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Abstract: Artificial Intelligence (Al) has recently played a crucial role in improving bridge assessment
through diverse methodologies to optimize maintenance strategies and reduce costs. Therefore, the
current study proposed two different methods to estimate the current condition rating of R.C. bridges
by 1) Fuzzy Decision-Making; and 2) Markov Chain Modelling. The purpose of this study is to
investigate the more applicable and accurate technique due to Al for reinforced concrete bridge
assessment. The current study focused on corrosion as the main defect used to estimate the bridge
condition rating. The dual methods depend on visual inspection, applying field and laboratory tests,
and reviewing the historical data of the inspected bridge to estimate its condition rating. The fuzzy
decision model is applied to find a correlation between corrosion degree and concrete surface
condition to estimate the condition rating. The Markov chain model is used to predict the future
condition rating for the whole bridge and when it will reach the critical condition. The service life for
each bridge element is calculated due to carbonation and chloride attack. The Life 365 model is
applied to estimate the service life due to chloride ingress. The proposed system is validated through
a real case study, and the results show that the fuzzy is less accurate compared to the Markov Chain.
The introduced models are expected to provide proper Maintenance, Repair, and Replacement
(MRR) decisions for the bridges.

Keywords: AL reinforced concrete bridges; assessment; visual inspection; condition rating fuzzy;
markov chain

1. Introduction

Civil infrastructure systems are undergoing continued and accelerating deterioration over time.
Most of them are owned by the government or large firms and could be classified into roadways,
bridges, buildings, and water and sewer networks. Meanwhile, statistics show that 98% of its
domestic cargo depends on this road network and bridges, which reflects their significant role in the
national economy and people’s daily activities [1]. Deterioration and degradation are the most
popular issues for the bridges, which are one of the core elements of infrastructure systems. In the
United States, 22.7% of the bridges are either structurally deficient or functionally obsolete, according
to the American Society of Civil Engineers (2017). In 2006, the cost of eliminating all existing bridge
deficiencies was estimated at $850 billion [2,3]. In 2013, the United States found that 607,380 bridges
have an average age of 42 years [4]. There are several factors that impact RC bridges; deterioration
leads to different defects, which reflect the main challenge in bridge inspection programs. Some of
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them belong to design, techniques used for construction, materials, ageing, excessive loads,
environmental exposure, and maintenance of the structure in service. Furthermore, accident effects
such as fire, which is considered one of the most severe threats to which RC bridges may be exposed
during their life service [5]. Inspection and performance assessment of bridges are important in many
countries. There are several categories of bridge inspection that reflect the intensity of the inspection
[6]. The AASHTO Manual for Bridge Evaluation (2018)[7] described the seven types of inspection,
which may vary based on the useful life of bridges and the type of structures. Mainly, visual
inspection is used to evaluate the service statuary of the bridges, which can be applied for condition
assessment [8]. Generally, the diagnosis and evaluation of current conditions are the main tools for
concrete structure management [9]. The authorities around the world have a desire to develop
solutions to periodically inspect their bridges and to support maintenance activities. They used the
bridge management system (BMS), which is visual inspection-based decision support tools to analyze
engineering and economic factors and to assist the authorities in taking the decisions regarding
maintenance, repair, and rehabilitation of bridge structures at a suitable time. The US and inside the
EU have developed numerous bridge management systems (BMSs) to assist engineers on the
condition assessment and prioritization of maintenance activities. Consequently, measuring the
bridge deterioration by using several condition rating scales are indicators to take the best decision
between maintenance, repair, and replacement (MRR) choices [10-13]. Generally, it is rare to find an
effective, clear, and practical system to assess the bridge condition and predict its future deterioration
to make a decision between three strategies: (a) maintenance, (b) repair, or (c) rehabilitation. Over the
past years, a lot of studies were competing to integrate a comprehensive study for structural safety
assessment. Abdelalim [14] proposed an approach for rehabilitated reinforced concrete buildings
based on a probabilistic deterioration model. The model considered the impact of different options
of maintenance due to the total cost of maintenance over a year. Abdelalim et al. [15] applied a
Markov chain model to predict the future building condition during its life cycle. Alsharqawi et al.
[16] integrated a condition rating index based on visual inspection for surface and ground-
penetrating radar (GPR) technology for subsurface defects. The quality function deployment (QFD)
theory was adopted for bridge condition assessment, and the k-means clustering technique was used
to identify the thresholds between different ratings. Their assessment was relied on only one
nondestructive evaluation techniques and one type of clustering algorithms that make it less accurate.
Ali Mohamed et al. [9] introduced a framework for building condition assessment based on building
information modelling (BIM). The system was divided into two models: the condition assessment
model and the deterioration predictive model. Rhee et al. [17] presented a dielectric constant curve
that can be applied to the assessment of asphalt condition-covered concrete bridge decks, taking into
account the age of the concrete. Ground penetrating radar (GPR) technology was applied in the field
survey for reliable condition assessment. Rogulj et al. [18] applied fuzzy analysis for bridge condition
assessment. They depended only on visual inspection for bridges condition assessment. The bridge
components are divided into three elements: superstructure, substructure, and equipment. Each
element rating evaluated by experts was deffuzified according to defined fuzzy sets, membership
functions, and linguistic values. Additionally, ratings for every element are assigned a fuzzy
structural importance. Finally, the centroid method was applied for defuzzifying the component
rating. Xia et al. [19] established an approach based on inspection reports to estimate the bridge
condition rating. The bridge condition assessment was a composite of three levels: the component
level, unit level, and system level. There were five levels for subjective condition rating: excellent,
good, fair, serious, and failed. The long short-term memory (LSTM) neural network was applied to
read information from inspection reports to extract the required feature to estimate the bridge
condition rating. The considered features were sub-region, ADT, ADTT, age, length, structural type,
max span, superstructure maintenance, substructure maintenance, and deck maintenance. The main
limitation is related to the requirement of a large amount of data for training the neural networks.
Bertagnoli et al. [20] used 3D global non-linear numerical analyses to assess the safety level of
different damage scenarios for bridge decks. The ultimate limit state due to the safety loss of the
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damage level was used to evaluate the safety level of the deck. The damage threshold was defined in
terms of measurable static parameters. Shivam [21] assessed the bridge based on a bridge inventory
that includes the measurement and the number for each component type. The condition of each
component due to its distress percentage was determined at the final stage to observe its severity.

Although there are different techniques employed for bridge condition assessment, it is still a
challenge to determine the most effective method because there aren't enough studies that compare
different approaches. Also, most of the literature studies applied their assessment methods on the
bridge deck only and ignored the other parts of the bridge. Additionally, the previous studies are
focusing on the visual inspection and inventory data to assess the current condition of the structure.
They ignored that the inspectors may be required to carry out nondestructive and destructive tests,
followed by laboratory tests to diagnose the structural condition to get an accurate condition rating.
Thus, the present study has a desire to compare different techniques to assess the reinforced concrete
bridges. Among the two methods compared in this paper, dual Al-based methods are selected in
recognition of the significance of Artificial Intelligence (Al) in the evaluation of reinforced concrete
bridges. The established techniques depend not only on visual inspection by bridge inspectors but
also on applying field and laboratory tests and reviewing the historical data of the inspected bridge
to estimate the bridge condition rating. The first technique relied on applying a fuzzy decision model
to find a correlation between the corrosion degree and concrete surface condition to estimate the
condition rating for each bridge element to find the overall bridge rating. The second technique
adopted the Markov Chain model to predict the future condition for each bridge element and to
determine when the inspected bridge will reach the critical condition. Also, it was taken into
consideration to generate the transition probability matrix [TPM] of the Markov chain and customise
it to specific conditions by optimization. Additionally, this paper estimates the bridge service life
based on laboratory and field tests. The service life for the RC bridge is calculated due to carbonation
attack and chloride-induced corrosion of the embedded steel bars. The proposed system aims to
investigate the more applicable and accurate technique to diagnose the bridge condition state to take
the proper decision.

