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1155 Union Circle, #311427 Denton, TX 76203-5017 USA; tozziarturo@libero.it

Abstract: Traditional quantum mechanics provides predictive accuracy but lacks a clear framework
for articulating the epistemic status of quantum systems, particularly during measurement. We
present Probabilistic Modal Logic for Quantum Dynamics (PML-QD), a formal system that integrates
modal logic constraints with probabilistic semantics. Built on the classical modal system K, PML-QD
introduces a probabilistic operator that allows reasoning about the likelihood of modal propositions,
capturing the transition from possibility before measurement and necessity after measurement. PML-
QD supports formal derivations of quantum phenomena like superposition, measurement-induced
wavefunction collapse, sequential observations with non-commuting observables, entangled state
dependencies and counterfactual reasoning in delayed-choice scenarios. Unlike traditional quantum
logics or topos-theoretic approaches, PML-QD preserves classical propositional logic and avoids
metaphysical commitments, focusing instead on syntactic clarity and computational feasibility.
Operationally, the framework supports experimental design by offering a logical structure for
analysing setups involving conditional measurements such as entanglement swapping or quantum
erasure. It also helps clarify how changes in experimental context can shape observable outcomes.
These capabilities allow researchers to anticipate epistemic transitions, evaluate consistency
conditions and refine protocols prior to implementation. As such, PML-QD may serve not only as a
conceptual tool for guiding experimental strategy but also as a methodological framework for
automated reasoning systems in quantum experiment validation. Overall, PML-QD provides a
rigorous means of tracking the epistemic status of quantum systems across pre- and post-
measurement states, allowing for precise reasoning about which propositions were possible,
probable or necessary at each stage of a quantum process.

Keywords: epistemic logic; wavefunction collapse; entanglement; measurement theory; quantum
information

1. Introduction: Logic and Uncertainty in Quantum Theory

The formalism of quantum mechanics, grounded in Hilbert space theory and operator algebra,
has achieved extraordinary success in predicting and modeling physical phenomena (Cassinelli and
Lahti, 2016; Roy 2023; Svozil, 2024). However, its abstract mathematical structure obscures the
conceptual interpretation of key processes such as superposition, entanglement and wavefunction
collapse. While probabilistic outcomes are captured by the Born rule and physical dynamics are
governed by the Schrédinger equation, the theory provides limited tools for articulating the epistemic
and logical structure of quantum transitions (Wieser 2016; Tzemos and Contopoulos, 2021). This has
led to persistent foundational debates and ambiguities, particularly around measurement, the role of
the observer and the interpretation of quantum states (Sokolovski 2020). Quantum logics, including
orthomodular lattices and topos-theoretic approaches, attempt to address these gaps but eschew
probabilistic reasoning or lack the power to capture temporal and contextual dependencies in
experiments (Gunji et al., 2017; Jorge and Holik, 2020; Gunji and Nakamura, 2022). Likewise,
probabilistic and epistemic logics developed in computer science and philosophy provide rich
formalisms for uncertainty and belief but are rarely adapted to quantum phenomena (Dalla Chiara
et al.,, 2018; Betz and Richardson, 2023). A conceptual framework that jointly captures the modal and
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probabilistic dimensions of quantum events, especially in dynamic, measurement-driven contexts, is
still underdeveloped.

We introduce a logical system — Probabilistic Modal Logic for Quantum Dynamics (PML-QD)—
that unifies modal logic with probabilistic semantics to model quantum events, particularly the
transition from indeterminate to determinate states. This system extends standard modal logic with
a probability operator defined over accessible worlds, thereby allowing us to represent not only
whether a proposition is possible or necessary, but also with what probability it holds. Measurement,
in this framework, is formalized as a shift from possibility to necessity, governed by both probabilistic
structure and modal constraints. Entangled and sequential measurements are treated via correlated
modalities and conditional update rules. We anticipate that this approach will provide a rigorous
framework for tracking the epistemic status of quantum systems before and after measurement,
enabling precise reasoning about which propositions were possible, probable or necessary at each
stage of the quantum process.

Concerning the Formal structure of PML-QD, we adopt the classical modal logic system K,
which we extend to incorporate probabilistic semantics (Singleton and Booth, 2023; Quelhas et al.,
2024; Litland 2025). Let L denote a standard modal propositional language constructed from a set of
propositional variables P, the Boolean connectives = (negation), A (conjunction) and the modal
operators O (necessity) and ¢ (possibility). The semantics are defined using a Kripke frame F =
(W,R), where W is a nonempty set of possible worlds and R € W X W is an accessibility relation.
A Kripke model M = (W,R,V) assigns truth values to each atomic proposition p € P via a valuation
function V:P —» P(W), where P(W) is the powerset of W (Weiss and Birman, 2024). Satisfaction is
defined recursively: for any w € W,M,w Epiff w € V(p); M,w E =¢ iff M,w E/¢p and M,w = d AP
iff M,wkE@¢and M,w Ey; and M,w E O¢iff for all ve W, if wRv, then M,v E ¢. The dual
operator 0¢ is defined as —O0-¢. This base system allows us to express propositional necessity and
possibility, which we are going to enrich with a quantitative probabilistic extension tailored to
quantum systems.

