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Abstract

In Bayesian statistics the prior distributions play a key role for the inference, and there are procedures
for finding prior distributions. An important problem is that these procedures often lead to improper
prior distributions, that cannot be normalized to probability measures. Such improper prior distribu-
tions lead to technical problems in that certain calculations are only fully justified in the literature for
probability measures or perhaps for finite measures. Recently, expectation measures were introduced
as an alternative to probability measures as a foundation for a theory of uncertainty. Using expectation
theory and point processes, it is possible to give a probabilistic interpretation of an improper prior
distribution. This will provide us with a rigid formalism for calculating posterior distributions in cases
where the prior distribution is not proper without relying on approximation arguments.
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1. Introduction

In Bayesian statistics, we usually use probability measures to quantify uncertainty. These proba-
bility measures are defined as measures with total mass equal to 1. Before we do any calculations, we
need a prior distribution, so we need guidelines about how such prior distributions should be assigned
to a specific problem. A subjective Bayesian would have consistency as the only limitation on how
prior distributions are assigned. A significant problem with this approach is that it is subjective, so that
more or less any conclusion can be reached by a suitable choice of prior distribution. On the contrary,
an “objective” Bayesian would advocate for specific methods for determining prior distributions in
particular situations. Although such methods may not be objective in any absolute sense, the aim
should be that they are inter-subjective in the sense that different scientists would get the same prior
distribution if they agree that certain conditions are fulfilled.

Objective Bayesians have developed different methods for assigning prior distributions, and a
significant problem is that these methods often lead to improper prior distributions, where the prior
distributions is described by a measure that has infinite mass so that it cannot be normalized. Although
posterior distributions can often be calculated from such improper prior distributions by plugging
into a formula, the formula is not well justified in the usual probabilistic modelling of uncertainty.
Handling and interpreting improper prior distributions is a major in the Bayesian approach to statistics
[1], and this will be the main focus of the present paper.

In a recent paper, expectation theory was presented as an alternative to the Kolmogorov style
of probability theory [2]. The basic objects for describing uncertainty is s-finite measures rather than
probability measures. These measures can be interpreted as expectation measures of specific point
processes. This gives a probabilistic interpretation of expectation theory, so there is no dichotomy
between probability theory and expectation theory, but the focus is slightly different in expectation
theory. In [2], it was shortly mentioned that expectation theory allows us to give a probabilistic
interpretation for improper prior distributions and conditioning based on such measures. Here, we
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will provide a more detailed exposition on this problem. On the technical side we will generalize the
results from [2] from discrete measures to s-finite measures.

Recently, M. Albert and S. Mellick have proved that if a group is locally compact, second countable,
unimodular, non-discrete, and non-compact, then any free probability measure preserving action of
the group can be realized by an invariant point process [3,4]. Their result is closely related to the
approach taken in this paper, but we will just briefly mention of how Haar measures are relevant for
determining prior distributions. It is possible to define a monad for point processes [5]. The monad
defined in [5] is also related to the observation that the Giry monad is distributive over the multiset
monad as discussed in [6]. These results from category theory provide the underlying structure that
allows the results presented in this paper.

In order to make this paper more self-contained there will be some slight overlap between this
paper and [2], but the reader should consult [2] if the reader is interested in a more complete motivation
for basing a theory of undertainty on expectation measures rather than probability measures.

1.1. Organization of the Paper

In Section 2, we provide a brief introduction to expectation theory and related topics concerning
point processes. For a more detailed account, we refer the reader to [2], where the motivation for this
approach is explained in detail.

In Section 3, we discuss statistical models and some methods for calculating prior distributions.
There are many other ways to get prior distributions, and this is not an attempt to cover this topic. We
just provide enough background material to present some examples of statistical models with prior
distribution.

Section 4 contains the main contribution of this paper. We provide a probabilistic interpretation
of improper priors based on point processes. The interpretation allows calculation of posterior
distributions without relying on any approximation arguments.

We end the paper with a short discussion.

1.2. Terminology

A measure with a total mass of 1 is usually called a probability measure or a normalized measure.
We will deviate from this terminology and use the term unital measure for a measure with total mass 1.
The term normalized measure will only be used when a unital measure is the result of dividing a finite
measure by the total mass of the measure. We will reserve the word probability measure to situations
where the weights of a unital measure are used to quantify uncertainty, and it is known that precisely
one observation will be made and one can decide which event the observation belongs to in a system
of mutually exclusive events that cover the whole outcome space. Similarly, we will talk about an
expectation measure if our interpretation of its values are given in terms of expected values of some
random variables or if it is the expectation measure of a point process.

