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Abstract. Given that Machine Learning algorithms are data-driven, the way datasets are collected
significantly impacts their performance. Data must be gathered methodically to avoid missing values
or class imbalance, but sometimes the inherent nature of the data tends to lead to such imbalances.
An unbalanced dataset can lead to biased models whose predictions are influenced by the majority
class. To avoid this problem, balancing strategies can be used to equalize the instances of each class.
In this paper, we propose a methodology to evaluate which balancing strategies, depending on the
dataset, yield the best results. We leverage Self-Organizing Maps, an unsupervised neural network
model, to identify which strategy generates the most suitable balanced synthetic data. By considering
their topological structure, we also propose a metric that uses the trained map to measure changes
between the original dataset and the same dataset after applying the different strategies.

Keywords: unbalanced datasets; balancing strategies; artificial intelligence; machine learning; self-
organizing map

1. Introduction

The performance of Machine Learning (ML) models is determined by the quantity and quality
of the data used for training. While data availability increases annually, the quality does not
necessarily follow. It is essential to curate the data for use by the models, transforming it from raw
data into a format and quality that is usable by the algorithms. This process can take up to 70% of the
whole pipeline, (Pérez et al. 2015).

The importance of this step requires standardized data collection methods and careful quality
control, which are often not adequately met. This leads to problems in the dataset as missing values,
differences in data strings, or unbalancing of features of the class. The latter produces learning bias
toward the majority class that can be avoided by using balancing strategies, (Dong, Gong, and Zhu
2018).

There are two possible causes for datasets being imbalanced: intrinsic or extrinsic, (Johnson and
Khoshgoftaar 2019). The former is due to the nature of the instances, for example when collecting
data for cancer diagnosis, normally, most of the medical tests correspond to healthy people. The latter
is produced during the collecting process due to the lack of a standard method, storage problems, or
similar situations.

A commonly used method for handling highly imbalanced datasets is resampling. This involves
either reducing the number of samples in the majority class (under-sampling) and/or increasing the
number of samples in the minority class (over-sampling) with synthetic data. Usually, both types of
strategies are combined in what are known as hybrid balancing strategies. Given the high number of
under-sampling and over-sampling strategies available, selecting the most effective method for a
specific problem can be a complex and time-consuming task. The imbalance in class distribution
within datasets poses a significant challenge, often leading to biased models and poor predictive
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performance. Therefore, it is crucial to have a reliable evaluation method to determine which
combination of techniques yields the best results. The motivation of this paper is to address this need
by offering a robust strategy to facilitate the decision-making process.

The main contribution is a methodological approach that uses an unsupervised neural network
model known as Self-Organizing Maps (SOM) or Kohonen maps as a way to systematically evaluate
various combinations of under-sampling and over-sampling strategies and thereby determine by a
new metric which techniques offer the best balance and performance for a given dataset. SOM is
based on biological studies of the cerebral cortex and was introduced in 1982 by (Kohonen 1982) and
(Kohonen 1998). They are an Artificial Neural Network with a non-supervised training algorithm
that is particularly effective for visualizing high-dimensional performing non-linear mapping
between high-dimensional patterns and a discrete bi-dimensional representation, called a feature
map, without external guidelines. For this reason, SOM has been widely used as a method of pattern
recognition, dimensionality reduction, data visualization, and, especially, clustering since
unsupervised training guarantees bias-free results. This paper presents a novel approach that not
only introduces and applies a methodology to assess the optimal balancing strategy based on each
dataset's characteristics but also introduces a unique metric to select the optimal strategy. We
consider this metric a novelty because it benefits from the topological nature of SOM to evaluate the
balancing strategies.

The rest of the paper is divided into the following sections. Section 2 compiles a set of related
works with similar approaches. Section 3 describes the datasets and the methods used during the
study. Section 4 collects the results of the evaluation and its discussion. Section 5 provides some
conclusions and future works.

2. Related Work

In this paper, we are comparing different balancing strategies using Kohonen maps as a method
to evaluate how good the synthetic data is compared to the original data. Similar to this, we found
papers proposing new imbalanced strategies and others that are aimed at evaluating the creation of
synthetic data with different strategies.

In the first group, we have the following works. In (Chawla et al. 2003), two methods are
presented, a new version of SMOTE and an original one called SMOTEBoost and evaluated using
ROC Curve, Precision, and Recall. A strategy using the Neighbor Cleaning Rule (NCR) and SMOTE
is used in (Junsomboon and Phienthrakul 2017) to imbalance medical data and then, is evaluated
using K-Nearest Neighbor (KNN), Sequential Minimal Optimization (SMO) and Naive Bayes.
Another hybrid method is presented in (Choirunnisa and Lianto 2018), in this case, NCL is used for
over-sampling, Adaptive Semiunsupervised Weighted Oversampling (ASUWO) is applied for
undersampling, and results are evaluated with Decision Tree and Random Forest.