We now extend the Kripke model by introducing a probability measure over the set of possible
worlds. A probabilistic Kripke model is defined as M = (W,R,V,u), where u: P(W) - [0,1] is a
finitely additive probability measure such that u(W) = 1 and u(@) = 0 (Shirazi and Amir, 2007). For
each world w € W, we define a conditional probability distribution uw over the accessible worlds
R(w) = {v € W | wRv}. The semantics of the probabilistic modal operator are then defined by
introducing a function P(¢) yielding the probability that ¢ is true in the accessible worlds: formally,
M,w E P(¢) =p iff yw({v € R(w) | M, v E ¢}) = p. This enables the assessment not only of whether
a proposition is necessary or possible, but also of the probability with which it is possibly true. To
ensure internal consistency, we assume that uw is defined via restriction and normalization:
uw(4) = u(AnRWw))/u(R(w)) whenever u(R(w)) > 0. This logic is able to represent graded modal
claims such as “it is 70% possible that ¢” or more formally, P(¢ ¢) = 0.7, establishing a formal
mechanism for assigning probabilities to modal propositions.

The logical language and syntax of PML-QD are built from a base set of propositional variables
P, closed under the classical connectives and modal operators g, ¢ and the probability operator P.
The syntax includes expressions of the form P(¢) = r, where r € [0,1] N Q and composite formulas
such as P(0 ¢) =5 and P(O¢ — ¢) < t. Formulas are interpreted over the probabilistic Kripke
models defined above. The logic also allows us to define conditional probabilities. For propositions
¢ and U, we define P(¢ | ) = uw({v € R(W) I M,v E ¢ AY})/uw({v € R(W) | M,v E }), assuming
the denominator is nonzero. This allows the formulation of statements like “given ), ¢ is probable
with 0.6 likelihood”, which corresponds to P(¢ | ¢) = 0.6.

Overall, this approach yields the formal language of the system —comprising syntax, probability
statements, and conditional expressions—necessary for modeling quantum epistemic transitions.
Building on this foundation, the next steps involve applying this language to concrete quantum
scenarios, analyzing how epistemic statuses evolve across different stages of measurement and
inference.
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2. Axiomatic System

The axiomatic core of PML-QD comprises a structured integration of classical propositional
logic, normal modal logic (system K) and finite probabilistic logic. The system operates within a
Hilbert-style framework with axioms for classical logic, modal logic (K-system) and probability logic,
including finite additivity, non-negativity, normalization and probabilistic modus ponens. Well-
formed formulas (wffs) are derived from a fixed set of axioms using explicitly defined inference rules.
The classical propositional component of the system is based on the axioms of tautology schemas,
such as ¢ > @), (p->W->x)~>(¢~>YP)~>(@~x) and -$ > . The modal part
includes the standard K axiom: O(¢ - ¥) - (O¢ — Oy) and the necessitation rule: if + ¢, then
O¢. The logic is normal in that it preserves closure under necessitation and respects distribution over
implication. The axioms are interpreted over Kripke frames with arbitrary accessibility relations,
allowing for flexible modeling of different quantum experimental contexts.

At first, probabilistic axioms are introduced to extend the classical-modal foundation. The core
probabilistic principles are drawn from Kolmogorov’s axioms, reformulated for integration into
logical syntax (Svozil 2022). Let P(¢) = r be a primitive formula expressing that the probability of
¢ being satisfied in the accessible worlds is r € [0,1] N Q. The axioms include non-negativity P(¢) =
0, normalization P(T) = 1 and finite additivity: if ¢ Ay =1, then P(¢p Vp) = P(¢) + P(3). These
are supplemented by conditional probability rules: for ¢,y € L with P(y) > OP(y) > 0,P(¢ | ) =
P(¢ Ap)/P(¥). The modal-probabilistic interaction is regulated by the schema P(0¢) < P(¢) and
similarly P(¢) < P(¢ ¢), reflecting that what is necessarily true must also be true and what is true
must be possibly true. These constraints are justified by the semantics of modal probability spaces,
where O¢ implies truth in all accessible worlds, while ¢ ¢ requires only one accessible world where
¢ holds. The derivation rules include probabilistic modus ponens: from ¢ — ¢ and P(¢) =r, infer
P() = r, provided all evaluations are over the same accessibility neighborhood. These axioms
permit the formal manipulation of graded propositions about truth values in modal contexts.

Therefore, with the K system as a stable scaffolding, the logic acquires the modal structure
necessary to represent transitions from epistemic possibility to necessity, forming a base from which
the probabilistic dynamics of quantum measurement can be encoded.

