621 
Carcinogenic C4 0.2056 0.3189 0.1860 0.2894 
Non-Carcinogenic  C5 0.2039 0.3154 0.1748 0.3059 
Eutrophication  C6 0.2202 0.2956 0.2053 0.2789 
Ecotoxicity  C7 0.2125 0.3119 0.1915 0.2841 
Job quantity  C8 0.3824 0.0882 0.4118 0.1176 
System reliability C9 0.4375 0.0625 0.3125 0.1875 
Product quality C10 0.3125 0.0625 0.4375 0.1875 
Technology readiness level C11 0.1905 0.2857 0.1905 0.3333 

For the pairwise comparisons including interdependencies among economic sub-criteria, Table 
6 illustrates one such case. The weighted priority (e-Vector) is calculated through the pairwise 
comparisons. By adding a feedback relationship between alternatives and criteria, a more complex 
decision situation should be solved. In the case of assuming scenario 1, the decision maker has the 
preference of one criterion over another one (e.g., comparing 𝐶1  to 𝐶2  with respect to 𝐴2  is 
calculated). Under the same conditions applied to all pairwise comparisons in the feedback analysis, 
a weighted supermatrix is generated as shown in Table 7, where the sum of each column is equal to 
1. 

Table 6. Example of the normalized pair-wise comparison matrix for enablers under mean NPV. 

Mean Net Present Value (NPV) Selling price range CVaR-NPV e-vector 
Selling price range  0.888 0.875 0.881 
Conditional Value at Risk (CVaR)-NPV 0.111 0.125 0.118 

In this weighted matrix, the normalized weights for each criterion are located in the top-right 
section. The unreliability factor for the product quality and system reliability under specified 
alternatives is assumed to be 0.5 (as per Equation (2)). The normalized data from Table 5 appears in 
the bottom-left section of Table 7. The zero values in Table 7 indicate no interdependence was defined 
within either the criteria cluster or the alternatives cluster. Next, the limit matrix is presented in Error! 
Reference source not found., where the final scores and rankings of the candidate materials are 
outlined. The supermatrix reaches convergence at the power of 5. Each row of the limit matrix 
represents the global score for the alternatives and criteria. The normalized criteria and alternative 
scores are then calculated as shown in Figure 5a and Figure 6.
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Table 7. (Weighted) supermatrix for the network of Figure 3 with feedback. 

Definition  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔 𝑪𝟕 𝑪𝟖 𝑪𝟗 𝑪𝟏𝟎 𝑪𝟏𝟏 A B C D 
Selling price range  𝐶ଵ 0 0.441 0.441 0 0 0 0 0 0 0 0 0.099 0.095 0.095 0.099 
Mean NPV 𝐶ଶ 0.083 0 0.059 0 0 0 0 0 0 0 0 0.178 0.171 0.171 0.178 
CVaR-NPV 𝐶ଷ 0.416 0.059 0 0 0 0 0 0 0 0 0 0.059 0.057 0.057 0.059 
Carcinogenic 𝐶ସ 0 0 0 0 0 0 0 0 0 0 0 0.139 0.133 0.133 0.139 
Non-Carcinogenic  𝐶ହ 0 0 0 0 0 0 0 0 0 0 0 0.059 0.057 0.057 0.059 
Eutrophication  𝐶଺ 0 0 0 0 0 0 0 0 0 0 0 0.020 0.019 0.019 0.020 
Ecotoxicity  𝐶଻ 0 0 0 0 0 0 0 0 0 0 0 0.099 0.095 0.095 0.099 
Job quantity  𝐶଼ 0 0 0 0 0 0 0 0 0 0 0 0.099 0.095 0.095 0.099 
System reliability 𝐶ଽ 0 0 0 0 0 0 0 0 0 0 0 0.099 0.048 0.048 0.099 
Product quality 𝐶ଵ଴ 0 0 0 0 0 0 0 0 0 0 0 0.089 0.171 0.171 0.089 
TRL 𝐶ଵଵ 0 0 0 0 0 0 0 0 0 0 0 0.059 0.057 0.057 0.059 
Full-round A 0.118 0.129 0.117 0.206 0.204 0.220 0.212 0.382 0.438 0.313 0.190 0 0 0 0 
Full-square B 0.142 0.113 0.135 0.319 0.315 0.296 0.312 0.088 0.063 0.063 0.286 0 0 0 0 
Half-round C  0.110 0.137 0.117 0.186 0.175 0.205 0.192 0.412 0.313 0.438 0.190 0 0 0 0 
Half-square  D  0.131 0.120 0.131 0.289 0.306 0.279 0.284 0.118 0.188 0.188 0.333 0 0 0 0 
NPV: Net Present Value, CVaR: Conditional Value at Risk, TRL: Technology Readiness Level. 

