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Abstract: The first years of an infant’s life represent a sensitive period for neurodevelopment and see 1

the emergence of nascent forms of executive function (EF), which are required to support complex 2

cognition. Few tests exist for measuring EF during infancy, and the available tests require painstaking 3

manual coding of infant behaviour. In modern clinical and research practice, human coders collect 4

data on EF performance by manually labelling video recordings of infant behaviour during toy 5

or social interaction. Besides being extremely time-consuming, video annotation is known to be 6

rater-dependent and subjective. To address these issues, starting from existing cognitive flexibility 7

research protocols, we developed instrumented toys as a new task instrumentation and data collection 8

tool suitable for infant use. A commercially available device comprising a Barometer and Inertial 9

Measurement Unit (IMU) embedded in a 3D-printed lattice structure was used to detect when and 10

how the infant interacts with the toy. The data collected using the instrumented toys provides a rich 11

dataset describing the sequence of toy interaction and individual toy interaction patterns, from which 12

EF-relevant aspects of infant cognition may be inferred. Such a tool potentially provides an objective, 13

reliable, and scalable method of collecting early developmental data in socially interactive contexts. 14

Keywords: Instrumented Toys; Ecological Behavioural Assessment; Executive Function Development; 15

Inertial Motion Detection; Barometric Force Sensing; 3D Printing 16

1. Introduction 17

Executive Functions (EFs) are higher-order cognitive control mechanisms commonly 18

conceptualised as a triad of mental skills comprising inhibitory control, working memory 19

and cognitive flexibility [1]. These mental abilities support complex thinking skills such 20

as reasoning and creative problem-solving [2] and influence the development of socioe- 21

motional competencies such as the Theory of Mind [3]. They are considered essential for 22

mental and physical health [4–6]. 23

Cognitive flexibility refers to switching between tasks, rules or dimensions and adapt- 24

ing one’s behaviour to a changing environment [7,8]. Categorisation tasks test an infant’s 25

ability to flexibly categorise objects based on different dimensional features (or attentional 26

sets) such as shape versus material [9,10]. An infant’s mental categorisation of objects can 27

be inferred from a behavioural measure of sequential touching. If infants sequentially touch 28

objects from the same category (e.g. balls) more often than expected by chance, it is inferred 29

that they are doing so because they perceive these objects to belong to the same category [11– 30

13] (Figure 1). Horst and colleagues (2009) [14] found that 14-18-month-old infants could 31
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flexibly adapt their categorisation of objects by either a perceptually salient dimension of 32

taxonomic distinction (e.g. shape) or a less salient dimension (e.g., deformability). 33

Figure 1. Example of infant performing object categorisation task.
(Image used with specific parental consent.)

Changes in the pattern of an infant’s object touch sequences can index mental set- 34

shifting, i.e. shifts in the mental dimensional set that infants use for categorisation, such as 35

shape or compressibility. Further, it is possible to measure the effect of maternal scaffolding 36

on infant mental set-shifting via the introduction of a brief period of maternal social 37

interaction during which she demonstrates object compressibility to the infant. However, 38

to detect sequences of object touches made by infants and the quantification of maternal 39

behaviour during this period of social interaction, these events must first be manually 40

extracted and coded from video footage by a trained human coder. 41

One common performance measure is Mean Run Length (MRL), where run lengths 42

are the number of touches in a row to objects from the same category (i.e., shape). MRLs are 43

calculated by dividing the total number of touches by the total number of runs across all 44

categories [15]. The calculated MRLs are then compared against a Monte-Carlo simulation’s 45

average "random" sequence lengths to assess performance against chance [14]. In addition 46

to these classic measures, newer indices based on the conditional probability of infant touch 47

sequences may provide further insight into the cognitive strategies adopted by infants 48

during this task. 49

This paper presents a set of instrumented toys as an objective, reliable, and scalable 50

form of cognitive flexibility task instrumentation and behaviour measurement tool that can 51

complement and accelerate manual means of data coding. It can extract typically coded 52

measures such as - when a toy is touched, how long the infant interacts with it, and the 53

overall touching sequence. We can additionally measure squeezing patterns the infants’ 54

exhibit to validate mental set-shifting from shape-based to material-based categorisation. 55