Implementation of quantum-specific axioms. To specialize PML-QD to quantum dynamics, we
introduce a set of axioms reflecting superposition, measurement and entanglement. Let ¢i denote
the proposition “the quantum system is in eigenstate i.” For a system in state | ) = Yiai | i), we
define P (0 ¢i | ai I2.. This probabilistic modal formulation expresses the pre-measurement epistemic
state: the system may be found in state ¢i with probability | ai [~ Upon measurement and collapse
to ¢j, we enforce ¢j and O- ¢ ¢k for all k # j. We also represent entanglement through joint
modal constraints. Given an entangled state | ¥) = Yiai | ai) ®| bi), let ¢i and i be propositions
for subsystems A and B, respectively. Then ¢ (¢i A i) is true with probability | ai |2, while ¢ ¢i AO
Yj isonly allowedif i = j thereby disallowing separable joint modalities. These rules enable the logic
to model quantum correlations and non-locality without assuming hidden variables.

Let | y) = Yiai | i) be a normalized pure state over an orthonormal basis {| i)} and let ¢i be
the proposition “the system is in state |i)”. We postulate that P(0 ¢i) =| ai |? aligning logical
possibility with the Born rule. This axiom expresses that, prior to measurement, the system may be
found in eigenstate i, with probability equal to the squared modulus of its amplitude. Upon a
measurement yielding outcome j, we assert O¢j and O- ¢ ¢k for all k # j, modeling the epistemic
update resulting from collapse. This transition encodes the projection postulate as a logical updte,
i.e, a modal reduction from possibility to necessity and from multiple probabilities to a single
certainty. To formalize this shift, we introduce the axiom schema Measure(¢j) — (Opj ANk =
jo-1 0 ¢k). The measurement operator is treated syntactically, marking the transition point in the
evaluation of epistemic states. This schema is only applied in cases where the logic designates P (¢
¢j) > 0, reflecting the assumption that outcomes with zero probability cannot be observed.

To handle entanglement, we extend the logic with modal rules for joint propositions. Consider
a bipartite quantum system with basis {| ai) ®| bj)} and an entangled state | ¥) = Yiai | ai) | bi).
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Let ¢i denote “Subsystem A is in state | ai)” and i denote “Subsystem B is in state | bi).” We
introduce the entanglement axiom P (0 (¢i AYi)) =| ai | 2 and the exclusion principle —(¢ ¢i AO
Yj) for i # j. This enforces the non-separability of joint state truth values: subsystems cannot
simultaneously assume inconsistent states if derived from an entangled superposition. The logic
allows us to evaluate propositions such as ¢ ¢i — O—3)j for j #, capturing the non-local correlations
implicit in entanglement. These formulations provide a means of expressing Bell-type dependencies
as logical constraints within the system, grounded in amplitude-based probability assignments. For
measurements, we define the conditional update: observing ¢k implies oWk and oO-wpj forall j #
k consistent with perfect quantum correlations. These constraints are encoded as derivable rules
rather than primitive axioms, preserving flexibility in modeling partial or imperfect entanglement.

Overall, this approach embeds the measurement postulates of quantum mechanics within a
modal logical framework, effectively translating quantum dynamics into a structure that supports
logical inference and modal reasoning about probability. By doing so, it bridges the gap between
quantum formalism and epistemic logic, enabling a systematic analysis of how knowledge and
uncertainty evolve through quantum processes. This integration allows for the tracking of necessity,
possibility, and likelihood in a manner that aligns with both the probabilistic nature of quantum
theory and the inferential tools of modal logic.

Tools and Computational Setup. All logical definitions, axioms and inference rules are
formalized using a typed symbolic language implemented in the Lean proof assistant to verify
syntactic coherence and logical validity (Loh 2022). For probability measures and accessibility
relations, we use custom-built Kripke structures defined programmatically in Python using the
networkx library for graph modeling and numpy for probability assignment. Quantum state vectors
and projection operations are handled using the qutip library, enabling precise computation of Born-
rule probabilities and their mapping to logical probability assignments. Logical expressions are
parsed and evaluated using a domain-specific parser that constructs abstract syntax trees, evaluates
modal depth and resolves probabilistic truth values based on current world state and transition
graphs.

3. Coherence, Consistency and Semantic Soundness of PML-QD

This chapter examines the coherence, consistency and semantic soundness of PML-QD to ensure
that its logical structure faithfully represents quantum dynamics and supports reliable epistemic
inference. We begin by demonstrating the soundness of PML-QD relative to its probabilistic Kripke
semantics. Let M = (W,R,V, ) be a model of our system, where R is an arbitrary (possibly non-
symmetric, non-transitive) relation to accommodate varied quantum contexts. For each world w €
W and each well-formed formula ¢ € L, if + ¢ in the PML-QD system, then M,w k& ¢. Proof
proceeds by induction over the structure of derivations. Base cases follow from the validity of
classical tautologies. The K modal axiom is validated by the relational condition: wRv A wRu implies
that if M,v = ¢ - and M,v & ¢, then M,v E . The probabilistic axioms are sound under the
standard interpretation of uw as a conditional probability measure on R(w) . Additivity,
normalization and conditional independence are preserved by construction. Quantum-specific
axioms are modeled by assigning uw(0 ¢i) =| ai | 2 for pre-collapse states and using syntactic
restrictions post-collapse to enforce that O¢j — uw(¢pj) = 1. Thus, the epistemic updates are correctly
aligned with quantum measurement rules. This confirms that the axiomatic structure of PML-QD is
consistent with its intended semantics, establishing soundness as a necessary condition for
subsequent formal evaluation.