Table 8. Limit matrix obtained for the network of Figure 3 with feedback. 

Definition  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔 𝑪𝟕 𝑪𝟖 𝑪𝟗 𝑪𝟏𝟎 𝑪𝟏𝟏 A B C D 
Selling price range  𝐶ଵ 0.116 0.116 0.116 0.117 0.117 0.117 0.117 0.117 0.117 0.117 0.117 0.115 0.115 0.115 0.115 
Mean NPV 𝐶ଶ 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.094 0.094 0.094 0.094 
CVaR-NPV 𝐶ଷ 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.086 0.086 0.086 0.086 
Carcinogenic 𝐶ସ 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.065 0.065 0.065 0.065 
Non-Carcinogenic  𝐶ହ 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.028 0.028 0.028 0.028 
Eutrophication  𝐶଺ 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.009 0.009 0.009 0.009 
Ecotoxicity  𝐶଻ 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.047 0.047 0.047 0.047 
Job quantity  𝐶଼ 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.047 0.047 0.047 0.047 
System reliability 𝐶ଽ 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.035 0.036 0.036 0.035 
Product quality 𝐶ଵ଴ 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.062 0.062 0.062 0.062 
TRL 𝐶ଵଵ 0.024 0.024 0.024 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.028 0.028 0.028 0.028 
Full-round A 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.102 0.102 0.102 0.102 
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Full-square B 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.086 0.086 0.086 0.086 
Half-round C  0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.124 0.125 0.124 0.124 
Half-square  D  0.117 0.117 0.117 0.117 0.117 0.117 0.117 0.117 0.117 0.117 0.117 0.094 0.094 0.094 0.094 
NPV: Net Present Value, CVaR: Conditional Value at Risk, TRL: Technology Readiness Level. 

 

(a) 

 

(b) 

Figure 5. Criteria weights using pairwise comparisons; a) ANP (interdependencies), b) AHP model (without interdependencies). 
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Figure 6. The alternatives ranking of the SC configurations in scenario 1 (with inner/outer dependence).
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As illustrated in Figure 5a, the ANP analysis identified the top four most important criteria for 
sustainable SC evaluation as follows: Selling Price Range in the economic cluster, Carcinogenic 
Impact (a human health risk) within the environmental category, Product Quality from the technical 
aspect of sustainability assessment, and Job Quantity in the social cluster. When comparing these 
rankings to the local weights produced using AHP model (as shown in Figure 5b, the only notable 
difference is Mean NPV, which ranked as the top criterion in the economic cluster when 
interdependencies were disregarded. This emphasizes the crucial role of interdependencies in ANP 
for accurately capturing the relationships between criteria, which are often overlooked in simpler 
models like AHP. Additionally, in the global weights produced by ANP, Selling Price range and 
CVaR-NPV rank higher than that of AHP, likely due to the strong interdependencies between 
economic metrics and other sustainability dimensions, which ANP is positioned to capture. 
Furthermore, as shown in Figure 6, the half-round alternative (C) has achieved the highest rank, 
primarily driven by its superior Mean NPV ($65.28M) and product quality (ranked high), which hold 
the greatest weights in the local supermatrix. Additionally, this alternative offers the most substantial 
Job quantities (14 jobs), further underscoring its social dimension. These factors underscore the 
economic and technical strengths of this alternative, contributing significantly to its overall rankings. 
However, the environmental impacts of this alternative is worse compare to that of other alternative, 
especially due to lower efficiency and capacity of equipment affecting the energy and resource 
consumption as supported by previous work. The high negative environmental impacts are mainly 
due to the fertilizer and diesel use in agricultural stage of production [43]. Environmental emissions 
of productions can be further reduced by replacing the nitrogen fertilizer with compost as analyzed 
in the previous work by Akbarian-Saravi et al. [61]. 

