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Article 

Probabilistic Modal Logic for Quantum Dynamics 

Arturo Tozzi 

Center for Nonlinear Science, Department of Physics, University of North Texas, Denton, Texas, USA 

1155 Union Circle, #311427 Denton, TX 76203-5017 USA; tozziarturo@libero.it 

Abstract: Traditional quantum mechanics provides predictive accuracy but lacks a clear framework 

for articulating the epistemic status of quantum systems, particularly during measurement. We 

present Probabilistic Modal Logic for Quantum Dynamics (PML-QD), a formal system that integrates 

modal logic constraints with probabilistic semantics. Built on the classical modal system K, PML-QD 

introduces a probabilistic operator that allows reasoning about the likelihood of modal propositions, 

capturing the transition from possibility before measurement and necessity after measurement. PML-

QD supports formal derivations of quantum phenomena like superposition, measurement-induced 

wavefunction collapse, sequential observations with non-commuting observables, entangled state 

dependencies and counterfactual reasoning in delayed-choice scenarios. Unlike traditional quantum 

logics or topos-theoretic approaches, PML-QD preserves classical propositional logic and avoids 

metaphysical commitments, focusing instead on syntactic clarity and computational feasibility. 

Operationally, the framework supports experimental design by offering a logical structure for 

analysing setups involving conditional measurements such as entanglement swapping or quantum 

erasure. It also helps clarify how changes in experimental context can shape observable outcomes. 

These capabilities allow researchers to anticipate epistemic transitions, evaluate consistency 

conditions and refine protocols prior to implementation. As such, PML-QD may serve not only as a 

conceptual tool for guiding experimental strategy but also as a methodological framework for 

automated reasoning systems in quantum experiment validation. Overall, PML-QD provides a 

rigorous means of tracking the epistemic status of quantum systems across pre- and post-

measurement states, allowing for precise reasoning about which propositions were possible, 

probable or necessary at each stage of a quantum process. 

Keywords: epistemic logic; wavefunction collapse; entanglement; measurement theory; quantum 

information 

 

1. Introduction: Logic and Uncertainty in Quantum Theory 

The formalism of quantum mechanics, grounded in Hilbert space theory and operator algebra, 

has achieved extraordinary success in predicting and modeling physical phenomena (Cassinelli and 

Lahti, 2016; Roy 2023; Svozil, 2024). However, its abstract mathematical structure obscures the 

conceptual interpretation of key processes such as superposition, entanglement and wavefunction 

collapse. While probabilistic outcomes are captured by the Born rule and physical dynamics are 

governed by the Schrödinger equation, the theory provides limited tools for articulating the epistemic 

and logical structure of quantum transitions (Wieser 2016; Tzemos and Contopoulos, 2021). This has 

led to persistent foundational debates and ambiguities, particularly around measurement, the role of 

the observer and the interpretation of quantum states (Sokolovski 2020). Quantum logics, including 

orthomodular lattices and topos-theoretic approaches, attempt to address these gaps but eschew 

probabilistic reasoning or lack the power to capture temporal and contextual dependencies in 

experiments (Gunji et al., 2017; Jorge and Holik, 2020; Gunji and Nakamura, 2022). Likewise, 

probabilistic and epistemic logics developed in computer science and philosophy provide rich 

formalisms for uncertainty and belief but are rarely adapted to quantum phenomena (Dalla Chiara 

et al., 2018; Betz and Richardson, 2023). A conceptual framework that jointly captures the modal and 
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probabilistic dimensions of quantum events, especially in dynamic, measurement-driven contexts, is 

still underdeveloped. 

We introduce a logical system—Probabilistic Modal Logic for Quantum Dynamics (PML-QD)—

that unifies modal logic with probabilistic semantics to model quantum events, particularly the 

transition from indeterminate to determinate states. This system extends standard modal logic with 

a probability operator defined over accessible worlds, thereby allowing us to represent not only 

whether a proposition is possible or necessary, but also with what probability it holds. Measurement, 

in this framework, is formalized as a shift from possibility to necessity, governed by both probabilistic 

structure and modal constraints. Entangled and sequential measurements are treated via correlated 

modalities and conditional update rules. We anticipate that this approach will provide a rigorous 

framework for tracking the epistemic status of quantum systems before and after measurement, 

enabling precise reasoning about which propositions were possible, probable or necessary at each 

stage of the quantum process. 

Concerning the Formal structure of PML-QD, we adopt the classical modal logic system K, 

which we extend to incorporate probabilistic semantics (Singleton and Booth, 2023; Quelhas et al., 

2024; Litland 2025). Let 𝐿 denote a standard modal propositional language constructed from a set of 

propositional variables 𝑃 , the Boolean connectives ¬ (negation), ∧ (conjunction) and the modal 

operators □ (necessity) and ◊ (possibility). The semantics are defined using a Kripke frame 𝐹 =

(𝑊, 𝑅), where 𝑊 is a nonempty set of possible worlds and 𝑅 ⊆ 𝑊 × 𝑊 is an accessibility relation. 

A Kripke model 𝑀 = (𝑊, 𝑅, 𝑉) assigns truth values to each atomic proposition 𝑝 ∈ 𝑃 via a valuation 

function 𝑉: 𝑃 → 𝑃(𝑊), where 𝑃(𝑊) is the powerset of 𝑊 (Weiss and Birman, 2024). Satisfaction is 

defined recursively: for any 𝑤 ∈ 𝑊, 𝑀, 𝑤 ⊨p iff 𝑤 ∈ 𝑉(𝑝);  𝑀, 𝑤 ⊨ ¬𝜙 iff 𝑀, 𝑤 ⊨ ̸𝜙 𝑎𝑛𝑑 𝑀, 𝑤 ⊨ 𝜙 ∧ 𝜓 

iff 𝑀, 𝑤 ⊨ 𝜙 and 𝑀, 𝑤 ⊨ 𝜓 ; and 𝑀, 𝑤 ⊨ □𝜙 iff for all 𝑣 ∈ 𝑊 , if 𝑤𝑅𝑣 , then 𝑀, 𝑣 ⊨ 𝜙 . The dual 

operator ◊ϕ is defined as ¬□¬𝜙. This base system allows us to express propositional necessity and 

possibility, which we are going to enrich with a quantitative probabilistic extension tailored to 

quantum systems. 

