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Abstract: Artificial Intelligence (AI) has recently played a crucial role in improving bridge assessment 

through diverse methodologies to optimize maintenance strategies and reduce costs. Therefore, the 

current study proposed two different methods to estimate the current condition rating of R.C. bridges 

by 1) Fuzzy Decision-Making; and 2) Markov Chain Modelling. The purpose of this study is to 

investigate the more applicable and accurate technique due to AI for reinforced concrete bridge 

assessment. The current study focused on corrosion as the main defect used to estimate the bridge 

condition rating. The dual methods depend on visual inspection, applying field and laboratory tests, 

and reviewing the historical data of the inspected bridge to estimate its condition rating. The fuzzy 

decision model is applied to find a correlation between corrosion degree and concrete surface 

condition to estimate the condition rating. The Markov chain model is used to predict the future 

condition rating for the whole bridge and when it will reach the critical condition. The service life for 

each bridge element is calculated due to carbonation and chloride attack. The Life 365 model is 

applied to estimate the service life due to chloride ingress. The proposed system is validated through 

a real case study, and the results show that the fuzzy is less accurate compared to the Markov Chain. 

The introduced models are expected to provide proper Maintenance, Repair, and Replacement 

(MRR) decisions for the bridges. 

Keywords: AI; reinforced concrete bridges; assessment; visual inspection; condition rating fuzzy; 

markov chain 

 

1. Introduction 

Civil infrastructure systems are undergoing continued and accelerating deterioration over time. 

Most of them are owned by the government or large firms and could be classified into roadways, 

bridges, buildings, and water and sewer networks. Meanwhile, statistics show that 98% of its 

domestic cargo depends on this road network and bridges, which reflects their significant role in the 

national economy and people’s daily activities [1]. Deterioration and degradation are the most 

popular issues for the bridges, which are one of the core elements of infrastructure systems. In the 

United States, 22.7% of the bridges are either structurally deficient or functionally obsolete, according 

to the American Society of Civil Engineers (2017). In 2006, the cost of eliminating all existing bridge 

deficiencies was estimated at $850 billion [2,3]. In 2013, the United States found that 607,380 bridges 

have an average age of 42 years [4]. There are several factors that impact RC bridges; deterioration 

leads to different defects, which reflect the main challenge in bridge inspection programs. Some of 
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them belong to design, techniques used for construction, materials, ageing, excessive loads, 

environmental exposure, and maintenance of the structure in service. Furthermore, accident effects 

such as fire, which is considered one of the most severe threats to which RC bridges may be exposed 

during their life service [5]. Inspection and performance assessment of bridges are important in many 

countries. There are several categories of bridge inspection that reflect the intensity of the inspection 

[6]. The AASHTO Manual for Bridge Evaluation (2018)[7] described the seven types of inspection, 

which may vary based on the useful life of bridges and the type of structures. Mainly, visual 

inspection is used to evaluate the service statuary of the bridges, which can be applied for condition 

assessment [8]. Generally, the diagnosis and evaluation of current conditions are the main tools for 

concrete structure management [9]. The authorities around the world have a desire to develop 

solutions to periodically inspect their bridges and to support maintenance activities. They used the 

bridge management system (BMS), which is visual inspection-based decision support tools to analyze 

engineering and economic factors and to assist the authorities in taking the decisions regarding 

maintenance, repair, and rehabilitation of bridge structures at a suitable time. The US and inside the 

EU have developed numerous bridge management systems (BMSs) to assist engineers on the 

condition assessment and prioritization of maintenance activities. Consequently, measuring the 

bridge deterioration by using several condition rating scales are indicators to take the best decision 

between maintenance, repair, and replacement (MRR) choices [10–13]. Generally, it is rare to find an 

effective, clear, and practical system to assess the bridge condition and predict its future deterioration 

to make a decision between three strategies: (a) maintenance, (b) repair, or (c) rehabilitation. Over the 

past years, a lot of studies were competing to integrate a comprehensive study for structural safety 

assessment. Abdelalim [14] proposed an approach for rehabilitated reinforced concrete buildings 

based on a probabilistic deterioration model. The model considered the impact of different options 

of maintenance due to the total cost of maintenance over a year. Abdelalim et al. [15] applied a 

Markov chain model to predict the future building condition during its life cycle. Alsharqawi et al. 

[16] integrated a condition rating index based on visual inspection for surface and ground-

penetrating radar (GPR) technology for subsurface defects. The quality function deployment (QFD) 

theory was adopted for bridge condition assessment, and the k-means clustering technique was used 

to identify the thresholds between different ratings. Their assessment was relied on only one 

nondestructive evaluation techniques and one type of clustering algorithms that make it less accurate. 

Ali Mohamed et al. [9] introduced a framework for building condition assessment based on building 

information modelling (BIM). The system was divided into two models: the condition assessment 

model and the deterioration predictive model. Rhee et al. [17] presented a dielectric constant curve 

that can be applied to the assessment of asphalt condition-covered concrete bridge decks, taking into 

account the age of the concrete. Ground penetrating radar (GPR) technology was applied in the field 

survey for reliable condition assessment. Rogulj et al. [18] applied fuzzy analysis for bridge condition 

assessment. They depended only on visual inspection for bridges condition assessment. The bridge 

components are divided into three elements: superstructure, substructure, and equipment. Each 

element rating evaluated by experts was deffuzified according to defined fuzzy sets, membership 

functions, and linguistic values. Additionally, ratings for every element are assigned a fuzzy 

structural importance. Finally, the centroid method was applied for defuzzifying the component 

rating. Xia et al. [19] established an approach based on inspection reports to estimate the bridge 

condition rating. The bridge condition assessment was a composite of three levels: the component 

level, unit level, and system level. There were five levels for subjective condition rating: excellent, 

good, fair, serious, and failed. The long short-term memory (LSTM) neural network was applied to 

read information from inspection reports to extract the required feature to estimate the bridge 

condition rating. The considered features were sub-region, ADT, ADTT, age, length, structural type, 

max span, superstructure maintenance, substructure maintenance, and deck maintenance. The main 

limitation is related to the requirement of a large amount of data for training the neural networks. 

Bertagnoli et al. [20] used 3D global non-linear numerical analyses to assess the safety level of 

different damage scenarios for bridge decks. The ultimate limit state due to the safety loss of the 
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damage level was used to evaluate the safety level of the deck. The damage threshold was defined in 

terms of measurable static parameters. Shivam [21] assessed the bridge based on a bridge inventory 

that includes the measurement and the number for each component type. The condition of each 

component due to its distress percentage was determined at the final stage to observe its severity. 

Although there are different techniques employed for bridge condition assessment, it is still a 

challenge to determine the most effective method because there aren't enough studies that compare 

different approaches. Also, most of the literature studies applied their assessment methods on the 

bridge deck only and ignored the other parts of the bridge. Additionally, the previous studies are 

focusing on the visual inspection and inventory data to assess the current condition of the structure. 

They ignored that the inspectors may be required to carry out nondestructive and destructive tests, 

followed by laboratory tests to diagnose the structural condition to get an accurate condition rating. 