The full-round alternative is positioned closely in second place, achieving a score of 0.267. 
Although its Mean NPV ($61.65M) is slightly lower than half-round, it still ranks highly. This 
alternative also performs well in product quality (medium) and has strong system reliability (high). 
Despite having more moderate environmental impacts and Job Quantities (13 jobs), its moderate 
performance across multiple categories leads to a competitive ranking just behind the half-round. 
With a score of 0.221, the full-square alternative ranks lowest, primarily due to its poor performance 
in key areas such as product quality and job quantities. Although it has the lowest environmental 
impacts, including Eutrophication (26.05 kg N eq) and Carcinogenic Impact (0.00049 CTUh), its 
weaker economic performance, especially Mean NPV ($53.96M) and other technical disadvantages 
lead to this alternative’s lower ranking. The difference between the top two alternatives and the 
fourth-ranked full-square is more significant, reflecting a reduction in performance, particularly in 
technical and social dimensions. 

The closeness in scores between the half-round and full-round alternatives indicates that small 
changes in criteria weights or performance can significantly affect the rankings. This sensitivity 
analysis underscores the value of using an optimization model to evaluate the minimal adjustments 
needed to alter the rankings. Furthermore, as shown in Table 8, athough both the AHP and ANP 
methods result in the same ranking of alternatives, their final scores differ, which has important 
implications for decision-making. For example, Alternative C has the highest global weight (0.2797 
and 0.269) under AHP and ANP methods, respectively, but achieves this differently due to the criteria 
interdependencies considered in ANP. Slightly lower global scores in ANP compared to AHP is 
because of the interdependencies among economic criteria such as selling price range, mean NPV, 
and CVaR-NPV. ANP, by accounting for interdependencies between economic criteria, can produce 
more nuanced results that may better reflect the complex relationships between different factors. 
Accordingly, by applying the optimization model,  the robustness of these rankings is tested. By 
comparing how sensitive the AHP and ANP models are to such changes, the stability and reliability 
of rankings are assessed. 
  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 June 2025 doi:10.20944/preprints202506.2248.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2248.v1
http://creativecommons.org/licenses/by/4.0/


 21 of 33 

 

Table 8. Relative and global weights/scores in scenario 2 (without inner/outer dependence). 

Criteria 
and Alts. 

𝑪𝟏  𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔  𝑪𝟕 𝑪𝟖 𝑪𝟗 𝑪𝟏𝟎 𝑪𝟏𝟏 Global weights Ranking 

Fixed Weights 0.0909 0.1636 0.0545 0.1273 0.0545 0.0182 0.0909 0.0909 0.0909 0.1636 0.0545    
Alt. A 0.2359 0.1847 0.2348 0.2056 0.2039 0.2202 0.2125 0.3824 0.4375 0.3125 0.1905 0.2733 2 
Alt. B 0.2834 0.1888 0.2699 0.3189 0.3154 0.2956 0.3119 0.0882 0.0625 0.0625 0.2857 0.2086 4 
Alt. C  0.2193 0.2689 0.2332 0.1860 0.1748 0.2053 0.1915 0.4118 0.4375 0.4375 0.1905 0.2797 1 
Alt. D  0.2614 0.3576 0.2621 0.2894 0.3059 0.2789 0.2841 0.1176 0.1875 0.1875 0.3333 0.2384 3 