If a measure is used to quantify our prior knowledge about a parameter before observation we
will call it a prior distribution. Following [7] we use the term proper prior when the measure is unital,
and in other cases we say that the prior distribution improper. Note that many statisticians only use the
term improper prior when the measure has infinite total mass ([8], Chap. 8.2 Improper prior).

In standard probability theory, the probability measures lives on a space often called a sample
space, but we will use the alternative term, an outcome space. The word sample will be used informally
about the result of a sampling process. The result of a point process will be called an instance of the
process and the elements of the instance will often be called points.

2. Preliminaries on Expectation Theory and Related Matters

Here, we will introduce the concepts and results needed in the subsequent sections. For motivation
and more details, we refer to the literature. In the literature the restriction of a measure y to a subset B
is usually denoted y, but we will use the notation jnp in order to avoid confusion with the notation
for conditional probabilities.
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2.1. Observations and Expectations

Let (B, ) denote a measurable space. Observations are described by multisets, i.e. sets where
each element has a multiplicity that is integer valued or infinte. In statistics such multisets are
often given by frequency tables, but we will represent multisets by finite or countable sums of Dirac
measures.

Before making any observations, there will be uncertainty about what the observations will be.
The uncertainty will be quantified in terms of an expectation measure, which is a measure y on the
outcome space (B, F) such that for B € F the value u(B) is the expected value of the number of
observations in B.

2.2. Subunital Measures and s-Finite Measures

The set of unital measures on (B, 7) will be denoted M’ (B, F) or M! (B) for short. Like Rényi, we
are more interested in kernels than in measures than selves [9,10]. A measurable mapping A — M1 (B,)
is called a Markov kernel and a crusial property is that Markov kernels kan be composed. Leta — p,
and b — v, denote Markov kernels from A to B and from B to D respectively. Then the two Markov
kernels can be composed by

(1©v),(D) = [ 1(D)dpab. )

From the point of view of category theory the composition is related to the fact that the functior MY, is
part of a monad [2,11]. A measure y is said to be sub-unital if || || < 1. The set of sub-unital measures
will be denoted Mfl (X). Sub-unital kernels can be composed in just the same way as Markov kernels.

Akernel p : X — Y is said to be s-finite if there exists sub-unital kernels y; such that pr, = Y72 y;.
Such s-finite kernels can be composed and the result is an s-finite kernel. To see that let vy = Z}?‘;l Vyj
be a s-finite kernel from X to Y and let py = Y2, p, ; be a s-finite kernel from X to Y. Then

o) ()

=) ) KO,

i=1j=1

()

which is clearly an s-finite kernel. With this composition we get a category of s-finite kernels with the
category of Markov kernels is a sub-category.

2.3. Point Processes

We will define a point process with points in the measuralble space (B, G). Typically, B will
be a d-dimensional Euclidean space, but we wil not make such restriction. Let (Q), F,P) denote a
probability space. A transition kernel w — p, from (Q, F) to M (B, G) is called a point process if

e Forall w € ) the measure i, () : G = Ry 4 is locally finite.
e Forall bounded sets B € G the random variable w — i (B) : Q — Ry 4 is a count variable.

For further details about point processes, see [12] or ([13], Chapter 3).

The interpretation is that if the outcome is w then y,, is a measure that counts how many points
there are in various subsets of B, i.e. ji,(B) is the number of points in the set B € G. Each measure
Hew will be called an instance of the point process. In the literature on point processes, one is often
interested in simple point processes where i, (B) = 0 when B is a singleton. However, point processes
that are not simple are also crucial for the problems that will be discussed in this paper.

The definition of a point process follows the general structure of probability theory, where
everything is based on a single underlying probability space. This will ensure consistency, but often
this probability space has to be quite large if several point processes or many random variables are
considered simultaneously.
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The measure y is called the expectation measure of the process w — p,, if for any B € S we have

n(B) = [ po(B)dPw. 3)

The expectation measure gives the mean value of the number of points in the set B. Different point
processes may have the same expectation measure. A one-point process is a process that outputs precisely
one point with probability 1. For a one-point process the expectation measure of the process is simply
a probability measure on B. Thus, probability measures can be identified with one-point processes.