Thus, the present study has a desire to compare different techniques to assess the reinforced concrete 

bridges. Among the two methods compared in this paper, dual AI-based methods are selected in 

recognition of the significance of Artificial Intelligence (AI) in the evaluation of reinforced concrete 

bridges. The established techniques depend not only on visual inspection by bridge inspectors but 

also on applying field and laboratory tests and reviewing the historical data of the inspected bridge 

to estimate the bridge condition rating. The first technique relied on applying a fuzzy decision model 

to find a correlation between the corrosion degree and concrete surface condition to estimate the 

condition rating for each bridge element to find the overall bridge rating. The second technique 

adopted the Markov Chain model to predict the future condition for each bridge element and to 

determine when the inspected bridge will reach the critical condition. Also, it was taken into 

consideration to generate the transition probability matrix [TPM] of the Markov chain and customise 

it to specific conditions by optimization.  Additionally, this paper estimates the bridge service life 

based on laboratory and field tests. The service life for the RC bridge is calculated due to carbonation 

attack and chloride-induced corrosion of the embedded steel bars. The proposed system aims to 

investigate the more applicable and accurate technique to diagnose the bridge condition state to take 

the proper decision. 

2. Research Methodology 

2.1. Method Overview 

The introduced research is applied to compare the condition rating for R.C. bridges due to fuzzy 

decision model and Markov chain modelling. The data from the condition assessment contributes to 

create a deterioration model to predict the state of the whole bridge to decide the best strategy 

reaction. Corrosion of the embedded steel bars is considered in this paper as the main defect to 

estimate the bridge condition rating and its service life. The research procedure followed in this study 

is illustrated in Figure 1. 
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Figure 1. Research procedure to apply dual techniques for detecting thr life cycle of RC bridges. 

2.1. Condition Rating System and Bridge Element Weights 

The National Bridge Inventory has the most common condition rating, which has been 

developed by the Federal Highway Administration (FHWA, 2012). It is used to evaluate three main 

components of bridges: deck, superstructure, and substructure. The scale ranged from 9, which 

presents excellent condition, to zero, which refers to failed condition, as shown in Table 1 [22]. The 

Federal Highway Administration classification system (FHWA, 2012) is adopted in this approach 

system to categorise the deterioration of reinforced concrete bridges. 

Table 1. Scaling Deterioration as per FHWA, 2012 [22]. 

Rating Description 

10-N Not applicable ( Just-Constructed) 

9 Excellent Condition, new Condition, not worthy deficiency. 

8 Very Good Condition, No repair is needed 

7 Good Condition, Some minor Problems for Minor maintenance. 

6 Satisfactory Condition, some minor deterioration for major maintenance. 

5 Fair Condition, Minor Section Loss, Cracking or Scouring for minor Rehabilitation, Minor Rehabilitation is needed 

4 
Poor Condition, Advanced section loss, deterioration, Spalling or Scouring for major Rehabilitation, Major 

Rehabilitation is needed. 

3 
Serious Condition, Section Loss, Deterioration, Spalling or Scouring have seriously affected primary Structural 

components, Immediate Rehabilitation is needed. 

2 
Critical Condition, advanced deterioration of Primary Structural elements, Urgent Rehabilitation, the Structure may 

be closed until Corrective Actions taken. 

1 
Imminent Failure Condition, Major Deterioration or Section loss, Structure may be closed until Corrective actions 

which may put it back into light service. 

0 Failed Condition, Beyond Corrective action, Out-of Service 

On the other hand, the NY ranking system assigned relative weights for thirteen bridge elements 

as listed in Table 2. The current study used the Weighted Evaluation Method (WEM ASTM1957) to 

justify the weight importance of bridge elements. Weighted evaluation is a useful tool that helps 

decision-makers make suitable decisions. 
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Table 2. Element Weights in the NY Rating System [23,24]. 

 Component Weight 

1 Primary members 15 

2 Deck 12 

3 Abutment 12 

4 Piers 12 

5 Bearings 9 

6 Bridge Seats 9 

7 Wing walls 7 

8 Back Wall 7 

9 Secondary members 6.5 

10 Joints 4.5 

11 Wearing Surface 4.5 

12 Sidewalks 1 

13 Curb 0.5 

A question of which component element is more important than others based on the thirteen 

elements mentioned in the NY ranking system was discussed with experts with rich knowledge in 

the bridge industry in Egypt, Saudi Arabia, and the United Arab Emirates. The aim of the question is 

to be used in WEM to capture the opinion of experts regarding the important elements affecting the 

bridge condition rating, especially for R.C. bridges, as shown in Table 3. 

Table 3. Proposed element weight. 

 Component Weight 

1 Primary members 10 

2 Deck 8 

3 Abutment 8 

4 Piers 8 

5 Bearings 6 

6 Bridge Seats 6 

7 Wing walls 5 

8 Back Wall 5 

9 Secondary members 5 

10 Joints 4 

11 Wearing Surface 4 

12 Sidewalks 2 

13 Curb 1 

The weight of each element is compensated in equation (1) to evaluate the overall Bridge 

Condition Rating (BCR) [22]. 

𝐵𝐶𝑅 =
∑(𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑛𝑔×𝑊𝑒𝑖𝑔ℎ𝑡

∑𝑊𝑒𝑖𝑔ℎ𝑡𝑠
 (1) 

2.2. Predicting the Condition Rating of Reinforced Concrete Bridges by Fuzzy Decision Model 

In this technique, the corrosion is considered the common symptom of distress and bridge 

deterioration. The article adopted a fuzzy decision model to find a correlation between concrete 

surface condition and corrosion degree. Abdelalim, A. M. [24] defined four degrees of corrosion as 

shown in Table 4. 

Table 4. Degrees of corrosion and how they affect surface condition of concrete [24]. 

Corrosion Degree Steel Bars Condition 

Condition-1 
Mill scale remains on the surface of steel bars, rust forms on the surface of reinforcing bars, 

but it is "thin" and the bar is "solid" throughout; rust is not formed on the surface of concrete. 

Condition-2 Small region covered by the "partly floating rust" and the rust is spotty too 

Condition-3 
"Floating rust" is seen across the the entire circumstance or length of the reinforcement bars, 

although there is no observable loss of cross section area. 

Condition-4 "Loss of cross sectional area" is observed in reinforcing bars. 
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To create a correlation between corrosion degree and concrete surface condition, logic approach 

has been adopted with applying Mamdani’s Inference system. Concrete surface condition can be 

categorized into four conditions as shown in Table 5. 

Table 5. Degrees of corrosion /surface conditions. 

Corrosion Degree Concrete Surface Condition Subjective Assessment of Concrete Surface 

Condition-1 Unchanged 6 

Condition-2 Slight 5 

Condition-3 Obvious 4 

Condition-4 Deteriorated 3 

Fuzzy set theory is designed to deal with uncertainties that are not statistical in nature [25]. 

Fuzzy set theory is used by fuzzy inference systems (FIS) to map inputs to outputs. The two common 

inference systems are the Mamdani and the Sugeno. Trapezoidal and triangular shapes of 

membership functions are the most common. Some experts preferred the triangular membership 

function due to its narrow peak of absolute membership compared to the trapezoidal membership 

function, where the peak (absolute membership) is shown through the interval. Other studies 

preferred trapezoidal membership because of its flexibility and reliability compared to triangular 

membership [26]. Thus, the current study applies both trapezoidal and triangular shapes to compare 

the results between them. 