2. Functional, Technical, and Physical Specifications 56

2.1. Requirements and Existing Setup 57

Figure 2. Example of toys used in object categorisation task.
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To evaluate mental set-shifting in infants during the object categorisation task, the 58

number and sequence of touches of each object by the infant need to be identified. The 59

current methodology relies on human coders manually extracting these touch sequences by 60

watching video recordings of infants playing with toys. The set of 8 toys comprises 2 hard 61

balls (79 g), 2 soft balls (23 g), 2 hard cubes (80 g), and 2 soft cubes (5 g)(Figure 2). All the 62

cubes have sides measuring 50 mm, and all the spheres have diameters measuring 55 mm 63

and are all different colours. A latent factor currently not measured that could be useful 64

in reinforcing the identification of mental set-shifting in infants based on the less salient 65

dimension of deformability would be to measure the squeezing patterns of the infant’s 66

grasp on the toys. 67

2.2. Detecting Toy Interaction 68

To scale up the object categorisation task for lab-based and ecological environments, 69

we need to automatically detect when and how an infant interacts with the toys. Motion 70

tracking enables the desired automatic extraction of interaction and motion patterns. It can 71

be implemented using various technological solutions, as shown in [16]. However, not all 72

solutions are suitable for use in ecological environments. We also need to keep costs low 73

while being easy to set up and manage. Based on technological assessments to identify 74

suitable techniques for motion tracking, optical and inertial sensing seem to be the most 75

favourable and widely used [17,18]. 76

.
Figure 3. Computer Vision based pose detection and object tracking.

(Image used by specific parental consent.)

Optical marker-less methods can be used on recorded videos that are part of the 77

existing object categorisation task paradigm. Combining Human Pose Detection, Object 78

Detection, and Multi Object Tracking algorithms, key points can be detected and tracked 79

throughout the video (Figure 3) [18–20]. However, the accuracy of the underlying detection 80

algorithms determines the performance, which suffers from the issue of occlusions. It also 81

requires a structured environment restricted to the area within the camera’s field of view. 82

Alternatively, Inertial measurement unit (IMU) based motion and orientation tracking 83

eliminates line of sight problems and structured environment requirements making it more 84

appealing from an ecological perspective. They are a compact, low-cost and robust way to 85

detect the motion and orientation of objects. They have been extensively used in lab-based 86

and ecological studies of infant motor development [21–23] and are the ideal method to 87

detect motion and interaction for our application. 88

2.3. Detecting Toy Squeezing 89

To detect the squeezing of the toys, we need to detect the forces applied to them using 90

force, pressure or tactile sensors. Several different working principles for such sensors were 91

explored by [24–26] and have been used in previous infant-related research. A sensorised 92

ball designed by Campolo et al. [27] used Quantum Tunneling Composites (QTC), which 93

change its electrical resistance based on changes in applied force [28], to detect grasping 94

patterns during manipulation. Cecchi et al. [29] incorporated piezoresistive pressure 95

sensors and flexible Force Sensing Resistors (FSR) sensors in sensorised toys to measure 96

infants’ reaching and grasping. Serio et al. [30] use pressure sensors connected to air 97
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chambers to measure the amplitude of the force applied for quantitative monitoring and 98

measuring infants’ motor development. 99

Tenzer and Jentfot [31,32] developed a versatile, low-cost, and sensitive tactile sensor 100

using commercial off-the-shelf MEMS barometers and commercialized it as TakkTile [33]. 101

It has been used in robotics by Ades et al. [34], and Koiva et al. [35] to sense grasping 102

events using robotic grippers. The working principle of the MEMS barometer-based tactile 103

sensor is the communication of surface contact pressure within a layer of rubber to the 104

ventilation hole of the sensor and, thus, to the MEMS transducer. Similarly, Takada et al. 105

[36] and Quinn et al. [37] have used a waterproof mobile device’s built-in barometer to 106

measure touch force. It also works on a similar principle. When an airtight or waterproof 107

device is touched, the distorted surface changes the air pressure inside that device and thus 108

changes the built-in barometer value [36,37]. This ability to detect forces through changes 109

in internal pressure makes barometric tactile sensing suit our requirements for a low-cost, 110

versatile, and sensitive way to detect squeezing forces on the toy. 111

2.4. Proposed Platform 112

For the object categorisation task, balls and cubes help assess an infant’s cognitive 113

flexibility. The selected sensors need to be integrated into a platform that can be used with 114

minimal alterations to existing paradigms. We propose the use of instrumented toys to 115

measure the development of EF in infants in a scalable manner in lab-based and ecological 116

environments. 117

Campolo et al. [27] designed a sensorised ball to analyse the development of per- 118

ceptual and motor still in ecological environments. IMUs have been embedded in toys to 119

assess spatial cognition [21,22,38] and detect possible autism spectrum disorders (ASD) at 120

an early stage [23]. Pressure and force sensors were used to study infants’ grasping actions 121