2.4. Poisson Distributions and Poisson Point Processes

For A € [0,00) the Poisson distribution Po(A) is the probability distribution on Ny with point

probabilities
. A
Po(j, ) = 7 exp(~A). @

For A = oo we define Po(o0) as the unital measure concentrated on co.
It was proved in ([14], Thm. 3.6) that for any s-finite measure on B there exists a point process
w — M such that

e Forall B € S the random variable w — ji,(B) is Poisson distributed with mean value y(B).
e If By, By € S are disjoint, then the random variables w — i, (B1) and w — e (B) are indepen-
dent.

Such a process is called a Poisson point process with expectation measure y, and we will denote it by
Po(p). All results regarding a measure y can now be translated into results regarding the Poisson
process Po(y). This is called the Poisson interpretation of the measure.

Example 1 (Temporal Poisson process). Let mng, denote the Lebesgue measure restricted to the interval
[0, 00[. Then Po(mpg, ) is a homogeneous Poisson process with intensity 1. This is normally considered a
temporal model where the elements in R are considered as times where certain things happen.

Example 2 (Spatio-temporal Poisson process). If Po(y) is a Poisson point process with points in space, then
Po ( 1 X M) ) can be viewed as a spatio-temporal point process, where any points of the spatial process are
created at a random time in [0, 1]. This process has the process Po () as its marginal distribution.

Similarly, we may consider the spatio-temporal Poisson process Po( p X Mg o[ ) Where points continue
to be created.

3. Statistical Models

In this section we will introduce statistical models, prior distributions and posterior distributions.
We will provide some examples to be discussed later. Prior distributions play a major role in Bayesian
statistics. A detailed discussion about how prior distributions can be determined in various cases is
beyond the topic of this article. We will refer to [15] for a review of the subject including a long list of
references.

3.1. Measures and Kernels Associated with Statistical Models

Let (B, G) be a measurable space that represents the possible outcomes. Further, Let (®, F) be
a measurable space that represents possible values of a parameter of a statistical model. A statistical
model is given by a Markov kernel § — P, that assigns a probability measure Py on (B, G) to each
parameter 6 € ©. The goal of the statistician is to make inference on the unobserved value of 6 based
on an observed value b € B.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Assume that our prior knowledge about the parameter 6 is given by the measure y on (®, F).
This leads to a joint measure on (@ x B, o(F x G)) that we will denote y x Py. For A € F and B € G
the joint measure y x Py is defined by

(1 Po)(A x B) = [ Po(B) dub. ©

Let v denote the marginal measure of y x Py on B, i.e. v is the restriction of u X Py to the sub-algabra
of o(F x G) consisting of sets of the form 6 x B. If v is a o-finite measure, then there exists a Markov
kernel Q;, from B to © such that

(4 Po)(A x B) = /B Qu(A) dvb. (6)

and we will write y x Py = Q, % v for short. Remark that at this level the existence of the Markov
kernel a — Q, is a purely formal construction.

In information theory a Markov kernel (P, ), is called an information channel with input alphabet
A and output alphabet B. In the branch of information theory called channel coding, the input letters
are controlled by the sender (Alice) but unknown to the receiver (Bob). The goal of Bob is to make
inference about the letter a4 € A sent by Alice based on the letter b € B received by Bob.

A Markov kernel can be used to model sequences of observations in B in two ways. In statistics,
a sequence of length 7 is modeled by (®;_; Py),.q, Which gives a Markov kernel from © to B". In
channel coding, a sequence of length 7 is modeled by (®}_; Py,) acon In channel coding, we get a
Markov kernel from A" to B".