Presenting decision-making problems through performance clusters, as shown in Figure 7, is 
particularly useful for large-scale SC selection processes. This approach facilitates assessing 
alternatives based on specific clusters, such as economic, environmental, social, and technical 
properties. By adjusting the weight of a particular cluster to one while setting the others to zero, the 
decision-maker can repeat the same model. For instance, to evaluate alternatives merely on economic 
performance, the weight for the economic cluster is set to one and others to zero, where Alternative 
B performs best. Under environmental considerations, Alternative A is selected due to its superior 
environmental performance. In another scenario, equal weights may be assigned to all clusters. As 
presented in Figure 7, the rankings demonstrate the model’s adaptability across various scenarios. 
While the results shift depending on the importance of different criteria clusters, Alternative (C) 
consistently ranks as a top alternative, particularly when social and technical factors are given 
priority. 

 

Figure 7. Sensitivity analysis results of decision criteria clusters importance (economic, environmental, social, 
and technical) for alternatives ranking in scenario 1. 

As shown in Figure 8, the sensitivity of ranking results to UF in ANP has been examined. It is 
particularly noteworthy that in most cases, the rankings remain consistent across different UF values, 
demonstrating the robustness of the model. However, as indicated in the magnified section of the 
graph, at a UF value of 0.1, where uncertainty is highest, the ranking between Alternatives A and C 
changes. In this case, Alternative A overtakes Alternative C, highlighting how greater uncertainty 
can lead to a shift in rankings. This shift shows that when uncertainty is significant, the model 
becomes sensitive to the slightest variations in the criteria’s influence, resulting in ranking changes 
that are closer to real-world unpredictability. For the final analysis, a UF of 0.5 was selected to 
represent a balanced level of uncertainty, ensuring that the results are reliable while still accounting 
for realistic uncertainty. 
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Figure 8. Sensitivity analysis of the Unreliability Factor (UF) on alternatives scores, focusing on qualitative 
factors such as product quality and system reliability. 

Sensitivity Analysis for Rank Reversals 

As explained in Section 2.4, in order to test the robustness of the MCDM model (namely, here 
finding solution’s resistance limit against changes in criteria weights and causing rank reversals), an 
optimization-based programming model is developed on the ANP and AHP. The new criteria 
weights and the corresponding percentage changes have been calculated and are detailed based on 
the model solution in Table 9 and Figure 9. 

Table 9. Sensitivity analysis of criteria weight changes required to make an alternative the top-ranked option. 

Criteria ANP Model AHP model 
 Original New ∆W (%) Original New ∆W(%) 
Selling Price Range  0.095 0.095 0 0.090 0.090 0 
Mean NPV  0.171 0.171 0 0.163 0.163 0 
CVaR-NPV 0.057 0.057 0 0.054 0.054 0 
Carcinogenic  0.133 0.133 0 0.127 0.127 0 
Non-carcinogenic  0.057 0.057 0 0.054 0.054 0 
Eutrophication  0.019 0.019 0 0.018 0.018 0 
Ecotoxicity  0.095 0.095 0 0.090 0.090 0 
Job quantities 0.095 0.095 0 0.090 0.090 0 
System reliability 0.048 0.096 +100 0.090 0.124 +37.4 
Product quality 0.171 0.123 -30 0.163 0.144 -11.61 
Technology Readiness Level 0.057 0.057 0 0.054 0.037 -31.16 
Alternatives scores 
A (Full-round) 0.273 0.267 

 

0.273 0.278 

 
B (Full-square) 0.208 0.222 0.208 0.204 
C (Half-round) 0.279 0.266 0.279 0.278 
D (Half-square) 0.238 0.243 0.238 0.235 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 June 2025 doi:10.20944/preprints202506.2248.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2248.v1
http://creativecommons.org/licenses/by/4.0/


 23 of 33 

 

 

(a) 

 

(b) 

Figure 9. Example of the sensitivity analysis results, identifying the required criteria weight changes for rank 
several in (a) the ANP model and (b) the AHP model; under alternative C. 