Completeness is demonstrated via canonical model construction. We define a canonical model
Mc = (Wc,Rc,Vc,uc), where Wc is the set of maximally consistent sets (MCSs) of formulas in
LPML — QD . The accessibility relation ¢ is defined by: I'RcA iff for every n¢p €', ¢ € A. The
valuation function Vc(p) = {I' € Wc | p € I'} and the probability function ul'c(¢) = r is defined via
the maximal consistent extensions satisfying P(¢) = r € I'. Completeness then follows: if ¢ is valid
(true in every model), then ¢ € I" for all I' € Wc. If ¢ €/I', then there exists a model falsifying ¢,
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proving that ¢\phid is not derivable. For quantum-specific modalities, we enrich the canonical
model with amplitude maps from abstract syntax to normalized vectors, ensuring that measurement-
induced updates correspond to transitions among canonical worlds. The probabilistic collapse
axioms are enforced syntactically by excluding extensions that contradict the post-measurement
certainty schema.

We thus obtain completeness for the classical, modal and probabilistic layers, with quantum-
specific axioms ensured through semantic alignment.

Epistemic closure and logical coherence. An important consideration in any epistemic logic is
whether the system permits epistemic closure under valid inference. In PML-QD, closure under
modal and probabilistic inference is carefully maintained through explicit syntactic rules. For
instance, from 0O(¢ — ¥) and O¢, one may derive Oy, preserving modal consequence. However, in
quantum contexts, closure must also handle epistemic transitions: if ¢ ¢ and (¢ ¢) = 1, it does not
follow that O¢, unless a measurement event enforces it. Thus, PML-QD avoids epistemic overreach
by enforcing the distinction between high probability and logical certainty. Probabilistic closure is
similarly bounded: from P(¢ Ay) = 0.9 and PP(y) = 1, we may derive P(¢ | i) = 0.9, but not O¢
or even ¢ ¢ unless additional modal premises are supplied. This disciplined separation of inference
domains ensures that conclusions about quantum states are validly drawn only within the scope of
their modal and probabilistic constraints. Furthermore, any logical contradiction arising from
measurement updates (e.g., asserting O¢ and ¢ —¢) is syntactically blocked by the collapse axioms.

Counterfactual reasoning and epistemic modality. PML-QD allows for formal engagement
with counterfactuals in quantum mechanics, a topic often debated in the context of delayed-choice
experiments, weak measurements and quantum nonlocality (Laudisa 2019). The framework supports
statements of the form: “If measurement M had been performed, then ¢ would have become
necessary,” represented formally as ¢ M — (Measure(¢) —» O¢) . Such statements are not
metaphysical speculations but logical conditionals grounded in modal accessibility. Suppose a
system is in a superposed state | ) = a | 0) + § | 1) and the measurement is postponed. The logic
allows one to say: “Had we measured now, outcome ¢0 would have become necessary with
probability | a | 2.” This supports rigorous statements about epistemic potential without requiring
ontological assertions about unmeasured reality. Importantly, these counterfactuals do not imply
retrocausality, but rather preserve the distinction between hypothetical and actualized knowledge
states, aligning with quantum experimental setups where delayed configurations define outcome
space. The evaluation of counterfactuals is governed by modal consistency: only those conditional
claims holding in all accessible paths from a given precondition are allowed.

Model-theoretic consistency with Hilbert Space formalism and temporal evolution. The
compatibility and the semantic consistency of PML-QD with the standard Hilbert space formalism
can be evaluated. Let H be a finite-dimensional Hilbert space with orthonormal basis {| i)} and let
| Y) = Yiai | i) be a quantum state. The propositions ¢i correspond to projection operators P*i =|
i)(i | and the probability of observing stateiis (¢ | P*i | Y) =| ai | 2. We define a mapping f: ¢i -
P7i and assert that P(0 ¢pi) = Tr(pP"i) where p =| ¥} |. The logical model corresponds to a
coarse-grained representation of the probabilistic projections across a set of accessible configurations
indexed by basis measurements. Post-measurement updates O¢j correspond to Liiders projections:
p = P"jpP"j/Tr(pP"j). For entangled states | @) = Yiai | ai) Q| bi), joint modal formulas ¢ (¢i A
i) are semantically validated by Tr(p(P"i @ Q"i)) =| ai | 2. This means that logical constructs are
supported by standard operator theory. In this context, the modal structure represents pre-
measurement epistemic range, while probability reflects amplitude-squared outcomes.