We now extend the Kripke model by introducing a probability measure over the set of possible 

worlds. A probabilistic Kripke model is defined as 𝑀 = (𝑊, 𝑅, 𝑉, 𝜇) , where 𝜇: 𝑃(𝑊) → [0,1] is a 

finitely additive probability measure such that 𝜇(𝑊) = 1 and 𝜇(∅) = 0 (Shirazi and Amir, 2007). For 

each world 𝑤 ∈ 𝑊, we define a conditional probability distribution 𝜇𝑤 over the accessible worlds 

𝑅(𝑤) = {𝑣 ∈ 𝑊 ∣ 𝑤𝑅𝑣} . The semantics of the probabilistic modal operator are then defined by 

introducing a function 𝑃(𝜙) yielding the probability that ϕ is true in the accessible worlds: formally, 

𝑀, 𝑤 ⊨ 𝑃(𝜙) = 𝑝 iff 𝜇𝑤({𝑣 ∈ 𝑅(𝑤) ∣ 𝑀, 𝑣 ⊨ 𝜙}) = 𝑝. This enables the assessment not only of whether 

a proposition is necessary or possible, but also of the probability with which it is possibly true. To 

ensure internal consistency, we assume that 𝜇𝑤  is defined via restriction and normalization: 

𝜇𝑤(𝐴) = 𝜇(𝐴 ∩ 𝑅(𝑤))/𝜇(𝑅(𝑤)) whenever 𝜇(𝑅(𝑤)) > 0. This logic is able to represent graded modal 

claims such as “it is 70% possible that φ” or more formally, 𝑃(◊ 𝜙) = 0.7, establishing a formal 

mechanism for assigning probabilities to modal propositions. 

The logical language and syntax of PML-QD are built from a base set of propositional variables 

𝑃, closed under the classical connectives and modal operators □, ◊ and the probability operator P. 

The syntax includes expressions of the form 𝑃(𝜙) = 𝑟, where 𝑟 ∈ [0,1] ∩ 𝑄 and composite formulas 

such as 𝑃(◊ 𝜙) ≥ 𝑠  and 𝑃(□𝜙 → 𝜓) < 𝑡 . Formulas are interpreted over the probabilistic Kripke 

models defined above. The logic also allows us to define conditional probabilities. For propositions 

ϕ and ψ, we define 𝑃(𝜙 ∣ 𝜓) = 𝜇𝑤({𝑣 ∈ 𝑅(𝑤) ∣ 𝑀, 𝑣 ⊨ 𝜙 ∧ 𝜓})/𝜇𝑤({𝑣 ∈ 𝑅(𝑤) ∣ 𝑀, 𝑣 ⊨ 𝜓}), assuming 

the denominator is nonzero. This allows the formulation of statements like “given ψ, φ is probable 

with 0.6 likelihood”, which corresponds to 𝑃(𝜙 ∣ 𝜓) = 0.6. 

Overall, this approach yields the formal language of the system—comprising syntax, probability 

statements, and conditional expressions—necessary for modeling quantum epistemic transitions. 

Building on this foundation, the next steps involve applying this language to concrete quantum 

scenarios, analyzing how epistemic statuses evolve across different stages of measurement and 

inference. 
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2. Axiomatic System 

The axiomatic core of PML-QD comprises a structured integration of classical propositional 

logic, normal modal logic (system K) and finite probabilistic logic. The system operates within a 

Hilbert-style framework with axioms for classical logic, modal logic (K-system) and probability logic, 

including finite additivity, non-negativity, normalization and probabilistic modus ponens. Well-

formed formulas (wffs) are derived from a fixed set of axioms using explicitly defined inference rules. 

The classical propositional component of the system is based on the axioms of tautology schemas, 

such as 𝜙 → (𝜓 → 𝜙) , (𝜙 → (𝜓 → 𝜒)) → ((𝜙 → 𝜓) → (𝜙 → 𝜒))  and ¬¬𝜙 → 𝜙 . The modal part 

includes the standard K axiom: □(𝜙 → 𝜓) → (□𝜙 → □𝜓) and the necessitation rule: if ⊢ 𝜙, then ⊢

□𝜙. The logic is normal in that it preserves closure under necessitation and respects distribution over 

implication. The axioms are interpreted over Kripke frames with arbitrary accessibility relations, 

allowing for flexible modeling of different quantum experimental contexts. 

At first, probabilistic axioms are introduced to extend the classical-modal foundation. The core 

probabilistic principles are drawn from Kolmogorov’s axioms, reformulated for integration into 

logical syntax (Svozil 2022). Let 𝑃(𝜙) = 𝑟 be a primitive formula expressing that the probability of 

ϕ being satisfied in the accessible worlds is 𝑟 ∈ [0,1] ∩ 𝑄. The axioms include non-negativity 𝑃(𝜙) ≥

0, normalization 𝑃(⊤) = 1 and finite additivity: if 𝜙 ∧ 𝜓 ≡⊥, then 𝑃(𝜙 ∨ 𝜓) = 𝑃(𝜙) + 𝑃(𝜓). These 

are supplemented by conditional probability rules: for 𝜙, 𝜓 ∈ 𝐿 with 𝑃(𝜓) >  0𝑃(𝜓) > 0, 𝑃(𝜙 ∣ 𝜓) =

𝑃(𝜙 ∧ 𝜓)/𝑃(𝜓). The modal-probabilistic interaction is regulated by the schema 𝑃(□𝜙) ≤ 𝑃(𝜙) and 

similarly 𝑃(𝜙) ≤ 𝑃(◊ 𝜙), reflecting that what is necessarily true must also be true and what is true 

must be possibly true. These constraints are justified by the semantics of modal probability spaces, 

where □𝜙 implies truth in all accessible worlds, while ◊ 𝜙 requires only one accessible world where 

ϕ holds. The derivation rules include probabilistic modus ponens: from 𝜙 → 𝜓 and 𝑃(𝜙) ≥r, infer 

𝑃(𝜓) ≥ 𝑟 , provided all evaluations are over the same accessibility neighborhood. These axioms 

permit the formal manipulation of graded propositions about truth values in modal contexts. 

Therefore, with the K system as a stable scaffolding, the logic acquires the modal structure 

necessary to represent transitions from epistemic possibility to necessity, forming a base from which 

the probabilistic dynamics of quantum measurement can be encoded. 