As shown in Figure 9(a), the sensitivity analysis reveals that in the ANP model, significant 
weight adjustments are required for Alternative (A) (originally ranked second) to become the top-
ranked option. Specifically, the weight of “system reliability” criterion would need to increase by 
100%, while the weight of “product quality” would need to decrease by 30%. These recalibrated 
weights and their impacts on alternative scores are presented in detail in Table 9. This implies that if 
“system reliability” is prioritized over “technology readiness level”, Alternative (A) (full-round) 
could surpass the other alternatives, given its strength in that criterion. 
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In contrast, in the AHP model, as indicated in Figure 9(b), smaller adjustments are necessary for 
Alternative (A) to rank first. A 37% increase in the weight of “system reliability”, along with decreases 
of 11% and 31% in “product quality” and “technology readiness level”, respectively, would suffice 
to change the rankings. AHP assumes no interdependencies between criteria, which simplifies the 
problem and allows for smaller changes to criteria weights to affect the rankings. 

The analysis highlights that the ANP model demands more substantial changes in criteria 
weights to alter the rankings, indicating a higher level of stability and resilience to variations in input 
parameters compared to AHP. This robustness makes ANP a preferred choice in decision-making 
processes where stability is critical. Additionally, the developed non-linear programming model for 
ANP approach, solved using the IPOPT solver in Python, offers the capability to estimate the 
minimum changes required to alter alternative rankings. 

This sensitivity analysis reinforces that while AHP and ANP may yield similar rankings under 
stable conditions, ANP demonstrates greater resilience when facing changes in criteria or 
weightings. This makes it a more robust choice for complex decision-making processes like 
sustainability assessments, where criteria interdependencies and external factors can play a crucial 
role. The optimization model further enhances the decision-making process by quantifying the 
minimum changes needed to shift rankings, confirming the reliability and adaptability of ANP in 
dynamic scenarios. 

While practitioners might choose simpler model like AHP, which are easier to understand and 
provide greater transparency, incorporating sensitivity analysis can enhance the evaluation of 
solution robustness. By accounting for the effects of complexity, sensitivity analysis provides deeper 
insights into how changes in inputs affect outcomes, ensuring that the solutions remain resilient 
under varying conditions. 

4. Conclusions 

In this study, a comprehensive ANP-based MCDM framework was developed for evaluating 
the sustainable SC selection for a hemp-based biocomposite production. The framework accounted 
for economic, environmental, social, and technical dimensions while explicitly addressing the 
dependencies decision elements, particularly within the economic cluster an aspect often overlooked 
in traditional MCDM methods such as AHP. The dependencies within the economic cluster includes 
the relationships between criteria such as selling price range, mean NPV and CVaR-NPV. For 
example, selling price directly influences both mean NPV and CVaR-NPV, reflecting its role in 
determining both the profitability (NPV) and the financial risk (CVaR), underscoring how adverse 
fluctuations in selling price can significantly impact average NPV and financial risk under worst-case 
scenarios. The analysis of four biomass pre-processing alternatives identified the half-round option 
as the top choice, primarily due to its strong economic performance, notably in Mean NPV and 
product quality. Its positive contributions to job creation further strengthened its ranking in the social 
dimension. The full-round option closely followed, performing well across multiple dimensions, 
including system reliability and product quality. Conversely, the full-square alternative ranked 
lowest due to its weaker performance in technical and social criteria, despite some environmental 
benefits. 

In addressing uncertainties in qualitative data in criteria weights under specific alternatives, the 
Unreliability Factor (UF) was introduced. For example, lower weights were assigned to alternatives 
with lower confidence in their evaluation by the decision maker, such as Alternative A (full-screen 
hammer mill and round baler) and Alternative D (half-screen hammer mill and square baler), due to 
inconsistent product quality within the respective baler or hammer mill equipment. While rankings 
remained stable across most UF values, a higher uncertainty (e.g., UF = 0.1) caused significant shifts, 
particularly between the top two alternatives ranking. Under increased uncertainty, the full-round 
alternative overtook the half-round, illustrating how uncertainty can impact outcomes. This 
underscores the importance of incorporating uncertainty in decision models, especially in qualitative 
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factors assessment. The final analysis used a balanced UF of 0.5, providing both reliability and 
realism. 

