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Abstract. Given that Machine Learning algorithms are data‐driven, the way datasets are collected 

significantly impacts their performance. Data must be gathered methodically to avoid missing values 

or class imbalance, but sometimes the inherent nature of the data tends to lead to such imbalances. 

An unbalanced dataset can lead to biased models whose predictions are influenced by the majority 

class. To avoid this problem, balancing strategies can be used to equalize the instances of each class. 

In this paper, we propose a methodology to evaluate which balancing strategies, depending on the 

dataset, yield the best results. We leverage Self‐Organizing Maps, an unsupervised neural network 

model, to identify which strategy generates the most suitable balanced synthetic data. By considering 

their topological structure, we also propose a metric that uses the trained map to measure changes 

between the original dataset and the same dataset after applying the different strategies. 

Keywords: unbalanced datasets; balancing strategies; artificial intelligence; machine learning; self‐

organizing map 

 

1. Introduction 

The performance of Machine Learning (ML) models is determined by the quantity and quality 

of  the  data  used  for  training. While  data  availability  increases  annually,  the  quality  does  not 

necessarily follow. It is essential to curate the data for use by the models, transforming it from raw 

data into a format and quality that is usable by the algorithms. This process can take up to 70% of the 

whole pipeline, (Pérez et al. 2015). 

The  importance of  this step  requires standardized data collection methods and careful quality 

control, which are often not adequately met. This leads to problems in the dataset as missing values, 

differences  in data strings, or unbalancing of features of the class. The  latter produces  learning bias 

toward the majority class that can be avoided by using balancing strategies, (Dong, Gong, and Zhu 

2018). 

There are two possible causes for datasets being imbalanced: intrinsic or extrinsic, (Johnson and 

Khoshgoftaar 2019). The former is due to the nature of the instances, for example when collecting 

data for cancer diagnosis, normally, most of the medical tests correspond to healthy people. The latter 

is produced during the collecting process due to the lack of a standard method, storage problems, or 

similar situations. 

A commonly used method for handling highly imbalanced datasets is resampling. This involves 

either reducing the number of samples in the majority class (under‐sampling) and/or increasing the 

number of samples in the minority class (over‐sampling) with synthetic data. Usually, both types of 

strategies are combined in what are known as hybrid balancing strategies. Given the high number of 

under‐sampling and over‐sampling strategies available, selecting  the most effective method  for a 

specific problem can be a complex and  time‐consuming  task. The  imbalance  in class distribution 

within datasets poses a significant challenge, often  leading  to biased models and poor predictive 
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performance.  Therefore,  it  is  crucial  to  have  a  reliable  evaluation method  to  determine which 

combination of techniques yields the best results. The motivation of this paper is to address this need 

by offering a robust strategy to facilitate the decision‐making process.   

The main contribution is a methodological approach that uses an unsupervised neural network 

model known as Self‐Organizing Maps (SOM) or Kohonen maps as a way to systematically evaluate 

various combinations of under‐sampling and over‐sampling strategies and thereby determine by a 

new metric which  techniques offer  the best balance and performance  for a given dataset. SOM  is 

based on biological studies of the cerebral cortex and was introduced in 1982 by (Kohonen 1982) and 

(Kohonen 1998). They are an Artificial Neural Network with a non‐supervised  training algorithm 

that  is  particularly  effective  for  visualizing  high‐dimensional  performing  non‐linear  mapping 

between high‐dimensional patterns and a discrete bi‐dimensional  representation, called a  feature 

map, without external guidelines. For this reason, SOM has been widely used as a method of pattern 

recognition,  dimensionality  reduction,  data  visualization,  and,  especially,  clustering  since 

unsupervised  training guarantees bias‐free results. This paper presents a novel approach  that not 

only introduces and applies a methodology to assess the optimal balancing strategy based on each 

datasetʹs  characteristics  but  also  introduces  a  unique metric  to  select  the  optimal  strategy. We 

consider this metric a novelty because it benefits from the topological nature of SOM to evaluate the 

balancing strategies. 

The rest of the paper is divided into the following sections. Section 2 compiles a set of related 

works with similar approaches. Section 3 describes the datasets and the methods used during the 

study. Section 4 collects  the  results of  the evaluation and  its discussion. Section 5 provides some 

conclusions and future works. 

2. Related Work 

In this paper, we are comparing different balancing strategies using Kohonen maps as a method 

to evaluate how good the synthetic data is compared to the original data. Similar to this, we found 

papers proposing new imbalanced strategies and others that are aimed at evaluating the creation of 

synthetic data with different strategies. 

In  the  first  group, we  have  the  following works.  In  (Chawla  et  al.  2003),  two methods  are 

presented, a new version of SMOTE and an original one called SMOTEBoost and evaluated using 

ROC Curve, Precision, and Recall. A strategy using the Neighbor Cleaning Rule (NCR) and SMOTE 

is used  in  (Junsomboon and Phienthrakul 2017) to  imbalance medical data and  then,  is evaluated 

using  K‐Nearest  Neighbor  (KNN),  Sequential Minimal  Optimization  (SMO)  and  Naïve  Bayes. 

Another hybrid method is presented in (Choirunnisa and Lianto 2018), in this case, NCL is used for 

over‐sampling,  Adaptive  Semiunsupervised  Weighted  Oversampling  (ASUWO)  is  applied  for 

undersampling, and results are evaluated with Decision Tree and Random Forest. 