Works aimed to evaluate imbalanced strategies are summarized following. In (Raeder, Forman,
and Chawla 2012), the authors question how the evaluation of imbalanced strategies is done. The
questions explore how varying sample sizes, degrees of class imbalance, validation strategies, and
evaluation measures impact the effectiveness of learning from imbalanced data and the conclusions
drawn about classifier performance. (Wainer and Franceschinell 2018) evaluates 20 strategies over a
total of 58 datasets using a Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel,
Random Forest, and Gradient Boosting Machines using six different metrics. The conclusions suggest
that each strategy's effectiveness varies considerably depending on the metric applied. Another
evaluation is found in (Costa et al. 2020) where a meta-learning approach is used to evaluate nine
imbalanced strategies tested in 163 datasets using SVM. The paper concludes that the most suitable
strategy depends on the features of the dataset. For example, SMOTE-TL works better for more
challenging classification tasks and high-dimensional datasets. SVM is also used to evaluate ten
imbalanced strategies for the task of text classification in three benchmarks, (Sun, Lim, and Liu
2009). The paper identifies SMOTE as the best resampling method for imbalanced text; although it
performs slightly better in some cases, the differences are minor and inconsistent across datasets.
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Overall, optimal thresholding proves to have more influence on the performance of the balancing
strategies. Also, (Goel et al. 2013) evaluate five different strategies obtaining five metrics by using
SVM. In this case, the conclusions say that depending on the performance metric the best sampling
method changes. Then, (Shamsudin et al. 2020) evaluate the combinations of Random
Undersampling Strategy (RUS) with SMOTE, ADASYN, Borderline, SVM-SMOTE and Random
Oversampling Strategy (ROS) using a Decision Tree. Results are compared with existing literature
concluding that hybrid strategies are better than simpler ones, the problem is that the study is only
made with one dataset. A different evaluation is made in (Gosain and Sardana 2017) where over-
sampling strategies SMOTE BSMOTE ADASYN SLSMOTE are applied to seven datasets and
evaluated with SVM, KNN and Naive Bayes. In this case, Safe Level SMOTE outperforms the other
methods but again depending on the dataset and the metric other strategies can perform better.
Another interesting work is (Kraiem, Sanchez-Hernandez, and Moreno-Garcia 2021) that examines
the effectiveness of seven resampling methods, to address class imbalance in 40 datasets. The authors
analyze how data characteristics, such as the imbalance ratio, sample size, number of attributes, and
class overlap, impact the performance of these resampling strategies in improving classification
outcomes using Random Forest. Findings state that SMOTE-based methods generally yield better
results, particularly in high-imbalance situations. In the case of(Wongvorachan, He, and Bulut
2023), the paper compares three resampling methods on an educational dataset using the Random
Forest classifier, finding that Random Oversampling (ROS) performs best for moderately imbalanced
data, while the hybrid method excels with extreme imbalances. In (Mujahid et al. 2024) an evaluation
of five oversampling techniques is performed. It uses two highly imbalanced Twitter datasets and
compares the performance of these methods across six classifiers. Results indicate that ADASYN and
SMOTE provide the best accuracy and recall, particularly with SVM, but no single method
universally outperforms the others across all models and metrics. Finally, (Santoso et al. 2017) review
synthetic oversampling methods for addressing imbalanced data, emphasizing that each method
generates unique synthetic data characteristics and must be chosen based on specific imbalance levels
and patterns. The review concludes that no single method is universally effective for managing class
imbalance.

As can be seen, there are other evaluations, but as far as we know this is the first one that is made
with SOMs and provides a metric based on its features. The use of Kohonen maps allows the creation
of a topological map from where we obtain our metric to measure the performance of different hybrid
strategies. The metric is based on comparing how similar are the synthetic data compared to the
original data. This made our method unique as the evaluation of the strategies is based on a
comparison with the original data and not on how the balanced dataset performs on an ML model as
previous works do. We also should highlight that the approach tries to evaluate which is the best
strategy for a particular dataset which as can be seen regarding the related works, strongly depends
on different situations. It is therefore difficult for works of this type to categorically state that one
strategy is the best of all.

3. Materials and Methods

This work is aimed at obtaining a methodology based on SOM so that the best-balancing strategy
could be chosen depending on the use case. For this purpose, we have designed the following
workflow. First, we choose an unbalanced dataset and apply oversampling and under-sampling
strategies for data-balancing. Then, we train a Kohonen map with the original dataset and use SOM
to classify the synthetic instances. Even though SOM is not normally used as a classifier, works such
as (Winston et al. 2020) benefit from these capabilities. If synthetic data has been well created, it
should be classified with low errors (instances that are close in a Euclidean space) in the map trained
with original data. As a final way to measure the performance of using the Kohonen map, we use a
metric proposed by us. Figure 1 shows how the workflow has been implemented.


https://doi.org/10.20944/preprints202501.1182.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 d0i:10.20944/preprints202501.1182.v1

4 of 23

Kohonen

Original map
dataset
Unbalanced . @ @
rainini; <
dataset stageg e Measuring
— 2y - strategies
(1) .. ¥ with novel

metric

Balancing
strategies

Synthetic
data 3)

Classification
stage

Figure 1. Workflow of the proposed method.

Apart from that workflow to choose the performance of the best balancing strategies, we have
used Multilayer Perceptrons (MLPs) as a way to confirm that the dataset has been balanced accurately
to perform good binary classifications.

3.1. Unbalanced Datasets

The datasets used in this research are described below. In total, we are using 6 datasets: cancer
breast, oil spill, German credits, phonemes, microcalcifications and credit card fraud.

First, we find the Haberman dataset for breast classification'. This dataset was compiled by the
University of Chicago's Billings Hospital from 1958 to 1970. It comprises a binary classification for
patients that died within 5 years or survived 5 years or longer. This classification uses 3 numerical
features: age, year of surgery, and the number of positive axillary nodes detected. In total, it has 307
instances.

The second dataset was created from oil spills in satellite radar images?. This dataset was
presented by (Kubat, Holte, and Matwin 1998) and compiles satellite images of the ocean, some of
them containing oil spills and some not. Images were preprocessed obtaining a set of 49 features that
describe the images: area, intensity, or sharpness. The total amount of images is 937.