3.2. Minimax Redundancy and Jeffreys’ Prior

One method for calculating a prior distribution for a statistical model 8 — Py is to consider the
model as an information channel. Here we will only mention some of the basic ideas briefly. The
reader may consult [16] or [17] for a detailed exposition. The capacity of the channel is the maximal
transmission rate, which is the maximal mutual information between input and output ([18], Chap. 8).
According to the Gallager-Ryabko Theorem [19], the maximal transmission rate equals the minimax
redundancy given by

mPin max D(P,||P) (7)

where the Kullback-Liebler divergence is defined by

p(p|P) = [ 1n(i§f) dPy, (®)

and the minimum in Equation (7) is taken over all probability measures P on B. Kullback-Leibler
divergence quantifies redundancy, i.e. the mean number of bits one save if one new that the data is
distributted according to Py rather coding as if the data were distributed according to P. If P* is the
distribution that achieves the minimum in Equation (7), then a capacity achieving input distribution is
the same as a probability measure Q such that

p* — /@ Py d Q6. )

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Example 3 (The binary erasure channel). The binary erasure channel has an input alphabet A = {a, b} and
an output alphabet B = {a,b,e}. A Markov kernel x — Py is given by

Py(a) = a,

P,(b) =0,

Pie) =1—ua,

Py(a) =0, 1o
Ph(b) =u,

Pye)=1—u

The output letter e represents an erasure of the input letter. The capacity achieving input distribution is the
uniform distribution on the input alphabet A. See ([18], Subsec. 8.1.5) for a detailed discussion of the binary
erasure channel.

Example 4 (The binomial model). The binomial distributions p — b(n, p) form a statistical model with point
probabilities () p* (1 — p)"~*. In this case, there is no unique capacity achieving distribution if the parameter
space is @ = [0,1].

If we restrict the parameter space to the possible maximum likelihood estimates {0,1/n,2/n, ..., 1}, there
is a unique capacity achieving distribution that can be used as a prior distribution on ©. For small values of
n the exact optimal distribution can be found. If, for instance n = 2, the optimal distribution on {0,1/2,1}
is {8/17,1/17,8/17}. In general, no closed formula for the capacity-achieving distribution exists, but it can be
approximated using an iterative algorithm (see [20] and ([16], Sec. 5.2)).

Kullback-Leibler divergence given by Equation (8) equals Rényi divergence of order 1. If we use
Rényi divergence of order co ([21], Thm. 6)

Deo(Py||P) =1n s%p l;f((]f)) (11)
instead of Kullback-Leibler divergence then we get the regret, which tells how many bits cab be saved
by coding with respect to P rather than coding according the model Q for the data that is least favorable
without any assumption on how the data sequence is generated. From a statistical perspective, an
analysis based on regret rather than redundancy is more conservative.

Example 5 (The binomial model). The distribution that achieves minimax regret can be calculated as the
normalized maximum likelihood (NML) distribution. It has point probabilities

o Py(X =0) _4

Pymr(X =0) = Py(X=0)+P,(X=1)+P(X=2) 9
o Py(X = 1) 1

Pymp(X =1) = Py(X=0)+DPp(X=1)+P(X=2) K (12
o P (X=2) _4

Pymr(X =2) = PB(X=0+P,h(X=1)+P(X=2) 9

This corresponds to the prior (3/10,4/10,3/10) on the parameters {0,1/2,1} C [0,1].

As demonstrated in Example 4 and Exampel 5 finding a prior using minimax redundancy or
minimax regret will in general lead to different results, but for long data sequences the distributions
that achieve minimax redundancy and minimax regret respectively can both be approximated by
Jeffreys” prior. Let (P)y.q denote a statistical model and assume that Z—gg(x) = f(x,0) for some
dominating measure Py. Assume further that © is an open subset of RY, and that § — f(x,0) is

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0168.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 September 2025 d0i:10.20944/preprints202509.0168.v1

70f13

twice differentiable. Note that this excludes statistical models where © is a discrete set. The Fisher
information matrix is given by

[1(0)];j = —E [a;;)jln(f(X;e))|91. (13)
Jeffreys’ prior is defined as the distribution on ©® with density
(det(1(6)))">. (14)
Example 6 (The binomial model). For the binomial model we have
—d2m<cvpﬁl—pVx)—-x+ A (15)
dp? x P2 (1-p)?

The Fisher information equals the mean value

I(p) = = + = (16)

Jeffreys’ prior has density proportional to

—_—. 17

(p(1—p))" v
In this case Jeffreys’ prior has finite mass so that it can be normalized. The normalized |effreys” prior is a
beta distribution with parameters (1/2,1/2). The posterior distribution of p if x has been observed is a beta
distribution with parameters (x +1/2,n — x + 1/2).

One crucial property of Jeffreys’ prior is that, except for a constant factor, it does not depend on
the parametrization [22,23].

