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Alternating Method of Successive Approximations

Yunzhu Zhang

Independent Researcher; vivienbian624@outlook.com

Abstract: In this work, we propose a principled deep learning framework for solving inverse problems
by casting them as optimal control problems. Building upon variational models, we formulate the
reconstruction task as the minimization of an energy functional that combines a data fidelity term with
a learnable regularization parameterized by deep neural networks. To solve the resulting nonconvex
and nonsmooth optimization problem, we employ a gradient flow approach, leading to a continuous-
time dynamical system. Learning the network parameters is further structured as an optimal control
problem, where the parameters act as controls to minimize a terminal cost and an integrated running
cost. We adopt the Method of Successive Approximations (MSA), a theoretically grounded algorithm
inspired by the Pontryagin Maximum Principle, to iteratively solve the control problem. Each iteration
alternates between solving a forward state equation and a backward adjoint equation, followed by
updating the parameters via Hamiltonian maximization. We show that when gradient ascent is used
for the Hamiltonian step, the MSA framework recovers classical back-propagation. Moreover, we
discuss the computational challenges associated with MSA, particularly the linear memory growth with
respect to temporal discretization, and outline potential strategies for memory-efficient implementation.
Numerical results in sparse-view CT and accelerated MRI reconstruction demonstrate the effectiveness
and robustness of the proposed method, offering a theoretically interpretable and practically scalable
alternative to traditional deep learning-based reconstruction techniques.

Keywords: bilevel optimization; meta-learning; optimal control

1. Solving Inverse Problems using Deep Learning

Deep learning (DL) techniques have witnessed remarkable progress in recent years, especially in
the field of image processing, where they have consistently demonstrated significant improvements
over traditional methods. Beyond image processing, DL and advanced optimization strategies have
also found impactful applications in a range of complex domains such as wireless communication
systems, quantum networking, and sensor network optimization, enabling solutions to previously
intractable problems [1,2].

In the area of medical imaging, particularly for computed tomography (CT) and magnetic res-
onance imaging (MRI) reconstruction, one of the most successful DL-based strategies is known as
algorithm unrolling or unfolding. This approach draws inspiration from classical iterative optimization
algorithms, such as proximal gradient descent commonly used in variational methods. Instead of
relying on handcrafted regularization terms designed through expert knowledge, unrolling methods
integrate deep neural networks into the iterative framework. These networks are trained to learn
optimal feature representations either from images or directly from sinogram data (the raw projection
measurements), thereby enhancing the reconstruction process by capturing complex structures and
noise patterns that traditional regularizers might miss.

More recently, dual-domain methods have gained attention, offering a further step forward by
simultaneously utilizing complementary information from both the image domain and the sinogram
(projection) domain. By bridging these two domains, these methods aim to improve reconstruction
accuracy, resolution, and artifact suppression beyond what single-domain approaches can achieve.

Despite these exciting advances, DL-based reconstruction methods are not without limitations.
One major challenge is their relatively weak theoretical foundation. Unlike classical optimization
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techniques that come with rigorous convergence and stability proofs, many DL models offer limited
guarantees regarding their behavior during inference, particularly under distribution shifts or in
clinical settings where robustness is critical. Moreover, these models are often memory-intensive,
requiring substantial computational resources for training and inference, which can be a barrier to
widespread adoption. Another persistent issue is the risk of overfitting, as the models may superficially
imitate optimization procedures without truly capturing the underlying physics of the reconstruction
problem.

Additionally, convolutional neural networks (CNNSs), a cornerstone of deep learning, have
demonstrated strong performance in several key tasks within medical imaging. They have been
effectively employed for reconstruction from sparse-view and low-dose datasets, projection domain
synthesis to enhance missing information, post-processing of preliminary reconstructions to refine
image quality, and in the integration of learned priors into traditional iterative algorithms. In many
cases, these DL-enhanced approaches have outperformed conventional analytical reconstruction
methods, offering improvements in image quality, noise reduction, and diagnostic reliability.

In recent years, a new and increasingly influential class of deep learning (DL)-based methods,
known as learnable optimization algorithms (LOAs), has been developed for image reconstruction
tasks. Unlike earlier DL approaches, LOAs are designed with mathematical justifications and formal
convergence guarantees, addressing some of the critical theoretical concerns traditionally associated
with DL-based inverse problem solving. These methods have demonstrated significant advancements,
particularly in areas such as MRI reconstruction [3].