[29,30,39]. A whole suite of instrumented toys was developed to provide early intervention 122

for infants at risk for neurodevelopmental disorders and reduce parental stress [40,41]. 123

These examples demonstrate the viability of instrumented toys for integrating sensors 124

to assess infant development. However, instrumented toys specifically targeted at measur- 125

ing the development of EF in infants are yet to be developed, and a need exists for such 126

tools. 127

3. Instrumented Toy Design and Fabrication 128

3.1. Sensor Core 129

Using commercially available sensors, particularly in infant behavioural research 130

tool development, has the advantage of being certificated for public use while ensuring 131

high quality and safety standards are met. These certifications reduce the potential risk 132

of harm when using instrumented toys that contain sensors and batteries in particular. 133

It allows us to leverage existing expertise in sensor development while focusing on the 134

design, development and deployment of instrumented toys at scale without compromising 135

accuracy. 136

Figure 4. MindMaze Physilog 6® (P6) Sensor.
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We use Physilog 6® (P6), a commercial off-the-shelf sixth-generation wearable motion 137

sensor platform produced by MindMaze Assessments (Figure 4). It comprises a 9 Degree- 138

of-Freedom Inertial Measurement Unit (IMU) and Barometer typically used for human 139

motion and gait analysis [42,43]. Its versatility allows us to capture, measure, and analyse 140

the necessary parameters for detecting the touching and squeezing of toys during the object 141

categorisation task. 142

Table 1. MindMaze Physilog 6® (P6) Specifications [44].

Dimensions 42.2 mm x 31.6 mm x 15 mm
Weight 15 g

IP Rating Waterproof IP64
Interface High-speed USB 2.0 USB-C connector

Wireless Communication Bluetooth Low Energy (BLE)
Battery 240 mAh Lithium-Ion Polymer accumulator

Battery Life up to 20 hours

Inertial
Sensors

3D Accelerometer up to ±16 g
3D Gyroscope up to ±2000/s

Sampling frequency up to 512 Hz
Magnetic
field sensor

3D magnetic field sensor up to ±50 mT
Sampling frequency up to 256 Hz

Ambient
Sensor

Barometric altitude from 26 to 126 kPa
Temperature sensor accuracy of ±1.5C

Sampling frequency up to 64 Hz

Figure 5. BLE based communication for P6 sensor data synchronisation.

Each instrumented toy will have a P6 sensor embedded to detect the touching and 143

squeezing of the toys. The specifications of the P6 sensor are summarised in Table 1. The 144

IMU and barometer were configured to sample at 64 Hz for easy data synchronisation, 145

maximising battery life while striking a suitable temporal resolution. The P6 sensor has 146

an internal clock that can be synchronised to a PC’s clock, which allows for easy synchro- 147

nisation with other sensors opening up the possibility of multi-modal data analysis for 148

studying EF development. Multiple P6 sensors can communicate and synchronise with 149

each other using the built-in BLE communication protocol. One sensor acts as the master, 150

wirelessly broadcasting the clock signal on a particular channel, and the others act as the 151

client listening to this signal (Figure 5). Data stored onboard as ".BIN" files are sorted into 152

timestamped folders accessed by connecting the sensor to a PC via the USB-C interface and 153

downloading it. 154

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 December 2022                   doi:10.20944/preprints202212.0554.v1

https://doi.org/10.20944/preprints202212.0554.v1


6 of 15

Figure 6. Sensor core with P6 sensor encased in silicone.

Dragon Skin™ 20, a high-performance platinum cure liquid silicone compound, was 155

used to seal the hole of the P6 sensor’s barometer to use it as a tactile sensor. The sili- 156

cone will transduce the squeezing forces on the surface to changes in internal pressure 157

that the barometer can detect. A custom 3D printed mould (Figure 6(a,b)) was used to 158

enclose the sensor and shape the silicone layer surrounding it. The silicone was cured 159

overnight Figure 6(c) and unmoulded to create the final sensor core for the instrumented 160

toys Figure 6(d). 161

3.2. Physical Structure 162

Figure 7. Lattice structure with different outer geometries. a) sphere b) cube).