The third case is called the German credits dataset®. This dataset comprises a set of clients and
some financial and banking features to predict if the client will pay back or not a loan or credit. This
prediction will be based on 7 integers and 13 categorical variables. These features could be the
duration in months, amount, present residence, or job. The information of 1,000 clients was compiled.

Fourth, is the phonemes dataset. This dataset is aimed to distinguish between nasal and oral
sounds. This is performed using a set of 5 features which characterize the amplitude of the first five
harmonics normalized by the total energy. In total, an amount of 5,427 examples were compiled.

As a fifth use case, we have a dataset of microcalcifications®. This dataset is used for breast cancer
detection from radiological scans. Specifically, it focuses on identifying clusters of microcalcification,
which appear bright on mammograms. The dataset was curated by scanning the images, segmenting
them into candidate objects, and employing computer vision techniques to characterize each
candidate object by using six features.

! https://archive.ics.uci.edu/ml/datasets/haberman’s+survival

2 https://www .kaggle.com/datasets/ashrafkhan94/oil-spill

3 https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
4 https://datahub.io/machine-learning/phoneme

5 https://www .kaggle.com/datasets/sudhanshu2198/microcalcification-classification
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Finally, the credit card fraud detection dataset®. The dataset comprises transactions conducted
by European cardholders using credit cards in September 2013. It only includes numerical input
variables resulting from a PCA transformation. 28 features represent the principal components
derived from PCA, while the 2 of them remain unaltered by PCA transformation.

Table 1. Dataset summaries.

Dataset Number of features  Missing values  Classification type =~ Imbalance
Breast cancer 3 0 Binary numerical 225/81

Oil spills 49 0 Binary numerical 896/41
German credits 20 0 Binary numerical 700/300
Phonemes 5 0 Binary numerical 3,818/1,586
Microcalcifications 6 0 Binary numerical 10,923/260

Credit card fraud 6 0 Binary numerical 284,315/492

3.2. Balancing Strategies

In this paper, we provide an evaluation of strategies to avoid the problem of unbalanced classes
in several datasets. There are many types of imbalanced strategies but we have opted for hybrids as
they have been shown to create better data distributions and improve the performance in
classification problems, (Liu, Liang, and Ni 2011). Hybrid strategies first create synthetic data from
the minority class and then, remove instances from both distributions. This not only allows solving
the problem of unbalanced classes but also removes noisy instances placed on the wrong side of the
cluster frontier. Following, we define all the over and under-sampling strategies that we propose
whose combinations will lead to the hybrid strategies we are evaluating in the paper.

Over-sampling strategies. This type of imbalanced strategy creates synthetic instances of the
minority class to balance the number of instances per class.

Synthetic Minority Oversampling Technique (SMOTE). Introduced in (Chawla et al. 2002), its main
characteristic is that it creates data instances without replacing the original one. SMOTE selects
instances of a feature space, drawing a line between them. Then, it uses this line to obtain a point
along it which is the new instance.

Adaptive Synthetic Sampling (ADASYN). This method presented by (He et al. 2008) uses a density
distribution to automatically determine the number of synthetic samples required for each minority
data instance. This density distribution serves as a measure of the weight distribution among various
minority class examples, reflecting their respective learning difficulties. Consequently, the dataset
after applying the method not only achieves a balanced representation of the data distribution based
on the desired balance level but also focuses the learning algorithm's attention on challenging
examples.

Borderline SMOTE. As described in (Han, Wang, and Mao 2005), the process involves identifying
the borderline examples within the minority class. These borderline instances are then utilized to
generate new synthetic examples. These synthesized instances are strategically positioned around
the borderline examples of the minority class.

SVM SMOTE. (Nguyen, Cooper, and Kamei 2009) proposed this method that encompasses the
following three stages. Firstly, it involves over-sampling the minority class to address data imbalance
effectively. Secondly, the sampling strategy is focused primarily on critical regions, particularly the
boundary area between classes. Thirdly, it applies extrapolation to extend the minority class region,
especially in areas where majority class instances are scarce.

K-Means SMOTE. The approach presented in (Last, Douzas, and Bacao 2017) involves three main
steps: clustering, filtering, and over-sampling. Firstly, in the clustering step, the input space is divided

¢ https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
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into k groups using K-Means. Next, in the filtering step, clusters with a significant proportion of
minority class samples are retained for oversampling. Subsequently, the number of synthetic samples
to generate is distributed, with more samples assigned to clusters containing sparsely distributed
minority samples. Finally, in the over-sampling step, SMOTE is applied within each selected cluster
to accomplish the desired ratio between minority and majority instances.

Under-sampling strategies. These strategies involve reducing the number of instances from the
majority class to balance the number of instances across classes.

Tomek Links (TL). Regarding (Tomek 1976), this technique removes boundary instances as they
have more possibilities to be misclassified. This is based on the definition of the Tomek-link pair
which occurs when two instances do not belong to the same class. Then, there is no other sample
whose distance to the first instances is lower than the distance between the two individuals.
Summarizing, if instances are creating a Tomek-link pair there are more possibilities of having
superfluous data along the distribution.

Edited Nearest Neighbor (ENN). Introduced by (Wilson 1972), it aims at refining datasets by
removing samples from the majority class that lie close to the decision boundary. If the label of a
majority class instance and the labels of applying K-Nearest Neighbors differ, then both the instance
and its nearest neighbors are removed from the dataset.

Condensed Nearest Neighbor Rule (CNNR). This is the first selection algorithm as stated in (Hart
1968). It employs two storage areas called Condensing Set (CS) and Training Set (TS) respectively. In
the beginning, TS includes the complete training set, while CS remains empty. To initiate the process,
an instance is randomly selected from TS and moved to CS. Subsequently, each instance x € TS is
compared to those currently stored in CS.

