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Abstract: The first years of an infant’s life represent a sensitive period for neurodevelopment and see 1
the emergence of nascent forms of executive function (EF), which are required to support complex =
cognition. Few tests exist for measuring EF during infancy, and the available tests require painstaking s
manual coding of infant behaviour. In modern clinical and research practice, human coders collect 4
data on EF performance by manually labelling video recordings of infant behaviour during toy s
or social interaction. Besides being extremely time-consuming, video annotation is known to be
rater-dependent and subjective. To address these issues, starting from existing cognitive flexibility =~ 7
research protocols, we developed instrumented toys as a new task instrumentation and data collection s
tool suitable for infant use. A commercially available device comprising a Barometer and Inertial
Measurement Unit (IMU) embedded in a 3D-printed lattice structure was used to detect whenand 1o
how the infant interacts with the toy. The data collected using the instrumented toys provides a rich 11
dataset describing the sequence of toy interaction and individual toy interaction patterns, from which 12
EF-relevant aspects of infant cognition may be inferred. Such a tool potentially provides an objective, 13
reliable, and scalable method of collecting early developmental data in socially interactive contexts. 14

Keywords: Instrumented Toys; Ecological Behavioural Assessment; Executive Function Development; 15
Inertial Motion Detection; Barometric Force Sensing; 3D Printing 16

1. Introduction 17

Executive Functions (EFs) are higher-order cognitive control mechanisms commonly 1s
conceptualised as a triad of mental skills comprising inhibitory control, working memory 1o
and cognitive flexibility [1]. These mental abilities support complex thinking skills such 20
as reasoning and creative problem-solving [2] and influence the development of socioe- =
motional competencies such as the Theory of Mind [3]. They are considered essential for 2=
mental and physical health [4-6]. 23

Cognitive flexibility refers to switching between tasks, rules or dimensions and adapt- s
ing one’s behaviour to a changing environment [7,8]. Categorisation tasks test an infant’s  2s
ability to flexibly categorise objects based on different dimensional features (or attentional 26
sets) such as shape versus material [9,10]. An infant’s mental categorisation of objects can 27
be inferred from a behavioural measure of sequential touching. If infants sequentially touch 2.
objects from the same category (e.g. balls) more often than expected by chance, it is inferred 2o
that they are doing so because they perceive these objects to belong to the same category [11- 30
13] (Figure 1). Horst and colleagues (2009) [14] found that 14-18-month-old infants could s
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flexibly adapt their categorisation of objects by either a perceptually salient dimension of 32
taxonomic distinction (e.g. shape) or a less salient dimension (e.g., deformability). 33

Figure 1. Example of infant performing object categorisation task.
(Image used with specific parental consent.)

Changes in the pattern of an infant’s object touch sequences can index mental set- s
shifting, i.e. shifts in the mental dimensional set that infants use for categorisation, such as s
shape or compressibility. Further, it is possible to measure the effect of maternal scaffolding e
on infant mental set-shifting via the introduction of a brief period of maternal social 7
interaction during which she demonstrates object compressibility to the infant. However, s
to detect sequences of object touches made by infants and the quantification of maternal o
behaviour during this period of social interaction, these events must first be manually 4
extracted and coded from video footage by a trained human coder. a

One common performance measure is Mean Run Length (MRL), where run lengths 42
are the number of touches in a row to objects from the same category (i.e., shape). MRLs are 43
calculated by dividing the total number of touches by the total number of runs across all 4
categories [15]. The calculated MRLs are then compared against a Monte-Carlo simulation’s s
average 'random" sequence lengths to assess performance against chance [14]. In addition 4
to these classic measures, newer indices based on the conditional probability of infant touch 47
sequences may provide further insight into the cognitive strategies adopted by infants s
during this task. a9

This paper presents a set of instrumented toys as an objective, reliable, and scalable  so
form of cognitive flexibility task instrumentation and behaviour measurement tool that can s
complement and accelerate manual means of data coding. It can extract typically coded s
measures such as - when a toy is touched, how long the infant interacts with it, and the s
overall touching sequence. We can additionally measure squeezing patterns the infants” s
exhibit to validate mental set-shifting from shape-based to material-based categorisation. s