To evaluate the robustness of ANP against AHP due to criterial weights changes, a Non-Linear 
Programming (NLP) model was developed as part of ANP sensitivity analysis, alongside a Linear 
Programming (LP) model for AHP. The results demonstrated that ANP required significant changes 
in criteria weights to alter/reverse the rankings, indicating its stability in decision-making with 
variable inputs. Conversely, AHP, while simpler, required smaller weight adjustments to affect 
rankings, suggesting that it may be less effective in handling complex interdependencies. This 
robustness makes ANP particularly valuable for industries facing dynamic sustainability challenges, 
where decision stability is essential despite fluctuating criteria weights or external conditions. 

In conclusion, the proposed ANP-based framework, combined with optimization-based 
sensitivity analysis, provided a robust tool for decision-makers aiming to ensure the sustainable 
development of biocomposite SCs. By incorporating dependencies and conducting sensitivity 
analysis, this framework could offer a more reliable and adaptable decision-making process, ensuring 
that selected alternatives align with both economic viability and sustainability goals. Future research 
is needed to explore and test the extension of this model to other biocomposite industries and SCs, 
as well as integrate dynamic (time-dependent) criteria to further enhance its applicability in rapidly 
evolving environments. Additionally, examining the interdependencies among all criteria and sub-
criteria through the ANP can provide a deeper, more comprehensive understanding of the 
relationships between these various elements. For future studies, integrating simulation models into 
supply chain data gathering is also recommended to improve the accuracy and precision of 
sustainability measurements, addressing a gap in previous research, as noted by Perez et al. [97]. 
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Appendix A. Economic Factor Quantification—Base Data 

Table A1. Input parameters assumed for the four SC alternatives focusing on biomass processing and collection 
equipment. 

Parameters Baler Types Hammer Mill Types References  
  Square Baler Round baler Full-Screen  Half-screen   
Purchase cost $19000 $7000 $6700 $4500 [84] 
Diesel fuel/Electricity 
consumption  

3 liter/tonnes 20 liter/tonnes 160 kWh/tonnes 900 kWh/tonnes [65,98] 

Capacity 37.5 tonnes/hr 7.2 tonnes/hr 3.5 tonnes/hr 1.5 tonnes/hr [64] 
Efficiency  63% 50% 90% 70% [64] 
Maintenance cost  10% of purchase price 2% of purchase price 10% of purchase price 20% of purchase price [84] 
# of operators  2 12 1 2 Calculated 
# of equipment pieces 1 3 1 1 Calculated  

Shifts 1 2 1 2 

personal 
communication with 
industry expert [June, 
2021] 

Speed  4.2 km/hour 3.5 km/hour 1200 rpm  1200 rpm  [84] 
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Table A2. Capital investment costs (source: personal communication with industry expert [June, 2021]). 

Parameter Value (CAD$) 
Land for farming  110,000,000 
Land for building  110,000 
Heating and cooling equipment installation  36,000,000 
Reactors’ purchase cost 80,000 
Tank purchase cost 3,500,000 
Filter press purchase cost 4,000,000 
Compounder extruder twin  500,000 
Trucks  120,000 
Loaders 220,000 
Contractor 32,000,000 
Design engineering  1,000,000  
Unforeseen costs  5% of capital costs  
Total capital costs 211,398,256 
Funding (incentivesprovided by Federal and Provincial governments  350,000 
Total capital costs after incentives 211,048,256 

Table A3. Data for calculating Operation and Maintenance (O&M) costs within each SC stage. 

Parameter value References 

Feedstock cost (CAD$/ODT) 200 Personal communication with industry 
expert [June, 2021] 

Electricity cost including taxes and customer fee price 
(CAD$/KWh) 5 [99] 

Diesel fuel price (CAD$/liter) 1.56 [99] 

Staff salary (operation) (CAD$/hour) (24/7)  30 
Personal communication with industry 

expert [June, 2021] 

Staff Salary (professional engineer) (CAD$/hour) 60 Personal communication with industry 
expert [June, 2021] 

Annual maintenance rate for equipment and building 
2% of total 
investment  

[100] 

Table A4. Results of economic assessment. 