2. Research Methodology
2.1. Method Overview

The introduced research is applied to compare the condition rating for R.C. bridges due to fuzzy
decision model and Markov chain modelling. The data from the condition assessment contributes to
create a deterioration model to predict the state of the whole bridge to decide the best strategy
reaction. Corrosion of the embedded steel bars is considered in this paper as the main defect to
estimate the bridge condition rating and its service life. The research procedure followed in this study
is illustrated in Figure 1.
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Condition rating system and bridge element weights

M
Apply the fuzzy decision model to estimate the
condition rating of R.C. bridges based on corrosion
degree and concrete surface condition.

A
Apply and update Markov Chain model through
optimization process to develop the transition probability
matrix [TPM]
for each bridge element to predict the current and future
condition rating

A

Expected the service life for bridge elements due to
carbonation and chloride ingress (Life-365 mode |

Discussion and validatior

Figure 1. Research procedure to apply dual techniques for detecting thr life cycle of RC bridges.

2.1. Condition Rating System and Bridge Element Weights

The National Bridge Inventory has the most common condition rating, which has been
developed by the Federal Highway Administration (FHWA, 2012). It is used to evaluate three main
components of bridges: deck, superstructure, and substructure. The scale ranged from 9, which
presents excellent condition, to zero, which refers to failed condition, as shown in Table 1 [22]. The
Federal Highway Administration classification system (FHWA, 2012) is adopted in this approach
system to categorise the deterioration of reinforced concrete bridges.

Table 1. Scaling Deterioration as per FHWA, 2012 [22].

Ratin Description
Not applicable ( Just-Constructed)
Excellent Condition, new Condition, not worthy deficiency.
Very Good Condition, No repair is needed

7 Good Condition, Some minor Problems for Minor maintenance.

6 Satisfactory Condition, some minor deterioration for major maintenance.

5 Fair Condition, Minor Section Loss, Cracking or Scouring for minor Rehabilitation, Minor Rehabilitation is needed

4 Poor Condition, Advanced section loss, deterioration, Spalling or Scouring for major Rehabilitation, Major
Rehabilitation is needed.

3 Serious Condition, Section Loss, Deterioration, Spalling or Scouring have seriously affected primary Structural

components, Immediate Rehabilitation is needed.
Critical Condition, advanced deterioration of Primary Structural elements, Urgent Rehabilitation, the Structure may
be closed until Corrective Actions taken.
Imminent Failure Condition, Major Deterioration or Section loss, Structure may be closed until Corrective actions
which may put it back into light service.
Failed Condition, Beyond Corrective action, Out-of Service

On the other hand, the NY ranking system assigned relative weights for thirteen bridge elements
as listed in Table 2. The current study used the Weighted Evaluation Method (WEM ASTM1957) to
justify the weight importance of bridge elements. Weighted evaluation is a useful tool that helps
decision-makers make suitable decisions.
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Table 2. Element Weights in the NY Rating System [23,24].
Component Weight
1 Primary members 15
2 Deck 12
3 Abutment 12
4 Piers 12
5 Bearings 9
6 Bridge Seats 9
7 Wing walls 7
8 Back Wall 7
9 Secondary members 6.5
10 Joints 4.5
11 Wearing Surface 45
12 Sidewalks 1
13 Curb 0.5

A question of which component element is more important than others based on the thirteen
elements mentioned in the NY ranking system was discussed with experts with rich knowledge in
the bridge industry in Egypt, Saudi Arabia, and the United Arab Emirates. The aim of the question is
to be used in WEM to capture the opinion of experts regarding the important elements affecting the
bridge condition rating, especially for R.C. bridges, as shown in Table 3.

Table 3. Proposed element weight.

Component Weight
1 Primary members 10
2 Deck 8
3 Abutment 8
4 Piers 8
5 Bearings 6
6 Bridge Seats 6
7 Wing walls 5
8 Back Wall 5
9 Secondary members 5
10 Joints 4
11 Wearing Surface 4
12 Sidewalks 2
13 Curb 1
The weight of each element is compensated in equation (1) to evaluate the overall Bridge
Condition Rating (BCR) [22].
BCR = Y.(component r.atinngeight (1)
Y Weights
2.2. Predicting the Condition Rating of Reinforced Concrete Bridges by Fuzzy Decision Model
In this technique, the corrosion is considered the common symptom of distress and bridge
deterioration. The article adopted a fuzzy decision model to find a correlation between concrete
surface condition and corrosion degree. Abdelalim, A. M. [24] defined four degrees of corrosion as
shown in Table 4.
Table 4. Degrees of corrosion and how they affect surface condition of concrete [24].
Corrosion Degree Steel Bars Condition

Condition-1 Mill scale remains on the surface of steel bars, rust forms on the surface of reinforcing bars,
but it is "thin" and the bar is "solid" throughout; rust is not formed on the surface of concrete.
Condition-2 Small region covered by the "partly floating rust" and the rust is spotty too
.. "Floating rust" is seen across the the entire circumstance or length of the reinforcement bars,
Condition-3 . .
although there is no observable loss of cross section area.
Condition-4 "Loss of cross sectional area" is observed in reinforcing bars.
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To create a correlation between corrosion degree and concrete surface condition, logic approach

has been adopted with applying Mamdani’s Inference system. Concrete surface condition can be

categorized into four conditions as shown in Table 5.

Table 5. Degrees of corrosion /surface conditions.

Corrosion Degree

Concrete Surface Condition

Subjective Assessment of Concrete Surface

Condition-1
Condition-2
Condition-3
Condition-4

Unchanged

Slight
Obvious

Deteriorated

6

5
4
3

Fuzzy set theory is designed to deal with uncertainties that are not statistical in nature [25].

Fuzzy set theory is used by fuzzy inference systems (FIS) to map inputs to outputs. The two common

inference systems are the Mamdani and the Sugeno. Trapezoidal and triangular shapes of

membership functions are the most common. Some experts preferred the triangular membership

function due to its narrow peak of absolute membership compared to the trapezoidal membership

function, where the peak (absolute membership) is shown through the interval. Other studies

preferred trapezoidal membership because of its flexibility and reliability compared to triangular

membership [26]. Thus, the current study applies both trapezoidal and triangular shapes to compare

the results between them.

2.2.1. The Membership Functions

The numerical value for corrosion degree is determined by the rate of corrosion based on the pH

value. The corrosion degree is the first linguistic variable and takes linguistic values (low, moderate,

significant, and critical) based on equations (2), (3), and (4) to be shown in Table 6.
Let’s X=pH, Y=f(x) where f(x) is the rate of corrosion (mm/year) [24]
f(x) =-0.5155 + (7.318/ X) pH>9.6 (2)
f(x) = 0.25 pH[3.6-9.6] (3)
f(x) = 1484 + (5.016/ X) + (4.541/X ?) pH<3.6 (4)

Table 6. The numerical value of the corrosion rate based on pH values.

pH value f(x): Corrosion rate (mm/year) Corrosion degree
14 0.007214286
13.6 0.022588235
13.2 0.038893939 Low
12.8 0.05621875
12.4 0.07466129
12 0.094333333
11.6 0.115362069
11.2 0.137892857
10.8 0.162092593 Moderate
10.4 0.188153846
10 0.2163
9.6 0.25
9.2 0.25
8.8 0.25
8.4 0.25
8 0.25
;g 852 Significant
6.8 0.25
6.4 0.25
6 0.25
5.6 0.25
5.2 0.25
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4.8 0.25
44 0.25
4 0.25

The second linguistic variable is the concrete surface condition, which takes linguistic values

(unchanged, slight, obvious, and deteriorated). Both variables are applied to create a correlation
between corrosion degree and concrete surface condition to get the semi-quantitative condition for
the bridge element.
. First case:

In the first case trapezoidal and triangular membership are applied for both inputs and output,
as shown in the Figure 2.