The physical structure of the instrumented toy encloses the sensors, creates the final 163

shape, and controls the rigidity. The weight and dimensions of the physical structure of 164

the instrumented toys were defined by the anthropometry of an infant’s hand, the existing 165

regular toys used, and the physical dimensions of the sensor (44 mm x 36 mm x 17 mm) to 166

be embedded. The cube has a length of 60 mm, and the sphere has a diameter of 65 mm. 167

Modern 3D printing technologies and advances in material science have enabled 168

the fabrication of complex structures using materials of varying rigidity [45–48]. Ansys 169

SpaceClaim’s Faceted Shell and Infill tool was used to design an octahedral lattice that 170

minimises mass, ensures uniform stiffness, and avoids needing a support structure during 171

fabrication. The lattice structure was designed with a wall thickness of 1 mm, a unit cell size 172

of 10 mm, and a strut thickness of 1 mm, which translates to 11% infill density (Figure 7). 173

Table 2. Print parameters for the fabrication of lattice structures.

Nozzle
temperature

Bed
Temperature Print Speed Layer Thickness

TPU (85A/95A) 235°C 50°C 30 mm/s 0.2 mm

Fused Deposition Modeling (FDM) 3D printing using Thermoplastic Polyurethane 174

(TPU) filament was used to fabricate the octahedral lattice physical structure (Figure 8). 175
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Figure 8. 3D printed lattice structure design prototype.

The hard toys were printed using a 95A shore hardness TPU filament, while the soft toys 176

were printed using an 85A shore hardness TPU filament. The print parameters used to 177

print the lattice structure were as shown in Table 2. 178

3.3. Integration 179

Figure 9. Modular design of the instrumented toy.

The instrumented toys were designed using a modular multilayered approach to 180

decouple the sensing capabilities from the physical properties. The sensing core determines 181

the modality of the data that can be captured, while the physical structure determines 182

the real and perceived affordances of the toy by the infant. The risk of harm and injury 183

to the infant is further minimised by placing the sensors and battery at the toy’s core. 184

The physical structure fabricated using non-toxic and non-combustible materials acts as a 185

barrier. This instrumented toy design paradigm can be expanded to utilise other sensors 186

within the sensing core enclosed by different physical structures based on the desired play 187

and interaction style. For the set of instrumented toys to be used in the object categorisation 188

task to assess cognitive flexibility in infants, the sensor core records motion and pressure 189

data from which we infer the toys’ sequence of touching and squeezing. The 3D-printed 190

lattice structure defines the toy’s affordance by varying the ball and cubes’ colour, size, and 191

rigidity. 192

Figure 10. Set of instrumented toy prototypes.
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4. Squeezing Detection 193

4.1. Experimental Setup 194

Figure 11. Kinova Gen3 7 DoF Robot applying squeezing force on instrumented toys.

A preliminary quantitative experiment to verify if the barometer of the P6 sensor 195

embedded in each toy can detect squeezing was performed using a Kinova Gen3 7 Degree 196

of Freedom (DoF) robotic arm (Figure 11) to repeatedly and consistently squeeze each 197

toy ten times. An ATI Industrial Automation Net Force/Torque Sensor Mini40 was used 198

to measure the reaction forces (Fsensed). A 3D printed holder was fastened to the robot 199

end effector and force sensor to hold the toys in place and control the toy’s contact area. 200

The cubes had a contact area of 72.00 cm2, and the balls had a contact area of 64.84 cm2
201

between the robot end effector and the force sensor. It was noted that studies on infant 202

grip force within the first 12 months had measured the range to be between 5 to 35 kPa 203

[29,30,39,40,49]. As such, to validate performance in a minimal force application condition, 204

the robot was programmed in position control mode to move 10 mm vertically from z0 205

to z1 with a velocity of 65 mm/s to apply a force Frobot = 20 N on the toys. The expected 206

pressure applied on the cubes was 2.77 kPa and on the balls was 3.08 kPa, well under the 207

typical grip strength range. Before beginning the experiment, each object was placed on 208

the force sensor, and its weight was zeroed out. Data from the robot and the force sensor 209

was timestamped and logged to a PC. The internal time of the P6 sensor was synchronised 210

with the PC clock. 211

4.2. Results and Discussion 212

The robot consistently moves 10 mm to squeeze the toys 10 times with a regular force 213

of Frobot (Figure 12).

Table 3. Squeezing Results.

