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Article 

Deriving the Pontecorvo–Maki–Nakagawa–Sakata 

Matrix from Koide’s Mass Formula and Brannen’s 

Neutrino Mass Hypothesis: Resolving the Mystery of 

the  Rotation 

Stafy Nem 

Independent Researcher; stafy_n@stafy.sakura.ne.jp 

Abstract: The Koide mass formula, proposed by Yoshio Koide, is known to describe the mass 

relationship of charged leptons. Carl A. Brannen hypothesized that this formula also applies to 

neutrinos. Assuming Brannen’s hypothesis to be valid, I constructed two three-dimensional mass 

models based on his proposed neutrino masses. As a result, I discovered that the Pontecorvo–Maki–

Nakagawa–Sakata (PMNS) matrix can be derived by introducing an intermediate set of 

hypothetical states, referred to as mass negative eigenstates , which mediate the 

transformation between mass eigenstates and flavor eigenstates. The Tribimaximal mixing matrix 

represents the transformation between mass negative eigenstates and flavor eigenstates.  

, 

. 

Thus, 

, 

where . 

Consequently, the PMNS matrix can be approximated as: 

. 

Future research will determine whether this PMNS matrix and its predictions for neutrino 

oscillations are consistent with experimental results. 

Keywords: the Koide formula; Carl A. Brannen; ; CP violation; neutrino oscillation 

 

1. Introduction 

1.1. Koide’s Mass Formula 
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In 1982, Yoshio Koide first proposed the Koide mass formula [1,2] based on the study by 

Harari, Haut, and Weyers [3]: 

, 

which elegantly describes the relationship among the masses of the three generations of 

charged leptons. 

1.2. Interpretation by Carl A. Brannen 

In 2006, Carl A. Brannen provided an interpretation of the Koide mass formula in his paper [4]. 

Let the masses of , , and  be denoted as , , and , respectively. The masses are 

experimentally determined as follows [5]: 

, 

, 

. 

According to Brannen, the square root of each mass is expressed as: 

 for . 

Using this formula, the following relationships hold: 

, 

and . 

Thus, 

. 

This provides a deeper mathematical insight into the Koide mass formula. 

1.3. Brannen’s Neutrino Mass Hypothesis 

Brannen hypothesized that a similar relationship holds for neutrinos: 

. 

Let the masses of , , and , be denoted as , , and , respectively. Brannen proposed 

the following expressions [4]: 

 for , 

the minus sign appears because the expression evaluates to a negative value when . 

 for . 

From these, the neutrino masses are calculated as: 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 May 2025 doi:10.20944/preprints202504.1361.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1361.v2
http://creativecommons.org/licenses/by/4.0/


 3 of 13 

 

, 

, 

. 

1.4. Constructing Two Three-Dimensional Mass Models 

Here, a question arises: while Brannen indicates that the square root of the mass of  is 

negative, what does it mean for the square root of a mass to be negative? 

Could it imply that  is antimatter, or might it suggest that  travels faster than the speed of 

light, effectively moving backward in time? The observed  should correspond to the positive 

square root of the mass. 

Assuming Brannen’s hypothesis is valid, I propose that  might be the origin of the  

rotation in the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [6]. Based on Brannen’s 

hypothesis, I construct two three-dimensional mass models for neutrinos. 

2. Method 

2.1. Construction of the Neutrino Three-Dimensional Mass Models 

Let the masses of , , and , be denoted as , , and , respectively, satisfying: 

. 

In three-dimensional space, let the origin be . 

Define the radius: 

, 

where  represents the radius of the sphere described by . 

Define the points: 

, 

, 

where both  and  lie on the sphere. 

Additionally, define three points on the sphere: 

, 

, 

. 

The models are constructed in two patterns, based on the square roots of the neutrino masses: 

1. The combination , 

2. The combination . 

2.1.1. Case of the Combination  
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2.1.1.1. Vectors and Dot Products 

Define the unit vector (I refer to this vector as the  unit vector): 

. 

Define the following vectors originating from : 

, 

, 

, 

. 

The dot products are calculated as follows: 

, 

, 

. 

To align the direction of  with the -axis, , , , and  are rotated around the 

origin in three-dimensional space. 

2.1.1.2. Initial Coordinates 

The initial coordinates are expressed as: 

. 

2.1.1.3. Rotation in the -Plane 

Using  and , corresponding to , a 

rotation in the -plane is applied: 

. 

2.1.1.4. Rotation in the -Plane 

Using  and , corresponding to , a 

rotation in the -plane is applied: 

. 
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2.1.1.5. Rotation in the -Plane 

Using  and , corresponding to , a 

rotation in the -plane is applied (optional for visualization purposes to set the -component of  to 

 to  ): 

. 

The -components of ,  and  denote , , and , respectively, thus 

associating each vector with the respective neutrino. 

2.1.2. Case of the Combination  

2.1.2.1. Vectors and Dot Products 

Define the unit vector: 

. 

Define the following vectors originating from : 

, 

, 

, 

. 

The dot products are calculated as follows: 

, 

, 

. 

To align the direction of  with the -axis, , , , and  are rotated around the 

origin in three-dimensional space. 

2.1.2.2. Initial Coordinates 

The initial coordinates are expressed as: 

. 

2.1.2.3. Rotation in the -Plane 
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Using  and , corresponding to , a 

rotation in the -plane is applied: 

. 

2.1.2.4. Rotation in the -Plane 

Using  and , corresponding to , a 

rotation in the -plane is applied: 

. 