2.2.1. The Membership Functions 

The numerical value for corrosion degree is determined by the rate of corrosion based on the pH 

value. The corrosion degree is the first linguistic variable and takes linguistic values (low, moderate, 

significant, and critical) based on equations (2), (3), and (4) to be shown in Table 6. 

Let’s X=pH, Y=f(x) where f(x) is the rate of corrosion (mm/year) [24] 
𝑓(𝑥) = –  0.5155 + (7.318/ 𝑋) pH >9.6 (2) 

𝑓(𝑥) = 0.25 pH [3.6-9.6] (3) 

𝑓(𝑥) = 1.484 + (5.016/ 𝑋)  + (4.541/𝑋 2) pH<3.6 (4) 

Table 6. The numerical value of the corrosion rate based on pH values. 

pH value f(x): Corrosion rate (mm/year) Corrosion degree 

14 0.007214286 

Low 

13.6 0.022588235 

13.2 0.038893939 

12.8 0.05621875 

12.4 0.07466129 

12 0.094333333 

11.6 0.115362069 

Moderate 

11.2 0.137892857 

10.8 0.162092593 

10.4 0.188153846 

10 0.2163 

9.6 0.25 

Significant 

9.2 0.25 

8.8 0.25 

8.4 0.25 

8 0.25 

7.6 0.25 

7.2 0.25 

6.8 0.25 

6.4 0.25 

6 0.25 

5.6 0.25 

5.2 0.25 
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4.8 0.25 

4.4 0.25 

4 0.25 

3.6 3.227719136 

Critical 

3.2 3.494957031 

2.8 3.854637755 

2.4 4.362368056 

2 5.12725 

1.6 6.392828125 

1.2 8.817472222 

0.8 14.8493125 

0.4 42.40525 

The second linguistic variable is the concrete surface condition, which takes linguistic values 

(unchanged, slight, obvious, and deteriorated). Both variables are applied to create a correlation 

between corrosion degree and concrete surface condition to get the semi-quantitative condition for 

the bridge element. 

• First case: 

In the first case trapezoidal and triangular membership are applied for both inputs and output, 

as shown in the Figure 2. 

 

Figure 2. Fuzzy sets of the input variables (first case) by MATLAB (R2021a): (a) Corrosion degree, (b) Concrete 

surface condition. 

To determine the membership value correctly for a specific quantity in a linguistic term is a 

challenge and requires an experiment in order to define it properly. Furthermore, it is possible to 

subjectively determine the membership functions: the closer an element is to meeting a set's 

conditions, the closer its membership grade is to 1, and vice versa [27]. The terms of corrosion degree 

are quantified with numerical values ranging from 0 to 1, while concrete surface conditions have 

values ranging from 2 to 7. It’s worth mentioning that the shapes of the corrosion degree values of 

the membership function are narrow compared with the concrete surface condition membership 

function. The explanation can be related to the fact that the range values of the corrosion degree are 

determined by applying the equations of the rate of corrosion based on the pH values. Whereas the 

concrete surface range values are uncertainties and determined based on expert judgements and trial 

and error. On the other hand, the output linguistic variables are related to FWHA (2012) [22] from 

rate 3 to 6, as shown in Table 7. Figure 3 shows the membership function of the output variable in the 

semi-quantitative condition. 

Table 7. Semi quantitative condition rating score based on FHWA, 2012 [22]. 

6 Satisfactory Condition 

5 Fair Condition 

4 Poor Condition 

3 Serious Condition. 
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Figure 3. Fuzzy sets of the output variables (first case) by MATLAB (R2021a). 

• Second case: 

The triangular shape is only applied in the second case for both input and output membership 

variables, and the range values for both inputs and output are shown in Figure 4. 

 

Figure 4. Fuzzy set for both input and output variables (second case) by MATLAB (R2021a): (a) The first input 

variable is corrosion degree; (b) the second input variable is concrete surface condition; and (c) the output is 

semi-quantitative condition rating. 

• Third case: 

Triangular and trapezoidal shapes are applied for input membership, while the output is only a 

triangular shape. The value ranges are shown in Figure 5. 
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Figure 5. Fuzzy set for both input and output variables (third case) by MATLAB (R2021a): (a) The first input 

variable is corrosion degree; (b) the second input variable is concrete surface condition; and (c) the output semi-

quantitative condition rating. 

2.2.2. Applying Fuzzy Decision Rules 

The semi-quantitative condition rating is determined by two fuzzy variables: corrosion degree 

and concrete surface condition. Because each of these variables has four membership functions, there 

could be a total of 42 (16) precondition combinations that influence the condition rating. These 

preconditions are formed by a set of fuzzy if-then rules, as shown in Table 8. An example: 

IF corrosion degree is low (L), 

And concrete surface condition is Unchanged (U), 

Then the condition rating is Satisfactory 

Table 8. Fuzzy decision rule. 

Rule no Corrosion degree Concrete surface condition Semi-quantitative condition rating 

1 Low  (L) Unchanged (UC) Satisfactory (ST) 

2 Low  (L) Slight (SL) Fair (F) 

3 Low  (L) Obvious (O) Poor (P) 

4 Low  (L) Deteriorate (D) Serious (S) 

5 Moderate (M) Unchanged (UC) Satisfactory (ST) 

6 Moderate (M) Slight (SL) Fair (F) 

7 Moderate (M) Obvious (O) Poor (P) 

8 Moderate (M) Deteriorate (D) Serious (S) 

9 Significant (SI) Unchanged (UC) Fair (F) 

10 Significant (SI) Slight (SL) Poor (P) 

11 Significant (SI) Obvious (O) Poor (P) 

12 Significant (SI) Deteriorate (D) Serious (S) 

13 Critical ( C) Unchanged (UC) Poor (P) 

14 Critical ( C) Slight (SL) Poor (P) 

15 Critical ( C) Obvious (O) Serious (S) 

16 Critical ( C) Deteriorate (D) Serious (S) 
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Defuzzifi 

cation Stage: 

Defuzzification is the last step in a fuzzy process that converts the fuzzy results into real-world 

values by applying several methods. The current study applied the center of gravity method, which 

is defined by equation (5)[27]. Tables 9–11 show the fuzzy process output after the diffuzification, 

which shows how the current proposed technique is working effectively. 

𝑢 =
∑ 𝐼𝑛 𝜇𝑛

𝑁
𝑛=1

∑ 𝜇𝑛
𝑁
𝑛=1

 (5) 

Where: 

U: control action 

In: value of interval 

n: total no. of intervals. 

Table 9. Defuzzification of the fuzzy set for the first case. 