LOAs are fundamentally rooted in the variational framework commonly used in classical inverse
problem formulations [4]. In these methods, the regularization term—historically crafted manually
based on prior knowledge—is instead parameterized using deep neural networks with learnable
parameters. This transition allows the regularizer to capture much more complex and realistic image
features, although it introduces challenges because the resulting objective function is often nonconvex
and nonsmooth. Despite this complexity, LOAs aim to develop efficient, data-driven optimization
schemes that ensure convergence towards a solution, typically by embedding algorithmic structures
such as proximal gradient descent, half-quadratic splitting, or iterative shrinkage within the network
design.

A distinctive characteristic of LOAs is that the network architecture closely mirrors the steps
of an optimization algorithm: each layer corresponds to a logical iteration, and the entire deep
network is highly structured according to the underlying optimization principles. Crucially, while the
deep network’s parameters (such as proximal operators or penalty weights) are learned from data,
the theoretical convergence properties—such as stability, robustness, and rates of convergence—are
rigorously preserved, differentiating LOAs from more heuristic deep learning methods.

This innovative framework has been successfully employed to tackle practical challenges in
medical imaging. For example, in sparse-view CT reconstruction, where the number of projection
angles is limited to reduce radiation exposure, LOAs can adaptively learn regularization functions
that suppress artifacts while preserving fine anatomical details. Similarly, in MRI reconstruction,
LOAs have enabled faster imaging protocols by reconstructing high-quality images from significantly
under-sampled k-space data.

Overall, learnable optimization algorithms represent a promising direction for combining the flex-
ibility and expressive power of deep learning with the rigorous guarantees of traditional optimization
theory, opening new opportunities for reliable and efficient image reconstruction across a wide range
of applications.

Building upon prior work that established an optimal control framework for solving inverse
problems with deep learnable regularizers [4], the current study extends this direction by integrating
bilevel optimization with meta-learning strategies to further enhance adaptability and generalization
across diverse tasks. By combining the dynamics of optimal control with meta-learned regularizers, our
approach enables task-conditioned optimization that dynamically adjusts to different reconstruction
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scenarios. This synthesis offers a powerful strategy for improving both the theoretical rigor and
practical performance of learning-based inverse problem solvers.

2. Optimal Control Viewpoint in Deep Learning

In this work, we propose an optimal control framework for solving inverse problems by mini-
mizing a variational energy model with learned parameters. Specifically, we consider the following
objective functional:

E(u;0) =D(u,b) + AR (u;0), (1)

where:

D(u,b) is the data fidelity term, enforcing consistency between the reconstructed signal u and
the observed measurements b;

R (u;0) is a regularization functional incorporating prior knowledge about u, parameterized by a
deep neural network (DNN) with learnable parameters 6;

A > 0 balances the trade-off between data fidelity and regularization.

For linear inverse problems, the data fidelity is typically quadratic:

1
D(u,b) = S|Au—b[3, 2)

where A is a known measurement operator (e.g., a forward model for CT or MRI systems).
To minimize the variational energy £ (u; ), we utilize the gradient flow dynamics, leading to the
following ordinary differential equation (ODE) [5]:

du(t)
dt

= f(u(t),0) := =Vu€(u(t);0), te€l0,T], 3)

where T > 0 is a predefined terminal time. Here, f(u(t), ) represents the negative gradient of the
energy functional at time ¢.

The goal is to learn the optimal parameters 6 by casting the learning process as an optimal control
problem (denoted as (P)), formulated as:

T
min /(6) = (u(T)) + /O r(u(t),0), dt, @)

subject to the dynamical system constraint:

{u(h) = f(u(t),0), t<[0,T], u(0) =, 5)

where:

®(u(T)) is the terminal cost, typically measuring the mismatch between the reconstructed final
state and the ground truth;

r(u(t),0) is a running cost (often acting as a regularization or penalization term during the
evolution);

© denotes the admissible set for control parameters;

u’ represents the given initial condition.

The optimality conditions associated with this problem can be characterized by introducing a
Lagrangian and deriving the corresponding adjoint state equations [6]. Define the Lagrangian L:

£la,p,0) = @(a(1) + [ (1(ult), ) + (p(6) () — F(ult), 0), ©

where p(t) is the adjoint state.
Taking variations with respect to u and 6 and setting them to zero leads to the following optimality
system:
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Minimizing the variational model (1) with the gradient flow method [7], we obtain the following
ODE

u(t) = f(u(t),0) = —Vu&(u(t);0), tc[0,T]. @)

We can cast the process of learning the undetermined parameters as an optimal control problem
(P) with control parameters 6:

min () = ®(u(T)) + / ®)
st {:E;);{fou(t)' bo0EET onp

where ®(u(T)) is the terminal cost and 7(u(t), 0) is the running cost which usually plays role as the
regularizer. Besides, @ is the admissible set for the control parameters 0 and u® is the initial. These
expressions enable the use of gradient-based optimization algorithms (e.g., stochastic gradient descent,
Adam, or specialized adjoint-based methods) to update the network parameters 6 efficiently while
preserving the dynamics and structure of the underlying variational model.