To evaluate the temporal behavior and dynamical evolution of PML-QD, we consider its
capacity to represent quantum evolution between measurement events. Let U(t) = e — iHt be the
unitary evolution operator associated with a Hamiltonian H and | ¥(t)) = U(t) | (0)). In logical
terms, we represent a temporal sequence w0 - wl — -+ - wn, where each wi is a world indexed by
the system's state at time ti. If ¢i is the proposition “system is in state | (ti))”, then temporal
modal transitions ¢ ¢i + 1 are defined by the Schrodinger evolution. The logic supports this via
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time-indexed accessibility: wiRwi +1 iff | (i + 1)) = U(ti + 1 — ti) | P(ti)). We extend the model
by assigning probability functions uwi(¢j) =I(¢j | (ti)) 2, yielding a dynamic probability
assignment compatible with unitary evolution. If a measurement occurs at tj, the update collapses
the epistemic structure: all future-accessible paths inconsistent with the observed outcome are
pruned from R(wyj).

In summary, we establish the dynamic consistency of PML-QD by demonstrating that modal
transitions respect unitary evolution up to the point of measurement and that state updates conform
to the projection postulate. This validation reinforces the semantic soundness of the framework,
confirming its capacity to model quantum epistemic dynamics with logical and physical fidelity.

4. From Theory to Practice: Logical Modeling of Quantum Systems in PML-QD

This chapter presents representative examples illustrating how PML-QD models quantum
phenomena through logical structures and modal reasoning.

Derivation of single-measurement collapse. We begin with a formal derivation illustrating how
PML-QD syntactically captures the transition from a probabilistic possibility to post-measurement
necessity in the single-qubit case. Let | ) = a | 0) + S | 1) be a superposed state, with | a | 2+| 8 |
2 = 1. Let ¢0 denote “the system is in state | 0)” and ¢1 denote “the system is in state | 1).” In the
logic, prior to measurement we assume P(0 ¢0) =| a | 2 and P(0 ¢1) =| f | 2, encoded via axioms
of amplitude-based modal probability. Suppose the system is measured and the outcome is | 0). The
axiom of modal collapse gives Measure(¢0) —» O¢p0 ADO— ¢ ¢1. If we assume Measure(¢0), then
using modus ponens, we derive 00¢0 and O- ¢ ¢1. Applying the modal logic equivalence O— ¢
¢1=-0¢1, we deduce that ¢1 is no longer even possible. The derivation shows that the
probabilistic possibility P(¢ ¢1) =| § | 2 is syntactically replaced by — ¢ ¢1 and all future logical
inferences involving ¢1 become false under modal necessity.

Sequential measurements. Next, we construct a proof sequence for a scenario involving two
successive measurements along non-commuting observables. Let the system initially be in state |
Yy =21(1 0)+| 1)) and define ¢0,¢1 as before. Let y+ and y — denote the propositions
corresponding to the diagonal basis | —) = 21(| 0)—I 1)). Suppose the first measurement is in the {|
0),1 1)} basis and the outcome is | 0). By modal collapse, we derive 0¢$0 and 00— ¢ ¢1. Now we
consider P({ x+), i.e., the probability of subsequently observing | +). Since the post-measurement
state is | 0), we compute P(0 x+) =| (+| 0) | 2 = 1/2. We syntactically derive o¢0 — P(0 y+) =1/2
from the substitution of amplitude-based definitions into the probability axioms. Upon performing
the second measurement and observing | +), we apply the measurement collapse rule again to derive
Oy + and O- ¢ y —. These results can be then used to show that all further inferences about ¢1 or
x — must fail in all accessible worlds.

We now consider the effect of sequential measurements when the observables do not commute.
Let the initial state again be | ) = @ | 0) + | 1) and define a second measurement basis, such as
the {| +),1 =)} basis, where |+)=21(l0)+|1)) and |—=)=21(10)—|1)). Let y+ and y-—
represent the corresponding modal propositions. If the system is first measured in the computational
basis and yields | 0), then we assert O0¢0 and immediately invalidate ¢ ¢1. We may now inquire
about P(¢ y+), thatis, the possibility of subsequently observing | +). In the post-collapse model, the
system state become | 0), so we calculate P(¢ y+) =| (+| 0) | 2 = 1/2. Formally, this is encoded as
0¢0 — P(0 x+) = 1/2, reflecting the non-commutativity of the measurement sequence. The logic
tracks not only the collapsed state but its implications for future probabilistic possibilities. If we now
measure in the diagonal basis and obtain outcome | +), the epistemic update becomes Oy +A 0O- ¢
x —, which supersedes the prior assignment. PML-QD may thus support reasoning about nested and
sequential updated updates and the logical impact of measurement order.