Corrosion Rate( mm/yr) Semi Quantitative Condition Rating Score 

0.5 4.01 4.01 4.01 4.01 4.01 3.87 3.35 3.41 3.35 3.35 

0.45 4.01 4.01 4.01 4.01 4.01 3.87 3.35 3.41 3.35 3.35 

0.4 4.01 4.01 4.01 4.01 4.01 3.87 3.35 3.41 3.35 3.35 

0.35 4.01 4.01 4.01 4.01 4.01 3.87 3.35 3.41 3.35 3.35 

0.3 4.5 4.5 4 .5 4.5 4.01 3.87 3.86 3.87 3.41 3.41 

0.25 5 5 5 4.5 4.01 4.01 4.01 3.87 3.35 3.35 

0.2 5.13 5.13 5.13 4.51 4.5 4.51 4.01 3.87 3.41 3.41 

0.15 5.68 5.68 5.68 5.12 5 4.51 4.01 3.87 3.35 3.35 

0.1 5.65 5.65 5.65 5.12 5 4.51 4.01 3.87 3.38 3.38 

0.05 5.68 5.68 5.68 5.12 5 4.51 4.01 3.87 3.35 3.35 

Concrete Surface Condition 7 6.5 6 5.5 5 4.5 4 3.5 3 2.5 

Table 10. Defuzzification of the fuzzy set for the second case. 

Corrosion Degree Semi Quantitative Condition Rating Score 

0.3 4 4 4 3.87 3.32 3.38 3.32 

0.28 4.4 4.44 4 3.87 3.8 3.85 3.36 

0.23 5.03 4.54 4.29 4.33 4 3.87 3.36 

0.18 5.67 5.13 5 4.5 4 3.87 3.33 

0.13 5.61 5.11 5 4.5 4 3.89 3.39 

0.08 5.62 5.12 5 4.5 4 3.88 3.38 

0.03 5.67 5.13 5 4.5 4 3.87 3.33 

Concrete Surface Condition 6 5.5 5 4.5 4 3.5 3 

Table 11. Defuzzification of the fuzzy set for the third case. 

Corrosion Degree Semi Quantitative Condition Rating Score 

0.48 4 4 4 4 4 3.87 3.32 3.38 3.32 3.32 

0.43 4 4 4 4 4 3.87 3.32 3.38 3.32 3.32 

0.38 4 4 4 4 4 3.87 3.32 3.38 3.32 3.32 

0.33 4.29 4.29 4.29 4.29 4 3.87 3.72 3.73 3.38 3.38 

0.28 5 5 5 4.5 4 4 4 3.87 3.35 3.35 

0.23 5.02 5.02 5.02 4.52 4.21 4.26 4 3.87 3..34 3.34 

0.18 5.31 5.31 5.31 4.82 4.73 4.5 4 3.87 3.35 3.35 

0.13 5.66 5.66 5.66 5.13 5 4.5 4 3.87 3.34 3.34 

0.08 5.68 5.68 5.68 5.13 5 4.5 4 3.87 3.37 3.37 

0.03 5.68 5.68 5.68 5.13 5 4.5 4 3.87 3.32 3.32 

Concrete Surface Condition 7 6.5 6 5.5 5 4.5 4 3.5 3 2.5 

As illustrated in Figure 6, the fuzzy model produces the result output of each pair (corrosion 

degree, concrete surface condition) by applying rules. The three cases got approximately the same 

result. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 April 2025 doi:10.20944/preprints202504.0548.v1

https://doi.org/10.20944/preprints202504.0548.v1


 11 of 31 

 

 

Figure 6. Surface viewer by MATLAB (R2021a) for: (a) first case, (b) second case, and (c) third case. 

2.3. Predicting the Condition Rating of Reinforced Concrete Bridges by Markov Chain Model 

The Markov chain is a stochastic process applied to capture parameter dependency and 

uncertainty variables such as load and resistance. This model has been commonly used in the last 

decade for predicting the deterioration state of different infrastructure systems. It was applied based 

on the concept of predicting the deterioration of each element by accumulating its probability of 

transferring from one condition state to another at a given time. The model depends on the transition 

probability matrix [TPM] that is used to express the chance of changing from one condition state to 

another [29]. Later, the prediction model utilising the Markov chain for condition deterioration for 

the Indian Department of Highways (IDOH) was developed by Jiang et al. [30]. There are no [TPMs] 

in the literature that can be generalised to all bridges all over the world because there are many factors 

that could affect it, such as average daily traffic, age, rehabilitation or replacement activity, etc. 

However, the biggest challenge in the Markov chain is how to create a transition probability matrix 

for each component in the bridge and update it in case of the availability of new data. Therefore, it is 

important to generate this matrix and customise it to specific conditions by optimization. This study 

assumed that the condition rating would not decrease by more than one state in a single year. There 

are some points that should be considered while applying Markov analysis: 

1- The initial state of the system and the probability distribution of the initial state are known. 

2- The transition probabilities are assumed to be stationary over time and independent of how 

the state (i) was reached. 

3- After construction, the condition rating was assumed to be (9) on the FHWA rating scale. 

4- The system is defined by a set of finite states, and the system can be in only one state at a given 

time. 
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The maximum rating of bridge components (deck, superstructure, substructure) at age zero is 9, 

which represents a perfect condition of the bridge. Therefore, the initial state vector IP(0) for any 

component of a new bridge is [1, 0, 0, ….. 0]. The lowest condition rating to be considered is 3, because 

if it is less than that, the structure may be closed immediately. R is a vector of condition ratings [9 8 7 

6 5 4 3], and R ֨ is a transform of R' as shown in equation (6):  

 R֨ = 

[
 
 
 
 
 
 
9
8
7
6
5
4
3]
 
 
 
 
 
 

 (6) 

2.3.1. Spreadsheet Modelling for Markov Chains 

A spreadsheet model for Markov chains has been structured, including all formulations required 

in cells of Excel 2013. The general model layout is shown in Figure 7. 

 

Figure 7. Spreadsheet model for Markov chain. 

The upper left is the [TPM], which is multiplied sequentially to raise it to the different powers 

from 1 to 35. The initial condition state [IP0] at the middle is multiplied by [TPM] to calculate the 

future condition state [FPt] at any age (t). Finally, the single value of the predicted condition rating is 

calculated by multiplying [FPt] by the column vector [R ֨]. The (Act) is related to the actual condition 

rating each year. 

2.3.2. Optimizing [TPM] Probabilities 

Due to the initial [TPMs] arbitrary character, it is likely to produce an inaccurate condition rating. 

Thus, the objective of the optimization model is to find suitable values of the [TPM] in order to 

coincide the Markov predicted condition rating curve with the actual curve. 

2.3.3. Objective Function 

To achieve the optimized model the objective function is to minimize the error between the 

Markov precdicted condition rating and the actual rating from, summed among the age (A) of the 

instance being consideredas shown in equation (7)[28,29]. 

𝑀𝑖𝑛 ∑ |𝑃𝐶𝑡 − 𝐴𝐶𝑡|
𝑡=𝐴 
𝑡=1  (7) 

Subject to: 
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𝑃𝐶𝑡 = [IP0]𝑥

[
 
 
 
 
 
 
𝑝11 𝑞1 0 0 0 0 0 0
0 𝑝22 𝑞2 0 0 0 0 0
0 0 𝑝33 𝑞3 0 0 0 0
0 0 0 𝑝44 𝑞4 0 0 0
0 0 0 0 𝑝55 𝑞5 0 0
0 0 0 0 0 𝑝66 𝑞6 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
𝑡

𝑥 [R֨] Ɏ 𝑡; = 1,2,3, … . 𝐴 (8) 

0 ≤ Pi,i ≤ 1 (9) 

[IP0]= |1 0 0 0 0 0 0| (10) 

Additionally, some constraints can be used to optimise the [TPM] for a specific instance with a 

known condition rating (ACt) from historical data. Thus, the error between the predicted condition 

rating and the actual rating should equal zero, as shown in equation (11) [28,29]. 

|𝑃𝐶𝑡 − 𝐴𝐶𝑡| = 0 (11) 

2.3.4. Variables 

The diagonal probability values are the Pi,i values in the [TPM], as shown in equation (19). After 

optimisation was completed, the TPM reached the optimum values, and the Markov prediction 

became very close to the actual measure, as shown in Figures 8 and 9 respectively. 