Works aimed to evaluate imbalanced strategies are summarized following. In (Raeder, Forman, 

and Chawla 2012), the authors question how the evaluation of  imbalanced strategies  is done. The 

questions explore how varying sample sizes, degrees of class imbalance, validation strategies, and 

evaluation measures impact the effectiveness of learning from imbalanced data and the conclusions 

drawn about classifier performance. (Wainer and Franceschinell 2018) evaluates 20 strategies over a 

total of 58 datasets using a Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel, 

Random Forest, and Gradient Boosting Machines using six different metrics. The conclusions suggest 

that  each  strategyʹs  effectiveness  varies  considerably  depending  on  the metric  applied. Another 

evaluation is found in (Costa et al. 2020) where a meta‐learning approach is used to evaluate nine 

imbalanced strategies tested in 163 datasets using SVM. The paper concludes that the most suitable 

strategy depends on  the  features of  the dataset. For  example, SMOTE‐TL works better  for more 

challenging  classification  tasks  and high‐dimensional datasets.  SVM  is  also used  to  evaluate  ten 

imbalanced strategies  for  the  task of  text classification  in  three benchmarks,    (Sun, Lim, and Liu 

2009). The paper identifies SMOTE as the best resampling method for imbalanced text; although it 

performs slightly better  in some cases,  the differences are minor and  inconsistent across datasets. 
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Overall, optimal thresholding proves to have more influence on the performance of the balancing 

strategies. Also, (Goel et al. 2013) evaluate five different strategies obtaining five metrics by using 

SVM. In this case, the conclusions say that depending on the performance metric the best sampling 

method  changes.  Then,  (Shamsudin  et  al.  2020)  evaluate  the  combinations  of  Random 

Undersampling  Strategy  (RUS) with  SMOTE, ADASYN,  Borderline,  SVM‐SMOTE  and  Random 

Oversampling Strategy (ROS) using a Decision Tree. Results are compared with existing literature 

concluding that hybrid strategies are better than simpler ones, the problem is that the study is only 

made with one dataset. A different evaluation  is made  in (Gosain and Sardana 2017) where over‐

sampling  strategies  SMOTE  BSMOTE  ADASYN  SLSMOTE  are  applied  to  seven  datasets  and 

evaluated with SVM, KNN and Naïve Bayes. In this case, Safe Level SMOTE outperforms the other 

methods but again depending on  the dataset  and  the metric other  strategies  can perform better. 

Another interesting work is (Kraiem, Sánchez‐Hernández, and Moreno‐García 2021) that examines 

the effectiveness of seven resampling methods, to address class imbalance in 40 datasets. The authors 

analyze how data characteristics, such as the imbalance ratio, sample size, number of attributes, and 

class  overlap,  impact  the  performance  of  these  resampling  strategies  in  improving  classification 

outcomes using Random Forest. Findings state  that SMOTE‐based methods generally yield better 

results,  particularly  in  high‐imbalance  situations.    In  the  case  of(Wongvorachan, He,  and  Bulut 

2023), the paper compares three resampling methods on an educational dataset using the Random 

Forest classifier, finding that Random Oversampling (ROS) performs best for moderately imbalanced 

data, while the hybrid method excels with extreme imbalances. In (Mujahid et al. 2024) an evaluation 

of five oversampling techniques is performed. It uses two highly imbalanced Twitter datasets and 

compares the performance of these methods across six classifiers. Results indicate that ADASYN and 

SMOTE  provide  the  best  accuracy  and  recall,  particularly  with  SVM,  but  no  single  method 

universally outperforms the others across all models and metrics. Finally, (Santoso et al. 2017) review 

synthetic oversampling methods  for addressing  imbalanced data,  emphasizing  that  each method 

generates unique synthetic data characteristics and must be chosen based on specific imbalance levels 

and patterns. The review concludes that no single method is universally effective for managing class 

imbalance. 

As can be seen, there are other evaluations, but as far as we know this is the first one that is made 

with SOMs and provides a metric based on its features. The use of Kohonen maps allows the creation 

of a topological map from where we obtain our metric to measure the performance of different hybrid 

strategies. The metric  is based on comparing how similar are  the synthetic data compared  to  the 

original  data.  This made  our method  unique  as  the  evaluation  of  the  strategies  is  based  on  a 

comparison with the original data and not on how the balanced dataset performs on an ML model as 

previous works do. We also should highlight that the approach tries to evaluate which is the best 

strategy for a particular dataset which as can be seen regarding the related works, strongly depends 

on different situations. It is therefore difficult for works of this type to categorically state that one 

strategy is the best of all. 

3. Materials and Methods   

This work is aimed at obtaining a methodology based on SOM so that the best‐balancing strategy 

could  be  chosen  depending  on  the  use  case.  For  this  purpose, we  have  designed  the  following 

workflow. First, we  choose  an unbalanced dataset  and  apply oversampling  and under‐sampling 

strategies for data‐balancing. Then, we train a Kohonen map with the original dataset and use SOM 

to classify the synthetic instances. Even though SOM is not normally used as a classifier, works such 

as  (Winston et al. 2020) benefit  from  these capabilities.  If  synthetic data has been well created,  it 

should be classified with low errors (instances that are close in a Euclidean space) in the map trained 

with original data. As a final way to measure the performance of using the Kohonen map, we use a 

metric proposed by us. Figure 1 shows how the workflow has been implemented.   
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Figure 1. Workflow of the proposed method. 

Apart from that workflow to choose the performance of the best balancing strategies, we have 

used Multilayer Perceptrons (MLPs) as a way to confirm that the dataset has been balanced accurately 

to perform good binary classifications. 

3.1. Unbalanced Datasets 

The datasets used in this research are described below. In total, we are using 6 datasets: cancer 

breast, oil spill, German credits, phonemes, microcalcifications and credit card fraud. 

First, we find the Haberman dataset for breast classification1. This dataset was compiled by the 

University of Chicagoʹs Billings Hospital from 1958 to 1970. It comprises a binary classification for 

patients that died within 5 years or survived 5 years or longer. This classification uses 3 numerical 

features: age, year of surgery, and the number of positive axillary nodes detected. In total, it has 307 

instances. 

The  second  dataset was  created  from  oil  spills  in  satellite  radar  images2.  This  dataset was 

presented by (Kubat, Holte, and Matwin 1998) and compiles satellite images of the ocean, some of 

them containing oil spills and some not. Images were preprocessed obtaining a set of 49 features that 

describe the images: area, intensity, or sharpness. The total amount of images is 937. 

The third case is called the German credits dataset3. This dataset comprises a set of clients and 

some financial and banking features to predict if the client will pay back or not a loan or credit. This 

prediction will  be  based  on  7  integers  and  13  categorical  variables. These  features  could  be  the 

duration in months, amount, present residence, or job. The information of 1,000 clients was compiled. 