2. Functional, Technical, and Physical Specifications 56
2.1. Requirements and Existing Setup 57
Hard Balls Soft Balls

> -
¥ s

Hard Cubes Soft Cubes

Figure 2. Example of toys used in object categorisation task.
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To evaluate mental set-shifting in infants during the object categorisation task, the se
number and sequence of touches of each object by the infant need to be identified. The s
current methodology relies on human coders manually extracting these touch sequences by eo
watching video recordings of infants playing with toys. The set of 8 toys comprises 2 hard e
balls (79 g), 2 soft balls (23 g), 2 hard cubes (80 g), and 2 soft cubes (5 g)(Figure 2). All the =
cubes have sides measuring 50 mm, and all the spheres have diameters measuring 55 mm e
and are all different colours. A latent factor currently not measured that could be useful s
in reinforcing the identification of mental set-shifting in infants based on the less salient s
dimension of deformability would be to measure the squeezing patterns of the infant’s s
grasp on the toys. o7

2.2. Detecting Toy Interaction o8

To scale up the object categorisation task for lab-based and ecological environments, o
we need to automatically detect when and how an infant interacts with the toys. Motion 7
tracking enables the desired automatic extraction of interaction and motion patterns. It can =~ »
be implemented using various technological solutions, as shown in [16]. However, notall 7
solutions are suitable for use in ecological environments. We also need to keep costs low 73
while being easy to set up and manage. Based on technological assessments to identify  zs
suitable techniques for motion tracking, optical and inertial sensing seem to be the most 7
favourable and widely used [17,18]. 76

Figure 3. Computer Vision based pose detection and object tracking.
(Image used by specific parental consent.)

Optical marker-less methods can be used on recorded videos that are part of the
existing object categorisation task paradigm. Combining Human Pose Detection, Object 7=
Detection, and Multi Object Tracking algorithms, key points can be detected and tracked 7
throughout the video (Figure 3) [18-20]. However, the accuracy of the underlying detection =0
algorithms determines the performance, which suffers from the issue of occlusions. It also &
requires a structured environment restricted to the area within the camera’s field of view. &

Alternatively, Inertial measurement unit (IMU) based motion and orientation tracking s
eliminates line of sight problems and structured environment requirements making it more s
appealing from an ecological perspective. They are a compact, low-cost and robust way to s
detect the motion and orientation of objects. They have been extensively used in lab-based s
and ecological studies of infant motor development [21-23] and are the ideal method to -
detect motion and interaction for our application. o8

2.3. Detecting Toy Squeezing 89

To detect the squeezing of the toys, we need to detect the forces applied to them using oo
force, pressure or tactile sensors. Several different working principles for such sensors were o
explored by [24-26] and have been used in previous infant-related research. A sensorised 2
ball designed by Campolo et al. [27] used Quantum Tunneling Composites (QTC), which s
change its electrical resistance based on changes in applied force [28], to detect grasping  os
patterns during manipulation. Cecchi et al. [29] incorporated piezoresistive pressure s
sensors and flexible Force Sensing Resistors (FSR) sensors in sensorised toys to measure s
infants’ reaching and grasping. Serio et al. [30] use pressure sensors connected to air o7
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chambers to measure the amplitude of the force applied for quantitative monitoring and s
measuring infants” motor development. 99

Tenzer and Jentfot [31,32] developed a versatile, low-cost, and sensitive tactile sensor o0
using commercial off-the-shelf MEMS barometers and commercialized it as TakkTile [33]. 102
It has been used in robotics by Ades et al. [34], and Koiva et al. [35] to sense grasping o2
events using robotic grippers. The working principle of the MEMS barometer-based tactile 10s
sensor is the communication of surface contact pressure within a layer of rubber to the 104
ventilation hole of the sensor and, thus, to the MEMS transducer. Similarly, Takada et al. 10s
[36] and Quinn et al. [37] have used a waterproof mobile device’s built-in barometer to 106
measure touch force. It also works on a similar principle. When an airtight or waterproof o7
device is touched, the distorted surface changes the air pressure inside that device and thus  10s
changes the built-in barometer value [36,37]. This ability to detect forces through changes 100
in internal pressure makes barometric tactile sensing suit our requirements for a low-cost, 110
versatile, and sensitive way to detect squeezing forces on the toy. 111

2.4. Proposed Platform 112

For the object categorisation task, balls and cubes help assess an infant’s cognitive 112
flexibility. The selected sensors need to be integrated into a platform that can be used with 114
minimal alterations to existing paradigms. We propose the use of instrumented toys to  11s
measure the development of EF in infants in a scalable manner in lab-based and ecological 116
environments. 117