Implementation of quantum-specific axioms. To specialize PML-QD to quantum dynamics, we 

introduce a set of axioms reflecting superposition, measurement and entanglement. Let 𝜙𝑖 denote 

the proposition “the quantum system is in eigenstate i.” For a system in state ∣ 𝜓⟩ = ∑𝑖𝛼𝑖 ∣ 𝑖⟩, we 

define 𝑃(◊ 𝜙𝑖 ∣ 𝛼𝑖 ∣2.. This probabilistic modal formulation expresses the pre-measurement epistemic 

state: the system may be found in state 𝜙𝑖 with probability ∣ 𝛼𝑖 ∣2. Upon measurement and collapse 

to 𝜙𝑗 , we enforce 𝜙𝑗  and □¬ ◊ 𝜙𝑘  for all 𝑘 ≠ 𝑗 . We also represent entanglement through joint 

modal constraints. Given an entangled state ∣ 𝛹⟩ = ∑𝑖𝛼𝑖 ∣ 𝑎𝑖⟩ ⊗∣ 𝑏𝑖⟩, let 𝜙𝑖 and 𝜓𝑖 be propositions 

for subsystems A and B, respectively. Then ◊ (𝜙𝑖 ∧ 𝜓𝑖) is true with probability ∣ 𝛼𝑖 ∣2, while ◊ 𝜙𝑖 ∧◊

𝜓𝑗 is only allowed if 𝑖 = 𝑗 thereby disallowing separable joint modalities. These rules enable the logic 

to model quantum correlations and non-locality without assuming hidden variables. 

Let ∣ 𝜓⟩ = ∑𝑖𝛼𝑖 ∣ 𝑖⟩ be a normalized pure state over an orthonormal basis {∣ 𝑖⟩} and let 𝜙𝑖 be 

the proposition “the system is in state ∣ 𝑖⟩”. We postulate that 𝑃(◊ 𝜙𝑖) =∣ 𝛼𝑖 ∣2, aligning logical 

possibility with the Born rule. This axiom expresses that, prior to measurement, the system may be 

found in eigenstate i, with probability equal to the squared modulus of its amplitude. Upon a 

measurement yielding outcome j, we assert □𝜙𝑗 and □¬ ◊ 𝜙𝑘 for all 𝑘 ≠ 𝑗, modeling the epistemic 

update resulting from collapse. This transition encodes the projection postulate as a logical update, 

i.e., a modal reduction from possibility to necessity and from multiple probabilities to a single 

certainty. To formalize this shift, we introduce the axiom schema 𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝜙𝑗) → (□𝜙𝑗 ∧ ⋀𝑘 =

𝑗□¬ ◊ 𝜙𝑘). The measurement operator is treated syntactically, marking the transition point in the 

evaluation of epistemic states. This schema is only applied in cases where the logic designates 𝑃(◊

𝜙𝑗) > 0, reflecting the assumption that outcomes with zero probability cannot be observed. 

To handle entanglement, we extend the logic with modal rules for joint propositions. Consider 

a bipartite quantum system with basis {∣ 𝑎𝑖⟩ ⊗∣ 𝑏𝑗⟩} and an entangled state ∣ 𝛹⟩ = ∑𝑖𝛼𝑖 ∣ 𝑎𝑖⟩ ⊗∣ 𝑏𝑖⟩. 
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Let 𝜙𝑖 denote “Subsystem A is in state ∣ 𝑎𝑖⟩” and 𝜓𝑖 denote “Subsystem B is in state ∣ 𝑏𝑖⟩.” We 

introduce the entanglement axiom 𝑃(◊ (𝜙𝑖 ∧ 𝜓𝑖)) =∣ 𝛼𝑖 ∣ 2 and the exclusion principle ¬(◊ 𝜙𝑖 ∧◊

𝜓𝑗)  for 𝑖 ≠ 𝑗 . This enforces the non-separability of joint state truth values: subsystems cannot 

simultaneously assume inconsistent states if derived from an entangled superposition. The logic 

allows us to evaluate propositions such as ◊ 𝜙𝑖 → □¬𝜓𝑗 for 𝑗 ≠, capturing the non-local correlations 

implicit in entanglement. These formulations provide a means of expressing Bell-type dependencies 

as logical constraints within the system, grounded in amplitude-based probability assignments. For 

measurements, we define the conditional update: observing 𝜙𝑘 implies □𝜓𝑘 and □¬𝜓𝑗 for all 𝑗 ≠

𝑘 consistent with perfect quantum correlations. These constraints are encoded as derivable rules 

rather than primitive axioms, preserving flexibility in modeling partial or imperfect entanglement. 

Overall, this approach embeds the measurement postulates of quantum mechanics within a 

modal logical framework, effectively translating quantum dynamics into a structure that supports 

logical inference and modal reasoning about probability. By doing so, it bridges the gap between 

quantum formalism and epistemic logic, enabling a systematic analysis of how knowledge and 

uncertainty evolve through quantum processes. This integration allows for the tracking of necessity, 

possibility, and likelihood in a manner that aligns with both the probabilistic nature of quantum 

theory and the inferential tools of modal logic. 

Tools and Computational Setup. All logical definitions, axioms and inference rules are 

formalized using a typed symbolic language implemented in the Lean proof assistant to verify 

syntactic coherence and logical validity (Löh 2022). For probability measures and accessibility 

relations, we use custom-built Kripke structures defined programmatically in Python using the 

networkx library for graph modeling and numpy for probability assignment. Quantum state vectors 

and projection operations are handled using the qutip library, enabling precise computation of Born-

rule probabilities and their mapping to logical probability assignments. Logical expressions are 

parsed and evaluated using a domain-specific parser that constructs abstract syntax trees, evaluates 

modal depth and resolves probabilistic truth values based on current world state and transition 

graphs. 