Single-Qubit superposition and measurement. We begin with a basic scenario: a single qubit
in a superposition of eigenstates relative to a particular observable, such as spin along the z-axis. Let
the quantum state be | ¢Y) =a | 0) + B | 1), where a,f € C and | a | 24| | 2 = 1. We define the
modal propositions ¢0 and ¢1 corresponding respectively to the system being in state | 0) and |
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1). In the PML-QD framework, the epistemic state prior to measurement is captured by the formulas
P(0 2P(0 ¢1) =| B | 2. These assertions express the degree of possibility —based on the probabilistic
modal semantics —associated with each eigenstate. A measurement in the {| 0),| 1)} basis is treated
as g transition: if outcome | 0) is observed, the updated state becomes O¢0 A O0— ¢ ¢1, formalizing
collapse in logical terms. The inference chain follows directly from the axiom Measure(¢j) — (Opj A
Ak = jo-0 ¢k) . The model also permits conditional queries such as P(0 ¢0|-¢l) =1,
maintaining coherence with the binary outcome structure of projective measurement. This means
that PML-QD may accommodate elementary state transitions and probability-based reasoning using
modal assertions grounded in amplitude-based truth.

Collapse simulation and world pruning algorithms. The logic requires that upon measurement
possible but unrealized outcomes are no longer epistemically accessible. To simulate this, a world-
pruning algorithm could be implemented that dynamically restructures the Kripke model. Upon
observing outcome ¢j at world w, this algorithm first may verify P(¢ ¢j) > 0; then, identify the
unique subset R'(w) € R(w) such that Vv € R'(W),M,v E ¢j. The accessibility relation can be
updated by setting R(w): = R’(w) and the probability distribution uw renormalized over R'(w). All
¢k such that k # j may be set to evaluate as - ¢ ¢k and O—-¢k. The update is conservative and
preserves modal truth: previously necessary propositions remain necessary unless invalidated by the
measurement result. In sequential measurements, the system may track update sequences using a
stack of Kripke structures, allowing rollback and re-evaluation. A collapse consistency check may
ensure that }kP(¢ ¢k) = 1 prior to collapse and that after measurement such that exactly one ¢j
becomes necessary while the others are impossible. In entangled cases, a measurement on one
subsystem may automatically trigger pruning on correlated worlds in the partner system, enforcing
non-local modal synchrony.

Entanglement constraints via modal dependencies. Let us consider the entangled state | @) =
21(1 0)A | 1)B—| 1)A | 0)B). Define ¢0, ¢1 for particle A and Y0, 1 for particle B. The axiom of
correlated possibility gives P(¢ (¢0 A1) =1/2, PO (¢1AY0)) =1/2 and all other P(O (piA
Yj)) =0 fori=ji = ji =j.Suppose a measurement on A yields ¢1. By measurement collapse, we
derive 0O0¢1 A O- ¢ ¢0. From the modal correlation rule ¢1 — o0W0, we deduce OyY0, i.e., the state
of B becomes necessarily | 0). The derivation holds even if the measurement on B occurs later, as the
logical dependencies are enforced modally rather than temporally. Suppose instead that we had
observed ¢0; the derivation would then yield ¥1. Importantly, PML-QD prevents derivation of any
statement ¢ (¢1 A1), since this is ruled out by the amplitude-based probability axiom. Overall, the
logical constraints imposed by PML-QD on entangled propositions may correctly capture the
exclusivity and correlation properties inherent in entangled quantum states.

Entanglement Swapping. Entanglement swapping is a protocol in which two initially
independent quantum systems become entangled through joint measurement on intermediary
particles (Ning et al., 2019; Zangi et al., 2023). Consider two entangled pairs in the states | pAB) =
21(1 0)A | 1)B—| 1)A | 0)B) and | $CD) = 21(] 0)C | 1)D—| 1)C | 0)D). Let a Bell-state measurement
be performed on particles B and C. Define modal propositions ¢ij the four Bell states between B and
C and yYAD for the corresponding entanglement state between A and D. Before the measurement,
the logic encodes the system as Vi, jP (¢ ¢ij) = 41, with no assignment of OyAD. Upon observing
Bell state ¢00, we assert 0¢$00 — O ADO00, with PAD00 denoting a corresponding entangled state
between particles A and D. This captures the epistemic update that makes entanglement between
distant, non-interacting particles a logical necessity only after the intermediate measurement. This
avoids invoking retrocausality by localizing modal transitions to the knowledge structure.
Conditional probabilities are also updated: P(¢ YADOO | ¢$00) = 1, while other ADij are assigned
zero. Therefore, PML-QD may capture entanglement swapping via conditional modal updates,
supporting rigorous reasoning about delayed entanglement onset.