Campolo et al. [27] designed a sensorised ball to analyse the development of per- s
ceptual and motor still in ecological environments. IMUs have been embedded in toys to 110
assess spatial cognition [21,22,38] and detect possible autism spectrum disorders (ASD) at 120
an early stage [23]. Pressure and force sensors were used to study infants’ grasping actions 12
[29,30,39]. A whole suite of instrumented toys was developed to provide early intervention 122
for infants at risk for neurodevelopmental disorders and reduce parental stress [40,41]. 123

These examples demonstrate the viability of instrumented toys for integrating sensors 12
to assess infant development. However, instrumented toys specifically targeted at measur- 12s
ing the development of EF in infants are yet to be developed, and a need exists for such 126

tools. 127
3. Instrumented Toy Design and Fabrication 128
3.1. Sensor Core 120

Using commercially available sensors, particularly in infant behavioural research 130
tool development, has the advantage of being certificated for public use while ensuring 1s:
high quality and safety standards are met. These certifications reduce the potential risk 132
of harm when using instrumented toys that contain sensors and batteries in particular. 1ss
It allows us to leverage existing expertise in sensor development while focusing on the 13
design, development and deployment of instrumented toys at scale without compromising 1ss
accuracy. 136

Figure 4. MindMaze Physilog 6® (P6) Sensor.
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We use Physilog 6® (P6), a commercial off-the-shelf sixth-generation wearable motion a7
sensor platform produced by MindMaze Assessments (Figure 4). It comprises a 9 Degree- 13s
of-Freedom Inertial Measurement Unit (IMU) and Barometer typically used for human 13s
motion and gait analysis [42,43]. Its versatility allows us to capture, measure, and analyse 140
the necessary parameters for detecting the touching and squeezing of toys during the object 141
categorisation task. 142

Table 1. MindMaze Physilog 6® (P6) Specifications [44].

Dimensions 42.2 mm x 31.6 mm x 15 mm
Weight 15¢
IP Rating Waterproof IP64
Interface High-speed USB 2.0 USB-C connector
Wireless Communication Bluetooth Low Energy (BLE)
Battery 240 m Ah Lithium-Ion Polymer accumulator
Battery Life up to 20 hours

3D Accelerometer up to 16 g

Isr;:::)ils 3D Gyroscope up to +2000/s
Sampling frequency up to 512 Hz
Magnetic 3D magnetic field sensor up to +50 mT
field sensor Sampling frequency up to 256 Hz
. Barometric altitude from 26 to 126 kPa
Ambient
Sensor Temperature sensor accuracy of +1.5C

Sampling frequency up to 64 Hz

ﬁ ff’
7,
Physilog Physilog
6 Physilog 6
6

(Slave) (Slave) (Slave)

Physilog
6

(Master,

N 7

Figure 5. BLE based communication for P6 sensor data synchronisation.

Each instrumented toy will have a P6 sensor embedded to detect the touching and 13
squeezing of the toys. The specifications of the P6 sensor are summarised in Table 1. The 14
IMU and barometer were configured to sample at 64 Hz for easy data synchronisation, 1as
maximising battery life while striking a suitable temporal resolution. The P6 sensor has 14
an internal clock that can be synchronised to a PC’s clock, which allows for easy synchro- 1a7
nisation with other sensors opening up the possibility of multi-modal data analysis for 14
studying EF development. Multiple P6 sensors can communicate and synchronise with 14
each other using the built-in BLE communication protocol. One sensor acts as the master, 1so
wirelessly broadcasting the clock signal on a particular channel, and the others act as the s
client listening to this signal (Figure 5). Data stored onboard as ".BIN" files are sorted into s
timestamped folders accessed by connecting the sensor to a PC via the USB-C interface and  1ss
downloading it. 154
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Figure 6. Sensor core with P6 sensor encased in silicone.

Dragon Skin™ 20, a high-performance platinum cure liquid silicone compound, was  1ss
used to seal the hole of the P6 sensor’s barometer to use it as a tactile sensor. The sili- 1se
cone will transduce the squeezing forces on the surface to changes in internal pressure 1ss
that the barometer can detect. A custom 3D printed mould (Figure 6(a,b)) was used to  1ss
enclose the sensor and shape the silicone layer surrounding it. The silicone was cured  1se
overnight Figure 6(c) and unmoulded to create the final sensor core for the instrumented 160
toys Figure 6(d). 161

3.2. Physical Structure 162

Figure 7. Lattice structure with different outer geometries. a) sphere b) cube).