3. Coherence, Consistency and Semantic Soundness of PML-QD 

This chapter examines the coherence, consistency and semantic soundness of PML-QD to ensure 

that its logical structure faithfully represents quantum dynamics and supports reliable epistemic 

inference. We begin by demonstrating the soundness of PML-QD relative to its probabilistic Kripke 

semantics. Let 𝑀 = (𝑊, 𝑅, 𝑉, 𝜇) be a model of our system, where R is an arbitrary (possibly non-

symmetric, non-transitive) relation to accommodate varied quantum contexts. For each world 𝑤 ∈

𝑊  and each well-formed formula 𝜙 ∈ 𝐿 , if ⊢ 𝜙  in the PML-QD system, then 𝑀, 𝑤 ⊨ 𝜙 . Proof 

proceeds by induction over the structure of derivations. Base cases follow from the validity of 

classical tautologies. The K modal axiom is validated by the relational condition: 𝑤𝑅𝑣 ∧ 𝑤𝑅𝑢 implies 

that if 𝑀, 𝑣 ⊨ 𝜙 → 𝜓 and 𝑀, 𝑣 ⊨ 𝜙, then 𝑀, 𝑣 ⊨ 𝜓. The probabilistic axioms are sound under the 

standard interpretation of 𝜇𝑤  as a conditional probability measure on 𝑅(𝑤) . Additivity, 

normalization and conditional independence are preserved by construction. Quantum-specific 

axioms are modeled by assigning 𝜇𝑤(◊ 𝜙𝑖) =∣ 𝛼𝑖 ∣ 2  for pre-collapse states and using syntactic 

restrictions post-collapse to enforce that □𝜙𝑗 → 𝜇𝑤(𝜙𝑗) = 1. Thus, the epistemic updates are correctly 

aligned with quantum measurement rules. This confirms that the axiomatic structure of PML-QD is 

consistent with its intended semantics, establishing soundness as a necessary condition for 

subsequent formal evaluation. 

Completeness is demonstrated via canonical model construction. We define a canonical model 

𝑀𝑐 = (𝑊𝑐, 𝑅𝑐, 𝑉𝑐, 𝜇𝑐) , where 𝑊𝑐  is the set of maximally consistent sets (MCSs) of formulas in 

𝐿𝑃𝑀𝐿 − 𝑄𝐷 . The accessibility relation 𝑐  is defined by: 𝛤𝑅𝑐𝛥  iff for every □𝜙 ∈ 𝛤 , 𝜙 ∈ 𝛥 . The 

valuation function 𝑉𝑐(𝑝) = {𝛤 ∈ 𝑊𝑐 ∣ 𝑝 ∈ 𝛤} and the probability function 𝜇𝛤𝑐(𝜙) = 𝑟 is defined via 

the maximal consistent extensions satisfying 𝑃(𝜙) = 𝑟 ∈ 𝛤. Completeness then follows: if 𝜙 is valid 

(true in every model), then 𝜙 ∈ 𝛤 for all 𝛤 ∈ 𝑊𝑐. If 𝜙 ∈/𝛤, then there exists a model falsifying ϕ, 
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proving that ϕ\phiϕ is not derivable. For quantum-specific modalities, we enrich the canonical 

model with amplitude maps from abstract syntax to normalized vectors, ensuring that measurement-

induced updates correspond to transitions among canonical worlds. The probabilistic collapse 

axioms are enforced syntactically by excluding extensions that contradict the post-measurement 

certainty schema. 

We thus obtain completeness for the classical, modal and probabilistic layers, with quantum-

specific axioms ensured through semantic alignment. 

Epistemic closure and logical coherence. An important consideration in any epistemic logic is 

whether the system permits epistemic closure under valid inference. In PML-QD, closure under 

modal and probabilistic inference is carefully maintained through explicit syntactic rules. For 

instance, from □(𝜙 → 𝜓) and □𝜙, one may derive □𝜓, preserving modal consequence. However, in 

quantum contexts, closure must also handle epistemic transitions: if ◊ 𝜙 and (◊ 𝜙) = 1, it does not 

follow that □𝜙, unless a measurement event enforces it. Thus, PML-QD avoids epistemic overreach 

by enforcing the distinction between high probability and logical certainty. Probabilistic closure is 

similarly bounded: from 𝑃(𝜙 ∧ 𝜓) = 0.9 and P𝑃(𝜓) = 1, we may derive 𝑃(𝜙 ∣ 𝜓) = 0.9, but not □𝜙 

or even ◊ 𝜙 unless additional modal premises are supplied. This disciplined separation of inference 

domains ensures that conclusions about quantum states are validly drawn only within the scope of 

their modal and probabilistic constraints. Furthermore, any logical contradiction arising from 

measurement updates (e.g., asserting □𝜙 and ◊ ¬𝜙) is syntactically blocked by the collapse axioms. 

Counterfactual reasoning and epistemic modality. PML-QD allows for formal engagement 

with counterfactuals in quantum mechanics, a topic often debated in the context of delayed-choice 

experiments, weak measurements and quantum nonlocality (Laudisa 2019). The framework supports 

statements of the form: “If measurement M had been performed, then 𝜙  would have become 

necessary,” represented formally as ◊ 𝑀 → (𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝜙) → □𝜙) . Such statements are not 

metaphysical speculations but logical conditionals grounded in modal accessibility. Suppose a 

system is in a superposed state ∣ 𝜓⟩ = 𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩ and the measurement is postponed. The logic 

allows one to say: “Had we measured now, outcome 𝜙0  would have become necessary with 

probability ∣ 𝛼 ∣ 2.” This supports rigorous statements about epistemic potential without requiring 

ontological assertions about unmeasured reality. Importantly, these counterfactuals do not imply 

retrocausality, but rather preserve the distinction between hypothetical and actualized knowledge 

states, aligning with quantum experimental setups where delayed configurations define outcome 

space. The evaluation of counterfactuals is governed by modal consistency: only those conditional 

claims holding in all accessible paths from a given precondition are allowed. 