2.1.2.5. Rotation in the -Plane 

Using  and , corresponding to , a 

rotation in the -plane is applied: 

. 

The -components of  ,  and  denote , , and , respectively, thus 

associating each vector with the respective neutrino. 

3. Result 

Figure 1 shows the results of the two neutrino three-dimensional mass models. 
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Figure 1. Two neutrino three-dimensional mass models. 

The relationship between the two models can be expressed as: 

. 

This simplifies to: 

. 

Here, . 

4. Discussion 

4.1. Correspondence to CP Violation 

Let each component be extended into a complex number to account for CP violation [7,8]. The 

extended vectors are given by: 

, 

. 

Then, the relationship between the two matrices can be expressed as: 

. 
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I distinguish between the two states: the states where the square root of the mass of  is 

negative, referred to as mass negative eigenstates , and the states where it is positive, 

referred to as mass eigenstates . 

By associating each vector with the respective neutrino, the following relation can be written: 

. 

4.2. Product with the Tribimaximal Mixing Matrix 

I now consider the Tribimaximal mixing matrix [9]. 

The Tribimaximal mixing matrix  is defined by the product of two unitary matrices: 

, 

where , which is the complex cube root of unity. 

The Tribimaximal mixing matrix is regarded as a transformation matrix between the mass 

negative eigenstates and the flavor eigenstates of neutrinos: 

. 

Accordingly, the relationship between the mass eigenstates and the flavor eigenstates can be 

expressed as: 

. 

The product of the  rotation matrix and Tribimaximal mixing matrix can be approximated 

as follows: 

. 

Could this be interpreted as the PMNS matrix? 

The absolute values of each component are: 

. 

The resulting values appear to closely match “Leptonic Mixing Matrix” provided by NuFIT 5.3 

[10]. 

4.3. Neutrino Oscillation 
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The validity of the PMNS matrix derived here depends on whether the neutrino oscillations 

[11] predictions calculated with this PMNS matrix agree with the experimental data. 

4.3.1. Probability Calculation 

The formula for the oscillation probabilities of each neutrino in neutrino oscillations can be 

derived as follows: 

Let the flavor state before oscillation be  and the flavor state after oscillation be . The 

calculation involves the following steps: 

(1) Decomposing the flavor eigenstate  into mass eigenstates  using the PMNS 

matrix. 

(2) Applying phase shifts due to the time evolution of each mass eigenstate. 

(3) Reconstructing the flavor eigenstate  from the mass eigenstates  using the 

inverse PMNS matrix. 

In step (2), the phase shift of each  for  is shifted by , where  depends on the 

neutrino mass, its propagation distance, and its energy. Since the estimated neutrino masses are 

known in this study, the calculation proceeds in a straightforward manner: 

, 

, 

, 

where  is the propagation distance, and  is the energy of the neutrino. 

In step (3), the inverse of the PMNS matrix is required. 

Representing the PMNS matrix as: 

, 

and noting that the PMNS matrix is unitary, its inverse is simply its Hermitian adjoint matrix. 

Therefore: 

. 

The probability of oscillation from  to , denoted as , is given by: 

. 

For antineutrinos, the corresponding probability is: 
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, 

or alternatively: 

. 

Following the experimental setup of T2K (Tokai to Kamioka) [12,13], I calculate  

and . 

When the propagation distance is fixed at , the oscillation probabilities depend on 

the neutrino energy (see Figure 2). 

 

Figure 2. Relation of the neutrino energy and the neutrino oscillation probability. 

4.3.2. Energy Distribution of the Muon (Anti-)Neutrino Beam 

Based on the experimental setup, the energy of the emitted  (or ) beam is not precisely 

 but instead exhibits a spread in its distribution. Although I do not know the exact form of 

the beam energy distribution, I assume, for example, that it can be represented by a function such 

as: 

, 

where  represents the beam energy and  denotes the number density of the 

emitted  (or ). This distribution is shown in Figure 3. 

The function has its peak value at . 

The expected number of emitted  (or ) in the energy range  is given by: 
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. 

 

Figure 3. Relation of the neutrino beam energy and the number density of  (or .) 

4.3.3. Probability Density and Expected Number of (Anti-)Neutrinos 

By combining the two functions, the probability density for  (or ) is obtained, as shown in 

Figure 4. 

The shape of the graph in Figure 4 seems similar to the graph in the paper by the T2K 

Collaboration [13]. 

By integrating over the range , the expected number of events can be estimated 

as follows: 

Out of  observed neutrinos, the expected number of  is: 

approximately . 

Out of  observed antineutrinos, the expected number of  is: 

approximately . 

However, various other conditions are involved in actual observations, making it difficult for 

an individual to verify whether the derived values of the PMNS matrix are correct. 

Future research findings in the future are awaited. 
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Figure 4. Relation of the neutrino energy and the probability density of  (or .) 

5. Conclusions 

Assuming the correctness of Koide’s mass formula and Carl A. Brannen’s neutrino mass 

hypothesis, two three-dimensional mass models were constructed. 

As a result, I discovered that the PMNS matrix can be derived by introducing an intermediate 

set of hypothetical states, referred to as mass negative eigenstates, which mediate the 

transformation between mass eigenstates and flavor eigenstates. 

Based on this proposal, the PMNS matrix is derived as follows: 

. 

Whether this PMNS matrix and the neutrino oscillation expectations derived from it are correct 

remains to be verified by future research findings. 
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