Delayed-choice interference and quantum eraser. We propose here a derivation involving the
delayed-choice quantum eraser (Kim et al., 2000). Define ¢p: “which-path information is accessible,”
and ¢w: “interference pattern is observed.” Before post-selection, we assume ¢ ¢p A0 ¢pw. Let Me
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denote the erasure choice and Mp the path-preserving choice. Under the choice Me, the logic
enforces Me — O0-¢p A O¢w, whereas under Mp, it enforces Mp — O¢pp A O-¢pw. Assume Me is
enacted after the signal photon is measured. Since the epistemic update is contingent, we represent
the situation as a conditional modal formula: ¢ (¢p A pw) —» (Me —» O¢w) A (Mp — O¢p). Upon
performing Me, the system updates to O¢w and ¢ ¢p is logically rejected. The derivation path
shows that the modal state is not solely determined by photon interactions, but by post-measurement
contextualization. This is syntactically grounded in modal update axioms, not as an empirical fact
but as a derivable transition.

We now examine the delayed-choice quantum eraser, a paradigmatic scenario where
information about a quantum system’s path is either retained or erased after the system has been
measured (Kim and Ham, 2023). Let ¢p denote “which-path information is known” and ¢w denote
“interference pattern is visible.” The logic must represent conditional dependencies where the post-
measurement setup retroactively influences the interpretation of earlier events. We encode the
availability of path information as a binary modal variable: if the information is preserved, we assign
O¢p — O-¢w and if it is erased, O—¢p — O¢w. The measurement decision variable Me (erase path
info) or Mp (preserve path info) serves as a modal context switch: prior to this, both ¢ ¢p and ¢ pw
are true. After choosing Me, the system updates to O-¢p AD¢pw. PML-QD allows for modal
reasoning such as ¢ ¢p A0 pw — (Me — O¢pw), modeling epistemic changes contingent on an action
taken after the quantum interaction. This illustrates that PML-QD can represent dynamically
dependent modal transitions where final knowledge states depend on future experimental choices.

The examples presented in this chapter demonstrate the capacity of PML-QD to formally capture
key aspects of quantum behavior, including measurement collapse, entanglement and contextual
inference. These cases highlight the framework’s utility in modeling epistemic transitions with logical
precision, offering a promising methodology for further theoretical and practical developments.

5. Conclusion

The Probabilistic Modal Logic for Quantum Dynamics (PML-QD) introduced here provides a
formal framework that integrates modal logic, probability theory and the epistemic structure of
quantum measurement. Its aims to model the dynamic progression from probabilistic possibility to
logical necessity that defines quantum behavior under measurement. Built on the classical modal
system K, PML-QD introduces a probabilistic valuation mechanism and a compact set of domain-
specific axioms governing superposition, collapse and entanglement. Modal propositions are
assigned quantitative probability values. Upon measurement, collapse transitions convert possibility
into necessity, enforcing expressions like O¢ to indicate that an outcome has become realized. A key
non-classical feature of PML-QD is its treatment of epistemic non-monotonicity. In classical modal
logic, implications such as ¢ ¢ —¢ O¢ may hold under specific frame conditions. However, this does
not persist in PML-QD due to the collapse-induced pruning of modal paths: once gmeasurement
occurs, the model transitions to a substructure where prior possibilities are no longer accessible. This
modal reduction is syntactically governed by the axiom Measure(@j) » O¢j Ak = jAO- o ¢k
which ensures logical consistency while rejecting modal monotonicity. In the PML-QD framework,
the necessity operator O does not collapse into a truth predicate. While 0@ — ¢ holds in the sense
that a necessary proposition must be true in all accessible worlds, this does not imply absolute truth,
but only truth relative to post-measurement substructure. This distinction reinforces the epistemic
separation between pre-measurement probability and post-measurement necessity, marking a
departure from both classical modal logic and traditional probabilistic logic. Unlike classical
knowledge frameworks where a proposition is either known or unknown, PML-QD enables a graded
epistemic treatment. It may accommodate statements of the form: possibility without expectation P (o
@) = 0, expectation without necessity 0 < P(¢ ¢) < 1 and epistemic finality O¢. This enables a more
nuanced account of quantum epistemology. For example, the proposition “the particle is spin-up”
need not be treated as simply known or unknown; instead, it can be represented as probable but not
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necessary prior to measurement, with its degree of belief quantified by quantum amplitudes rather
than reduced to binary epistemic categories.

A distinctive feature of PML-QD is its logical minimalism, as it extends the basic modal system
K only modestly by incorporating probabilistic operators and a small set of collapse-specific axioms.
The system deliberately avoids polymodal formulations, higher-order quantification, intensional
types, nonclassical connectives, distributed knowledge operators and dynamic logic constructs,
focusing instead on a small set of precisely defined epistemic transitions . This design choice
emphasizes deductive transparency over maximal expressive power. Each formula expresses a
distinct logical claim that can be semantically validated within Kripke models equipped with
probability functions. This keeps model-theoretic evaluation computationally feasible while
retaining expressiveness sufficient to model quantum experimental structures.