Model-theoretic consistency with Hilbert Space formalism and temporal evolution. The 

compatibility and the semantic consistency of PML-QD with the standard Hilbert space formalism 

can be evaluated. Let 𝐻 be a finite-dimensional Hilbert space with orthonormal basis {∣ 𝑖⟩} and let 

∣ 𝜓⟩ = ∑𝑖𝛼𝑖 ∣ 𝑖⟩ be a quantum state. The propositions 𝜙𝑖 correspond to projection operators 𝑃^𝑖 =∣

𝑖⟩⟨𝑖 ∣ and the probability of observing state i is ⟨𝜓 ∣ 𝑃^𝑖 ∣ 𝜓⟩ =∣ 𝛼𝑖 ∣ 2. We define a mapping 𝑓: 𝜙𝑖 ↦

𝑃^𝑖  and assert that 𝑃(◊ 𝜙𝑖) = 𝑇𝑟(𝜌𝑃^𝑖)  where 𝜌 =∣ 𝜓⟩⟨𝜓 ∣ . The logical model corresponds to a 

coarse-grained representation of the probabilistic projections across a set of accessible configurations 

indexed by basis measurements. Post-measurement updates □𝜙𝑗 correspond to Lüders projections: 

𝜌 ↦ 𝑃^𝑗𝜌𝑃^𝑗/𝑇𝑟(𝜌𝑃^𝑗). For entangled states ∣ 𝛷⟩ = ∑𝑖𝛼𝑖 ∣ 𝑎𝑖⟩ ⊗∣ 𝑏𝑖⟩, joint modal formulas ◊ (𝜙𝑖 ∧

𝜓𝑖) are semantically validated by 𝑇𝑟(𝜌(𝑃^𝑖 ⊗ 𝑄^𝑖)) =∣ 𝛼𝑖 ∣ 2. This means that logical constructs are 

supported by standard operator theory. In this context, the modal structure represents pre-

measurement epistemic range, while probability reflects amplitude-squared outcomes. 

To evaluate the temporal behavior and dynamical evolution of PML-QD, we consider its 

capacity to represent quantum evolution between measurement events. Let 𝑈(𝑡) = 𝑒 − 𝑖𝐻𝑡 be the 

unitary evolution operator associated with a Hamiltonian H and ∣ 𝜓(𝑡)⟩ = 𝑈(𝑡) ∣ 𝜓(0)⟩. In logical 

terms, we represent a temporal sequence 𝑤0 → 𝑤1 → ⋯ → 𝑤𝑛, where each 𝑤𝑖 is a world indexed by 

the system's state at time 𝑡𝑖. If 𝜙𝑖 is the proposition “system is in state ∣ 𝜓(𝑡𝑖)⟩”, then temporal 

modal transitions ◊ 𝜙𝑖 + 1 are defined by the Schrödinger evolution. The logic supports this via 
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time-indexed accessibility: 𝑤𝑖𝑅𝑤𝑖 +1 iff ∣ 𝜓(𝑡𝑖 + 1)⟩ = 𝑈(𝑡𝑖 + 1 − 𝑡𝑖) ∣ 𝜓(𝑡𝑖)⟩. We extend the model 

by assigning probability functions 𝜇𝑤𝑖(𝜙𝑗) =∣ ⟨𝜙𝑗 ∣ 𝜓(𝑡𝑖)⟩ ∣ 2 , yielding a dynamic probability 

assignment compatible with unitary evolution. If a measurement occurs at 𝑡j, the update collapses 

the epistemic structure: all future-accessible paths inconsistent with the observed outcome are 

pruned from 𝑅(𝑤𝑗). 

In summary, we establish the dynamic consistency of PML-QD by demonstrating that modal 

transitions respect unitary evolution up to the point of measurement and that state updates conform 

to the projection postulate. This validation reinforces the semantic soundness of the framework, 

confirming its capacity to model quantum epistemic dynamics with logical and physical fidelity. 

4. From Theory to Practice: Logical Modeling of Quantum Systems in PML-QD 

This chapter presents representative examples illustrating how PML-QD models quantum 

phenomena through logical structures and modal reasoning. 

Derivation of single-measurement collapse. We begin with a formal derivation illustrating how 

PML-QD syntactically captures the transition from a probabilistic possibility to post-measurement 

necessity in the single-qubit case. Let ∣ 𝜓⟩ = 𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩ be a superposed state, with ∣ 𝛼 ∣ 2+∣ 𝛽 ∣

2 = 1. Let 𝜙0 denote “the system is in state ∣ 0⟩” and 𝜙1 denote “the system is in state ∣ 1⟩.” In the 

logic, prior to measurement we assume 𝑃(◊ 𝜙0) =∣ 𝛼 ∣ 2 and 𝑃(◊ 𝜙1) =∣ 𝛽 ∣ 2, encoded via axioms 

of amplitude-based modal probability. Suppose the system is measured and the outcome is ∣ 0⟩. The 

axiom of modal collapse gives 𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝜙0) → □𝜙0 ∧ □¬ ◊ 𝜙1. If we assume 𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝜙0), then 

using modus ponens, we derive 0□𝜙0 and □¬ ◊ 𝜙1. Applying the modal logic equivalence □¬ ◊

𝜙1 ≡ ¬ ◊ 𝜙1 , we deduce that 𝜙1  is no longer even possible. The derivation shows that the 

probabilistic possibility 𝑃(◊ 𝜙1) =∣ 𝛽 ∣ 2 is syntactically replaced by ¬ ◊ 𝜙1 and all future logical 

inferences involving 𝜙1 become false under modal necessity. 

Sequential measurements. Next, we construct a proof sequence for a scenario involving two 

successive measurements along non-commuting observables. Let the system initially be in state ∣

𝜓⟩ = 21(∣ 0⟩+∣ 1⟩)  and define 𝜙0, 𝜙1  as before. Let 𝜒 +  and 𝜒 −  denote the propositions 

corresponding to the diagonal basis ∣ −⟩ = 21(∣ 0⟩−∣ 1⟩). Suppose the first measurement is in the {∣

0⟩, ∣ 1⟩} basis and the outcome is ∣ 0⟩. By modal collapse, we derive □𝜙0 and □¬ ◊ 𝜙1. Now we 

consider 𝑃(◊ 𝜒+), i.e., the probability of subsequently observing ∣ +⟩. Since the post-measurement 

state is ∣ 0⟩, we compute 𝑃(◊ 𝜒+) =∣ ⟨+∣ 0⟩ ∣ 2 = 1/2. We syntactically derive □𝜙0 → 𝑃(◊ 𝜒+) = 1/2 

from the substitution of amplitude-based definitions into the probability axioms. Upon performing 

the second measurement and observing ∣ +⟩, we apply the measurement collapse rule again to derive 

□𝜒 + and □¬ ◊ 𝜒 −. These results can be then used to show that all further inferences about 𝜙1 or 

𝜒 − must fail in all accessible worlds. 

We now consider the effect of sequential measurements when the observables do not commute. 