The physical structure of the instrumented toy encloses the sensors, creates the final 163
shape, and controls the rigidity. The weight and dimensions of the physical structure of 164
the instrumented toys were defined by the anthropometry of an infant’s hand, the existing 1es
regular toys used, and the physical dimensions of the sensor (44 mm x 36 mm x 17 mm) to 166
be embedded. The cube has a length of 60 mm, and the sphere has a diameter of 65 mm. 1

Modern 3D printing technologies and advances in material science have enabled 1es
the fabrication of complex structures using materials of varying rigidity [45-48]. Ansys 1es
SpaceClaim’s Faceted Shell and Infill tool was used to design an octahedral lattice that 170
minimises mass, ensures uniform stiffness, and avoids needing a support structure during 17
fabrication. The lattice structure was designed with a wall thickness of 1 mm, a unit cell size 172
of 10 mm, and a strut thickness of 1 mm, which translates to 11% infill density (Figure 7).  1rs

Table 2. Print parameters for the fabrication of lattice structures.

Nozzle Bed . .
temperature Temperature Print Speed Layer Thickness
TPU (85A/95A) 235°C 50°C 30 mm/s 0.2 mm

Fused Deposition Modeling (FDM) 3D printing using Thermoplastic Polyurethane 17
(TPU) filament was used to fabricate the octahedral lattice physical structure (Figure 8). 17s
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Figure 8. 3D printed lattice structure design prototype.

The hard toys were printed using a 95A shore hardness TPU filament, while the soft toys 17
were printed using an 85A shore hardness TPU filament. The print parameters used to 17
print the lattice structure were as shown in Table 2. 178

3.3. Integration 179

Figure 9. Modular design of the instrumented toy.

The instrumented toys were designed using a modular multilayered approach to 1s0
decouple the sensing capabilities from the physical properties. The sensing core determines  1e
the modality of the data that can be captured, while the physical structure determines s
the real and perceived affordances of the toy by the infant. The risk of harm and injury e
to the infant is further minimised by placing the sensors and battery at the toy’s core. 1z
The physical structure fabricated using non-toxic and non-combustible materials acts as a  1ss
barrier. This instrumented toy design paradigm can be expanded to utilise other sensors s
within the sensing core enclosed by different physical structures based on the desired play e
and interaction style. For the set of instrumented toys to be used in the object categorisation 1ss
task to assess cognitive flexibility in infants, the sensor core records motion and pressure s
data from which we infer the toys” sequence of touching and squeezing. The 3D-printed 100
lattice structure defines the toy’s affordance by varying the ball and cubes’ colour, size, and 10
I‘lgldll’y 192

Figure 10. Set of instrumented toy prototypes.
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4. Squeezing Detection 103
4.1. Experimental Setup 108

Frubot

1

Figure 11. Kinova Gen3 7 DoF Robot applying squeezing force on instrumented toys.

A preliminary quantitative experiment to verify if the barometer of the P6 sensor 1ss
embedded in each toy can detect squeezing was performed using a Kinova Gen3 7 Degree 106
of Freedom (DoF) robotic arm (Figure 11) to repeatedly and consistently squeeze each o7
toy ten times. An ATI Industrial Automation Net Force/Torque Sensor Mini40 was used 108
to measure the reaction forces (Fyps04). A 3D printed holder was fastened to the robot 100
end effector and force sensor to hold the toys in place and control the toy’s contact area. =zo0
The cubes had a contact area of 72.00 ¢m?2, and the balls had a contact area of 64.84 cm? 201
between the robot end effector and the force sensor. It was noted that studies on infant 2o
grip force within the first 12 months had measured the range to be between 5 to 35 kPa 203
[29,30,39,40,49]. As such, to validate performance in a minimal force application condition, zce
the robot was programmed in position control mode to move 10 mm vertically from zy 208
to zq with a velocity of 65 mm /s to apply a force F,,p; = 20 N on the toys. The expected 206
pressure applied on the cubes was 2.77 kPa and on the balls was 3.08 kPa, well under the 2o
typical grip strength range. Before beginning the experiment, each object was placed on 208
the force sensor, and its weight was zeroed out. Data from the robot and the force sensor 2o
was timestamped and logged to a PC. The internal time of the P6 sensor was synchronised 210
with the PC clock. 211

4.2. Results and Discussion 212

The robot consistently moves 10 mm to squeeze the toys 10 times with a regular force 21
of Fyopor (Figure 12).

Table 3. Squeezing Results.