Toy
Robot

Applied
Force (N)

Applied
Pressure (Pa)

Measured
Force (N)

Barometer
Pressure (Pa)

% Pressure
Detected

Soft Cube 20.0 2777.78 17.5 (88%) 16.04 ± 2.64 0.58%
Hard Cube 21.0 2916.67 19.0 (90%) 324.60 ± 3.62 11.13%

Soft Ball 22.0 3392.97 18.0 (82%) 51.75 ± 4.53 1.53%
Hard Ball 21.0 3238.74 18.0 (86%) 371.25 ± 5.12 11.46%
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The compliance of the instrumented toy’s structure produces a difference between the 214

force applied by the robot and the force measured by the force sensor (Table 3). The soft 215

cube absorbs 12%, the hard cube absorbs 10%, the soft ball absorbs 18%, and the hard ball 216

absorbs 14% of the applied force. Based on the force applied by the robot and the area of 217

contact of the 3D-printed holders, we can estimate the pressure applied to each toy when 218

squeezing. As expected, the pressure exerted ranges from 2.77 to 3.39 kPa. This will not 219

saturate the barometer as its specified dynamic range is 100 kPa (26 to 260 kPa). 220
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Figure 12. Barometric squeezing detection.
(a) Soft Cube (b) Soft Ball (c) Hard Cube (d) Hard Ball.

In Table 3, we can see the summary of the barometer readings across 10 squeezes for 221

all the different toys. Noise in the barometer signal is smoothed out using a 5 Hz low-pass 222

filter. The squeezing force applied to the toys produces a change in internal pressure that is 223

successfully recorded by the barometer (Figure 12). The soft toys record a smaller change 224

in pressure than the hard ones due to the compliance of the physical structure absorbing 225

some of the force applied. 226

A drift in the baseline pressure reading of the barometer in the soft cube (Figure12(c)) 227

is observed. A drift of approximately ±20 Pa is present across all sensors either due to air 228

leaking or getting trapped within the 3D-printed structure or the sensor core through the 229

USB-C connector port. This drift is not of particular concern as the sensor is still able to 230

consistently pick up on the dynamic changes in pressure caused by the actual squeezing of 231

the toy. However, applying a 0.5 Hz high-pass filter helps filter out such a drift and the 232

baseline offset of the ambient room pressure as well (Figure 13). 233
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Figure 13. Filtered Barometeric Signals.

Furthermore, our barometric squeezing detection validation was based on 10% of 234

typical infant grip pressure. The softer toys detected approximately 1% of the applied 235

pressure, and the hard toys detected approximately 11% of the applied pressure. Therefore, 236

we can be certain that under more representative conditions, where infants may apply 237

5 to 35 kPa of grip pressure, our novel implementation of detecting squeezing using a 238

barometric tactile sensor will be able to detect the squeezing of the toys. 239

5. Sequence of Touching 240

5.1. Experimental Setup 241

Figure 14. Sequential Touching Experiment.

A preliminary quantitative experiment was performed using the instrumented toys to 242

detect the sequence of touching. A participant was presented with 4 instrumented toys on 243

a table and asked to touch and play with them (Figure 14). The IMU onboard the P6 sensor 244

embedded in each toy recorded the motion, while a camera simultaneously filmed the toy 245

interaction from an overhead angle to minimise occlusions. The 4 IMUs and the camera 246

were synchronised using the timestamped data from both sensors. 247
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Figure 15. Accelerometer and Gyroscope signal processing.

The signals from the IMUs were processed as in Figure 15 to obtain the sequence of 248

touching. First, the signal from the 3-channel accelerometer was combined by calculating 249

the Euclidean norm ∥a∥2 =
√

a2
x + a2

y + a2
z . Then the DC-offset and noise were filtered 250

using a band-pass filter ( fL,1 and fH), and the signal was passed through a full-wave 251

rectifier to get only the positive magnitude of the signal. Finally, the linear envelope was 252

calculated using a low-pass filter ( fL,2). Similarly, the signal from the 3-channel gyroscope 253

was combined by calculating the Euclidean norm ∥ω∥2 =
√

ω2
x + ω2

y + ω2
z , and the linear 254

envelope was calculated using a low-pass filter ( fL,3). 255

5.2. Results and Discussion 256

From the video, an independent rater manually coded for the sequence of touches of 257

each toy. These results are our ground truth data for evaluating the performance of the 258

instrumented toy (Table 4). The soft and hard cubes were touched 2 times, and the soft and 259

hard balls were touched 3 times.

Table 4. Ground truth touch timing and sequence from video coded by a human rater.