Example 7 (The exponential model). For A > 0 the exponential distribution Expo(A) has density

_x

p(-%) ..o, (18)
A

We have N

_2ep(-) _2x 1 (19)
Az A A3 A2
Hence, the Fisher information is given by

I(A) =A%, (20)

and Jeffreys’ prior has density A~ In this case, Jeffreys’ prior is improper, and it cannot be normalized. This is
related to the fact that statistical model as a channel has infinite capacity.

With this prior measure the joint measure has density w, x, A > 0. The marginal measure of X is
% exp(—*/A) 1

—————dA = —. 21

|2 : el)

The conditional distribution of A given X = x is an inverse gamma distribution with density w and

shape parameter 1 and scale parameter x.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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3.3. Haar Measures

Many statistical models have symmetries, and these can be useful in determining prior distribu-
tions. Let (Py) g denote a statistical model with outcome space B. Let G be a group that acts on both
© and B via T®, : © — 0 and ¥ : B — B. The group actions is said to be covariant if

Yo (Po) = Poy(e)- (22)

The notion of covariance was introduced by A. Holevo in the context of quantum information theory
[24]. If a group has a covariant action on a statistical model then, one may argue, the prior should be
invariant under the action of the group.

Theorem 1 (Existence of Haar measures). Let (G, -) denote a locally compact group. Then there exist a
measure y that is invariant under left actions, i.e. for any measurable set A C G and any ¢ € G we have
1(g-A) = u(A). The measure y is unique except for a multiplicative constant.

A left invariant measure is called a left Haar measure. The left Haar measure is finite if and only if
the group is compact. A locally compact group also has a right Haar measure that may be different from
the left Haar measures, but if the group acts on a set X from the left, we are mainly interested in the left
Haar measures. On abelian groups, discrete groups, and compact groups, all left Haar measures are
also right Haar measures. For such groups we do not need to distinguish between left Haar measures
and right Haar measures and just talk about Haar measures.

If a group has a left action on the parameter space and the action is transitive then the action
induces a measure on the parameter space, that is invariant under actions of the group. This measure
will be the uniquely determined left invariant measure except for a multiplicative constant.

Example 8 (Binary erasure channel). For the binary erasure channel there is a symmetry between the letters a
and b and this symmetry holds both for the input alphabet A = {a, b} and for the output alphabet B = {a, b, e}.
Measures that put equal weight on a and b are the only measures on A that are invariant under the symmetry.
The symmetry does not depend on whether we use minimax redundancy or minimax regret as criterion for
selecting the prior, so these and many other criteria for selecting a prior all lead to the same prior except perhaps
for a multiplicative constant.

If the outcome space is discrete and the parameter space is continuous then a covariant action of a
symmetry group cannot be transitive on the parameter space.

Example 9 (The Binomial model). In the binomial model there is asymmetry between success and failure
corresponding to the mapping p — 1 — p in the parameter space. The prior distributions in Example 4-6 are all
symmetric, but the action of the symmetry group is not transitive, so symmetry alone does not determine the
priot.

Example 10 (The exponential model). The exponential model A — Expo(A) the group of positve numbers
with multiplication (R, -) has a covariant action on the stattistical model via scaling x — s - x. A measure
with density A~ with respect to the Lebesgue measure is a Haar measure on (R, -). Therefore, Jeffreys’ prior
must be proportional to the Haar measure.

If a group is locally compact and o-compact then to any left Haar measure there exists a Poisson
point process with the Haar measure as expectation measure. This gives a probabilistic interpretation
that will allow a much wider use of Haar measures in probability theory.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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4. Conditioning

Many textbooks handle improper prior distributions by restricting the parameter space. In this
section, we will first describe this problematic construction and then use expectation theory to give a
more satisfying way of handling improper prior distributions.

4.1. Restriction of the Parameter Space

In many textbooks, improper prior distributions are handled by the selection of a "large" subset
© C O such that j(©) < co. Then the measure i is normalized so that the normalized measure
can be interpreted as a probability measure. If ©, is an increasing sequence of sets such that @ =
US>, ©,, then the posterior based on the normalized version of the measure 1o, Will converge to the
posterior based on y. Hence, by selecting a sufficiently large subset © of the parameter space we get a
probabilistic inference that approximately gives the right result. This approach to handling improper
prior distributions has been advocated by Akaike [25] and many others. See [26] for a more recent
exposition regarding approximation of imprpoer priors by probability measures.