_ Membership function plots gl 181 _Membership function plots b 181
LowModermgnmcnem Critical Deteriorate Obvious Slight UnChanged
npulvarlable Corvos»on degree" input variable Concreb _Surface”

(@) ()

Figure 2. Fuzzy sets of the input variables (first case) by MATLAB (R2021a): (a) Corrosion degree, (b) Concrete

surface condition.

To determine the membership value correctly for a specific quantity in a linguistic term is a
challenge and requires an experiment in order to define it properly. Furthermore, it is possible to
subjectively determine the membership functions: the closer an element is to meeting a set's
conditions, the closer its membership grade is to 1, and vice versa [27]. The terms of corrosion degree
are quantified with numerical values ranging from 0 to 1, while concrete surface conditions have
values ranging from 2 to 7. It's worth mentioning that the shapes of the corrosion degree values of
the membership function are narrow compared with the concrete surface condition membership
function. The explanation can be related to the fact that the range values of the corrosion degree are
determined by applying the equations of the rate of corrosion based on the pH values. Whereas the
concrete surface range values are uncertainties and determined based on expert judgements and trial
and error. On the other hand, the output linguistic variables are related to FWHA (2012) [22] from
rate 3 to 6, as shown in Table 7. Figure 3 shows the membership function of the output variable in the
semi-quantitative condition.

Table 7. Semi quantitative condition rating score based on FHWA, 2012 [22].

Satisfactory Condition

Fair Condition

Poor Condition

wW| (o1

Serious Condition.
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output variable "Semi_Quantitative_Condition"

o

Figure 3. Fuzzy sets of the output variables (first case) by MATLAB (R2021a).

. Second case:

The triangular shape is only applied in the second case for both input and output membership
variables, and the range values for both inputs and output are shown in Figure 4.

Membership function plots "™ "' 181 Membership function plots iy 18
Low ' Moderale Significient Critical Detriorate Obvious Slight Unchanged
. 1
n b
input variable "Corrosion_Degree" input variable “Surface_condition"
() (b)
Membership function plots "' "% 181
Serious Poor Fair Satisfactory

tior|

3

output variable "Semi Quantitative Condition®

()

Figure 4. Fuzzy set for both input and output variables (second case) by MATLAB (R2021a): (a) The first input
variable is corrosion degree; (b) the second input variable is concrete surface condition; and (c) the output is

semi-quantitative condition rating.

o Third case:
Triangular and trapezoidal shapes are applied for input membership, while the output is only a
triangular shape. The value ranges are shown in Figure 5.
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Membership function plots " "*'* 181 Membership function plots "' "™ 181
Low Moderasignificient Critical Deteriorate Obvious Slight Unchanged

input variable “Degree Corrosion" input variable "Surface_condition"

(a) (b)
Membership function plots " > 181
Serious poor Fair satisfactory

Itior

output variable "Semi_Quantitative Condition"

(9

Figure 5. Fuzzy set for both input and output variables (third case) by MATLAB (R2021a): (a) The first input
variable is corrosion degree; (b) the second input variable is concrete surface condition; and (c) the output semi-

quantitative condition rating.

2.2.2. Applying Fuzzy Decision Rules

The semi-quantitative condition rating is determined by two fuzzy variables: corrosion degree
and concrete surface condition. Because each of these variables has four membership functions, there
could be a total of 42 (16) precondition combinations that influence the condition rating. These
preconditions are formed by a set of fuzzy if-then rules, as shown in Table 8. An example:

IF corrosion degree is low (L),

And concrete surface condition is Unchanged (U),

Then the condition rating is Satisfactory

Table 8. Fuzzy decision rule.

Rule no Corrosion degree Concrete surface condition Semi-quantitative condition rating
1 Low (L) Unchanged (UC) Satisfactory (ST)
2 Low (L) Slight (SL) Fair (F)

3 Low (L) Obvious (O) Poor (P)
4 Low (L) Deteriorate (D) Serious (S)
5 Moderate (M) Unchanged (UC) Satisfactory (ST)
6 Moderate (M) Slight (SL) Fair (F)

7 Moderate (M) Obvious (O) Poor (P)
8 Moderate (M) Deteriorate (D) Serious (S)
9 Significant (SI) Unchanged (UC) Fair (F)
10 Significant (SI) Slight (SL) Poor (P)
11 Significant (SI) Obvious (O) Poor (P)
12 Significant (SI) Deteriorate (D) Serious (S)
13 Critical (C) Unchanged (UC) Poor (P)
14 Critical (C) Slight (SL) Poor (P)
15 Critical (C) Obvious (O) Serious (S)

16 Critical (C) Deteriorate (D) Serious (S)
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10 of 31

Defuzzification is the last step in a fuzzy process that converts the fuzzy results into real-world

values by applying several methods. The current study applied the center of gravity method, which

is defined by equation (5)[27]. Tables 9-11 show the fuzzy process output after the diffuzification,

which shows how the current proposed technique is working effectively.

U: control action
In: value of interval

— IN=1ln tin

Z¥=1 Hn

Where:

©)

n: total no. of intervals.

Table 9. Defuzzification of the fuzzy set for the first case.

Corrosion Rate( mm/yr)

Semi Quantitative Condition Rating Score

0.5 4,01 4.01 4,01 4.01 401 3.87 335 341 3.35 3.35
0.45 4,01 4.01 4,01 4.01 401 3.87 335 341 3.35 3.35
0.4 4,01 4.01 4,01 4.01 401 3.87 335 341 3.35 3.35
0.35 4,01 4.01 4,01 4.01 401 3.87 335 341 3.35 3.35
0.3 4,5 4,5 45 4,5 401 3.87 3.86 3.87 3.41 3.41
0.25 5 5 5 4,5 401 4.01 401 3.87 3.35 3.35
0.2 5.13 5.13 5.13 4,51 4,5 4,51 401 3.87 3.41 3.41
0.15 5.68 5.68 5.68 5.12 5 4,51 401 3.87 3.35 3.35
0.1 5.65 5.65 5.65 5.12 5 4,51 401 3.87 3.38 3.38
0.05 5.68 5.68 5.68 5.12 5 4,51 401 3.87 3.35 3.35
Concrete Surface Condition 7 6.5 6 5.5 5 4.5 4 3.5 3 2.5
Table 10. Defuzzification of the fuzzy set for the second case.
Corrosion Degree Semi Quantitative Condition Rating Score
0.3 4 4 4 3.87 3.32 3.38 3.32
0.28 4.4 4.44 4 3.87 3.8 3.85 3.36
0.23 5.03 4,54 4.29 4.33 4 3.87 3.36
0.18 5.67 5.13 5 45 4 3.87 3.33
0.13 5.61 5.11 5 45 4 3.89 3.39
0.08 5.62 5.12 5 45 4 3.88 3.38
0.03 5.67 5.13 5 45 4 3.87 3.33
Concrete Surface Condition 6 5.5 5 4.5 4 3.5 3
Table 11. Defuzzification of the fuzzy set for the third case.
Corrosion Degree Semi Quantitative Condition Rating Score
0.48 4 4 4 4 4 3.87 332 338 3.32 3.32
0.43 4 4 4 4 4 3.87 332 338 3.32 3.32
0.38 4 4 4 4 4 3.87 332 338 3.32 3.32
0.33 4.29 429 429 429 4 3.87 372 373 3.38 3.38
0.28 5 5 5 4.5 4 4 4 3.87 3.35 3.35
0.23 5.02 502 5.02 452 421 426 4 3.87 3.34 3.34
0.18 5.31 531 531 482 473 4.5 4 3.87 3.35 3.35
0.13 5.66 566 566 5.13 5 4.5 4 3.87 3.34 3.34
0.08 5.68 568 5.68 5.13 5 4.5 4 3.87 3.37 3.37
0.03 5.68 568 5.68 5.13 5 4.5 4 3.87 3.32 3.32
Concrete Surface Condition 7 6.5 6 5.5 5 45 4 3.5 3 2.5