Let the initial state again be ∣ 𝜓⟩ = 𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩ and define a second measurement basis, such as 

the {∣ +⟩, ∣ −⟩}  basis, where ∣ +⟩ = 21(∣ 0⟩+∣ 1⟩)  and ∣ −⟩ = 21(∣ 0⟩−∣ 1⟩) . Let 𝜒 +  and 𝜒 − 

represent the corresponding modal propositions. If the system is first measured in the computational 

basis and yields ∣ 0⟩, then we assert □𝜙0 and immediately invalidate ◊ 𝜙1. We may now inquire 

about 𝑃(◊ 𝜒+), that is, the possibility of subsequently observing ∣ +⟩. In the post-collapse model, the 

system state become ∣ 0⟩, so we calculate 𝑃(◊ 𝜒+) =∣ ⟨+∣ 0⟩ ∣ 2 = 1/2. Formally, this is encoded as 

□𝜙0 → 𝑃(◊ 𝜒+) = 1/2, reflecting the non-commutativity of the measurement sequence. The logic 

tracks not only the collapsed state but its implications for future probabilistic possibilities. If we now 

measure in the diagonal basis and obtain outcome ∣ +⟩, the epistemic update becomes □𝜒 +∧ □¬ ◊

𝜒 −, which supersedes the prior assignment. PML-QD may thus support reasoning about nested and 

sequential updated updates and the logical impact of measurement order. 

Single-Qubit superposition and measurement. We begin with a basic scenario: a single qubit 

in a superposition of eigenstates relative to a particular observable, such as spin along the z-axis. Let 

the quantum state be ∣ 𝜓⟩ = 𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩, where 𝛼, 𝛽 ∈ 𝐶  and ∣ 𝛼 ∣ 2+∣ 𝛽 ∣ 2 = 1. We define the 

modal propositions 𝜙0 and 𝜙1 corresponding respectively to the system being in state ∣ 0⟩ and ∣
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1⟩. In the PML-QD framework, the epistemic state prior to measurement is captured by the formulas 

𝑃(◊ 2𝑃(◊ 𝜙1) =∣ 𝛽 ∣ 2. These assertions express the degree of possibility—based on the probabilistic 

modal semantics—associated with each eigenstate. A measurement in the {∣ 0⟩, ∣ 1⟩} basis is treated 

as a transition: if outcome ∣ 0⟩ is observed, the updated state becomes □𝜙0 ∧ □¬ ◊ 𝜙1, formalizing 

collapse in logical terms. The inference chain follows directly from the axiom 𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝜙𝑗) → (□𝜙𝑗 ∧

⋀𝑘 = 𝑗□¬ ◊ 𝜙𝑘) . The model also permits conditional queries such as 𝑃(◊ 𝜙0 ∣ ¬𝜙1) = 1 , 

maintaining coherence with the binary outcome structure of projective measurement. This means 

that PML-QD may accommodate elementary state transitions and probability-based reasoning using 

modal assertions grounded in amplitude-based truth. 

Collapse simulation and world pruning algorithms. The logic requires that upon measurement 

possible but unrealized outcomes are no longer epistemically accessible. To simulate this, a world-

pruning algorithm could be implemented that dynamically restructures the Kripke model. Upon 

observing outcome 𝜙𝑗 at world w, this algorithm first may verify 𝑃(◊ 𝜙𝑗) > 0; then, identify the 

unique subset 𝑅′(𝑤) ⊆ 𝑅(𝑤)  such that ∀𝑣 ∈ 𝑅′(𝑤), 𝑀, 𝑣 ⊨ 𝜙𝑗 . The accessibility relation can be 

updated by setting 𝑅(𝑤): = 𝑅′(𝑤) and the probability distribution 𝜇𝑤 renormalized over 𝑅′(𝑤). All 

𝜙𝑘 such that 𝑘 ≠ 𝑗 may be set to evaluate as ¬ ◊ 𝜙k and □¬𝜙𝑘. The update is conservative and 

preserves modal truth: previously necessary propositions remain necessary unless invalidated by the 

measurement result. In sequential measurements, the system may track update sequences using a 

stack of Kripke structures, allowing rollback and re-evaluation. A collapse consistency check may 

ensure that ∑𝑘𝑃(◊ 𝜙𝑘) = 1 prior to collapse and that after measurement such that exactly one 𝜙𝑗 

becomes necessary while the others are impossible. In entangled cases, a measurement on one 

subsystem may automatically trigger pruning on correlated worlds in the partner system, enforcing 

non-local modal synchrony. 

Entanglement constraints via modal dependencies. Let us consider the entangled state ∣ 𝛷⟩ =

21(∣ 0⟩𝐴 ∣ 1⟩𝐵−∣ 1⟩𝐴 ∣ 0⟩𝐵). Define 𝜙0, 𝜙1 for particle A and 𝜓0, 𝜓1 for particle B. The axiom of 

correlated possibility gives 𝑃(◊ (𝜙0 ∧ 𝜓1)) = 1/2 , 𝑃(◊ (𝜙1 ∧ 𝜓0)) = 1/2  and all other 𝑃(◊ (𝜙𝑖 ∧

𝜓𝑗)) = 0 𝑓𝑜𝑟 𝑖 = 𝑗𝑖 =  𝑗𝑖 = 𝑗. Suppose a measurement on A yields 𝜙1. By measurement collapse, we 

derive 0□𝜙1 ∧ □¬ ◊ 𝜙0. From the modal correlation rule 𝜙1 → □𝜓0, we deduce □𝜓0, i.e., the state 

of B becomes necessarily ∣ 0⟩. The derivation holds even if the measurement on B occurs later, as the 

logical dependencies are enforced modally rather than temporally. Suppose instead that we had 

observed 𝜙0; the derivation would then yield 𝜓1. Importantly, PML-QD prevents derivation of any 

statement ◊ (𝜙1 ∧ 𝜓1), since this is ruled out by the amplitude-based probability axiom. Overall, the 

logical constraints imposed by PML-QD on entangled propositions may correctly capture the 

exclusivity and correlation properties inherent in entangled quantum states. 