 

Figure 8. Markov chain model before optimization. 

 

Figure 9. Markov chain model after optimization. 
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The formula in the spreadsheet is non-linear; that is called a non-linear programming (NLP) 

problem and was solved by (SOLVER) which comes with the Excel software. For Non-Linear 

Programming (NLP), SOLVER uses the Generalised Reduced Gradient method [31]. 

2.4. Expected the Service Life for the Reinforced Concrete Bridge Elements 

The main cause of bridge deterioration could be related to steel corrosion. Carbonation, chloride-

induced, and sulphate attacks are the main causes of reinforcement corrosion [32]. This article 

considers both carbonation and chloride-induced corrosion to estimate the corrosion rate and to 

predict the bridge service life as shown in the following sections: 

2.4.1. Service Life Prediction Based on Carbonation Attack 

The corrosion process of embedded steel in concrete is a function of time. The corrosion 

operation can be divided into three stages. The first stage is called the initiation period, which is the 

amount of time needed for the carbonation front to reach the depth of the rebar level. The second 

stage started when the oxide (passive) layer over rebar was lost, which is called depassivation. The 

last period is the propagation state, which is started with depassivation to achieve the time for 

cracking or spalling of the concrete cover [33]. Carbonation models typically show a relationship 

between carbonation depth and structure age. The depth of carbonation depends on many factors, 

such as water-cement ratio, cement type, and time. Equation (12) is used to determine the depth of 

carbonation in (mm) [9]. 

𝐷 = 𝐶√T1 (12) 

Where; 

D: depth of carbonation which is less than maximum carbonation depth with (5 mm-10 mm) 

T: time for carbonation till reach embedded steel bars 

C: coefficient of carbonation 

The coefficient of carbonation can be found by the following equation (13) [24]: 

𝐶 =
46∗(

𝑤

𝑐
)−17.6

2.7
∗ C1 ∗ C2 (13) 

Where; 

w/c: water cement ratio 

C1: constant based on type of cement as shown in Table 12 

C2: constant based on the atmospheric condition of concrete as shown in Table 13 

Table 12. Values of constant C1 due to type of cement [24]. 

Type of cement C1 

Ordinary Portland cement ( type I ) 1 

Ordinary Portland cement  (type II) 0.6 

Ferrous cement (ferrous slag 30% - 40%) 1.4 

Ferrous cement (ferrous slag 60%) 2.2 

Table 13. Values of C2 due to concrete atmospheric condition [24]. 

Concrete atmospheric condition C2 

wet concrete 0.3 

Externally exposed concrete members 0.5 

Internally exposed members. 1 

The time required for developing corrosion rate based on carbonation depth can be calculated 

using the following equation (14) [24]: 

 T2 =
0.08∗𝑐.𝑐

∅∗𝑓(𝑥)
 (14) 

Where; 

T2: the amount of time needed for corrosion to occur and for concrete to begin to spall. 
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c.c : thickness of concrete cover 

ᵠ : steel bar diameter 

f(x) : rate of corrosion (mm/year) that is estimated based on equations (2),(3),and(4). 

T1 and T2 can be calculated as following; 

𝑇1 = (
𝐷

𝐶
)2  (15) 

Let’ assume 

𝑲𝟏 =
𝟏

𝑪𝟐 (16) 

 𝑲𝟐  =
𝟎.𝟎𝟖∗𝒄.𝒄

∅
 (17) 

Thus; 

𝑇1 = 𝐾2𝐷
2 (18) 

𝑇2 =
𝐾1

𝑓(𝑥)
 (19) 

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑐𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑜𝑟 𝑠𝑝𝑎𝑙𝑙𝑖𝑛𝑔 = K1𝐷
2 +

K2

𝑓(𝑥)
 (20) 

2.4.2. Life-365 Model for Service Life Prediction Due to Chloride-Induced 

The Life 365 model is used to estimate the service life and life cycle cost based on various 

methods of corrosion protection. This model predicted the service life for concrete structures exposed 

to chloride environments and not cover corrosion due to carbonation. Life-365 applies the ASTM 

C1556 [34] method, which uses computations from field data to estimate the maximum surface 

chloride concentration. The main parameters needed for the service life prediction are the concrete 

cover, the properties of concrete (mainly diffusion coefficient), chloride threshold, and surface 

chloride [35,36]. The corrosion initiation is the time for chlorides to penetrate concrete to the level of 

steel and reach the corrosion threshold, while the propagation time is the time to cracking (service 

life). The model predicts the initiation period based on Fickian diffusion. Life 365 considers the 

temperature-dependent changes in diffusion equation (21) [35]: 

𝐷(𝑇) =  𝐷𝑟𝑒𝑓. exp [
𝑈

𝑅
. (

1

𝑇𝑟𝑒𝑓
−

1

𝑇
)] (21) 

Where; 

D(T): diffusion coefficient at time t and temperature T 

Dref: diffusion coefficient at time tref =28 days and temperature Tref = 293K (20C), 

U: activation energy of the diffusion process (35000 J/mol), 

R: gas constant, and 

T: absolute temperature. 

In the Life 365 model, the propagation period is fixed at 6 years, which is usually faster and 

shorter than the initiation period, unless epoxy coating is used to increase the period to 20 years [37]. 

This value is determined based on a previous study by Weyers and others [38,39], who found that 

the period required between corrosion to initiate and cracking was 3 to 7 years on bridge decks in the 

USA. Nevertheless, users can change the propagation period based on their expertise [39]. 

3. Discussion & Validation 

The proposed approach to diagnosis and maintenance decision-making applies to a real bridge. 

The gathering data was taken from the General Authority for Roads and Bridges (GARB) and the 

Ministry of Transportation (MOT). The bridge is a reinforced concrete box girder located near the 

Suez Gulf in Egypt. It was built in 2004, and after 20 years, it shows several types of damage (cracks, 

spalling, etc.). In 2024, a special committee was formed to assess the bridge's performance and take 

appropriate action regarding its situation. The data gathering, visual inspection reports, and tests of 

this committee were studied carefully to apply the proposed method. The inspectors add the rate for 

each bridge element based on visual inspection, their expertise, measuring instruments such as 

calipers, and some tests. The experts found that after twenty years, the Bridge Condition Rating (BCR) 
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dropped from 9 to 4.36. It should be mentioned here that the rehabilitation decision was taken by the 

revising committee, and the bridge has been in service since then. Investigating and estimating the 

condition rating of the R.C. box bridge due to the dual proposed models is shown in the following 

sections: 

3.1. Data Gathering, Historical Data, Inventory of R.C. Bridge Elements 

All the inventory, including bridge geometry, was collected from the General Authority for 

Roads and Bridges (GARB). Numerous photos are taken to reflect the bridge's general conditions 

from different elements (girders, abutments, slabs, and wing walls). The images in Figure 10 show 

that bridge elements are suffering from several defects, such as cracks, spalling, rebar exposure, and 

rust staining due to rebar corrosion. The images of any defects found in the bridge elements are 

collected and classified, such as cracks, spalling, etc. The required tests were applied and the results 

were reported, such as ground penetrating radar, ultrasonic pulse velocity, half-cell potential, 

compressive strength, chloride content, etc., to investigate and evaluate the damage for each defected 

element in the reinforced concrete bridge. For durability assessment tests, there should be 

combinations between destructive and nondestructive tests.    