Robot

Toy Applied Applied Measured Barometer % Pressure
Force (N) Pressure (Pa) Force (N) Pressure (Pa) Detected
Soft Cube 20.0 2777.78 17.5 (88%) 16.04 + 2.64 0.58%
Hard Cube 21.0 2916.67 19.0 (90%) 324.60 + 3.62 11.13%
Soft Ball 22.0 3392.97 18.0 (82%) 51.75 + 4.53 1.53%

Hard Ball 21.0 3238.74 18.0 (86%) 37125 £5.12 11.46%



https://doi.org/10.20944/preprints202212.0554.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2022 d0i:10.20944/preprints202212.0554.v1

9 of 15

The compliance of the instrumented toy’s structure produces a difference between the 214
force applied by the robot and the force measured by the force sensor (Table 3). The soft 215
cube absorbs 12%, the hard cube absorbs 10%, the soft ball absorbs 18%, and the hard ball 216
absorbs 14% of the applied force. Based on the force applied by the robot and the area of 217
contact of the 3D-printed holders, we can estimate the pressure applied to each toy when  21.
squeezing. As expected, the pressure exerted ranges from 2.77 to 3.39 kPa. This will not  21e
saturate the barometer as its specified dynamic range is 100 kPa (26 to 260 kPa). 220
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Figure 12. Barometric squeezing detection.
(a) Soft Cube (b) Soft Ball (c) Hard Cube (d) Hard Ball.

In Table 3, we can see the summary of the barometer readings across 10 squeezes for 221
all the different toys. Noise in the barometer signal is smoothed out using a 5 Hz low-pass 222
filter. The squeezing force applied to the toys produces a change in internal pressure thatis 223
successfully recorded by the barometer (Figure 12). The soft toys record a smaller change 224
in pressure than the hard ones due to the compliance of the physical structure absorbing 225
some of the force applied. 226

A drift in the baseline pressure reading of the barometer in the soft cube (Figure12(c)) 227
is observed. A drift of approximately £20 Pa is present across all sensors either due to air  2zs
leaking or getting trapped within the 3D-printed structure or the sensor core through the 220
USB-C connector port. This drift is not of particular concern as the sensor is still able to 230
consistently pick up on the dynamic changes in pressure caused by the actual squeezing of 23
the toy. However, applying a 0.5 Hz high-pass filter helps filter out such a drift and the 232
baseline offset of the ambient room pressure as well (Figure 13). 233
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Figure 13. Filtered Barometeric Signals.

Furthermore, our barometric squeezing detection validation was based on 10% of =234
typical infant grip pressure. The softer toys detected approximately 1% of the applied =35
pressure, and the hard toys detected approximately 11% of the applied pressure. Therefore, 2:6
we can be certain that under more representative conditions, where infants may apply 2
5 to 35 kPa of grip pressure, our novel implementation of detecting squeezing using a  23s
barometric tactile sensor will be able to detect the squeezing of the toys. 230

5. Sequence of Touching
5.1. Experimental Setup

% O

Fog®

Figure 14. Sequential Touching Experiment.

A preliminary quantitative experiment was performed using the instrumented toys to  2s2
detect the sequence of touching. A participant was presented with 4 instrumented toys on  ze3
a table and asked to touch and play with them (Figure 14). The IMU onboard the P6 sensor  zss
embedded in each toy recorded the motion, while a camera simultaneously filmed the toy  2ss
interaction from an overhead angle to minimise occlusions. The 4 IMUs and the camera 24
were synchronised using the timestamped data from both sensors. 247
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Figure 15. Accelerometer and Gyroscope signal processing.

The signals from the IMUs were processed as in Figure 15 to obtain the sequence of 248
touching. First, the signal from the 3-channel accelerometer was combined by calculating zse

the Euclidean norm |[al|, = ,/a} + aj + a2. Then the DC-offset and noise were filtered zso
using a band-pass filter (fr; and fy), and the signal was passed through a full-wave 25
rectifier to get only the positive magnitude of the signal. Finally, the linear envelope was  zs:
calculated using a low-pass filter (f1 ). Similarly, the signal from the 3-channel gyroscope s
was combined by calculating the Euclidean norm [|w||, = /w% + w} + w2, and the linear 54

envelope was calculated using a low-pass filter (f7,3). 285

5.2. Results and Discussion 256

From the video, an independent rater manually coded for the sequence of touches of 257
each toy. These results are our ground truth data for evaluating the performance of the =zss
instrumented toy (Table 4). The soft and hard cubes were touched 2 times, and the soft and  =zse
hard balls were touched 3 times.