Entanglement Swapping. Entanglement swapping is a protocol in which two initially 

independent quantum systems become entangled through joint measurement on intermediary 

particles (Ning et al., 2019; Zangi et al., 2023). Consider two entangled pairs in the states ∣ 𝜓𝐴𝐵⟩ =

21(∣ 0⟩𝐴 ∣ 1⟩𝐵−∣ 1⟩𝐴 ∣ 0⟩𝐵) and ∣ 𝜓𝐶𝐷⟩ = 21(∣ 0⟩𝐶 ∣ 1⟩𝐷−∣ 1⟩𝐶 ∣ 0⟩𝐷). Let a Bell-state measurement 

be performed on particles B and C. Define modal propositions 𝜙𝑖𝑗 the four Bell states between B and 

C and 𝜓𝐴𝐷 for the corresponding entanglement state between A and D. Before the measurement, 

the logic encodes the system as ⋁𝑖, 𝑗𝑃(◊ 𝜙𝑖𝑗) = 41, with no assignment of □𝜓𝐴𝐷. Upon observing 

Bell state 𝜙00, we assert □𝜙00 → □𝜓𝐴𝐷00, with 𝜓𝐴𝐷00 denoting a corresponding entangled state 

between particles A and D. This captures the epistemic update that makes entanglement between 

distant, non-interacting particles a logical necessity only after the intermediate measurement. This 

avoids invoking retrocausality by localizing modal transitions to the knowledge structure. 

Conditional probabilities are also updated: 𝑃(◊ 𝜓𝐴𝐷00 ∣ 𝜙00) = 1, while other 𝜓𝐴𝐷𝑖𝑗 are assigned 

zero. Therefore, PML-QD may capture entanglement swapping via conditional modal updates, 

supporting rigorous reasoning about delayed entanglement onset. 

Delayed-choice interference and quantum eraser. We propose here a derivation involving the 

delayed-choice quantum eraser (Kim et al., 2000). Define 𝜙𝑝: “which-path information is accessible,” 

and 𝜙𝑤: “interference pattern is observed.” Before post-selection, we assume ◊ 𝜙𝑝 ∧◊ 𝜙𝑤. Let 𝑀𝑒 
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denote the erasure choice and 𝑀𝑝  the path-preserving choice. Under the choice 𝑀𝑒 , the logic 

enforces 𝑀𝑒 → □¬𝜙𝑝 ∧ □𝜙𝑤 , whereas under 𝑀𝑝, it enforces 𝑀𝑝 → □𝜙𝑝 ∧ □¬𝜙𝑤 . Assume 𝑀𝑒  is 

enacted after the signal photon is measured. Since the epistemic update is contingent, we represent 

the situation as a conditional modal formula: ◊ (𝜙𝑝 ∧ 𝜙𝑤) → (𝑀𝑒 → □𝜙𝑤) ∧ (𝑀𝑝 → □𝜙𝑝) . Upon 

performing 𝑀𝑒 , the system updates to □𝜙𝑤  and ◊ 𝜙𝑝 is logically rejected. The derivation path 

shows that the modal state is not solely determined by photon interactions, but by post-measurement 

contextualization. This is syntactically grounded in modal update axioms, not as an empirical fact 

but as a derivable transition. 

We now examine the delayed-choice quantum eraser, a paradigmatic scenario where 

information about a quantum system’s path is either retained or erased after the system has been 

measured (Kim and Ham, 2023). Let 𝜙𝑝 denote “which-path information is known” and 𝜙𝑤 denote 

“interference pattern is visible.” The logic must represent conditional dependencies where the post-

measurement setup retroactively influences the interpretation of earlier events. We encode the 

availability of path information as a binary modal variable: if the information is preserved, we assign 

□𝜙𝑝 → □¬𝜙𝑤 and if it is erased, □¬𝜙𝑝 → □𝜙𝑤. The measurement decision variable 𝑀𝑒 (erase path 

info) or 𝑀𝑝 (preserve path info) serves as a modal context switch: prior to this, both ◊ 𝜙𝑝 and ◊ 𝜙𝑤 

are true. After choosing 𝑀𝑒 , the system updates to □¬𝜙𝑝 ∧ □𝜙𝑤 . PML-QD allows for modal 

reasoning such as ◊ 𝜙𝑝 ∧◊ 𝜙𝑤 → (𝑀𝑒 → □𝜙𝑤), modeling epistemic changes contingent on an action 

taken after the quantum interaction. This illustrates that PML-QD can represent dynamically 

dependent modal transitions where final knowledge states depend on future experimental choices. 

The examples presented in this chapter demonstrate the capacity of PML-QD to formally capture 

key aspects of quantum behavior, including measurement collapse, entanglement and contextual 

inference. These cases highlight the framework’s utility in modeling epistemic transitions with logical 

precision, offering a promising methodology for further theoretical and practical developments. 

5. Conclusion 

The Probabilistic Modal Logic for Quantum Dynamics (PML-QD) introduced here provides a 

formal framework that integrates modal logic, probability theory and the epistemic structure of 

quantum measurement. Its aims to model the dynamic progression from probabilistic possibility to 

logical necessity that defines quantum behavior under measurement. Built on the classical modal 

system K, PML-QD introduces a probabilistic valuation mechanism and a compact set of domain-

specific axioms governing superposition, collapse and entanglement. Modal propositions are 

assigned quantitative probability values. Upon measurement, collapse transitions convert possibility 

into necessity, enforcing expressions like □𝜑 to indicate that an outcome has become realized. A key 

non-classical feature of PML-QD is its treatment of epistemic non-monotonicity. In classical modal 

logic, implications such as ⋄ 𝜑 →⋄ □𝜑 may hold under specific frame conditions. However, this does 

not persist in PML-QD due to the collapse-induced pruning of modal paths: once a measurement 

occurs, the model transitions to a substructure where prior possibilities are no longer accessible. This 

modal reduction is syntactically governed by the axiom 𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝜑𝑗) → □𝜑𝑗 ∧ 𝑘 = 𝑗⋀□¬ ⋄ 𝜑𝑘 

which ensures logical consistency while rejecting modal monotonicity. In the PML-QD framework, 

the necessity operator □ does not collapse into a truth predicate. While □𝜑 → 𝜑 holds in the sense 

that a necessary proposition must be true in all accessible worlds, this does not imply absolute truth, 

but only truth relative to post-measurement substructure. This distinction reinforces the epistemic 

separation between pre-measurement probability and post-measurement necessity, marking a 

departure from both classical modal logic and traditional probabilistic logic. Unlike classical 

knowledge frameworks where a proposition is either known or unknown, PML-QD enables a graded 

epistemic treatment. It may accommodate statements of the form: possibility without expectation 𝑃(⋄

𝜑) = 0, expectation without necessity 0 < 𝑃(⋄ 𝜑) < 1 and epistemic finality □𝜑. This enables a more 

nuanced account of quantum epistemology. For example, the proposition “the particle is spin-up” 

need not be treated as simply known or unknown; instead, it can be represented as probable but not 
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necessary prior to measurement, with its degree of belief quantified by quantum amplitudes rather 

than reduced to binary epistemic categories. 