Neighborhood Cleaning Rule (NCL). This algorithm depicted in (Laurikkala 2001) has two stages.
The process begins with the application of the Edited Nearest Neighbor algorithm to undersample
instances not belonging to the target class. Subsequently, a second step refines the neighbourhood of
the remaining examples. Here, the KNN algorithm is applied, removing an example if its neighbours
do not belong to the target class and if the example's class exceeds half of the smallest class within
the target class.

One Side Selection (OSS). As described in (Kubat, Matwin, and others 1997) the method reduces
the number of misclassified instances by creating a subset with the training set. Following this, the
method removes misclassified examples involved in Tomek links. This process discards noisy and
borderline examples, resulting in the formation of a new training set.

Self-Organizing Maps. SOM which in this work is referred to as Kohonen maps establishes a
relation from a higher-dimensional input space to a lower-dimensional map space using a two-
layered fully connected architecture. The input layer comprises a linear array with the same number
of neurons as the dimension of the input data vector (n). The output layer, known as the Kohonen
layer, consists of neurons, each with an associated weight vector of the same dimension as the input
data (n) and a position in a rectangular grid of arbitrary size (k). These weight vectors are organized
in an n * k * k matrix known as the weight matrix. Self-organization implies that a vector from the
input dataset space (X) is presented to the network, and the node with the closest weight vector Wj
is identified as the winning neuron or best matching unit (BMU) using a simple discriminant function
(Euclidean distance) and a ‘winner-takes-all' mechanism (competition). Subsequently, the
unsupervised training algorithm adjusts the winner's weight vector based on its similarity to the
input vector. This presentation of vectors from the input space and BMU learning continues until a
specified number of presentations (P) is reached or values of the selected metrics remain steady. The
iterative process yields a trained (self-organized) Kohonen map, represented by a given weight
matrix. Each node in the Kohonen layer corresponds to a specific pattern learned during training and
can recognize all elements belonging to that class. The self-organizing training process preserves the
topological properties of the input space, allowing neighbouring nodes to recognize patterns that are
closer in the n-dimensional space, meaning they have similar characteristics. The map generated by
this trained SOM can then be used to classify additional input data through a process called


https://doi.org/10.20944/preprints202501.1182.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 d0i:10.20944/preprints202501.1182.v1

7 of 23

"mapping.” Unlike training, this process does not alter the weight matrix. New elements from the
input space are placed where they are recognized by an existing Best Matching Unit, indicating they
are similar (belong to the same class) as those previously recognized by that BMU.

Multilayer perceptron (MLP). This model consists of sequential layers composed of neurons,
with each layer connected to adjacent layers. It requires a minimum of three layers: input, hidden,
and output. Input data is introduced through the input layer, undergoes processing in the hidden
layer, and is classified by the output layer. MLPs optimize parameters through a two-stage
backpropagation training process: forward and backward, as described by (Rumelhart, Hinton, and
Williams 1986).

4. Results

Following, we describe all the results obtained during the application of our methodology. The
results are organized step by step adding some values that helped us during the process and have
been used as support material for decision making.

First of all, we need to apply all the strategies to the unbalanced datasets which are 25
combinations in total (5 over-sampling strategies for 5 under-sampling strategies). Then, for each of
these combinations, we are training a Kohonen map. For this purpose, we are using a Python library
called GEMA developed by (Garcia-Tejedor and Nogales 2022). All the maps have been trained using
a grid search strategy which finds the optimal value of the hyperparameters by aggregating various
ranges of possibilities, (Bergstra and Bengio 2012). To avoid problems caused by random weights
initialization, each neuron in the Kohonen layer takes its weights from one of the input instances.
Anyway, based on the main function of SOM which according to (Khalilia and Popescu 2014) is
topology preservation of the input data, overall topology tends to remain consistent across instances.
In Table 2, we compile all the hyperparameters and values used for this stage.

Table 2. Grid search values to train Kohonen maps.

Hyperparameter Values

Side map [5-25]

500, 1000, 2500, 5000, 7500,
Epochs

10000

Learning rate 0.01, 0.05, 0.1, 0.2, 0.3

To find the optimal Kohonen map, we use the quantization and the topographic error. The
quantization error represents the mean distance between each data vector and its BMU. Calculated
for the winning neurons, this metric is independent of the number of "empty" neurons and the size
of the map, serving as a measure of map resolution. This error is defined in Equation 1.

QE = %Z?’ﬂ“Xi — BMU|| (1

As is denoted above N is the number of instances in the training datasets and X; an input
vector.

Meanwhile, the topographic error indicates the ratio of all data vectors for which the first and
second BMUs are not adjacent units, providing insight into topology preservation. Equation 2 defines
the topographic error.

TE = 3 Bl t(x) @
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where t(x;) equals 0 if the BMU and the second-best matching units are adjacent, otherwise its value
is 1; and N is the total number of instances.

In the following Tables 3-8, we show for each selected dataset both metrics for all the
combinations of imbalanced strategies applied to each dataset using GEMA.

Table 3. Kohonen Map error for bank loans dataset.