As illustrated in Figure 6, the fuzzy model produces the result output of each pair (corrosion

degree, concrete surface condition) by applying rules. The three cases got approximately the same

result.
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Semi_Qualitative_Condition

Semi_Quantitative_Condition

Concrete_Surface £00 corosion__degree Surface_condition 3 : Corrosion_Degree

(a) (b)

Semi_Qualitative_Condition

05

Surface_condition 0 o Corrosion_Degree

(¢)

Figure 6. Surface viewer by MATLAB (R2021a) for: (a) first case, (b) second case, and (c) third case.

2.3. Predicting the Condition Rating of Reinforced Concrete Bridges by Markov Chain Model

The Markov chain is a stochastic process applied to capture parameter dependency and
uncertainty variables such as load and resistance. This model has been commonly used in the last
decade for predicting the deterioration state of different infrastructure systems. It was applied based
on the concept of predicting the deterioration of each element by accumulating its probability of
transferring from one condition state to another at a given time. The model depends on the transition
probability matrix [TPM] that is used to express the chance of changing from one condition state to
another [29]. Later, the prediction model utilising the Markov chain for condition deterioration for
the Indian Department of Highways (IDOH) was developed by Jiang et al. [30]. There are no [TPMs]
in the literature that can be generalised to all bridges all over the world because there are many factors
that could affect it, such as average daily traffic, age, rehabilitation or replacement activity, etc.
However, the biggest challenge in the Markov chain is how to create a transition probability matrix
for each component in the bridge and update it in case of the availability of new data. Therefore, it is
important to generate this matrix and customise it to specific conditions by optimization. This study
assumed that the condition rating would not decrease by more than one state in a single year. There
are some points that should be considered while applying Markov analysis:

1- The initial state of the system and the probability distribution of the initial state are known.

2- The transition probabilities are assumed to be stationary over time and independent of how
the state (i) was reached.

3- After construction, the condition rating was assumed to be (9) on the FHWA rating scale.

4- The system is defined by a set of finite states, and the system can be in only one state at a given
time.
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The maximum rating of bridge components (deck, superstructure, substructure) at age zero is 9,
which represents a perfect condition of the bridge. Therefore, the initial state vector IP() for any
component of a new bridgeis[1, 0,0, ..... 0]. The lowest condition rating to be considered is 3, because
if it is less than that, the structure may be closed immediately. R is a vector of condition ratings [9 8 7
654 3], and R is a transform of R’ as shown in equation (6):

9

8

7
R=1|6](6)

5

4

3

2.3.1. Spreadsheet Modelling for Markov Chains

A spreadsheet model for Markov chains has been structured, including all formulations required
in cells of Excel 2013. The general model layout is shown in Figure 7.
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Figure 7. Spreadsheet model for Markov chain.

The upper left is the [TPM], which is multiplied sequentially to raise it to the different powers
from 1 to 35. The initial condition state [IPo] at the middle is multiplied by [TPM] to calculate the
future condition state [FP{] at any age (t). Finally, the single value of the predicted condition rating is
calculated by multiplying [FP¢] by the column vector [R]. The (Ac) is related to the actual condition
rating each year.

2.3.2. Optimizing [TPM] Probabilities

Due to the initial [TPMs] arbitrary character, it is likely to produce an inaccurate condition rating.
Thus, the objective of the optimization model is to find suitable values of the [TPM] in order to
coincide the Markov predicted condition rating curve with the actual curve.

2.3.3. Objective Function

To achieve the optimized model the objective function is to minimize the error between the
Markov precdicted condition rating and the actual rating from, summed among the age (A) of the
instance being consideredas shown in equation (7)[28,29].

Min %21 1PC. — AC| (7)

Subject to:


https://doi.org/10.20944/preprints202504.0548.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2025

13 of 31

x [RI¥t;=123,...A(8)

o O O oo

1
0
0
PC, = [IPO]x| 0
0
0
0

OO OO oo

0<Pii<1(9)

[IPo]=11000000]| (10)

Additionally, some constraints can be used to optimise the [TPM] for a specific instance with a
known condition rating (ACt) from historical data. Thus, the error between the predicted condition
rating and the actual rating should equal zero, as shown in equation (11) [28,29].

|PC, — AC,] = 0 (11)

2.3.4. Variables

The diagonal probability values are the Piivalues in the [TPM], as shown in equation (19). After
optimisation was completed, the TPM reached the optimum values, and the Markov prediction
became very close to the actual measure, as shown in Figures 8 and 9 respectively.

0.8737 0.1263 0 0 0 0 0 Time PC AC Error
0 0.5242 0.4758 0 0 0 0 1 8.87 9.89 1.02
0 0 0.5454 0.4546 0 0 0 2 8.70 9.5 0.80
0 0 0 0.5256 0.4744 0 0 3 8.50 9.32 0.82
0 0 0 0 0.5237 0.4763 0 4 8.26 8.99 0.73
0 0 0 0 0 0.5022 0.4978 3 7.99 8.56 0.57
0 0 0 0 0 0 1 6 7.69 8.3 0.61

7 7.38 8 0.62
A ( ) 8 7.05 7.85 0.80
Belyearn 9 6.71 7.55 0.84
o 5 10 15 20 25 10 6.37 71 0.73
4000 1 6.04 6.75 0.71
Average Condition Rating 42 5:/3 b:46 473
8.00 13 5.43 6.3 0.87
zéa 14 5.16 5.98 0.82
k=] 15 4.91 5.66 0.75
& 600
= 16 4.68 5.32 0.64
2 Condition Rating based on Markov 17 4.48 5 0.52
"g 4.00 18 4.30 4.75 0.45
S 19 4.14 4.32 0.18
2.00 20 4.00 4 0.00
Total Error] 13.21
0.00

Figure 8. Markov chain model before optimization.

0.896476 | 0.103524 0 0 0 0 0 Time PC AC Error
0 0.766943 | 0.233057 0 0 0 0 1 8.90 8.95 0.05
0 0 0.604542 | 0.395458 0 0 0 8.78 8.75 0.03
0 0 0 0.37501 | 0.62499 0 0 3 8.65 8.6 0.05
0 0 0 0 0.124343 | 0.875657 0 4 8.49 8.55 0.06
0 0 0 0 0 [} i 5 8.32 8.3 0.02
0 0 0 0 0 0 1 6 8.11 8.01 0.10

i 7.87 7.87 0.00

8 7.61 7.62 0.01

Age (year) 9 7.33 7.35 0.02

o 5 10 15 20 25 10 7.04 7.3 0.06

1900 11 6.75 6.75 0.00

® 800 Average Condition Rating L oo 16 0.0
£ 13 6.18 6.3 0.12
& 600 / 14 5.91 5.98 0.07
§ 15 5.66 5.66 0.00
= 0 » ) 16 5.42 5.32 0.10
5 g Condition Rating based on Markov 17 5.20 5 0.20
18 4.99 4.75 0.24

0.00 19 4.80 4.32 0.48

20 4.63 4 0.63

Total Error 2.23

Figure 9. Markov chain model after optimization.
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The formula in the spreadsheet is non-linear; that is called a non-linear programming (NLP)
problem and was solved by (SOLVER) which comes with the Excel software. For Non-Linear
Programming (NLP), SOLVER uses the Generalised Reduced Gradient method [31].