Table 4. Ground truth touch timing and sequence from video coded by a human rater.

Instrumented Toy Touch Timing (sec)

Soft Cube 1.60
Hard Cube 5.30
Hard Ball 9.30
Soft Ball 12.20
Hard Ball 16.50
Hard Cube 16.60
Soft Ball 20.10
Soft Cube 20.30
Hard Ball 23.70
Soft Ball 28.20

For the accelerometer, the DC-offset and noise were filtered using f; 1 = 0.5 Hzand ze:
fu = 10Hz band-pass filter. The linear envelope for the accelerometer and gyroscope were  ze2
calculated using a f1» = 0.3 Hz and f1 3 = 0.2 Hz low-pass filter, respectively. A threshold e
value of 0.046 g for the accelerometer and 65 deg/s for the gyroscope was used to identify 2e.
the initial instance of touching. 265

From the IMU data (Figure 16), the touching sequence corresponded with the video’s  zes
sequence. The timings of the touch from the video were extracted by interpolating from e
the frame timings as touch sometimes occurs between frames. In contrast, the timing for zes
the IMU comes directly from the data logged with precise discrete timestamping at a high  2es
sampling frequency of 64 Hz. 270
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Figure 16. Accelerometer and Gyroscope data indicating sequence of touches.
Table 5. Touch sequence timing comparison.
Ground Accelerometer Accelerometer Gyroscope Gyroscope Average

Toy Truth (sec) (sec) Error (sec) Error Average (sec) Error

Soft Cube 1.60 1.50 -0.10 1.67 0.07 1.59 -0.01
Hard Cube 5.30 5.16 -0.14 5.42 0.12 5.29 -0.01
Hard Ball 9.30 9.06 -0.24 8.87 -0.43 8.97 -0.33
Soft Ball 12.20 12.20 0.00 11.91 -0.29 12.06 -0.14
Hard Ball 16.50 16.25 -0.25 16.35 -0.15 16.3 -0.20
Hard Cube 16.60 16.30 -0.30 16.50 -0.10 16.4 -0.20
Soft Ball 20.10 19.75 -0.35 20.18 0.08 19.97 -0.13
Soft Cube 20.30 19.92 -0.38 20.35 0.05 20.14 -0.16
Hard Ball 23.70 23.30 -0.40 23.50 -0.20 234 -0.30
Soft Ball 28.20 28.80 0.60 27.83 -0.37 28.32 0.12
RMSE — — 0.32 — 0.23 — 0.19

To quantify the accuracy of the IMU results, we compute the timing error and Root
Mean Squared Error (RMSE) (Table 5). The accelerometer tends to estimate the touch
time to be earlier than it is and has an RMSE of 0.32 seconds, and the gyroscope does a
better job at estimating the touch timing with an RMSE of 0.23 seconds. We can further
improve the IMU-based touch detection accuracy by taking the average touch time from
the accelerometer and gyroscope, resulting in an RMSE of just 0.19 seconds.

Therefore, IMU-based touch detection is an accurate way to detect touching and
interaction with the toys, removing the subjectivity of manual human coders. However, to
ensure maximum accuracy and robustness, rather than entirely replacing manually coded
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data with IMU-based touch detection, the human coders can leverage the IMU data to
speed up the manual coding process. In a video recorded at 30 frames per second (fps), the
instrumented toys can help narrow down the video to a segment spanning approximately
6 to 10 frames to confirm the exact touch time rather than go through the entire video.

6. Future Work and Conclusion

In this paper, we presented a set of instrumented toys that can be used in lab-based and
ecological environments to study the development of cognitive flexibility, an aspect of EF,
in infants. The toys can detect periods of motion to determine when they are touched. From
this, the overall sequence of touching can be inferred to calculate MRL and the conditional
probability of infant touch sequence to identify mental set-shifting. The toys can also
detect when and how much they have been squeezed to further validate infants” change
in mental classification from shape-based to material-based classification. To improve the
sensitivity of the squeezing detection, we aim to enhance the seal around the barometer
by vacuum degassing the sensor core before fully curing it to remove any air pockets. The
interface between the 2 halves of the 3D-printed physical structure will also be sealed
tightly. In conclusion, although the sequence of touching and squeezing was detected
through preliminary tests, such results confirm the hypothesis that these instrumented toys
could be helpful for quantitative monitoring and measurement of infants” EF development
and are ready to be evaluated through appropriate clinical trials.
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