Fourth, is the phonemes dataset4. This dataset is aimed to distinguish between nasal and oral 

sounds. This is performed using a set of 5 features which characterize the amplitude of the first five 

harmonics normalized by the total energy. In total, an amount of 5,427 examples were compiled. 

As a fifth use case, we have a dataset of microcalcifications5. This dataset is used for breast cancer 

detection from radiological scans. Specifically, it focuses on identifying clusters of microcalcification, 

which appear bright on mammograms. The dataset was curated by scanning the images, segmenting 

them  into  candidate  objects,  and  employing  computer  vision  techniques  to  characterize  each 

candidate object by using six features. 

 
1  https://archive.ics.uci.edu/ml/datasets/habermanʹs+survival 

2  https://www.kaggle.com/datasets/ashrafkhan94/oil‐spill 

3  https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data) 

4  https://datahub.io/machine‐learning/phoneme 

5  https://www.kaggle.com/datasets/sudhanshu2198/microcalcification‐classification 
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Finally, the credit card fraud detection dataset6. The dataset comprises transactions conducted 

by European  cardholders using  credit cards  in September 2013.  It only  includes numerical  input 

variables  resulting  from  a  PCA  transformation.  28  features  represent  the  principal  components 

derived from PCA, while the 2 of them remain unaltered by PCA transformation. 

Table 1. Dataset summaries. 

Dataset  Number of features  Missing values  Classification type  Imbalance 

Breast cancer  3  0  Binary numerical  225/81 

Oil spills  49  0  Binary numerical  896/41 

German credits  20  0  Binary numerical  700/300 

Phonemes  5  0  Binary numerical  3,818/1,586 

Microcalcifications  6  0  Binary numerical  10,923/260 

Credit card fraud  6  0  Binary numerical  284,315/492 

3.2. Balancing Strategies 

In this paper, we provide an evaluation of strategies to avoid the problem of unbalanced classes 

in several datasets. There are many types of imbalanced strategies but we have opted for hybrids as 

they  have  been  shown  to  create  better  data  distributions  and  improve  the  performance  in 

classification problems, (Liu, Liang, and Ni 2011). Hybrid strategies first create synthetic data from 

the minority class and then, remove instances from both distributions. This not only allows solving 

the problem of unbalanced classes but also removes noisy instances placed on the wrong side of the 

cluster  frontier. Following, we define all  the over and under‐sampling strategies  that we propose 

whose combinations will lead to the hybrid strategies we are evaluating in the paper. 

Over‐sampling strategies. This type of  imbalanced strategy creates synthetic  instances of the 

minority class to balance the number of instances per class. 

Synthetic Minority Oversampling Technique (SMOTE). Introduced in (Chawla et al. 2002), its main 

characteristic  is  that  it  creates data  instances without  replacing  the  original  one.  SMOTE  selects 

instances of a feature space, drawing a line between them. Then, it uses this line to obtain a point 

along it which is the new instance. 

Adaptive Synthetic Sampling (ADASYN). This method presented by (He et al. 2008) uses a density 

distribution to automatically determine the number of synthetic samples required for each minority 

data instance. This density distribution serves as a measure of the weight distribution among various 

minority class examples, reflecting their respective  learning difficulties. Consequently, the dataset 

after applying the method not only achieves a balanced representation of the data distribution based 

on  the  desired  balance  level  but  also  focuses  the  learning  algorithmʹs  attention  on  challenging 

examples. 

Borderline SMOTE. As described in (Han, Wang, and Mao 2005), the process involves identifying 

the borderline examples within  the minority class. These borderline  instances are  then utilized  to 

generate new synthetic examples. These synthesized  instances are strategically positioned around 

the borderline examples of the minority class. 

SVM SMOTE. (Nguyen, Cooper, and Kamei 2009) proposed this method that encompasses the 

following three stages. Firstly, it involves over‐sampling the minority class to address data imbalance 

effectively. Secondly, the sampling strategy is focused primarily on critical regions, particularly the 

boundary area between classes. Thirdly, it applies extrapolation to extend the minority class region, 

especially in areas where majority class instances are scarce. 

K‐Means SMOTE. The approach presented in (Last, Douzas, and Bacao 2017) involves three main 

steps: clustering, filtering, and over‐sampling. Firstly, in the clustering step, the input space is divided 

 
6  https://www.kaggle.com/datasets/mlg‐ulb/creditcardfraud 
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into k groups using K‐Means. Next,  in  the  filtering step, clusters with a significant proportion of 

minority class samples are retained for oversampling. Subsequently, the number of synthetic samples 

to generate  is distributed, with more samples assigned  to clusters containing sparsely distributed 

minority samples. Finally, in the over‐sampling step, SMOTE is applied within each selected cluster 

to accomplish the desired ratio between minority and majority instances. 

Under‐sampling strategies. These strategies involve reducing the number of instances from the 

majority class to balance the number of instances across classes. 

Tomek Links (TL). Regarding (Tomek 1976), this technique removes boundary instances as they 

have more possibilities  to be misclassified. This  is based on  the definition of  the Tomek‐link pair 

which occurs when two  instances do not belong to the same class. Then, there is no other sample 

whose  distance  to  the  first  instances  is  lower  than  the  distance  between  the  two  individuals. 

Summarizing,  if  instances  are  creating  a  Tomek‐link  pair  there  are more  possibilities  of  having 

superfluous data along the distribution. 

Edited Nearest Neighbor  (ENN).  Introduced  by  (Wilson  1972),  it  aims  at  refining  datasets  by 

removing samples from the majority class that  lie close to the decision boundary. If the  label of a 

majority class instance and the labels of applying K‐Nearest Neighbors differ, then both the instance 

and its nearest neighbors are removed from the dataset. 

Condensed Nearest Neighbor Rule (CNNR). This is the first selection algorithm as stated in (Hart 

1968). It employs two storage areas called Condensing Set (CS) and Training Set (TS) respectively. In 

the beginning, TS includes the complete training set, while CS remains empty. To initiate the process, 

an instance  is randomly selected from TS and moved to CS. Subsequently, each instance 𝑥 ∈ TS is 
compared to those currently stored in CS. 

Neighborhood Cleaning Rule (NCL). This algorithm depicted in (Laurikkala 2001) has two stages. 