2.4. Expected the Service Life for the Reinforced Concrete Bridge Elements

The main cause of bridge deterioration could be related to steel corrosion. Carbonation, chloride-
induced, and sulphate attacks are the main causes of reinforcement corrosion [32]. This article
considers both carbonation and chloride-induced corrosion to estimate the corrosion rate and to
predict the bridge service life as shown in the following sections:

2.4.1. Service Life Prediction Based on Carbonation Attack

The corrosion process of embedded steel in concrete is a function of time. The corrosion
operation can be divided into three stages. The first stage is called the initiation period, which is the
amount of time needed for the carbonation front to reach the depth of the rebar level. The second
stage started when the oxide (passive) layer over rebar was lost, which is called depassivation. The
last period is the propagation state, which is started with depassivation to achieve the time for
cracking or spalling of the concrete cover [33]. Carbonation models typically show a relationship
between carbonation depth and structure age. The depth of carbonation depends on many factors,
such as water-cement ratio, cement type, and time. Equation (12) is used to determine the depth of
carbonation in (mm) [9].

D =C\{T; (12)

Where;

D: depth of carbonation which is less than maximum carbonation depth with (5 mm-10 mm)

T: time for carbonation till reach embedded steel bars

C: coefficient of carbonation

The coefficient of carbonation can be found by the following equation (13) [24]:

46*(%)—17.6
C=———%C+C, (13)
Where;

w/c: water cement ratio

C1: constant based on type of cement as shown in Table 12
Ca: constant based on the atmospheric condition of concrete as shown in Table 13

Table 12. Values of constant C1 due to type of cement [24].

Type of cement Ci

Ordinary Portland cement (type I') 1
Ordinary Portland cement (type 1) 0.6
Ferrous cement (ferrous slag 30% - 40%) 1.4
Ferrous cement (ferrous slag 60%) 2.2

Table 13. Values of C2due to concrete atmospheric condition [24].

Concrete atmospheric condition Cz

wet concrete 0.3

Externally exposed concrete members 0.5
Internally exposed members. 1

The time required for developing corrosion rate based on carbonation depth can be calculated
using the following equation (14) [24]:

0.08x*c.c

Where;
T2: the amount of time needed for corrosion to occur and for concrete to begin to spall.
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c.c : thickness of concrete cover

? . steel bar diameter

f(x) : rate of corrosion (mm/year) that is estimated based on equations (2),(3),and(4).

T1 and Tz can be calculated as following;
D

T, = (27 (15)

Let” assume
1

Ky = (16)

Kz — 0.0S;*C.C (17)

Thus;

T, = K,D? (18)

_ K1
2= €3] (19)

The total time for corrosion or spalling = K;D? + f[:;) (20)

2.4.2. Life-365 Model for Service Life Prediction Due to Chloride-Induced

The Life 365 model is used to estimate the service life and life cycle cost based on various
methods of corrosion protection. This model predicted the service life for concrete structures exposed
to chloride environments and not cover corrosion due to carbonation. Life-365 applies the ASTM
C1556 [34] method, which uses computations from field data to estimate the maximum surface
chloride concentration. The main parameters needed for the service life prediction are the concrete
cover, the properties of concrete (mainly diffusion coefficient), chloride threshold, and surface
chloride [35,36]. The corrosion initiation is the time for chlorides to penetrate concrete to the level of
steel and reach the corrosion threshold, while the propagation time is the time to cracking (service
life). The model predicts the initiation period based on Fickian diffusion. Life 365 considers the
temperature-dependent changes in diffusion equation (21) [35]:

D(T) = Dyopeexp 3. (7~ 7)1 @D

Where;

D(T): diffusion coefficient at time t and temperature T

Drys: diffusion coefficient at time trer =28 days and temperature Tret = 293K (20°C),

U: activation energy of the diffusion process (35000 J/mol),

R: gas constant, and

T: absolute temperature.

In the Life 365 model, the propagation period is fixed at 6 years, which is usually faster and
shorter than the initiation period, unless epoxy coating is used to increase the period to 20 years [37].
This value is determined based on a previous study by Weyers and others [38,39], who found that
the period required between corrosion to initiate and cracking was 3 to 7 years on bridge decks in the
USA. Nevertheless, users can change the propagation period based on their expertise [39].

3. Discussion & Validation

The proposed approach to diagnosis and maintenance decision-making applies to a real bridge.
The gathering data was taken from the General Authority for Roads and Bridges (GARB) and the
Ministry of Transportation (MOT). The bridge is a reinforced concrete box girder located near the
Suez Gulf in Egypt. It was built in 2004, and after 20 years, it shows several types of damage (cracks,
spalling, etc.). In 2024, a special committee was formed to assess the bridge's performance and take
appropriate action regarding its situation. The data gathering, visual inspection reports, and tests of
this committee were studied carefully to apply the proposed method. The inspectors add the rate for
each bridge element based on visual inspection, their expertise, measuring instruments such as
calipers, and some tests. The experts found that after twenty years, the Bridge Condition Rating (BCR)
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dropped from 9 to 4.36. It should be mentioned here that the rehabilitation decision was taken by the
revising committee, and the bridge has been in service since then. Investigating and estimating the
condition rating of the R.C. box bridge due to the dual proposed models is shown in the following
sections:

3.1. Data Gathering, Historical Data, Inventory of R.C. Bridge Elements

All the inventory, including bridge geometry, was collected from the General Authority for
Roads and Bridges (GARB). Numerous photos are taken to reflect the bridge's general conditions
from different elements (girders, abutments, slabs, and wing walls). The images in Figure 10 show
that bridge elements are suffering from several defects, such as cracks, spalling, rebar exposure, and
rust staining due to rebar corrosion. The images of any defects found in the bridge elements are
collected and classified, such as cracks, spalling, etc. The required tests were applied and the results
were reported, such as ground penetrating radar, ultrasonic pulse velocity, half-cell potential,
compressive strength, chloride content, etc., to investigate and evaluate the damage for each defected
element in the reinforced concrete bridge. For durability assessment tests, there should be
combinations between destructive and nondestructive tests.

(@)

Figure 10. Photos taken during inspection. (a) corrosion steel bar (b) spalling, and (c) cracks and exposed rebar.

3.3. Expected the Service Life for Bridge Elements Due to Carbonation and Chloride-Induced

Carbonation, chloride ingress, and sulphate attack are the main causes of reinforcement
corrosion. According to laboratory testing, the average sulfate content was lower than the allowable
limits, therefore the sulfate attack will not have a significant effect on concrete. The R.C. bridge service
life will be estimated due to carbonation and chloride-induced as shown in the following sections:

3.3.1. Corrosion Due to Carbonation for Bridge Elements

A carbonation test was applied for samples taken from the bridge to find the maximum
carbonation depth to be applied in equation (11). Compensating with a parameter extracted from
historical data to get the value of “C” and substitute in equation (12) to calculate Ti. Also, T2
(propagation time), the time required for corrosion to cause spalling of concrete cover, can be
calculated by equation (14). Hence, the total time of corrosion, T, must equal the sum of T1 and Tz;
refer to equation (20) and the summary in Appendix Table Al.

3.3.2. Chloride Induced Corrosion of Reinforcing Steel
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The Life 365 v2.2.3.1 service life software, which was explained by Ehlen and others [40] was
applied to predict the service life of the concrete for the chloride-induced corrosion. Table Al in the
appendix shows the service life for each element of the inspected bridge by Life-365 software.