Such an inference is problematic for two reasons. The first reason is that the subset § should
be chosen before 2 € A has been observed, and if y is improper and (©) < oo there will exist
observations for which the posterior based on @ is very different from the posterior based on the whole
parameter space ®. The second reason is that choosing ©® with a finite measure, it will often conflict
with how we justify the use of the prior measure . If, for instance, y is determined as a Haar measure
on a non-compact group, then the restriction of y to a set of finite measure will in general, not be Haar
measure.

With expectation measures at our disposal, we do not need to restrict to a subset of ©.

4.2. Normalization and Conditioning for Expectation Measures

Empirical measures can be added, one can take restrictions and one can find induced measures.
Using the same formulas these operations can be performed on expectation measures, but we are not
only interested in the formulas but also in probabilistic interpretations.

The norm of a (positive) measure v is defined by ||v|| = v(A), and the normalized measure v/ ||v||
has an interpretation as a probability measure, which is the same as a one-point process.

The following proposition gives a probabilistic interpretation of restriction for expectation mea-
sures via the same operations applied to empirical measures. The proposition is proved by a simple
calculation.

Proposition 1. Let (Q), F, P) be a probability space. Let w — i, a denote point proces with expectation
measure y and with points in B. Let B be a subset of B. Then

HoB = /#me dPw. (23)

Unital measures are normally called probability measures, and the next theorem gives a proba-
bilistic interpretation of the normalized measure /|| j¢|| by specifying an event that has probability

equal to pt/||p]|.

Theorem 2. Let B be a measurable subset of B. Let u be a non-trivial finite measure on B. If P denotes a
probability measure on () and w — i, is a Poisson point process with expectation measure y, then

1(B) H(B)
= dP(w|0 < < o0). (24)
ol = Jo Tl el
Proposition 1 holds for all point processes, but in Theorem 2 it is required that the point process

is a Poisson point process. An example of a point process where Equation (24) does not hold can be
found in ([2], Ex. 5).
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Theorem 2 states that y(B)/||j¢|| is the probability of observing a point in B has an interpretation
that involves two steps.

1.  Observe a multiset of points as an instance of a point process.
2. Select a random point from the observed multiset.

By replacing the point process Po(j) by a spatio-temporal point process we can replace this two-step
interpretation by a one-step interpretation. The one-step interpretation will be formulated as a theorem
that has a much simpler proof than the proof of Theorem 2 given in [2], and the proof of the new
theorem will not rely on the proof of of Theorem 2.

Consider the point process Po(y) on B. From this process we construct a spatio-temporal process.
To each point in an instance of the point process Po(y) we randomly select a number in [0, 1] according
to a uniform distribution. The number selected for a specific point is considered as the time at which
the point is created. This gives the process Po (y X mm[o,l])‘ Instead of choosing a random point from
the instance of the original point process Po() we choose the first point in the spatio-temporal point
process.

For the process Po (y X mﬂ[0,1]>1 there is a risk that no point is created before time « = 1. To

avoid this problem we replace the process Po (y X mm[o,l]> by the process Po (y X mﬂ[oloo[) with points
in B x [0,00[. Let T be the time at which the first point is created. Then T is a stopping time. The
distribution of the point created at time T will be /|||

We can summarize this result in the following theorem.

Theorem 3. Let B be a measurable subset of B. Let y be a non-trivial finite measure on B. Let P denotes
a probability measure on Q) and let w — vy, be a statio-temporal Poisson process with expectation measure
p X mpag, on B x R For an instance v, of the process let (bw, tw,) denote the point (b, t) in the instance for
which t has the smallest value. , then
B
“B) _ iy, € B). (25)
el
Proof. The waiting time Ty until the first point in B is observed, has distribution Tg ~ Expo(u(B)~1),
and the waiting time Tpp until the first observation of a point in (B is distributed Tpy ~

Expo (y (CB) _1>. We have

P(b, € B) = P(Tp < Tgp)
- (/w exp(~topn(CB)) 1 (CE) dtcB) exp(—tup(B))p(B) dty
= [ exp (- t54(CB)) exp(~ () (B) iy o

= u(B) /Ooo exp(—tp(u(B) +u(CB))) dtg

#(B)
u(B) +u(CB)’

which proves the theorem because y(B) + 1 (CB) = ||u|. O

4.3. Conditioning for Imporer Prior Measures

Here we shall just look at how the results of Subsection 4.2 will allow us to give an exact
interpretation of conditional probabilities with respect to an improper prior distribution.