The process begins with the application of the Edited Nearest Neighbor algorithm to undersample 

instances not belonging to the target class. Subsequently, a second step refines the neighbourhood of 

the remaining examples. Here, the KNN algorithm is applied, removing an example if its neighbours 

do not belong to the target class and if the exampleʹs class exceeds half of the smallest class within 

the target class.   

One Side Selection (OSS). As described in (Kubat, Matwin, and others 1997) the method reduces 

the number of misclassified instances by creating a subset with the training set. Following this, the 

method removes misclassified examples involved in Tomek links. This process discards noisy and 

borderline examples, resulting in the formation of a new training set. 

Self‐Organizing Maps. SOM which in this work is referred to as Kohonen maps establishes a 

relation  from  a higher‐dimensional  input  space  to  a  lower‐dimensional map  space using  a  two‐

layered fully connected architecture. The input layer comprises a linear array with the same number 

of neurons as the dimension of the input data vector ሺnሻ. The output layer, known as the Kohonen 

layer, consists of neurons, each with an associated weight vector of the same dimension as the input 

data ሺnሻ and a position in a rectangular grid of arbitrary size ሺkሻ. These weight vectors are organized 

in an n * k * k matrix known as the weight matrix. Self‐organization implies that a vector from the 

input dataset space ሺXሻ is presented to the network, and the node with the closest weight vector Wj 
is identified as the winning neuron or best matching unit (BMU) using a simple discriminant function 

(Euclidean  distance)  and  a  ʹwinner‐takes‐allʹ  mechanism  (competition).  Subsequently,  the 

unsupervised  training algorithm adjusts  the winnerʹs weight vector based on  its similarity  to  the 

input vector. This presentation of vectors from the input space and BMU learning continues until a 

specified number of presentations ሺPሻ is reached or values of the selected metrics remain steady. The 

iterative  process  yields  a  trained  (self‐organized) Kohonen map,  represented  by  a  given weight 

matrix. Each node in the Kohonen layer corresponds to a specific pattern learned during training and 

can recognize all elements belonging to that class. The self‐organizing training process preserves the 

topological properties of the input space, allowing neighbouring nodes to recognize patterns that are 

closer in the n‐dimensional space, meaning they have similar characteristics. The map generated by 

this  trained  SOM  can  then  be  used  to  classify  additional  input  data  through  a  process  called 
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ʺmapping.ʺ Unlike training, this process does not alter the weight matrix. New elements from the 

input space are placed where they are recognized by an existing Best Matching Unit, indicating they 

are similar (belong to the same class) as those previously recognized by that BMU. 

Multilayer perceptron (MLP). This model consists of sequential layers composed of neurons, 

with each layer connected to adjacent layers. It requires a minimum of three layers: input, hidden, 

and output. Input data is introduced through the input layer, undergoes processing in the hidden 

layer,  and  is  classified  by  the  output  layer.  MLPs  optimize  parameters  through  a  two‐stage 

backpropagation training process: forward and backward, as described by (Rumelhart, Hinton, and 

Williams 1986). 

4. Results 

Following, we describe all the results obtained during the application of our methodology. The 

results are organized step by step adding some values that helped us during the process and have 

been used as support material for decision making. 

First  of  all,  we  need  to  apply  all  the  strategies  to  the  unbalanced  datasets  which  are  25 

combinations in total (5 over‐sampling strategies for 5 under‐sampling strategies). Then, for each of 

these combinations, we are training a Kohonen map. For this purpose, we are using a Python library 

called GEMA developed by (García‐Tejedor and Nogales 2022). All the maps have been trained using 

a grid search strategy which finds the optimal value of the hyperparameters by aggregating various 

ranges of possibilities,  (Bergstra and Bengio 2012). To avoid problems caused by random weights 

initialization, each neuron  in the Kohonen  layer takes  its weights from one of the input instances. 

Anyway, based on  the main  function of SOM which according  to  (Khalilia and Popescu 2014)  is 

topology preservation of the input data, overall topology tends to remain consistent across instances. 

In Table 2, we compile all the hyperparameters and values used for this stage. 

Table 2. Grid search values to train Kohonen maps. 

Hyperparameter  Values 

Side map  [5 – 25] 

Epochs 
500, 1000, 2500, 5000, 7500, 

10000 

Learning rate  0.01, 0.05, 0.1, 0.2, 0.3 

To  find  the optimal Kohonen map, we use  the quantization and  the  topographic  error. The 

quantization error represents the mean distance between each data vector and its BMU. Calculated 

for the winning neurons, this metric is independent of the number of ʺemptyʺ neurons and the size 

of the map, serving as a measure of map resolution. This error is defined in Equation 1. 

𝑄𝐸 ൌ   
ଵ

ே
 ∑ ฮ𝑋௜ െ  𝐵𝑀𝑈ሺ௜ሻฮ

ே
௜ୀଵ  (1) 

As  is denoted  above  𝑁  is  the number of  instances  in  the  training datasets and  𝑋௜   an  input 
vector. 

Meanwhile, the topographic error indicates the ratio of all data vectors for which the first and 

second BMUs are not adjacent units, providing insight into topology preservation. Equation 2 defines 

the topographic error.   

𝑇𝐸 ൌ   
ଵ

ே
 ∑ 𝑡ሺ𝑥௜ሻ

ே
௜ୀଵ  (2) 
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where  𝑡ሺ𝑥௜ሻ  equals 0 if the BMU and the second‐best matching units are adjacent, otherwise its value 

is 1; and 𝑁  is the total number of instances. 

In  the  following  Tables  3–8,  we  show  for  each  selected  dataset  both  metrics  for  all  the 

combinations of imbalanced strategies applied to each dataset using GEMA. 

Table 3. Kohonen Map error for bank loans dataset. 