3.4. Condition Assessment for R.C Bridges Due to Dual Approach, 1) Fuzzy Logic Analysis Technique, 2)
Markov Chain Model

3.4.1. Fuzzy Decision Model

In this stage, a fuzzy analysis technique is implemented by MATLAB (R2021a) to estimate the
bridge condition rating based on the relationship between concrete surface condition and corrosion
degree, as discussed in the previous section. The triangular membership function is applied for both
inputs and outputs, as shown in Figure 5, because of the narrow peak of its absolute membership
compared to the trapezoidal membership function, where the peak (absolute membership) is shown
through the interval. Triangular shape introduces fuzzy numbers, while fuzzy intervals are
represented by trapezoidal shape.

For G1L1:

The first input corrosion rate = 0.065 mm/yr The corrosion degree is Condition 1 (low)

The second input is Concrete surface condition (Obvious) Subjective assessment is 4.

Then the semi-quantitative condition rate = 4 as shown in in rule viewer Figure 11.

Concrete Surface
Condition
(Subjective assessment

=4 )

Corrosion
Degree =0.065

Semi-quantitative
condition rate = 4

Camosica_ Degree = 0065

|m

— ’ l....

Opened system Teal 3. 16 ndes ‘ I

Figure 11. The set of all rules with its output values for specified two inputs. MATLAB (R2021a).
The result from fuzzy analysis for each element in the bridge is shown in Table 14.

Table 14. The bridge component rating for bridge elements based on Fuzzy analysis technique.

Subjective semi-
Corrosion rate . Concrete J gquantitative
Corrosion assessment of " . Average Component
Component No based on PH Surface condition Semi- e
Degree . concrete . rate rate* Weight
value (mm/yr) Condition guantitative
surface P
condition
S1L1 0.13 2 3 4 4
S6L1 0.08 1 2 5 5 4.5 o4

G1L1 0.065 1 3 4 4 4.2 63
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G2L1 0.03 1 3 4 4

G3L1 0.042 1 2 5 5

G4L1 0.25 3 3 4 4

G5L1 0.02 1 3 4 4

AB1 0.01 1 3 4 4

AB2 0.095 1 3 4 4 4 48
w21 0.06 1 3 4 4

W22 0.042 1 2 S 5 45 315
Di1L1 0.25 3 3 4 4 4 60

BCR: =4.01

3.4.2. Markov Chain Analysis

The bridge was built in 2004. In 2024, there is an evaluation and rehabilitation work. The service
life of the bridge at the time of rehabilitation is 20 years. Markov chain analysis will be applied to
determine the current and future conditions of the current bridge. The transition probability matrix
for the deck, superstructure, and substructure of the three bridge parts was created in this model.
Due to laboratory tests for carbonation and chloride profiles, the service life is calculated for each
element, and found that the girder (G3L1) has the shortest service life of 20 years. To find the [TPM],
Matlab R2021a is applied to solve the equation, as shown in Figure 12.

Final_Solution.m | + Name ~ Value
1i- p=1(1000000]; Uk 45000
2- R=1[9 8;7; 6; 5; 4; 3); H error 42215¢-16
3- CR = [4.5]; %lb [0:0:0:0:0:0)
4- n=20; n 20
S-  1b = zeros(6,1): €] obj @X)(p*(diag(ix 1)) +dia
6- ub = ones(6,1); EEE; :;gsggggi
Ti= obj = @(x) (p*(diag(([x;1])+diag(1-x,1))“n*R-CR)*2; ~ Huw l1;1;1;1;1;1i
8- x0 = rand(6,1); Eﬁ X [0.5884;0.6160;0.5720,0.5
9 - x = fmincon (obj,x0, [1, (1, (1, [1,1b,ub) X 7x7 double
10 % Reconstructed matrix Exo (0.8147,0.9058,0.1270,0.¢
1 - X = diag([x;1))+diag(1-x,1)
12
13-
X =
0.5884 0.4116 0 0 0 0 0
0  0.6160  0.3840 0 0 0 0
0 0 0.5720  0.4280 0 0 0
0 0 0 0.9325 0.0675 0 0
0 0 0 0 0.5444 0.4556 0
0 0 0 0 0 0.5187 0.4813
fx 0 0 0 0 0 0 1.0000

Figure 12. Screenshot of Matlab (R2021a) code to find unknown [TPM].

The summary of the condition rating for each element and the overall bridge condition rating
based on FHWA (2012) [22] are shown in Table 15 and calculated based on each element weight as
shown in Table 3 and equation (1).

Table 15. Summary of condition rating based on proposed MCM.

Element Predicted condition rating CR*Wt
Deck Slabs 4.84 58.08

Girder 4.85 72.75
abutment 4.89 58.68
wing wall 4.84 33.88

Diaphragm 4.63 69.45
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Overall BCR ,= 4.576

Also, the difference between the actual condition rating from historical data for each year and
the predicted condition rating from the model is shown for each previous element in Figures 13-17.

Age (year)
0 5 10 15 20 25

10.00
o0
= 8.00 Average Condition
]
r~ 6.00
=
e
= 4.00
E
S 200 Condition Rating based on Markov

0.00

Figure 13. Deterioration curve for diaphragm.

Age (year)
0 5 10 15 20 25

10.00
0 Condition Rating based on Markov
& 800
P!
]
&~ 6.00
=
S
= 4.00
]
‘: /
S 2.00

Average Condition

0.00

Figure 14. Deterioration curve for wing wall.

Age (year)
0 5 1§ 15 20 25
10.00
Condition Rating based on Markov
258-00
5
< 6.00
c
g
= 4.00
g
Y00 Average Condition
0.00

Figure 15. Deterioration curve for abutment.
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Age (year)
0 5 g10y 20 25
10.00
Condition Rating based on Markov
o5 8.00
g
& 6.00
=
g
£ 4.00 /
s
£
8 2.00
’ Average Condition
0.00

A
g¢ (year)

0 5 15 20 25
10.00
8.00 Condition Rating based ory Markov
6.00

Condition Rating

4.00 /

2.00
Average Condition Rating

0.00

Figure 17. Deterioration curve for slabs.

Predicting the future condition rating based on the Markov Chain Model (MCM) has been
discussed previously. The model predicted the deterioration of the slabs, girders, diaphragm,
abutment, and wing wall of the current bridge study. The Tables A2-A6 in the appendix show when
each element will reach a condition rating of 3, which is the critical condition rating. The bridge will
reach a condition rating of 3 after 78 years. The results from the dual artificial intelligence techniques
differ from the result reported from the bridge expert report of the validated case, as shown in Figure
18. The fuzzy decision model and the Markov Chain model required both field and laboratory tests
to find and calculate essential parameters such as carbonation depth, diffusion coefficient, surface
chloride, and others. Nevertheless, fuzzy analysis is communicated with ranges that make it less
accurate than other methods. Additionally, fuzzy is suffering from the redundancy, which is one of
the problems of linguistic fuzzy IF-THEN rules. While MCM depends on field tests, laboratory tests,
and historical data, which is required in optimization process to coincide the Markov predicted
condition rating curve with the actual curve. Selection of the proper decision regarding the estimated
condition rating of the inspected bridges relies on strategy maintenance options as per FHWA, 2012,
as shown in Table 1. The two different results of the current condition rating show that the inspected

bridge required major rehabilitation.

Excellent Condition, new Condition, not worthy
9 deficiency.
(Initial Condition state)
Fair Condition, Minor Section Loss, Cracking or
Scouring for minor Rehabilitation, Minor
Rehabilitation is needed

(Preceding Condition state)
4.01 Current Condition due to Fuzzy Decision Model

Poor Condition, Advanced section loss, deterioration,
Spalling or Scouring for major Rehabilitation, Major
Rehabilitation is needed.