 

Figure 10. Photos taken during inspection. (a) corrosion steel bar (b) spalling, and (c) cracks and exposed rebar. 

3.3. Expected the Service Life for Bridge Elements Due to Carbonation and Chloride-Induced 

Carbonation, chloride ingress, and sulphate attack are the main causes of reinforcement 

corrosion. According to laboratory testing, the average sulfate content was lower than the allowable 

limits, therefore the sulfate attack will not have a significant effect on concrete. The R.C. bridge service 

life will be estimated due to carbonation and chloride-induced as shown in the following sections: 

3.3.1. Corrosion Due to Carbonation for Bridge Elements 

A carbonation test was applied for samples taken from the bridge to find the maximum 

carbonation depth to be applied in equation (11). Compensating with a parameter extracted from 

historical data to get the value of “C” and substitute in equation (12) to calculate T1. Also, T2 

(propagation time), the time required for corrosion to cause spalling of concrete cover, can be 

calculated by equation (14). Hence, the total time of corrosion, T, must equal the sum of T1 and T2; 

refer to equation (20) and the summary in Appendix Table A1. 

3.3.2. Chloride Induced Corrosion of Reinforcing Steel 
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The Life 365 v2.2.3.1 service life software, which was explained by Ehlen and others [40] was 

applied to predict the service life of the concrete for the chloride-induced corrosion. Table A1 in the 

appendix shows the service life for each element of the inspected bridge by Life-365 software. 

3.4. Condition Assessment for R.C Bridges Due to Dual Approach, 1) Fuzzy Logic Analysis Technique, 2) 

Markov Chain Model 

3.4.1. Fuzzy Decision Model 

In this stage, a fuzzy analysis technique is implemented by MATLAB (R2021a) to estimate the 

bridge condition rating based on the relationship between concrete surface condition and corrosion 

degree, as discussed in the previous section. The triangular membership function is applied for both 

inputs and outputs, as shown in Figure 5, because of the narrow peak of its absolute membership 

compared to the trapezoidal membership function, where the peak (absolute membership) is shown 

through the interval. Triangular shape introduces fuzzy numbers, while fuzzy intervals are 

represented by trapezoidal shape. 

For G1L1 : 

The first input corrosion rate = 0.065 mm/yr The corrosion degree is Condition 1 (low) 

The second input is Concrete surface condition (Obvious) Subjective assessment is 4. 

Then the semi-quantitative condition rate = 4 as shown in in rule viewer Figure 11. 

 

 

Figure 11. The set of all rules with its output values for specified two inputs. MATLAB (R2021a). 

The result from fuzzy analysis for each element in the bridge is shown in Table 14. 

Table 14. The bridge component rating for bridge elements based on Fuzzy analysis technique. 

Component No 

Corrosion rate 

based on PH 

value (mm/yr) 

Corrosion 

Degree 

Concrete 

Surface 

Condition 

Subjective 

assessment of 

concrete 

surface 

Semi-

quantitative 

condition Semi-

quantitative 

condition 

Average 

rate 

Component 

rate* Weight 

S1L1 0.13 2 3 4 4 
4.5 54 

S6L1 0.08 1 2 5 5 

G1L1 0.065 1 3 4 4 4.2 63 
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G2L1 0.03 1 3 4 4 

G3L1 0.042 1 2 5 5 

G4L1 0.25 3 3 4 4 

G5L1 0.02 1 3 4 4 

AB1 0.01 1 3 4 4 
4 48 

AB2 0.095 1 3 4 4 

W21 0.06 1 3 4 4 
4.5 31.5 

W22 0.042 1 2 5 5 

D1L1 0.25 3 3 4 4 4 60 

BCR 1  = 4.01 

3.4.2. Markov Chain Analysis 

The bridge was built in 2004. In 2024, there is an evaluation and rehabilitation work. The service 

life of the bridge at the time of rehabilitation is 20 years. Markov chain analysis will be applied to 

determine the current and future conditions of the current bridge. The transition probability matrix 

for the deck, superstructure, and substructure of the three bridge parts was created in this model. 

Due to laboratory tests for carbonation and chloride profiles, the service life is calculated for each 

element, and found that the girder (G3L1) has the shortest service life of 20 years. To find the [TPM], 

Matlab R2021a is applied to solve the equation, as shown in Figure 12. 

 

Figure 12. Screenshot of Matlab (R2021a) code to find unknown [TPM]. 

The summary of the condition rating for each element and the overall bridge condition rating 

based on FHWA (2012) [22] are shown in Table 15 and calculated based on each element weight as 

shown in Table 3 and equation (1). 

Table 15. Summary of condition rating based on proposed MCM. 

Element Predicted condition rating CR*Wt 

Deck Slabs 4.84 58.08 

Girder 4.85 72.75 

abutment 4.89 58.68 

wing wall  4.84 33.88 

Diaphragm 4.63 69.45 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 April 2025 doi:10.20944/preprints202504.0548.v1

https://doi.org/10.20944/preprints202504.0548.v1


 19 of 31 

 

Overall BCR 2= 4.576 

Also, the difference between the actual condition rating from historical data for each year and 

the predicted condition rating from the model is shown for each previous element in Figures 13–17. 

 

Figure 13. Deterioration curve for diaphragm. 

 

Figure 14. Deterioration curve for wing wall. 

 

Figure 15. Deterioration curve for abutment. 
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Figure 16. Deterioration curve for girders. 

 

Figure 17. Deterioration curve for slabs. 

Predicting the future condition rating based on the Markov Chain Model (MCM) has been 

discussed previously. The model predicted the deterioration of the slabs, girders, diaphragm, 

abutment, and wing wall of the current bridge study. The Tables A2–A6 in the appendix show when 

each element will reach a condition rating of 3, which is the critical condition rating. The bridge will 

reach a condition rating of 3 after 78 years. The results from the dual artificial intelligence techniques 

differ from the result reported from the bridge expert report of the validated case, as shown in Figure 

18. The fuzzy decision model and the Markov Chain model required both field and laboratory tests 

to find and calculate essential parameters such as carbonation depth, diffusion coefficient, surface 

chloride, and others. Nevertheless, fuzzy analysis is communicated with ranges that make it less 

accurate than other methods. Additionally, fuzzy is suffering from the redundancy, which is one of 

the problems of linguistic fuzzy IF-THEN rules. While MCM depends on field tests, laboratory tests, 

and historical data, which is required in optimization process to coincide the Markov predicted 

condition rating curve with the actual curve. Selection of the proper decision regarding the estimated 

condition rating of the inspected bridges relies on strategy maintenance options as per FHWA, 2012, 

as shown in Table 1. The two different results of the current condition rating show that the inspected 

bridge required major rehabilitation. 
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(b) 

 
(c) 

Figure 18. Comparison of ranking the current Bridge Condition Rating by:(a)fuzzy decision model ,(b) MCM, 

and (c) bridge inspection experts report (actual condition rating). 