 
Quantization 

error 

Topographic 

error 

SMOTE 

Tomek Links  0.926  0.176 

Edited Nearest   

Neighbours 
0.916  0.174 

Condensed 

Nearest 

Neighbours 

0.912  0.172 

Neighbourhood   

Cleaning Rule 
0.914  0.179 

One Side Selection  0.920  0.190 

ADASYN 

Tomek Links  0.923  0.177 

Edited Nearest   

Neighbours 
0.924  0.183 

Condensed 

Nearest 

Neighbours 

0.912  0.172 

Neighbourhood   

Cleaning Rule 
0.914  0.179 

One Side Selection  0.920  0.190 

Borderline 

SMOTE 

Tomek Links  0.926  0.175 

Edited Nearest   

Neighbours 
0.915  0.167 

Condensed 

Nearest 

Neighbours 

0.919  0.163 

Neighbourhood   

Cleaning Rule 
0.923  0.175 

One Side Selection  0.924  0.170 

SVM 

SMOTE 

Tomek Links  0.954  0.175 

Edited Nearest 

 Neighbours 
0.974  0.200 

Condensed 

Nearest 

Neighbours 

0.968  0.170 
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Neighbourhood   

Cleaning Rule 
0.960  0.184 

One Side Selection  0.978  0.170 

K‐Means 

SMOTE 

Tomek Links  0.940  0.163 

Edited Nearest 

Neighbours 
0.933  0.174 

Condensed 

Nearest 

Neighbours 

0.936  0.163 

Neighbourhood 

Cleaning Rule 
0.964  0.171 

One Side Selection  0.939  0.162 

Table 4. Kohonen Map error for phonemes dataset. 

 
Quantization 

error 

Topographic 

error 

SMOTE 

Tomek Links  0.143  0.226 

Edited Nearest   

Neighbours 
0.142  0.215 

Condensed 

Nearest 

Neighbours 

0.143  0.216 

Neighbourhood 

Cleaning Rule 
0.143  0.217 

One Side Selection  0.145  0.221 

ADASYN 

Tomek Links  0.142  0.212 

Edited Nearest   

Neighbours 
0.141  0.207 

Condensed 

Nearest 

Neighbours 

0.143  0.216 

Neighbourhood 

Cleaning Rule 
0.143  0.217 

One Side Selection  0.145  0.221 

Borderline 

SMOTE 

Tomek Links  0.145  0.206 

Edited Nearest   

Neighbours 
0.143  0.213 
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Condensed 

Nearest 

Neighbours 

0.144  0.206 

Neighbourhood 

Cleaning Rule 
0.141  0.208 

One Side Selection  0.146  0.219 

SVM 

SMOTE 

Tomek Links  0.145  0.217 

Edited Nearest   

Neighbours 
0.143  0.211 

Condensed 

Nearest 

Neighbours 

0.145  0.215 

Neighbourhood 

Cleaning Rule 
0.145  0.220 

One Side Selection  0.146  0.215 

K‐Means 

SMOTE 

Tomek Links  0.165  0.240 

Edited Nearest   

Neighbours 
0.150  0.248 

Condensed 

Nearest 

Neighbours 

0.151  0.246 

Neighbourhood 

Cleaning Rule 
0.157  0.239 

One Side Selection  0.218  0.152 

Table 5. Kohonen Map error for cancer breast dataset. 

 
Quantization 

error 

Topographic 

error 

SMOTE 

Tomek Links  0.081  0.118 

Edited Nearest 

Neighbours 
0.076  0.113 

Condensed 

Nearest 

Neighbours 

0.080  0.163 

Neighbourhood 

Cleaning Rule 
0.080  0.128 

One Side 

Selection 
0.076  0.105 

ADASYN  Tomek Links  0.081  0.114 
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Edited Nearest 

Neighbours 
0.077  0.118 

Condensed 

Nearest 

Neighbours 

0.080  0.086 

Neighbourhood 

Cleaning Rule 
0.080  0.128 

One Side 

Selection 
0.076  0.105 

Borderline 

SMOTE 

Tomek Links  0.079  0.126 

Edited Nearest 

Neighbours 
0.081  0.117 

Condensed 

Nearest 

Neighbours 

0.078  0.120 

Neighbourhood 

Cleaning Rule 
0.077  0.134 

One Side 

Selection 
0.085  0.121 

SVM 

SMOTE 

Tomek Links  0.100  0.121 

Edited Nearest 

Neighbours 
0.097  0.128 

Condensed 

Nearest 

Neighbours 

0.083  0.109 

Neighbourhood 

Cleaning Rule 
0.092  0.116 

One Side 

Selection 
0.097  0.102 

K‐Means 

SMOTE 

Tomek Links  0.084  0.118 

Edited Nearest 

Neighbours 
0.140  0.125 

Condensed 

Nearest 

Neighbours 

0.094  0.106 

Neighbourhood 

Cleaning Rule 
0.095  0.138 

One Side 

Selection 
0.079  0.103 
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Table 6. Kohonen Map error for credit frauds dataset. 

 
Quantization 

error 

Topographic 

error 

SMOTE 

Tomek Links  0.406  0.074 

Edited Nearest 

Neighbours 
0.407  0.074 

Condensed 

Nearest 

Neighbours 

0.408  0.075 

Neighbourhood 

Cleaning Rule 
0.407  0.073 

One Side 

Selection 
0.405  0.075 

ADASYN 

Tomek Links  0.221  0.156 

Edited Nearest 

Neighbours 
0.221  0.158 

Condensed 

Nearest 

Neighbours 

0.225  0.157 

Neighbourhood 

Cleaning Rule 
0.221  0.157 

One Side 

Selection 
0.223  0.158 

Borderline 

SMOTE 

Tomek Links  0.243  0.144 

Edited Nearest 

Neighbours 
0.242  0.149 

Condensed 

Nearest 

Neighbours 

0.243  0.145 

Neighbourhood 

Cleaning Rule 
0.242  0.148 

One Side 

Selection 
0.243  0.149 

SVM 

SMOTE 

Tomek Links  0.282  0.149 

Edited Nearest 

Neighbours 
0.292  0.149 

Condensed 

Nearest 

Neighbours 

0.277  0.148 

Neighbourhood 

Cleaning Rule 
0.269  0.149 
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One Side 

Selection 
0.289  0.156 

K‐Means 

SMOTE 

Tomek Links  0.313  0.230 

Edited Nearest 

Neighbours 
0.295  0.133 

Condensed 

Nearest 

Neighbours 

0.231  0.174 

Neighbourhood 

Cleaning Rule 
0.239  0.112 

One Side 

Selection 
0.196  0.152 

Table 7. Kohonen Map error for oil spills dataset. 