Quantization Topographic

error error
Tomek Links 0.926 0.176
Edited Nearest
0.916 0.174
Neighbours
Condensed
SMOTE Nearest 0.912 0.172
Neighbours
Neighbourhood
0.914 0.179
Cleaning Rule
One Side Selection 0.920 0.190
Tomek Links 0.923 0.177
Edited Nearest
0.924 0.183
Neighbours
Condensed
ADASYN Nearest 0.912 0.172
Neighbours
Neighbourhood
0.914 0.179
Cleaning Rule
One Side Selection 0.920 0.190
Tomek Links 0.926 0.175
Edited Nearest
0.915 0.167
Neighbours
Condensed
Borderline
Nearest 0.919 0.163
SMOTE
Neighbours
Neighbourhood
0.923 0.175
Cleaning Rule
One Side Selection 0.924 0.170
Tomek Links 0.954 0.175
Edited Nearest 0.974 0.200
SVM Neighbours ' '
SMOTE Condensed
Nearest 0.968 0.170

Neighbours
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Neighbourhood
0.960 0.184
Cleaning Rule
One Side Selection 0.978 0.170
Tomek Links 0.940 0.163
Edited Nearest
0.933 0.174
Neighbours
Condensed
K-Means
Nearest 0.936 0.163
SMOTE
Neighbours
Neighbourhood
0.964 0.171
Cleaning Rule
One Side Selection 0.939 0.162
Table 4. Kohonen Map error for phonemes dataset.
Quantization Topographic
error error
Tomek Links 0.143 0.226
Edited Nearest
0.142 0.215
Neighbours
Condensed
SMOTE Nearest 0.143 0.216
Neighbours
Neighbourhood
0.143 0.217
Cleaning Rule
One Side Selection 0.145 0.221
Tomek Links 0.142 0.212
Edited Nearest
0.141 0.207
Neighbours
Condensed
ADASYN Nearest 0.143 0.216
Neighbours
Neighbourhood
0.143 0.217
Cleaning Rule
One Side Selection 0.145 0.221
Tomek Links 0.145 0.206
Borderline
Edited Nearest
SMOTE 0.143 0.213

Neighbours

9 of 23
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Condensed
Nearest 0.144 0.206
Neighbours
Neighbourhood
0.141 0.208
Cleaning Rule
One Side Selection 0.146 0.219
Tomek Links 0.145 0.217
Edited Nearest
0.143 0.211
Neighbours
Condensed
SVM
Nearest 0.145 0.215
SMOTE
Neighbours
Neighbourhood
0.145 0.220
Cleaning Rule
One Side Selection 0.146 0.215
Tomek Links 0.165 0.240
Edited Nearest
0.150 0.248
Neighbours
Condensed
K-Means
Nearest 0.151 0.246
SMOTE
Neighbours
Neighbourhood
0.157 0.239
Cleaning Rule
One Side Selection 0.218 0.152
Table 5. Kohonen Map error for cancer breast dataset.
Quantization Topographic
error error
Tomek Links 0.081 0.118
Edited Nearest
0.076 0.113
Neighbours
Condensed
SMOTE Nearest 0.080 0.163
Neighbours
Neighbourhood
0.080 0.128
Cleaning Rule
One Side
0.076 0.105
Selection
ADASYN  Tomek Links 0.081 0.114

10 of 23
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Edited Nearest
0.077 0.118
Neighbours
Condensed
Nearest 0.080 0.086
Neighbours
Neighbourhood
0.080 0.128
Cleaning Rule
One Side
0.076 0.105
Selection
Tomek Links 0.079 0.126
Edited Nearest
0.081 0.117
Neighbours
Condensed
Borderline
Nearest 0.078 0.120
SMOTE Neighbours
Neighbourhood
0.077 0.134
Cleaning Rule
One Side
0.085 0.121
Selection
Tomek Links 0.100 0.121
Edited Nearest
0.097 0.128
Neighbours
Condensed
SVM Nearest 0.083 0.109
SMOTE Neighbours
Neighbourhood
0.092 0.116
Cleaning Rule
One Side
0.097 0.102
Selection
Tomek Links 0.084 0.118
Edited Nearest
0.140 0.125
Neighbours
Condensed
K-Means  \rearest 0.094 0.106
SMOTE Neighbours
Neighbourhood
0.095 0.138
Cleaning Rule
One Side
0.079 0.103

Selection
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Table 6. Kohonen Map error for credit frauds dataset.

Quantization Topographic

error error
Tomek Links 0.406 0.074
Edited Nearest
0.407 0.074
Neighbours
Condensed
SMOTE Nearest 0.408 0.075
Neighbours
Neighbourhood
0.407 0.073
Cleaning Rule
One Side
) 0.405 0.075
Selection
Tomek Links 0.221 0.156
Edited Nearest
0.221 0.158
Neighbours
Condensed
ADASYN Nearest 0.225 0.157
Neighbours
Neighbourhood
0.221 0.157
Cleaning Rule
One Side
0.223 0.158
Selection
Tomek Links 0.243 0.144
Edited Nearest
0.242 0.149
Neighbours
Condensed
Borderline  Nearest 0.243 0.145
SMOTE Neighbours
Neighbourhood
0.242 0.148
Cleaning Rule
One Side
0.243 0.149
Selection
Tomek Links 0.282 0.149
Edited Nearest
0.292 0.149
Neighbours
SVM Condensed
SMOTE Nearest 0.277 0.148
Neighbours
Neighbourhood
0.269 0.149

Cleaning Rule
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One Side

0.289 0.156
Selection
Tomek Links 0.313 0.230
Edited Nearest

0.295 0.133
Neighbours
Condensed
Nearest 0.231 0.174
Neighbours
Neighbourhood

0.239 0.112
Cleaning Rule
One Side

0.196 0.152
Selection

Table 7. Kohonen Map error for oil spills dataset.