4. Conclusions 

This research has aimed to apply artificial intelligence in assessing reinforced concrete bridges. 

The study compares two different methods that relied on visual inspection, historical data, bridge 

inventory and field and laboratory tests to diagnose the bridge reinforcement concrete diseases. The 

techniques applied in the study are fuzzy decision-making and Markov chain modelling to determine 

the overall bridge condition rating. The Federal Highway Administration classification system 

(FHWA, 2012) is adopted in the current study to categorise the deterioration of reinforced concrete 

bridges into ten ratings. The weight evaluation method (WEM) is applied to justify the NY rating 

system for ranking elements of R.C. bridges in Egypt. The corrosion is considered the main reason 

for bridge deterioration. Therefore, the service life for the bridge is estimated due to carbonation and 

chloride attack. The Life 365 model is used to determine the service life due to chloride ingress. The 

current method established a fuzzy decision-making model to find a correlation between concrete 

surface condition and corrosion degree to estimate the current rating for each bridge element. Then, 

the Markov chain model has been used for predicting the deterioration state for each element and the 

whole bridge. Finally, the inspector is able to estimate when the bridge will achieve the critical 

condition at scale 3 based on the FHWA, 2012 rating to take the proper decision. The different results 

from the dual models of condition rating are applicable. Although the fuzzy decision model depends 

on both field and laboratory tests, the technique is communicated with ranges that make it less 

accurate and is suffering from redundancy. In contrast, MCM depends on field tests, laboratory tests, 

and historical data, which is necessary for the optimisation process in order to minimise the error 

between the Markov predicted condition rating and the actual rating. Therefore, the assessment 

derived from MCM is the closest to that obtained by bridge inspector experts of the validated case. 

From the obtained results, the suggested models would assist the bridge inspector experts and 

decision-makers in the bridge management sector to achieve appropriate assessment to create a 

systematic plan for the bridge's eventual maintenance, repair, or rehabilitation. The future works are 

encouraged to apply other types of AI in bridge assessment and make a comparison between them 

to select the more applicable technique. Also, they are recommended to concentrate on selecting the 
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proper action based on the cost, duration, efficiency, and urgency of the most deteriorated areas. The 

proposed techniques can be developed to be carried out on the other types of bridges, such as steel 

bridges, precast concrete, etc. 
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Appendix A 

Table A1. Summary of corrosion characteristics for bridge elements. 

                         

Element 

Parameter 

S1L1  S6L1 G1L1 G2L1 G3L1 G4L1 G5L1 D1L1 AB1 AB2 W21 W22 

Primary Evaluation 4 5 4 4 5 4 4 4 4 4 4 5 

pH-value 7.38 12.28 7.28 13.41 13.12 7.18 13.66 8 13.99 11.98 12.71 13.12 

Rate of corrosion due to pH 

(mm/yr.) 
0.13 0.08 0.25 0.03 0.042 0.25 0.02 0.25 0.01 0.095 0.06 0.042 

Concrete resistivity (ohm.cm) 8000 11500 8000 11800 11800 8000 11800 8500 11800 11200 11500 11800 

C.C (mm) 15 15 15 18 15 15 18 12 18 18 15 15 

Measured carbonation test 

(mm) (Laboratory test) 
5 5 5 5 5 5 5 2 5 5 5 5 

AI Artificial Intelligence 

MRR Maintenance, Repair, and Replacement  

RC Reinforced concrete 

BMS Bridge Management System 

GPR Ground Penetrating Radar 

AASHTO American Association of State Highway and Transportation Officials  

GARB General Authority for Roads and Bridges  

MCM Markov Chain Modelling 

WEM Weight Evaluation Method 

BCR Bridge Condition Rating 

TPM Transition Probability Matrix 

FHWA Federal Highway Administration classification system 

NY New York ranking system 
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Uncarbonated depth (dc)=min 

cover-carbonation depth 
10 10 10 13 10 10 13 10 13 13 10 10 

Steel Diameter 14 14 22 22 22 22 22 22 25 25 18 18 

T1: initiation period (years) 25 25 25 42.25 25 25 42.25 25 42.25 42.25 25 25 

T2: Propagation Period (years) 0.659 1.071 0.218 2.182 1.299 0.218 3.273 0.175 5.760 0.606 1.111 1.587 

Tt= T1+T2 (Due to 

carbonation) 
25.66 26.07 25.22 44.43 26.30 25.22 45.52 25.17 48.01 42.86 26.11 26.59 

Service life due toChloride 

Induced (Life -365) 
26.80 28.10 23.50 23.60 20.30 21.30 26.30 24.50 39.60 38.40 23.80 27.70 

Table A2. Actual and predicted condition rating for Diaphragm. 

Time Predicted CR Actual CR Error 

 1 8.90 8.95 0.05 

2 8.78 8.75 0.03 

3 8.65 8.6 0.05 

4 8.49 8.55 0.06 

5 8.32 8.3 0.02 

6 8.11 8.01 0.10 

7 7.87 7.87 0.00 

8 7.61 7.62 0.01 

9 7.33 7.35 0.02 

10 7.04 7.1 0.06 

11 6.75 6.75 0.00 

12 6.46 6.46 0.00 

13 6.18 6.3 0.12 

14 5.91 5.98 0.07 

15 5.66 5.66 0.00 

16 5.42 5.32 0.10 

17 5.20 5 0.20 

18 4.99 4.75 0.24 

19 4.80 4.32 0.48 

20 4.63 4 0.63 

21 4.47     

22 4.32     

23 4.19     

24 4.07     

25 3.97     

26 3.87     

27 3.78     

28 3.70     

29 3.63     

30 3.57     

31 3.51     

32 3.46     

33 3.41     

34 3.37     

35 3.33     

36 3.30     

37 3.27   

38 3.24   

39 3.21   

40 3.19   

41 3.17   

42 3.15   

43 3.14   

44 3.12   

45 3.11   

46 3.10   

47 3.09   

48 3.08   
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49 3.07   

50 3.06   

51 3.06   

52 3.05   

53 3.05   

54 3.04   

55 3.04   

56 3.03   

57 3.03   

58 3.03   

59 3.02   

60 3.02   

61 3.02   
Time Predicted CR Actual CR Error 

62 3.02    

63 3.02    

64 3.01    

65 3.01    

66 3.01   

67 3.01   

68 3.01   

69 3.01   

70 3.01   

71 3.01   

72 3.01   

73 3.01   

74 3.00   

Table A3. Actual and predicted condition rating for wing wall. 