  Quantization 

error 

Topographic 

error 

SMOTE 

Tomek Links  0.563  0.112 

Edited Nearest   

Neighbours 
0.566  0.114 

Condensed 

Nearest 

Neighbours 

0.566  0.119 

Neighbourhood   

Cleaning Rule 
0.556  0.116 

One Side Selection  0.555  0.120 

ADASYN 

Tomek Links  0.529  0.184 

Edited Nearest   

Neighbours 
0.528  0.192 

Condensed 

Nearest 

Neighbours 

0.541  0.161 

Neighbourhood   

Cleaning Rule 
0.530  0.175 

One Side Selection  0.538  0.157 

Borderline 

SMOTE 

Tomek Links  0.554  0.179 

Edited Nearest   

Neighbours 
0.555  0.178 

Condensed 

Nearest 

Neighbours 

0.561  0.171 
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Neighbourhood   

Cleaning Rule 
0.556  0.177 

One Side Selection  0.558  0.174 

SVM 

SMOTE 

Tomek Links  0.579  0.145 

Edited Nearest   

Neighbours 
0.601  0.102 

Condensed 

Nearest 

Neighbours 

0.592  0.09 

Neighbourhood   

Cleaning Rule 
0.597  0.105 

One Side Selection  0.593  0.114 

K‐Means 

SMOTE 

Tomek Links  0.537  0.154 

Edited Nearest 

 Neighbours 
0.513  0.146 

Condensed 

Nearest 

Neighbours 

0.538  0.138 

Neighbourhood   

Cleaning Rule 
0.525  0.133 

One Side Selection  0.538  0.145 

Table 8. Kohonen Map error for microcalcifications dataset. 

 
Quantization 

error 

Topographic 

error 

SMOTE 

Tomek Links  0.095  0.208 

Edited Nearest 

Neighbours 
0.096  0.213 

Condensed 

Nearest 

Neighbours 

0.092  0.202 

Neighbourhood 

Cleaning Rule 
0.096  0.218 

One Side 

Selection 
0.093  0.205 

ADASYN 

Tomek Links  0.073  0.194 

Edited Nearest 

Neighbours 
0.075  0.203 
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Condensed 

Nearest 

Neighbours 

0.076  0.202 

Neighbourhood 

Cleaning Rule 
0.075  0.199 

One Side 

Selection 
0.073  0.196 

Borderline 

SMOTE 

Tomek Links  0.078  0.252 

Edited Nearest 

Neighbours 
0.077  0.244 

Condensed 

Nearest 

Neighbours 

0.077  0.248 

Neighbourhood 

Cleaning Rule 
0.077  0.245 

One Side 

Selection 
0.078  0.243 

SVM 

SMOTE 

Tomek Links  0.088  0.107 

Edited Nearest 

Neighbours 
0.092  0.101 

Condensed 

Nearest 

Neighbours 

0.093  0.098 

Neighbourhood 

Cleaning Rule 
0.088  0.108 

One Side 

Selection 
0.091  0.109 

K‐Means 

SMOTE 

Tomek Links  0.193  0.056 

Edited Nearest 

Neighbours 
0.154  0.177 

Condensed 

Nearest 

Neighbours 

0.194  0.057 

Neighbourhood 

Cleaning Rule 
0.187  0.108 

One Side 

Selection 
0.145  0.172 

In the tables above, the top 5 strategies have been bolded. These strategies are considered the 

best as they combine lower values for both quantization and topological errors. Besides, the best one 

has been highlighted. As we can see, the best strategies change depending on the library but in some 

datasets, a few of the top strategies are the same and even the best one matches. 
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In Table 3, SMOTE combined with ENN, CNN and NCR and ADASYN with CNN and NCR are 

in  the  top  5  for  both  strategies.  In  Table  4, we  found  again ADASYN  plus CNN  and  TL.  The 

combination of Borderline SMOTE plus TL, and CNN are the other highlighted strategies. Regarding 

Table 5, we have SMOTE with ENN and OSS, ADASYN with CNN and OSS and K‐Means SMOTE 

with OSS. In Table 6, we can find the following strategies in both tops: ADAYSN combined with TL, 

ENN or NCR and K‐Means SMOTE with OSS. Then, we have Table 7 where K‐Means SMOTE with 

ENN is at the top and the best. Then, K‐Means SMOTE with CNN, NCR and OSS and ADASYN with 

NCR are also on the top. Finally, we have Table 8 with SVM SMOTE combined with the five other 

strategies. As can be seen, the best strategies are very distributed with only two of them being three 

times on the top: ADASYN plus NCR and K‐Means SMOTE with OSS. 

As the differences in the error metrics between different strategies are very low in most of the 

cases, we can conclude that errors are intuitive but not conclusive. Based on that, we proposed a new 

metric using the topology provided by the Kohonen maps. The idea is that neurons of the map trained 

with  the unbalanced dataset  should  recognize  similar  input vectors when mapping  the balanced 

dataset.  So,  topological  changes  from  one map  to  another  should  be  small.  For  this, we use  the 

instance of the map that we consider the best trained which are those with the lowest errors. 

To  validate  this  assumption, we use  two derived  graphical  representations  of  the Kohonen 

maps. The first uses a heatmap that indicates differences between the number of synthetic instances 

recognized by  the neurons  that belong  to  each  class.  If neurons  recognize more  instances of  the 

minority class, they are yellow‐coloured changing to blue when the neurons recognize more instances 

of the majority class. Empty neurons are left blank.   

The second map uses four colours depending on how neurons perform recognizing instances of 

the two classes in the datasets. Empty neurons are left blank, indicating they recognize no instances 

at all. Red and blue neurons recognize a percentage of instances from both the original and synthetic 

data, corresponding to the minority and majority classes, respectively. This value acts as a threshold 

that can be varied to perform different analyses, where the percentage of instances from one of the 

two classes must exceed  this  threshold  to colour  the neuron with  the corresponding class colour. 