Quantization Topographic

error error
Tomek Links 0.563 0.112
Edited Nearest
0.566 0.114
Neighbours
Condensed
SMOTE Nearest 0.566 0.119
Neighbours
Neighbourhood
0.556 0.116
Cleaning Rule
One Side Selection 0.555 0.120
Tomek Links 0.529 0.184
Edited Nearest
0.528 0.192
Neighbours
Condensed
ADASYN Nearest 0.541 0.161
Neighbours
Neighbourhood
0.530 0.175
Cleaning Rule
One Side Selection 0.538 0.157
Tomek Links 0.554 0.179
Edited Nearest
. 0.555 0.178
Borderline Neighbours
SMOTE Condensed
Nearest 0.561 0.171

Neighbours
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Neighbourhood
0.556 0.177
Cleaning Rule
One Side Selection 0.558 0.174
Tomek Links 0.579 0.145
Edited Nearest
0.601 0.102
Neighbours
Condensed
SVM
Nearest 0.592 0.09
SMOTE
Neighbours
Neighbourhood
0.597 0.105
Cleaning Rule
One Side Selection 0.593 0.114
Tomek Links 0.537 0.154
Edited Nearest
0.513 0.146
Neighbours
Condensed
K-Means
Nearest 0.538 0.138
SMOTE
Neighbours
Neighbourhood
0.525 0.133
Cleaning Rule
One Side Selection 0.538 0.145
Table 8. Kohonen Map error for microcalcifications dataset.
Quantization Topographic
error error
Tomek Links 0.095 0.208
Edited Nearest
0.096 0.213
Neighbours
Condensed
SMOTE Nearest 0.092 0.202
Neighbours
Neighbourhood
0.096 0.218
Cleaning Rule
One Side
0.093 0.205
Selection
Tomek Links 0.073 0.194
ADASYN  Edited Nearest
0.075 0.203

Neighbours
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Condensed
Nearest 0.076 0.202
Neighbours
Neighbourhood
0.075 0.199
Cleaning Rule
One Side
0.073 0.196
Selection
Tomek Links 0.078 0.252
Edited Nearest
0.077 0.244
Neighbours
Condensed
Borderline  Nearest 0.077 0.248
SMOTE Neighbours
Neighbourhood
0.077 0.245
Cleaning Rule
One Side
0.078 0.243
Selection
Tomek Links 0.088 0.107
Edited Nearest
0.092 0.101
Neighbours
Condensed
SVM Nearest 0.093 0.098
SMOTE Neighbours
Neighbourhood
0.088 0.108
Cleaning Rule
One Side
0.091 0.109
Selection
Tomek Links 0.193 0.056
Edited Nearest
0.154 0.177
Neighbours
Condensed
K-Means  Nearest 0.194 0.057
SMOTE Neighbours
Neighbourhood
0.187 0.108
Cleaning Rule
One Side
0.145 0.172
Selection

In the tables above, the top 5 strategies have been bolded. These strategies are considered the
best as they combine lower values for both quantization and topological errors. Besides, the best one
has been highlighted. As we can see, the best strategies change depending on the library but in some
datasets, a few of the top strategies are the same and even the best one matches.
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In Table 3, SMOTE combined with ENN, CNN and NCR and ADASYN with CNN and NCR are
in the top 5 for both strategies. In Table 4, we found again ADASYN plus CNN and TL. The
combination of Borderline SMOTE plus TL, and CNN are the other highlighted strategies. Regarding
Table 5, we have SMOTE with ENN and OSS, ADASYN with CNN and OSS and K-Means SMOTE
with OSS. In Table 6, we can find the following strategies in both tops: ADAYSN combined with TL,
ENN or NCR and K-Means SMOTE with OSS. Then, we have Table 7 where K-Means SMOTE with
ENN is at the top and the best. Then, K-Means SMOTE with CNN, NCR and OSS and ADASYN with
NCR are also on the top. Finally, we have Table 8 with SVM SMOTE combined with the five other
strategies. As can be seen, the best strategies are very distributed with only two of them being three
times on the top: ADASYN plus NCR and K-Means SMOTE with OSS.

As the differences in the error metrics between different strategies are very low in most of the
cases, we can conclude that errors are intuitive but not conclusive. Based on that, we proposed a new
metric using the topology provided by the Kohonen maps. The idea is that neurons of the map trained
with the unbalanced dataset should recognize similar input vectors when mapping the balanced
dataset. So, topological changes from one map to another should be small. For this, we use the
instance of the map that we consider the best trained which are those with the lowest errors.

To validate this assumption, we use two derived graphical representations of the Kohonen
maps. The first uses a heatmap that indicates differences between the number of synthetic instances
recognized by the neurons that belong to each class. If neurons recognize more instances of the
minority class, they are yellow-coloured changing to blue when the neurons recognize more instances
of the majority class. Empty neurons are left blank.

The second map uses four colours depending on how neurons perform recognizing instances of
the two classes in the datasets. Empty neurons are left blank, indicating they recognize no instances
at all. Red and blue neurons recognize a percentage of instances from both the original and synthetic
data, corresponding to the minority and majority classes, respectively. This value acts as a threshold
that can be varied to perform different analyses, where the percentage of instances from one of the
two classes must exceed this threshold to colour the neuron with the corresponding class colour.
Finally, green neurons represent a balance, recognizing instances from both classes.

In Figure 2, we show an example for the first type of map and in Figure 3 the same for the map
with pure colours. In both Figures, we show the map with the imbalanced dataset, then a map
obtained after using the strategies with the lowest error (those that allegedly created the best synthetic
data) and then, the map with the highest one (those that allegedly created the worst synthetic data).