Economic Metrics 
Alternatives 𝐀: Full-Round 𝐁: Full-Square 𝐂: Half-Round D: Half-Square 

Net Present Value $123M $108M $130M $114M 
Annual Return on 
Investment (RoI) 

145.1% 141.1% 149.7% 145.7% 

Payback Period  15 years 14 years 15 years 14 years 
Internal Rate of 
Return (IRR) 15.98% 15.02% 16.41% 15.42% 

Annual Worth (AW)  $14.5M $12.7M $15.3M $13.45M 
Selling Price (Profit 
margin 50%)  $3,687 $3,069  $3,964  $3,326 
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Appendix B. Environmental Factor Quantification—Base Data 

Table A5. LCA Inventory inputs to produce 1 tonne of hemp-based biopolymer. 

Flow Unit  Value  Reference  
Agricultural and farming   
Hemp yield  tonne/hectare  2.2 [101] 
Diesel consumption (tractor use for fertilization)  Hour/hectare  1.8 [102] 
Diesel consumption (tractor use for fertilization) Kg/hour  8.78 [102] 
Diesel use for cutting and harvesting  Kg/hour  48.24 [102] 
Diesel use for cutting and harvesting Hours/hectare 4 [102] 
Seedling rate  Kg/hectare  34 [101] 
Fertilizer (𝐾ଶ𝑂, applied as Potassium Oxide) Kg/hectare 67 [101,103] 
Fertilizer (N, Nitrogen fertilization) Kg/hectare 100 [101,103] 
Fertilizer (PଶOହ,  phosphate rate) Kg/hectare  50 [101–103] 
Water for germination  m3/hectare  120 [102] 
CO2 Uptake  tonne/hectare  - 0.67 [102] 
Size reduction   
Electricity use for hammer mill GJ/tonne 0.58 [104] 
Electricity use for shredder GJ/tonne 0.047 [104] 
Biopolymer conversion (1 tonne)  
Enzymes gram/liter biomass 3 [105] 
N2 (Nitrogen) tonne 0.009 [106] 
Limestone  tonne 0.03 [106] 
Water  Liter  16000 [106] 
Extruder usage  Kg/hour 20 Industry expert  
Electricity usage in extruder  kWh/kg 0.27 Industry expert  
Transportation and loading   
Fuel use in loaders  Liter/tonne 10.9 [107] 
Three-axile semi-trailer Liter/km 0.68 [107] 

Table A6. Environmental burdens per impact category for all four alternatives evaluated (data reported per 
functional unit: 1 tonne of biocomposites pellet). 

Impact Category  Unit  Alt. A: 
Full-Round 

Alt. B: 
Full-Square 

Alt. C: 
Half-Round 

Alt. D:  
Half-Square 

Global Warming Potential (GWP) Kg COଶ eq 9,377 6,521 10,985 7,514 
Acidification Potential (AP) kg SOଶeq 73.09 51.40 82.99 57.57 
Ozone Depletion Potential (ODP) kg CFC-11 eq 0.001 0.0007 0.0013 0.0008 
Eutrophication Potential (EuP) kg N eq 34.98 26.05 37.51 27.61 
Ecotoxicity Potential (EP) CTUe 78,763.91 53,656.53 87,393.42 58,914.38 
Carcinogenic Potential (CP) CTUh 0.0007 0.0004 0.0008 0.0005 
Non-carcinogenic Potential (NCP) CTUh 0.010 0.009 0.017 0.0107 
Fossil Fuel Depletion Potential (FFDP) MJ surplus 12,258 8,271.25 15,175 10,085 
Smog Potential (SP) kg Oଷ eq 1,071.83 693.44 1,201 771 
Respiratory Effects Potential (REP) kg PM2.5 eq 13.79 9.49 15.13 10.29 
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