Finally, green neurons represent a balance, recognizing instances from both classes.   

In Figure 2, we show an example for the first type of map and in Figure 3 the same for the map 

with pure  colours.  In both Figures, we  show  the map with  the  imbalanced dataset,  then  a map 

obtained after using the strategies with the lowest error (those that allegedly created the best synthetic 

data) and then, the map with the highest one (those that allegedly created the worst synthetic data). 

 

Figure 2. Heatmap for a SOM of 9 by 9 trained with the cancer breast dataset. 
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Figure 3. Pure colour map for the breast cancer dataset. 

These maps support the notion that the strategies that yield lower errors are those that generate 

synthetic data closely resembling the original class instances. This indicates that successful strategies 

create  synthetic  samples  that maintain  the  characteristics  and  distribution  of  the  original  data, 

thereby improving model performance. As can be seen, in both Figures changes from the first map 

to the second one are lower which indicates that the created instances by the balancing strategies are 

closer to the original dataset. For example, if a red or blue neuron (indicating recognition of many 

instances of one class) changes to the opposite colour, we can infer that the synthetic data is of poor 

quality. This is because the model is confusing the synthetic data to such an extent that a neuron, 

which  should primarily detect  one  class,  is now detecting many  instances of  the  opposite  class. 

Conversely, if a green neuron, which is on the borderline of being pure, turns red or blue, there is no 

immediate issue. This simply means it has recognized one additional instance of one of the classes, 

making  it a pure neuron. Similarly,  if a red or blue neuron becomes green,  it  indicates that  it has 

recognized  one  more  instance  of  the  opposite  class,  making  it  non‐pure,  which  is  also  not 

problematic. At this point, we have demonstrated that for a given use case, when a SOM trained with 

the unbalanced dataset classifies data generated by the best balancing strategies (those that produce 

maps with the lowest quantization and topological errors), the mapping process exhibits only slight 

changes. This indicates that the best balancing strategies create synthetic data that closely matches 

the original data distribution, maintaining the integrity and effectiveness of the SOMʹs classification 

capabilities.   

However, these metrics have minimum differences, so we need to obtain a way to measure the 

validity of the different balancing strategies. For this purpose, we proposed our metric based on the 

idea described above. The similarity is based on the Jaccard index introduced in (Jaccard 1912) and 

defined in the following Equation.   

𝐽ሺ𝐴,𝐵ሻ ൌ  
|஺∩஻|

|஺∪஻|
ൌ  

|஺∩஻|

|஺|ା|஻|ି|஺∩஻|
 (3) 

Where A and B are two different sets, ∣A∩B∣ is the number of elements in the intersection of sets A 

and B and ∣A∪B∣ is the number of elements in the union of both sets. The Jaccard index ranges from 

0 to 1, where 0 indicates that the two sets are disjoint (no common elements) and 1 indicates that the 

two sets are identical. 

We have adapted this index to the graphical representation of the Kohonen maps which we have 

named the Similarity Over Maps (SOM) Jaccard index. The two sets correspond to the mapping of 

the original dataset and  the mapping after applying balancing  strategies  respectively. Our  index 

results of applying the Jaccard index to red, blue and green‐coloured neurons. Then, we average the 

value giving a percentage of similarity. This metric is formalized as follows. 

𝑆𝑂𝑀௃௔௖௖௔௥ௗሺ𝐾𝑀ଵ,𝐾𝑀ଶሻ ൌ  
௃ሺ௄ெభ,௄ெమሻೃಶವା௃ሺ௄ெభ,௄ெమሻಳಽೆಶା௃ሺ௄ெభ,௄ெమሻಸೃಶಶಿ

ଷ
  (4) 
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Following, we present the values of our metric after applying the balancing strategies to the six 

proposed datasets. All this information is compiled in Tables 9–14, one for each dataset.,. The columns 

of the Tables show different percentages that correspond to the threshold that considers a neuron as 

pure (red or blue). We only show the top 3 strategies performing better with our metric 

Table 9. Dataset bank loans 40% of unbalance. 

Imbalanced 

Strategy 

Threshold=80

% 

Threshold=75

% 

Threshold=70

% 

Mean per 

strategy 

KMSSMOTE + 

CNN   

69.1%    69.8%    68.6%    69.1% ± 0.54 

SMOTE + ENN    69.7%    67.3%    68.1%    68.3% ± 1.38 

KMSSMOTE + OSS  66.5%    65.4%    65.7%    65.8% ± 0.57 

Mean total (N=25)  63.5% ± 5.50    63.3 ± 3.3 0  62.8% ± 3.05     

Table 10. Dataset phonemes 41% of unbalance. 

Imbalanced 

Strategy 

Threshold=80

% 

Threshold=75

% 

Threshold=70

% 

Mean per 

strategy 

SMOTE + ENN    76.7%    76.1%    74.9%    75.9% ± 0.81   

BSMOTE + CNN    74.5%    72.1%    73.0%    73.8% ± 1.25   

SMOTE + OSS    68.6%    66.7%    68.0%    67.7% ± 0.92   

Mean total 

(N=25) 

66.4% ± 5.49    63.1% ± 5.72    65.5% ± 6.00     

Table 11. Dataset breast cancer 47% of unbalance. 

Imbalanced 

Strategy 

Threshold=80

% 

Threshold=75

% 

Threshold=70

% 

Mean per 

strategy 

SMOTE + ENN    81.1%    71.4%    71.9%    74.8%± 4.70 

SMOTE + NCR    75.6%    71.7%    70.5%    72.6% ± 2.81 

BSMOTE + OSS    73.6%    71.7%    70.5%    71.9% ± 1.61 

Mean total 

(N=25) 

66.4% ± 6.15    63.8% ± 5.10    63.4% ± 5.30     

Table 12. Dataset fraud credits 90% of unbalance. 

Imbalanced 

Strategy 

Threshold=80

% 

Threshold=75

% 

Threshold=7

0% 

Mean per 

strategy 

KMSSMOTE + 

NCR   

71.6%    70.4%    70.7%    70.9% ± 0.61 

ADASYN + ENN    67.4%    66.5%    66.8%    66.9% ± 0.40   

SMOTE + ENN    66.9%    66.1%    65.9%    66.3% ± 0.41   

Mean total (N=25)  64.2% ± 4.70  63.8% ± 4.10  65.6% ± 3.80     
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Table 13. Dataset oil spills 91% of unbalance. 