( Proceeding Condition state)

(a)
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9 Excellent Condition, new Condition, not worthy
deficiency.
(Initial Condition state) _
Fair Condition, Minor Section Loss, Cracking or
5 Scouring for minor Rehabilitation, Minor
Rehabilitation is needed
( Preceding Condition state)

4.57 Current Condition due to MCM

Poor Condition, Advanced section loss,

4 deterioration, Spalling or Scouring for major

Rehabilitation, Major Rehabilitation is needed.
(Proceeding Condition state)

(b)
Excellent Condition, new Condition, not worthy
9 deficiency.
(Initial Condition state)
Fair Condition, Minor Section Loss, Cracking or
5 Scouring for minor Rehabilitation, Minor
Rehabilitation is needed

( Preceding Condition state)
4.36 Current Condition due to Bridge experts report

Poor Condition, Advanced section loss,

4 deterioration, Spalling or Scouring for major

Rehabilitation, Major Rehabilitaion is needed.
( Proceeding Condition state)

()
Figure 18. Comparison of ranking the current Bridge Condition Rating by:(a)fuzzy decision model ,(b) MCM,

and (c) bridge inspection experts report (actual condition rating).

4. Conclusions

This research has aimed to apply artificial intelligence in assessing reinforced concrete bridges.
The study compares two different methods that relied on visual inspection, historical data, bridge
inventory and field and laboratory tests to diagnose the bridge reinforcement concrete diseases. The
techniques applied in the study are fuzzy decision-making and Markov chain modelling to determine
the overall bridge condition rating. The Federal Highway Administration classification system
(FHWA, 2012) is adopted in the current study to categorise the deterioration of reinforced concrete
bridges into ten ratings. The weight evaluation method (WEM) is applied to justify the NY rating
system for ranking elements of R.C. bridges in Egypt. The corrosion is considered the main reason
for bridge deterioration. Therefore, the service life for the bridge is estimated due to carbonation and
chloride attack. The Life 365 model is used to determine the service life due to chloride ingress. The
current method established a fuzzy decision-making model to find a correlation between concrete
surface condition and corrosion degree to estimate the current rating for each bridge element. Then,
the Markov chain model has been used for predicting the deterioration state for each element and the
whole bridge. Finally, the inspector is able to estimate when the bridge will achieve the critical
condition at scale 3 based on the FHWA, 2012 rating to take the proper decision. The different results
from the dual models of condition rating are applicable. Although the fuzzy decision model depends
on both field and laboratory tests, the technique is communicated with ranges that make it less
accurate and is suffering from redundancy. In contrast, MCM depends on field tests, laboratory tests,
and historical data, which is necessary for the optimisation process in order to minimise the error
between the Markov predicted condition rating and the actual rating. Therefore, the assessment
derived from MCM is the closest to that obtained by bridge inspector experts of the validated case.
From the obtained results, the suggested models would assist the bridge inspector experts and
decision-makers in the bridge management sector to achieve appropriate assessment to create a
systematic plan for the bridge's eventual maintenance, repair, or rehabilitation. The future works are
encouraged to apply other types of Al in bridge assessment and make a comparison between them
to select the more applicable technique. Also, they are recommended to concentrate on selecting the
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proper action based on the cost, duration, efficiency, and urgency of the most deteriorated areas. The
proposed techniques can be developed to be carried out on the other types of bridges, such as steel
bridges, precast concrete, etc.

Author Contributions: Conceptualization, Ahmed Mohammed Abdelalim, GAMAL EBRAHIM and Mohamed
Badawy; Data curation, Ahmed Mohammed Abdelalim, Yasmin Shalaby and Mohamed Badawy; Formal
analysis, Ahmed Mohammed Abdelalim, Yasmin Shalaby and Mohamed Badawy; Funding acquisition, Ahmed
Mohammed Abdelalim; Investigation, Ahmed Mohammed Abdelalim, Yasmin Shalaby and Mohamed Badawy;
Methodology, Ahmed Mohammed Abdelalim, Yasmin Shalaby and Mohamed Badawy; Project administration,
Ahmed Mohammed Abdelalim, GAMAL EBRAHIM and Mohamed Badawy; Resources, Ahmed Mohammed
Abdelalim; Software, Ahmed Mohammed Abdelalim, Yasmin Shalaby and Mohamed Badawy; Supervision,
Ahmed Mohammed Abdelalim, GAMAL EBRAHIM and Mohamed Badawy; Validation, Ahmed Mohammed
Abdelalim, Yasmin Shalaby, GAMAL EBRAHIM and Mohamed Badawy; Visualization, Ahmed Mohammed
Abdelalim, Yasmin Shalaby and Mohamed Badawy; Writing — original draft, Ahmed Mohammed Abdelalim,
Yasmin Shalaby and Mohamed Badawy; Writing — review & editing, Ahmed Mohammed Abdelalim and
Yasmin Shalaby.

Funding: Not applicable

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Any data used during the study can be accessed when request

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

MRR Maintenance, Repair, and Replacement
RC Reinforced concrete

BMS Bridge Management System

GPR Ground Penetrating Radar

AASHTO American Association of State Highway and Transportation Officials
GARB General Authority for Roads and Bridges

MCM Markov Chain Modelling
WEM Weight Evaluation Method

BCR Bridge Condition Rating
TPM Transition Probability Matrix
FHWA  Federal Highway Administration classification system
NY New York ranking system
Appendix A

Table A1. Summary of corrosion characteristics for bridge elements.

Element S1L1  SeL1 GIL1 G2L1 G3L1 G4L1 G5L1 DIL1  AB1  AB2 W21 W22
Parameter
Primary Evaluation 4 5 4 4 5 4 4 4 4 4 4 5
pH-value 738 1228 728 1341 1312 7.8 13.66 8 1399 1198 1271 1312
Rate of corrosion due topH 5 008 025 003 0042 025 0.02 025 001 0095 006 0042
(mm/yr.)
Concrete resistivity (ohm.cm) 8000 11500 8000 11800 11800 8000 11800 8500 11800 11200 11500 11800
C.C (mm) 15 15 15 18 15 15 18 12 18 18 15 15

Measured carbonation test 5 5 5 5 5 5 5 2 5 5 5 5
(mm) (Laboratory test)
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Uncarbonated depth (de)=min 10 10 13 10 10 13 10 13 13 10 10
cover-carbonation depth

Steel Diameter 14 14 22 22 22 22 22 22 25 25 18 18

T1: initiation period (years) 25 25 25 42.25 25 25 42.25 25 42.25 42.25 25 25
T2: Propagation Period (years) 0.659 1.071 0.218 2.182 1.299 0.218 3.273 0.175 5.760 0.606 1.111 1.587
Te T (I?ue to 25.66 26.07 25.22 44.43 26.30 25.22 45.52 25.17 48.01 42.86 26.11 26.59

carbonation)

Service life due toChloride ). o 010 35, 23.60' 20.30 |21.3o 2630 2450 39.60 3840 2380  27.70
Induced (Life -365)

Table A2. Actual and predicted condition rating for Diaphragm.