5 SMOTE 0o KMSSMOTE =
Imbalanced dataset + +
Edited Nearest Neighbour| 75  NeighbourhoodCleaning Rule
0 15
0 0 5.0 o
1 1 1
2 -2 2 28 2 10
3 3 3
—
4 4 4
-4 0.0
5 5 5 5
6 6 6
7 » 7 -2.5 .
8 8 s 0
0 2 4 6 8 0 2 4 6 8 -5.0 o 2 9 6 8
-8 Quantizationerror: 0.076 Quantizationerror: 0.095

Topographicerror: 0.113 =S Topographicerror: 0.138

-10 -10.0 hovn

Figure 2. Heatmap for a SOM of 9 by 9 trained with the cancer breast dataset.
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Imbalanced dataset SMOTE + Edited nearestneighbour Adasyn + Neighbourhoodcleaningrule

0 2 4 6 8 ) 2 4 6 8
Quantizationerror: 0.076 Quantizationerror: 0.080
Topographicerror: 0.113 Topographicerror: 0.128

Figure 3. Pure colour map for the breast cancer dataset.

These maps support the notion that the strategies that yield lower errors are those that generate
synthetic data closely resembling the original class instances. This indicates that successful strategies
create synthetic samples that maintain the characteristics and distribution of the original data,
thereby improving model performance. As can be seen, in both Figures changes from the first map
to the second one are lower which indicates that the created instances by the balancing strategies are
closer to the original dataset. For example, if a red or blue neuron (indicating recognition of many
instances of one class) changes to the opposite colour, we can infer that the synthetic data is of poor
quality. This is because the model is confusing the synthetic data to such an extent that a neuron,
which should primarily detect one class, is now detecting many instances of the opposite class.
Conversely, if a green neuron, which is on the borderline of being pure, turns red or blue, there is no
immediate issue. This simply means it has recognized one additional instance of one of the classes,
making it a pure neuron. Similarly, if a red or blue neuron becomes green, it indicates that it has
recognized one more instance of the opposite class, making it non-pure, which is also not
problematic. At this point, we have demonstrated that for a given use case, when a SOM trained with
the unbalanced dataset classifies data generated by the best balancing strategies (those that produce
maps with the lowest quantization and topological errors), the mapping process exhibits only slight
changes. This indicates that the best balancing strategies create synthetic data that closely matches
the original data distribution, maintaining the integrity and effectiveness of the SOM's classification
capabilities.

However, these metrics have minimum differences, so we need to obtain a way to measure the
validity of the different balancing strategies. For this purpose, we proposed our metric based on the
idea described above. The similarity is based on the Jaccard index introduced in (Jaccard 1912) and
defined in the following Equation.

lanB| _ |4nB|
|AUB| ~ |Al+|B|-]AnB|

J(A,B) = 3)

Where A and B are two different sets, |AnB| is the number of elements in the intersection of sets A
and B and |AUB| is the number of elements in the union of both sets. The Jaccard index ranges from
0 to 1, where 0 indicates that the two sets are disjoint (no common elements) and 1 indicates that the
two sets are identical.

We have adapted this index to the graphical representation of the Kohonen maps which we have
named the Similarity Over Maps (SOM) Jaccard index. The two sets correspond to the mapping of
the original dataset and the mapping after applying balancing strategies respectively. Our index
results of applying the Jaccard index to red, blue and green-coloured neurons. Then, we average the

value giving a percentage of similarity. This metric is formalized as follows.

SOM]accard(KMp KM,) = ](KMLKMZ)RED+](KMl»KM32)BLUE+](KM1'KMZ)GREEN )
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Following, we present the values of our metric after applying the balancing strategies to the six
proposed datasets. All this information is compiled in Tables 9-14, one for each dataset.,. The columns
of the Tables show different percentages that correspond to the threshold that considers a neuron as
pure (red or blue). We only show the top 3 strategies performing better with our metric

Table 9. Dataset bank loans 40% of unbalance.

Imbalanced Threshold=80 Threshold=75 Threshold=70 Mean per
Strategy % % % strategy
KMSSMOTE + 69.1% 69.8% 68.6% 69.1% + 0.54
CNN

SMOTE + ENN 69.7% 67.3% 68.1% 68.3% +1.38
KMSSMOTE + 0SS 66.5% 65.4% 65.7% 65.8% + 0.57

Mean total (N=25) 63.5% £5.50 63.3+3.30 62.8% * 3.05

Table 10. Dataset phonemes 41% of unbalance.

Imbalanced Threshold=80 Threshold=75 Threshold=70 Mean per
Strategy % % % strategy
SMOTE + ENN  76.7% 76.1% 74.9% 75.9% = 0.81
BSMOTE + CNN  74.5% 72.1% 73.0% 73.8% +1.25
SMOTE + OSS 68.6% 66.7% 68.0% 67.7% +0.92
Mean total 66.4% +5.49  63.1%*5.72  65.5% * 6.00

(N=25)

Table 11. Dataset breast cancer 47% of unbalance.

Imbalanced Threshold=80 Threshold=75 Threshold=70 Mean per
Strategy % % % strategy
SMOTE + ENN  81.1% 71.4% 71.9% 74.8%z= 4.70
SMOTE + NCR  75.6% 71.7% 70.5% 72.6% +2.81
BSMOTE + 0SS 73.6% 71.7% 70.5% 71.9% £ 1.61
Mean total 66.4% +6.15  63.8% £5.10  63.4% *5.30

(N=25)

Table 12. Dataset fraud credits 90% of unbalance.