Imbalanced 

Strategy 

Threshold=80

% 

Threshold=75

% 

Threshold=70

% 

Mean per 

strategy 

KMSSMOTE + 

NCR   

79.2%    73%    73.3%    75.1% ± 3.20 

SMOTE + ENN    74.5%    73.1%    71.5%    73.0% ± 1.46 

KMSSMOTE + 

CNN   

70.1%    68.8%    69.0%    69.6% ± 0.68 

Mean total (N=25)  66.3% ± 6.20  64.9% ± 5.40    63.8% ± 5.30     

Table 14. Dataset microcalcifications 91% of unbalance. 

Imbalanced 

Strategy 

Threshold=80%  Threshold=75%  Threshold=70%  Mean per 

strategy 

ADASYN + TL    72.5%    71.4%    71.8%    71.9% ± 0.55 

KMSSMOTE + TL    70.1%    69.4%    69.2%    69.5% ± 0.41   

SVMSMOTE + TL    69.8%    68.7%    65.3%    68.0% ± 2.46%   

Mean total (N=25)  64.4% ± 5.40  63.8% ± 5.10    63.3% ± 5.80   

As can be seen, the threshold seems  to have minimal  impact, except for the 65% case, which 

shows big differences. So, we have selected a threshold of 80% as it allows us to identify pure neurons 

more accurately. If we look at the strategies separately, we can conclude that the differences also are 

not very high, and they remain stable. The one marked as the best does not stand out too much from 

the others but let us consider it as the best. 

Now, as half of the datasets are unbalanced at around 40% and half are around 90%, we want to 

compare  the  performance  of  the  strategies  between  datasets.  Table  15  compiles  the  information 

related to the average and standard deviation of applying all the strategies. The results above show 

that the percentage of unbalanced data does not affect the quality of the synthetic dataset. 

Table 15. Comparison of all strategies applied to the different datasets. 

Dataset (Unbalanced %)  Threshold=80% 

Bank loans (40%)  63.54% ± 5.5%   

Phonemes (41%)  66.4% ± 5.49%   

Breast cancer (47%)  66.4% ± 6.15%   

Credit fraud (90%)  64.2% ± 4.7%   

Oil spills (91%)  66.3% ± 6.2%   

Microcalcifications (91%)  64.4% ± 5.4%   

To establish an additional criterion  for evaluating  the effectiveness of  the strategies, we have 

analysed the frequency with which each strategy appears in the top three rankings across Tables 9 to 

14. This approach allows us to identify which strategies consistently perform well and are therefore 

more reliable in achieving optimal results. In the following Table, we can see this top. 
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Table 16. Top 10 of strategies performing in the top 3. 

Strategy  Times in the top 

3 

SMOTE + ENN    14 

KMSSMOTE + NCR    6 

KMSSMOTE + CNN    5 

SMOTE + OSS    4 

SMOTE + NCR    3 

ADASYN + TL    3 

ADASYN + ENN    3 

BSMOTE + CNN    3 

SVMSMOTE + TL    3 

KMSSMOTE + TL  3 

As can be seen, only SMOTE+ENN stands out against the rest of the strategy. This fits in with 

the results obtained with the Kohonen maps errors where this strategy was considered many times 

as one of the best. 

Finally, we have trained an MLP using a grid search strategy for each of the datasets that have 

better metrics  in  the previous Tables. Based on  these  results we  just pretend  to demonstrate  that 

metrics with synthetic datasets perform accurately and do not overfit.  In  the  following Table, we 

show the accuracy metrics in training, validation, and testing for the best‐balancing strategies in each 

dataset. Results show average values and standard deviation after applying k‐fold validation. 

Table 17. Trained MLPs after applying the best‐balancing strategy for each dataset. 

Dataset  Training  Validation  Test 

Bank loans  90.4% ± 1.8%  86.2% ± 2.5%  82.7% 

Phonemes  81.3% ± 5%  80.6% ± 4.5%  78% 

Breast cancer  97.3% ± 0.8%  89.0% ± 6.0%  87.3% 

Credit frauds  99.7% ± 0.2%  99.6% ± 0.3%  99.8% 

Oil spills  93.9% ± 0.8%  93.6% ± 0.7%  93.4% 

Microcalcificatio

ns 
93.9% ± 0.8% 

93.6% ± 0.7%  93.4% 

 
As can be seen, for all the datasets the MLPs obtain good results as they accomplish the bias‐

variance trade‐off, (Belkin et al. 2019). In terms of bias, the values of the metrics are good enough. If 

we  look at  the variance, differences between  train, validation and  test are  low.  If we  look at  the 

standard deviations, we can conclude that all the models are very stable. The experiments  in  this 

table, let us know that synthetic data is good enough as MLPs are obtaining good metrics. 

5. Conclusions and Future Works 

This paper proposes a methodology using Kohonen maps to evaluate various imbalanced data 

strategies. We applied a combination of five over‐sampling and undersampling techniques to create 

synthetic data, resulting in a total of 25 different methods. Initially, we assessed the performance of 

these strategies using two SOM metrics: topological and quantization errors. These metrics, derived 

from  training  and  applying  the  strategies  to  six  different  datasets,  indicated  which  strategies 
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performed better. Given the minimal differences between these errors, we introduced a new metric 

based on the topological properties of Kohonen maps, applied to the best results obtained so far. This 

metric was applied to all strategies across the six datasets, and  its potential was demonstrated by 

training six MLPs (one for each dataset) using the best‐performing imbalanced strategies according 

to our metric. 

The main limitation of this study is the variation in the number of imbalanced instances between 

classes within  the datasets. Additionally,  the datasets differ  in  total  instances and  the number of 

features per individual.   

In future work, we aim to apply this methodology to real‐world cases where data imbalance is 

due  to  scarcity. By generating  synthetic data  to  balance  these datasets, we hope  to  improve  the 

performance of classifiers that previously struggled with imbalanced data. 
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