An important advantage of PML-QD is its practical utility in the design and analysis of quantum
experiments. By formally modelling the transition from probabilistic possibility to logical necessity,
the framework provides a rigorous structure for anticipating and interpreting measurement
outcomes. This is especially beneficial in settings involving entanglement swapping, delayed-choice
quantum erasers and sequential measurements with non-commuting observables, i.e., scenarios
where standard formalisms often obscure epistemic transitions. For example, in designing a delayed-
choice interference experiment, PML-QD may provide a framework for anticipating how post-
selection contexts modulate which-path information, thereby clarifying the underlying logical
dependencies before experimental implementation. In entanglement swapping protocols, PML-QD
may aid in tracking modal correlations to ensure consistency across nonlocal updates. Its ability to
handle conditional reasoning and epistemic updates supports counterfactual assessments and helps
validate whether a given experimental configuration logically aligns with quantum postulates.
Overall, PML-QD offers both a conceptual and practical toolkit for optimizing experimental design
in foundational quantum research and emerging quantum technologies.

The epistemic distinctions enabled by PML-QD allow a comparison with traditional
interpretations of quantum mechanics. In the Copenhagen view, the wavefunction encodes
predictive knowledge about measurement outcomes but lacks interpretive content about
unmeasured states (Jaeger 2019). PML-QD refines this position by treating superposition as a
landscape of modal possibilities rather than ontological ambiguity such that the system can be
described as potentially occupying multiple states, each with a distinct logical status and probability.
In relation to QBism, which treats quantum states as subjective degrees of belief (Khrennikov 2018;
Milgrom 2022), PML-QD provides a formal syntactic structure to those beliefs, grounding them in
rules of modal inference and derivability. While QBism invokes a probabilistic agent-centric
perspective, PML-QD situates probability within a logical system constrained by axioms, thus
offering a structured treatment of epistemic agency. In the many-worlds interpretation, every
possible measurement outcome is realized in some branch of reality (Devor 2023; Vaidman 2025).
PML-QD models branching through modal accessibility, but does not commit to metaphysical
plurality; rather, it treats branching as epistemic openness. The modal relations are not anymore
between physically instantiated worlds, but between logically accessible epistemic states.

ML-QD differs from traditional quantum logics, which often replace classical logic with
alternative systems to reflect the structural or contextual aspects of quantum theory. For instance, the
Birkhoff-von Neumann approach represents quantum propositions as elements of an orthomodular
lattice of Hilbert space subspaces, replacing classical Boolean logic with a non-distributive structure
that reflects observable incompatibility and quantum geometry (Gunji and Nakamura 2022). In
contrast, PML-QD retains classical propositional logic and introduces modal and probabilistic layers
to capture quantum uncertainty and measurement dynamics without abandoning logical
distributivity. In turn, topos-theoretic quantum logic reformulates quantum theory using
intuitionistic logic and category theory, modeling propositions as presheaves over classical contexts
and assigning truth values locally without relying on global valuations or classical bivalence
(Landsman 2017; Jia et al. 2025). By contrast, PML-QD operates within a bivalent logical system and
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incorporates probability directly, allowing for global epistemic evaluation and explicit modeling of
measurement-induced transitions

PML-QD has certain limitations that warrant acknowledgment. It does not attempt to model
open quantum systems or continuous variable states, nor does it incorporate decoherence processes
at the level of environment-induced entropy changes. All quantum states are assumed to be finite-
dimensional and all measurements are treated as idealized and projective. This simplification enables
a syntactically clean and computationally tractable logic but restricts its direct application to more
complex or realistic quantum systems. While the system models epistemic transitions triggered by
measurements, it does not incorporate temporal indeterminacy or branching-time semantics; instead,
it adopts a linear temporal structure via indexed worlds. The exclusion of branching structures limits
the logic’s ability to model future contingencies or path-dependent quantum evolution. PML-QD also
omits any formal treatment of epistemic agents or belief operators. While interpretations such as
QBism emphasize agent-centered probabilities and belief updates, PML-QD focuses exclusively on
system-level propositions, avoiding subjective or doxastic modalities. Moreover, PML-QD remains
neutral regarding the ontological status of the quantum state, avoiding commitment to whether the
wavefunction represents physical reality or informational content. Within these limitations, PML-QD
provides a coherent logical framework for analyzing the epistemic dynamics of measurement and
uncertainty in finite, closed quantum systems. The framework serves not as a replacement but as a
complementary language for articulating epistemic features of quantum processes. Within these
limitations, PML-QD provides a coherent and complementary logical framework for articulating the
epistemic dynamics of measurement and uncertainty in finite, closed quantum systems.

In conclusion, we address whether a unified formal system can capture the modal and
probabilistic structure of quantum dynamics, particularly the transition from possibility to necessity
induced by measurement. By integrating modal logic with probabilistic semantics, PML-QD offers a
framework representing superposition, collapse and entanglement in syntactically precise and
semantically consistent terms. The main takeaway is that quantum measurement, often seen as
interpretationally opaque, can be rigorously modeled within a logical framework that clearly
distinguishes graded possibility from logical necessity across both pre- and post-observation
contexts.
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