A distinctive feature of PML-QD is its logical minimalism, as it extends the basic modal system 

K only modestly by incorporating probabilistic operators and a small set of collapse-specific axioms. 

The system deliberately avoids polymodal formulations, higher-order quantification, intensional 

types, nonclassical connectives, distributed knowledge operators and dynamic logic constructs, 

focusing instead on a small set of precisely defined epistemic transitions . This design choice 

emphasizes deductive transparency over maximal expressive power. Each formula expresses a 

distinct logical claim that can be semantically validated within Kripke models equipped with 

probability functions. This keeps model-theoretic evaluation computationally feasible while 

retaining expressiveness sufficient to model quantum experimental structures. 

An important advantage of PML-QD is its practical utility in the design and analysis of quantum 

experiments. By formally modelling the transition from probabilistic possibility to logical necessity, 

the framework provides a rigorous structure for anticipating and interpreting measurement 

outcomes. This is especially beneficial in settings involving entanglement swapping, delayed-choice 

quantum erasers and sequential measurements with non-commuting observables, i.e., scenarios 

where standard formalisms often obscure epistemic transitions. For example, in designing a delayed-

choice interference experiment, PML-QD may provide a framework for anticipating how post-

selection contexts modulate which-path information, thereby clarifying the underlying logical 

dependencies before experimental implementation. In entanglement swapping protocols, PML-QD 

may aid in tracking modal correlations to ensure consistency across nonlocal updates. Its ability to 

handle conditional reasoning and epistemic updates supports counterfactual assessments and helps 

validate whether a given experimental configuration logically aligns with quantum postulates. 

Overall, PML-QD offers both a conceptual and practical toolkit for optimizing experimental design 

in foundational quantum research and emerging quantum technologies. 

The epistemic distinctions enabled by PML-QD allow a comparison with traditional 

interpretations of quantum mechanics. In the Copenhagen view, the wavefunction encodes 

predictive knowledge about measurement outcomes but lacks interpretive content about 

unmeasured states (Jaeger 2019). PML-QD refines this position by treating superposition as a 

landscape of modal possibilities rather than ontological ambiguity such that the system can be 

described as potentially occupying multiple states, each with a distinct logical status and probability. 

In relation to QBism, which treats quantum states as subjective degrees of belief (Khrennikov 2018; 

Milgrom 2022), PML-QD provides a formal syntactic structure to those beliefs, grounding them in 

rules of modal inference and derivability. While QBism invokes a probabilistic agent-centric 

perspective, PML-QD situates probability within a logical system constrained by axioms, thus 

offering a structured treatment of epistemic agency. In the many-worlds interpretation, every 

possible measurement outcome is realized in some branch of reality (Devor 2023; Vaidman 2025). 

PML-QD models branching through modal accessibility, but does not commit to metaphysical 

plurality; rather, it treats branching as epistemic openness. The modal relations are not anymore 

between physically instantiated worlds, but between logically accessible epistemic states. 

ML-QD differs from traditional quantum logics, which often replace classical logic with 

alternative systems to reflect the structural or contextual aspects of quantum theory. For instance, the 

Birkhoff–von Neumann approach represents quantum propositions as elements of an orthomodular 

lattice of Hilbert space subspaces, replacing classical Boolean logic with a non-distributive structure 

that reflects observable incompatibility and quantum geometry (Gunji and Nakamura 2022). In 

contrast, PML-QD retains classical propositional logic and introduces modal and probabilistic layers 

to capture quantum uncertainty and measurement dynamics without abandoning logical 

distributivity. In turn, topos-theoretic quantum logic reformulates quantum theory using 

intuitionistic logic and category theory, modeling propositions as presheaves over classical contexts 

and assigning truth values locally without relying on global valuations or classical bivalence 

(Landsman 2017; Jia et al. 2025). By contrast, PML-QD operates within a bivalent logical system and 
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incorporates probability directly, allowing for global epistemic evaluation and explicit modeling of 

measurement-induced transitions 

PML-QD has certain limitations that warrant acknowledgment. It does not attempt to model 

open quantum systems or continuous variable states, nor does it incorporate decoherence processes 

at the level of environment-induced entropy changes. All quantum states are assumed to be finite-

dimensional and all measurements are treated as idealized and projective. This simplification enables 

a syntactically clean and computationally tractable logic but restricts its direct application to more 

complex or realistic quantum systems. While the system models epistemic transitions triggered by 

measurements, it does not incorporate temporal indeterminacy or branching-time semantics; instead, 

it adopts a linear temporal structure via indexed worlds. The exclusion of branching structures limits 

the logic’s ability to model future contingencies or path-dependent quantum evolution. PML-QD also 

omits any formal treatment of epistemic agents or belief operators. While interpretations such as 

QBism emphasize agent-centered probabilities and belief updates, PML-QD focuses exclusively on 

system-level propositions, avoiding subjective or doxastic modalities. Moreover, PML-QD remains 

neutral regarding the ontological status of the quantum state, avoiding commitment to whether the 

wavefunction represents physical reality or informational content. Within these limitations, PML-QD 

provides a coherent logical framework for analyzing the epistemic dynamics of measurement and 

uncertainty in finite, closed quantum systems. The framework serves not as a replacement but as a 

complementary language for articulating epistemic features of quantum processes. Within these 

limitations, PML-QD provides a coherent and complementary logical framework for articulating the 

epistemic dynamics of measurement and uncertainty in finite, closed quantum systems. 

In conclusion, we address whether a unified formal system can capture the modal and 

probabilistic structure of quantum dynamics, particularly the transition from possibility to necessity 

induced by measurement. By integrating modal logic with probabilistic semantics, PML-QD offers a 

framework representing superposition, collapse and entanglement in syntactically precise and 

semantically consistent terms. The main takeaway is that quantum measurement, often seen as 

interpretationally opaque, can be rigorously modeled within a logical framework that clearly 

distinguishes graded possibility from logical necessity across both pre- and post-observation 

contexts. 
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