Instrumented Toy Touch Timing (sec)

Soft Cube 1.60
Hard Cube 5.30
Hard Ball 9.30
Soft Ball 12.20

Hard Ball 16.50
Hard Cube 16.60

Soft Ball 20.10
Soft Cube 20.30
Hard Ball 23.70
Soft Ball 28.20

260

For the accelerometer, the DC-offset and noise were filtered using fL,1 = 0.5 Hz and 261

fH = 10Hz band-pass filter. The linear envelope for the accelerometer and gyroscope were 262

calculated using a fL,2 = 0.3 Hz and fL,3 = 0.2 Hz low-pass filter, respectively. A threshold 263

value of 0.046 g for the accelerometer and 65 deg/s for the gyroscope was used to identify 264

the initial instance of touching. 265

From the IMU data (Figure 16), the touching sequence corresponded with the video’s 266

sequence. The timings of the touch from the video were extracted by interpolating from 267

the frame timings as touch sometimes occurs between frames. In contrast, the timing for 268

the IMU comes directly from the data logged with precise discrete timestamping at a high 269

sampling frequency of 64 Hz. 270
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Figure 16. Accelerometer and Gyroscope data indicating sequence of touches.

Table 5. Touch sequence timing comparison.

Toy Ground
Truth (sec)

Accelerometer
(sec)

Accelerometer
Error

Gyroscope
(sec)

Gyroscope
Error Average (sec) Average

Error

Soft Cube 1.60 1.50 -0.10 1.67 0.07 1.59 -0.01
Hard Cube 5.30 5.16 -0.14 5.42 0.12 5.29 -0.01
Hard Ball 9.30 9.06 -0.24 8.87 -0.43 8.97 -0.33
Soft Ball 12.20 12.20 0.00 11.91 -0.29 12.06 -0.14

Hard Ball 16.50 16.25 -0.25 16.35 -0.15 16.3 -0.20
Hard Cube 16.60 16.30 -0.30 16.50 -0.10 16.4 -0.20

Soft Ball 20.10 19.75 -0.35 20.18 0.08 19.97 -0.13
Soft Cube 20.30 19.92 -0.38 20.35 0.05 20.14 -0.16
Hard Ball 23.70 23.30 -0.40 23.50 -0.20 23.4 -0.30
Soft Ball 28.20 28.80 0.60 27.83 -0.37 28.32 0.12
RMSE — — 0.32 — 0.23 — 0.19

To quantify the accuracy of the IMU results, we compute the timing error and Root 271

Mean Squared Error (RMSE) (Table 5). The accelerometer tends to estimate the touch 272

time to be earlier than it is and has an RMSE of 0.32 seconds, and the gyroscope does a 273

better job at estimating the touch timing with an RMSE of 0.23 seconds. We can further 274

improve the IMU-based touch detection accuracy by taking the average touch time from 275

the accelerometer and gyroscope, resulting in an RMSE of just 0.19 seconds. 276

Therefore, IMU-based touch detection is an accurate way to detect touching and 277

interaction with the toys, removing the subjectivity of manual human coders. However, to 278

ensure maximum accuracy and robustness, rather than entirely replacing manually coded 279
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data with IMU-based touch detection, the human coders can leverage the IMU data to 280

speed up the manual coding process. In a video recorded at 30 frames per second (fps), the 281

instrumented toys can help narrow down the video to a segment spanning approximately 282

6 to 10 frames to confirm the exact touch time rather than go through the entire video. 283

6. Future Work and Conclusion 284

In this paper, we presented a set of instrumented toys that can be used in lab-based and 285

ecological environments to study the development of cognitive flexibility, an aspect of EF, 286

in infants. The toys can detect periods of motion to determine when they are touched. From 287

this, the overall sequence of touching can be inferred to calculate MRL and the conditional 288

probability of infant touch sequence to identify mental set-shifting. The toys can also 289

detect when and how much they have been squeezed to further validate infants’ change 290

in mental classification from shape-based to material-based classification. To improve the 291

sensitivity of the squeezing detection, we aim to enhance the seal around the barometer 292

by vacuum degassing the sensor core before fully curing it to remove any air pockets. The 293

interface between the 2 halves of the 3D-printed physical structure will also be sealed 294

tightly. In conclusion, although the sequence of touching and squeezing was detected 295

through preliminary tests, such results confirm the hypothesis that these instrumented toys 296

could be helpful for quantitative monitoring and measurement of infants’ EF development 297

and are ready to be evaluated through appropriate clinical trials. 298
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