Time Predicted CR Actual CR Error

1 8.90 8.95 0.05
2 8.78 8.75 0.03
3 8.65 8.6 0.05
4 8.49 8.55 0.06
5 8.32 8.3 0.02
6 8.11 8.01 0.10
7 7.87 7.87 0.00
8 7.61 7.62 0.01
9 7.33 7.35 0.02

10 7.04 7.1 0.06

11 6.75 6.75 0.00

12 6.46 6.46 0.00

13 6.18 6.3 0.12

14 5.91 5.98 0.07

15 5.66 5.66 0.00

16 5.42 5.32 0.10

17 5.20 5 0.20

18 4.99 475 0.24

19 4.80 4.32 0.48

20 4.63 4 0.63

21 4.47

22 432

23 419

24 4.07

25 3.97

26 3.87

27 3.78

28 3.70

29 3.63

30 3.57

31 3.51

32 3.46

33 3.41

34 3.37

35 3.33

36 3.30

37 3.27

38 3.24

39 3.21

40 3.19

41 3.17

42 3.15

43 3.14

44 3.12

45 3.11

46 3.10

47 3.09

48 3.08
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49 3.07
50 3.06
51 3.06
52 3.05
53 3.05
54 3.04
55 3.04
56 3.03
57 3.03
58 3.03
59 3.02
60 3.02
61 3.02
Time Predicted CR Actual CR Error
62 3.02
63 3.02
64 3.01
65 3.01
66 3.01
67 3.01
68 3.01
69 3.01
70 3.01
71 3.01
72 3.01
73 3.01
74 3.00
Table A3. Actual and predicted condition rating for wing wall.

Time Predicted CR Actual CR Error
1 8.90 8.88 0.02
2 8.79 8.73 0.06
3 8.66 8.6 0.06
4 8.52 8.49 0.03
5 8.36 8.32 0.04
6 8.18 8.15 0.03
7 7.97 8 0.03
8 7.74 7.9 0.16
9 7.49 7.75 0.26

10 7.22 7.4 0.18
11 6.95 6.94 0.01
12 6.68 6.73 0.05
13 6.41 6.5 0.09
14 6.15 6.2 0.05
15 5.90 5.9 0.00
16 5.66 5.56 0.10
17 5.44 51 0.34
18 5.22 487 0.35
19 5.03 4,63 0.40
20 4.84 45 0.34
21 4.67
22 452
23 4.38
24 4.25
25 413
26 4.02
27 3.92
28 3.83
29 3.75
30 3.68



https://doi.org/10.20944/preprints202504.0548.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2025

25 of 31
31 3.61
32 3.55
33 3.49
34 3.45
35 3.40
36 3.36
37 3.32
38 3.29
39 3.26
40 3.24
41 3.21
42 3.19
43 3.17
44 3.16
45 3.14
46 3.13
a7 3.11
48 3.10
49 3.09
50 3.08
51 3.07
52 3.07
53 3.06
54 3.05
55 3.05
56 3.04
57 3.04
58 3.04
59 3.03
60 3.03
61 3.03
62 3.02
63 3.02
Time Predicted CR Actual CR Error

64 3.02
65 3.02
66 3.02
67 3.01
68 3.01
69 3.01
70 3.01
71 3.01
72 3.01
73 3.01
74 3.01
75 3.01
76 3.01
77 3.00
Table A4. Actual and predicted condition rating for abutment.

Time Predicted CR Actual CR Error
1 8.91 8.88 0.03
2 8.80 8.69 0.11
3 8.68 8.56 0.12
4 8.54 8.45 0.09
5 8.38 8.4 0.02
6 8.20 8.25 0.05
7 7.99 8 0.01
8 7.75 1.77 0.02
9 7.50 7.65 0.15

10 7.23 7.43 0.20
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11 6.96 6.96 0.00
12 6.69 6.75 0.06
13 6.42 6.5 0.08
14 6.17 6.24 0.07
15 5.92 5.87 0.05
16 5.69 5.55 0.14
17 5.47 5.3 0.17
18 5.26 4,75 0.51
19 5.07 4,52 0.55
20 4.89 4 0.89
21 4,73
22 4,58
23 4.44
24 431
25 419
26 4.09
27 3.99
28 3.90
29 3.82
30 3.82
31 3.68
32 3.62
33 3.56
34 3.51
35 3.46
36 3.42
37 3.38
38 3.35
Time Predicted CR Actual CR Error
39 3.32
40 3.29
41 3.26
42 3.24
43 3.21
44 3.20
45 3.18
46 3.16
47 3.15
48 3.13
49 3.12
50 3.11
51 3.10
52 3.09
53 3.08
54 3.07
55 3.07
56 3.06
57 3.06
58 3.05
59 3.05
60 3.04
61 3.04
62 3.03
63 3.03
64 3.03
65 3.03
66 3.02
67 3.02
68 3.02
69 3.02
70 3.02

71 3.01
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72 3.01
73 3.01
74 3.01
75 3.01
76 3.01
7 3.01
78 3.01
79 3.01
80 3.01
81 3.01
82 3.01
83 3.01
84 3.00
Table A5. Actual and predicted condition rating for Girders.

Time Predicted CR Actual CR Error
1 8.90 8.99 0.09
2 8.79 8.79 0.00
3 8.67 8.63 0.04
4 8.52 8.44 0.08
5 8.36 8.21 0.15
6 8.18 8.15 0.03
7 7.97 8 0.03
8 7.74 7.9 0.16
9 7.49 7.75 0.26
10 7.22 7.4 0.18
11 6.95 6.94 0.01
12 6.68 6.73 0.05
13 6.41 6.5 0.09
14 6.15 6.2 0.05
15 5.90 5.9 0.00
16 5.66 5.56 0.10
17 5.44 5.1 0.34
18 5.23 4.87 0.36
19 5.03 4.63 0.40
20 4.85 4.2 0.65
21 4.68
22 4.52
23 4.38
24 4.25
25 413
26 4.02
27 3.93
28 3.84
29 3.76
30 3.68
31 3.62
32 3.56

33 3.50
34 3.45
35 3.41
36 3.37
37 3.33
38 3.30
39 3.27
40 3.24
41 3.22
42 3.20
43 3.18
44 3.16
45 3.14
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46 3.13
47 3.12
48 3.11
49 3.10
50 3.09
51 3.08
52 3.07
53 3.06
54 3.06
55 3.05
56 3.05
57 3.04
58 3.04
59 3.03
60 3.03
61 3.03
62 3.02
Time Predicted CR Actual CR Error
63 3.02
64 3.02
65 3.02
66 3.02
67 3.01
68 3.01
69 3.01
70 3.01
71 3.01
72 3.01
73 3.01
74 3.01
75 3.01
76 3.01
77 3.01
78 3.00
Table A6. Actual and predicted condition rating for Slabs.

Time Predicted CR Actual CR Error
1 8.90 8.77 0.13
2 8.79 8.63 0.16
3 8.66 8.45 0.21
4 8.52 8.21 0.31
5 8.36 8.15 0.21
6 8.17 8 0.17
7 7.96 7.99 0.03
8 7.73 7.73 0.00
9 7.48 7.55 0.07

10 7.22 7.4 0.18
11 6.95 6.94 0.01
12 6.68 6.73 0.05
13 6.41 6.5 0.09
14 6.15 6.2 0.05
15 5.90 5.9 0.00
16 5.66 5.56 0.10
17 5.43 51 0.33
18 5.22 4.87 0.35
19 5.02 4.63 0.39
20 4.84 4.5 0.34
21 4.67

22 4.52

23 4.37

24 4.24
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25 413
26 4.02
27 3.92
28 3.83
29 3.75
30 3.68
31 3.61
32 3.55
33 3.50
34 3.45
35 3.40
36 3.36
37 3.33
38 3.27
39 3.27
40 3.24
41 3.22
Time Predicted CR Actual CR Error
42 3.19
43 3.18
44 3.16
45 3.14
46 3.13
47 3.12
48 3.10
49 3.09
50 3.08
51 3.08
52 3.07
53 3.06
54 3.06
55 3.05
56 3.04
57 3.04
58 3.04
59 3.03
60 3.03
61 3.03
62 3.02
63 3.02
64 3.02
65 3.02
66 3.02
67 3.01
68 3.01
69 3.01
70 3.01
71 3.01
12 3.01
73 3.01
74 3.01
75 3.01
76 3.01
77 3.00
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