The Poisson interpretation of normalized expectation measures carries over to conditional mea-
sures.

Theorem 4. Let B be a measurable subset of B. Let y be an s-finite measure on B. Let P denotes a probability
measure on () and let w — v, be a statio-temporal Poisson process with expectation measure y X mnag, on
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B x Ry. Assume that A is a measurable subset of B such that 0 < u(A) < oo. For an instance v,, of the
process let (b, t.,) denote the point (b, t) € A in the instance for which t has the smallest value. Then

#(B|A) = P(by € B). (27)
Proof. A conditional measure is the normalization of an expectation measure restricted to a subset.

wBNA) _ pna(B)

HBIA) = =@ = Taall

(28)

The corollary is proved by applying Theorem 2 to the measure pn4. O

With this result at hand we get an interpretation of posterior distributions calculated based on
improper prior distributions.

Example 11 (The binary erasure channel). Consider the binary erasure channel discussed in Example 3.
The prior measure u gives the expected number of input letters from the alphabet A = {a,b}. We run a
spatio-temporal Poisson process on A. This will give a stream of input letters at a rate of ||u|| per time unit.
Using the Markov kernel x — Py, we get a spatio-temporal process on A x B.

For any instance of this process, we look at the first output letter that equals e. For this first instance, we
look at the corresponding input letter. The probability of the input letter a is 1/2 and, similarly, the probability of
the input letter b is 1/2. Thus, the conditional probability distribution over input letters given the output letter e
equals the probability that an instance with output letter e has a certain input letter.

Example 12 (The binomial model). In this example, the parameter space is the [0, 1]. If we fix the number n of
output letters generated by a single value of the parameter and calculate the prior distribution that maximizes the
transmission rate or, equivalently, minimizes the maximal redundancy, then the prior is concentrated on a finite
subset of the parameter space. The prior will have a finite total mass, and it can be normalized to a probability
measure. If the measure is not normalized, we will get a probabilistic interpretation by running a spatiotemporal
process in exactly the same way as in the previous example.

If we use Jeffreys’ prior, which is a good approximation to the case where n is large, then it is still possible to
normalize the prior measure. Normalizing the measure corresponds to selecting the first point in a point process.
The posterior distribution of the parameter given the output letters equals the distribution of the parameter given
that the first point (input value of the parameter) in the spatio-temporal process leads to these output letters.

Example 13 (The exponential model). It is not possible to normalize Jeffreys” prior for the family of exponential
distributions. Therefore, one cannot run the corresponding spatio-temporal process and take the first point
because in any small time interval, there will be infinitely many points. If, instead, we have a certain interval
for the output variable with finite mass, then we can take the first point in the process that lies in this interval.
The conditional distribution of the parameter is a mixture of conditional distributions given the numbers in the
interval weighted and normalized according to density % on the interval.

If the interval is short, then the conditional distribution given any point in the interval will be approximately
constant, and conditioning on the interval will be approximately the same as conditioning on a point.

5. Discussion

We have applied expectation theory to give a probabilistic interpretation of improper prior
distributions via the Poisson interpretation. This led to a probabilistic interpretation of conditioning
with respect to improper prior distributions. With a probabilistic interpretation of improper prior
measures and conditioning in place, one should go through all the arguments in favor of using specific
methods for calculating prior distributions. We have briefly discussed Haar measures and Jeffreys’
prior, but a careful review of all the methods is needed, which is beyond the scope of this paper.
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In this paper, a statistical model was identified with a Markov kernel as is usually done in statistics.
From the point of view of expectation theory, it would be more natural to identify statistical models as
s-finite kernels rather than Markov kernels. This would not make much of a difference regarding the
handling of improper distributions with respect to conditioning. The idea of basing statistics on more
general kernels than Markov kernels has also been promoted recently by Taraldsen et al. [27].

In [28,29] it was proved that for 1-dimensional exponential families, minimax redundancy is
finite if and only if minimax regret is finite. It was also demonstrated that a similar result does not
hold for 3-dimensional exponential families. There are still no results that relate finiteness of minimax
redundancy or minimax regret with finiteness of Jeffreys’ prior, and there is still a lot of open questions
regarding improper prior distributions.
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