Imbalanced Threshold=80 Threshold=75 Threshold=7 Mean per
Strategy % % 0% strategy
KMSSMOTE + 71.6% 70.4% 70.7% 70.9% + 0.61
NCR

ADASYN +ENN  67.4% 66.5% 66.8% 66.9% + 0.40
SMOTE + ENN 66.9% 66.1% 65.9% 66.3% +0.41

Mean total (N=25) 64.2% +4.70 63.8%*4.10 65.6% * 3.80
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Table 13. Dataset oil spills 91% of unbalance.

Imbalanced Threshold=80 Threshold=75 Threshold=70 Mean per
Strategy % % % strategy
KMSSMOTE + 79.2% 73% 73.3% 75.1% +3.20
NCR

SMOTE + ENN 74.5% 73.1% 71.5% 73.0% +1.46
KMSSMOTE + 70.1% 68.8% 69.0% 69.6% * 0.68
CNN

Mean total (N=25) 66.3% +6.20 64.9% +5.40 63.8% +5.30

Table 14. Dataset microcalcifications 91% of unbalance.

Imbalanced Threshold=80% Threshold=75% Threshold=70% Mean per
Strategy strategy
ADASYN +TL 72.5% 71.4% 71.8% 71.9% = 0.55
KMSSMOTE +TL ~ 70.1% 69.4% 69.2% 69.5% +0.41
SVMSMOTE +TL  69.8% 68.7% 65.3% 68.0% + 2.46%

Mean total (N=25) 64.4% *5.40 63.8% +5.10 63.3% +5.80

As can be seen, the threshold seems to have minimal impact, except for the 65% case, which
shows big differences. So, we have selected a threshold of 80% as it allows us to identify pure neurons
more accurately. If we look at the strategies separately, we can conclude that the differences also are
not very high, and they remain stable. The one marked as the best does not stand out too much from
the others but let us consider it as the best.

Now, as half of the datasets are unbalanced at around 40% and half are around 90%, we want to
compare the performance of the strategies between datasets. Table 15 compiles the information
related to the average and standard deviation of applying all the strategies. The results above show
that the percentage of unbalanced data does not affect the quality of the synthetic dataset.

Table 15. Comparison of all strategies applied to the different datasets.

Dataset (Unbalanced %) Threshold=80%
Bank loans (40%) 63.54% +5.5%
Phonemes (41%) 66.4% +5.49%
Breast cancer (47%) 66.4% *+ 6.15%
Credit fraud (90%) 64.2% +4.7%
Oil spills (91%) 66.3% + 6.2%
Microcalcifications (91%) 64.4% +5.4%

To establish an additional criterion for evaluating the effectiveness of the strategies, we have
analysed the frequency with which each strategy appears in the top three rankings across Tables 9 to
14. This approach allows us to identify which strategies consistently perform well and are therefore
more reliable in achieving optimal results. In the following Table, we can see this top.
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Table 16. Top 10 of strategies performing in the top 3.

Strategy Times in the top

3

SMOTE + ENN
KMSSMOTE + NCR
KMSSMOTE + CNN
SMOTE + 0SS
SMOTE + NCR
ADASYN +TL
ADASYN + ENN
BSMOTE + CNN
SVMSMOTE + TL
KMSSMOTE + TL

—
=~

WG W W W W W s T

As can be seen, only SMOTE+ENN stands out against the rest of the strategy. This fits in with
the results obtained with the Kohonen maps errors where this strategy was considered many times
as one of the best.

Finally, we have trained an MLP using a grid search strategy for each of the datasets that have
better metrics in the previous Tables. Based on these results we just pretend to demonstrate that
metrics with synthetic datasets perform accurately and do not overfit. In the following Table, we
show the accuracy metrics in training, validation, and testing for the best-balancing strategies in each
dataset. Results show average values and standard deviation after applying k-fold validation.

Table 17. Trained MLPs after applying the best-balancing strategy for each dataset.

Dataset Training Validation Test
Bank loans 90.4% + 1.8% 86.2% +2.5% 82.7%
Phonemes 81.3% = 5% 80.6% + 4.5% 78%
Breast cancer 97.3% + 0.8% 89.0% + 6.0% 87.3%
Credit frauds 99.7% + 0.2% 99.6% + 0.3% 99.8%
Oil spills 93.9% +0.8% 93.6% +0.7% 93.4%
Microcalcificatio 93.6% = 0.7% 93.4%
s 93.9% + 0.8%

As can be seen, for all the datasets the MLPs obtain good results as they accomplish the bias-
variance trade-off, (Belkin et al. 2019). In terms of bias, the values of the metrics are good enough. If
we look at the variance, differences between train, validation and test are low. If we look at the
standard deviations, we can conclude that all the models are very stable. The experiments in this
table, let us know that synthetic data is good enough as MLPs are obtaining good metrics.

5. Conclusions and Future Works

This paper proposes a methodology using Kohonen maps to evaluate various imbalanced data
strategies. We applied a combination of five over-sampling and undersampling techniques to create
synthetic data, resulting in a total of 25 different methods. Initially, we assessed the performance of
these strategies using two SOM metrics: topological and quantization errors. These metrics, derived
from training and applying the strategies to six different datasets, indicated which strategies
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performed better. Given the minimal differences between these errors, we introduced a new metric
based on the topological properties of Kohonen maps, applied to the best results obtained so far. This
metric was applied to all strategies across the six datasets, and its potential was demonstrated by
training six MLPs (one for each dataset) using the best-performing imbalanced strategies according
to our metric.

The main limitation of this study is the variation in the number of imbalanced instances between
classes within the datasets. Additionally, the datasets differ in total instances and the number of
features per individual.

In future work, we aim to apply this methodology to real-world cases where data imbalance is
due to scarcity. By generating synthetic data to balance these datasets, we hope to improve the
performance of classifiers that previously struggled with imbalanced data.
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