Time Predicted CR Actual CR Error 

1 8.90 8.88 0.02 

2 8.79 8.73 0.06 

3 8.66 8.6 0.06 

4 8.52 8.49 0.03 

5 8.36 8.32 0.04 

6 8.18 8.15 0.03 

7 7.97 8 0.03 

8 7.74 7.9 0.16 

9 7.49 7.75 0.26 

10 7.22 7.4 0.18 

11 6.95 6.94 0.01 

12 6.68 6.73 0.05 

13 6.41 6.5 0.09 

14 6.15 6.2 0.05 

15 5.90 5.9 0.00 

16 5.66 5.56 0.10 

17 5.44 5.1 0.34 

18 5.22 4.87 0.35 

19 5.03 4.63 0.40 

20 4.84 4.5 0.34 

21 4.67     

22 4.52     

23 4.38     

24 4.25     

25 4.13     

26 4.02     

27 3.92     

28 3.83     

29 3.75     

30 3.68     
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31 3.61     

32 3.55     

33 3.49     

34 3.45     

35 3.40     

36 3.36     

37 3.32     

38 3.29     

39 3.26     

40 3.24   

41 3.21   

42 3.19   

43 3.17   

44 3.16   

45 3.14   

46 3.13   

47 3.11   

48 3.10   

49 3.09   

50 3.08   

51 3.07   

52 3.07   

53 3.06   

54 3.05   

55 3.05   

56 3.04   

57 3.04   

58 3.04   

59 3.03   

60 3.03   

61 3.03   

62 3.02   

63 3.02   

Time Predicted CR Actual CR Error 

64 3.02   

65 3.02     

66 3.02     

67 3.01     

68 3.01     

69 3.01     

70 3.01     

71 3.01     

72 3.01   

73 3.01   

74 3.01   

75 3.01   

76 3.01   

77 3.00   

Table A4. Actual and predicted condition rating for abutment. 

Time Predicted CR Actual CR Error 

1 8.91 8.88 0.03 

2 8.80 8.69 0.11 

3 8.68 8.56 0.12 

4 8.54 8.45 0.09 

5 8.38 8.4 0.02 

6 8.20 8.25 0.05 

7 7.99 8 0.01 

8 7.75 7.77 0.02 

9 7.50 7.65 0.15 

10 7.23 7.43 0.20 
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11 6.96 6.96 0.00 

12 6.69 6.75 0.06 

13 6.42 6.5 0.08 

14 6.17 6.24 0.07 

15 5.92 5.87 0.05 

16 5.69 5.55 0.14 

17 5.47 5.3 0.17 

18 5.26 4.75 0.51 

19 5.07 4.52 0.55 

20 4.89 4 0.89 

21 4.73   

22 4.58   

23 4.44   

24 4.31   

25 4.19   

26 4.09   

27 3.99   

28 3.90   

29 3.82   

30 3.82   

31 3.68   

32 3.62   

33 3.56   

34 3.51   

35 3.46   

36 3.42   

37 3.38   

38 3.35   

Time Predicted CR Actual CR Error 

39 3.32   

40 3.29   

41 3.26   

42 3.24   

43 3.21   

44 3.20   

45 3.18   

46 3.16   

47 3.15   

48 3.13   

49 3.12   

50 3.11   

51 3.10   

52 3.09   

53 3.08   

54 3.07   

55 3.07   

56 3.06   

57 3.06   

58 3.05   

59 3.05   

60 3.04   

61 3.04   

62 3.03   

63 3.03   

64 3.03   

65 3.03   

66 3.02   

67 3.02   

68 3.02   

69 3.02   

70 3.02   

71 3.01   
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72 3.01   

73 3.01   

74 3.01   

75 3.01   

76 3.01   

77 3.01   

78 3.01   

79 3.01   

80 3.01   

81 3.01   

82 3.01   

83 3.01   

84 3.00   

Table A5. Actual and predicted condition rating for Girders. 

Time Predicted CR Actual CR Error 

1 8.90 8.99 0.09 

2 8.79 8.79 0.00 

3 8.67 8.63 0.04 

4 8.52 8.44 0.08 

5 8.36 8.21 0.15 

6 8.18 8.15 0.03 

7 7.97 8 0.03 

8 7.74 7.9 0.16 

9 7.49 7.75 0.26 

10 7.22 7.4 0.18 

11 6.95 6.94 0.01 

12 6.68 6.73 0.05 

13 6.41 6.5 0.09 

14 6.15 6.2 0.05 

15 5.90 5.9 0.00 

16 5.66 5.56 0.10 

17 5.44 5.1 0.34 

18 5.23 4.87 0.36 

19 5.03 4.63 0.40 

20 4.85 4.2 0.65 

21 4.68   

22 4.52   

23 4.38   

24 4.25   

25 4.13   

26 4.02   

27 3.93   

28 3.84   

29 3.76   

30 3.68   

31 3.62   

32 3.56   

33 3.50   

34 3.45   

35 3.41   

36 3.37   

37 3.33   

38 3.30   

39 3.27   

40 3.24   

41 3.22   

42 3.20   

43 3.18   

44 3.16   

45 3.14   
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46 3.13   

47 3.12   

48 3.11   

49 3.10   

50 3.09   

51 3.08   

52 3.07   

53 3.06   

54 3.06   

55 3.05   

56 3.05   

57 3.04   

58 3.04   

59 3.03   

60 3.03   

61 3.03   

62 3.02   

Time Predicted CR Actual CR Error 

63 3.02   

64 3.02   

65 3.02   

66 3.02   

67 3.01   

68 3.01   

69 3.01   

70 3.01   

71 3.01   

72 3.01   

73 3.01   

74 3.01   

75 3.01   

76 3.01   

77 3.01   

78 3.00   

Table A6. Actual and predicted condition rating for Slabs. 

Time Predicted CR Actual CR Error 

1 8.90 8.77 0.13 

2 8.79 8.63 0.16 

3 8.66 8.45 0.21 

4 8.52 8.21 0.31 

5 8.36 8.15 0.21 

6 8.17 8 0.17 

7 7.96 7.99 0.03 

8 7.73 7.73 0.00 

9 7.48 7.55 0.07 

10 7.22 7.4 0.18 

11 6.95 6.94 0.01 

12 6.68 6.73 0.05 

13 6.41 6.5 0.09 

14 6.15 6.2 0.05 

15 5.90 5.9 0.00 

16 5.66 5.56 0.10 

17 5.43 5.1 0.33 

18 5.22 4.87 0.35 

19 5.02 4.63 0.39 

20 4.84 4.5 0.34 

21 4.67   

22 4.52   

23 4.37   

24 4.24   
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25 4.13   

26 4.02   

27 3.92   

28 3.83   

29 3.75   

30 3.68   

31 3.61   

32 3.55   

33 3.50   

34 3.45   

35 3.40   

36 3.36   

37 3.33   

38 3.27   

39 3.27   

40 3.24   

41 3.22   

Time Predicted CR Actual CR Error 

42 3.19   

43 3.18   

44 3.16   

45 3.14   

46 3.13   

47 3.12   

48 3.10   

49 3.09   

50 3.08   

51 3.08   

52 3.07   

53 3.06   

54 3.06   

55 3.05   

56 3.04   

57 3.04   

58 3.04   

59 3.03   

60 3.03   

61 3.03   

62 3.02   

63 3.02   

64 3.02   

65 3.02   

66 3.02   

67 3.01   

68 3.01   

69 3.01   

70 3.01   

71 3.01   

72 3.01   

73 3.01   

74 3.01   

75 3.01   

76 3.01   

77 3.00   
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