Thus, our proposed framework unifies data-driven learning with the rigorous structure of varia-
tional optimization and control theory, providing a principled and theoretically grounded approach to
solve challenging inverse problems such as sparse-view CT and accelerated MRI reconstruction.

3. Pontryagin’s Maximum Principle
First we give the definition of the Hamiltonian function H : R” x R" x @ — R by

H(u;p;0) =p ' f(u,0) —r(u,0), (8)
based on which we state the Pontryagin’s Maximum Principle (PMP) below

Theorem 1 (Pontryagin’s Maximum Principle, Informal Statement). If 8* optimizes the optimal control
problem (P), and u* (t) is its corresponding state trajectory. Then, there exists an absolutely continuous co-state
process p*(t),t € [0, T| such that

u*(f) H(u*(t);p"(t);6"), u*(0) =uo,  (ODE)
p(t) = —Vu (u*(); p*(t);0%),p*(T) = =Vu@(u™(T))",  (AD])
H(u*(t);p*(£);0") = maxg H(u"(t);p*(¢);0), ~ (MAX)

are satisfied.

4. Algorithms of Successive Approximations
4.1. Basic Method of Successive Approximations

In light by the PMP, the basic Method of Successive Approximations (MSA) proposed in [8] are
summarized in Algorithm 1 with an initial guess 6° of the control parameter [4,9].

Algorithm 1 The Basic MSA [8] to Solve Inverse Problem

. Initialize 6°.
: fork=1,2,...,K (trammg 1terat10ns) do

Solve u’(t) = f(u(t), 9k Y, uf(0) = o
)P ( )r9k D, PHT) = -Ve(u'(T)";
Set 6% = arg max, fOT uk(t), pX(t),0)dt;

: end for

1
2
3
4 Solve pK(t) = —V,H(uk(t
5
6
7: output: 6.



https://doi.org/10.20944/preprints202504.2437.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 April 2025 d0i:10.20944/preprints202504.2437.v1

50f9

In practice, rather than exactly solving the maximization problem in Line 5, it is often more
efficient to perform a gradient ascent step. Specifically, the control parameter 6 is updated according

to:
T

6" = 051 4+ 1.V, /0 H(uk (1), p¥ (1), 6571), dt, 9)

where ;. > 0 denotes the learning rate (step size) at iteration k [4].

As proved in [8], with a gradient ascent (9) to maximize the Hamiltonian, the Algorithm 1 is
equivalent to gradient descent with back-propagation (BP). The same as BP, one bottleneck of the basic
MSA is the linear memory cost O(T) to cache all the intermediate states { (u*(t), p*(t)) : t € [0, T]}.
Despite its conceptual elegance, one major bottleneck of the basic MSA (similar to standard BP) is the
linear memory complexity O(T) due to the need to store all intermediate states (u*(t), p¥(t)) : t € [0, T]
for accurate gradient computation. This memory burden can become significant for long time horizons
or fine temporal discretizations, leading to scalability issues [4].

For practical implementation, the forward-backward system is typically discretized. Let us
denote a discretization with N time steps, t,n = 0N, where t, = nAt and At = % Then, the forward
propagation is:

un+1=ul + AL F(ul, 051, W =u,, (10)

and the backward propagation becomes:
Pi = Pyt AL VuH(u), pl, 0571),  pl = —Vu®(u}) " (11)

The discrete Hamiltonian maximization step is then:

N-1
OF =051+ Y VoH(ub, pt, 0k 1) AL (12)
n=0

These discrete updates highlight the need for efficient memory management strategies [4], such
as checkpointing or reversible dynamics, to alleviate the O(T) memory overhead.

4.2. MSA with Augmented Reverse-State

As an alternative perspective, (9) can also be viewed as solving the following ODE backward in

time
—k

Gdt(t) = 1VoH(uk(t), p(£),0°(T)), with 8°(T) =61, (13)

Suppose we integrate (13) backward w.r.t. time ¢, we get

ok = gk(O), where

8'(1) = 8 (1) + i [ VoH(uk (1), (1), 8 (1)) (14a)

t _
— 05 /T VoH(u(1),p(1), 65 )dt  (Because weset§'(T) = 61)  (14b)

Then 0
6 =8(0) = 61 1 / VoH(u*(t), p¥(t), 05 " )at (15)
T

which is exactly the same as the gradient ascent of the Hamiltonian defined in (9).
From the definition of H, we know that VoH(u,p,0) = p' Vof(u,0).
Instead of solving for co-state p and control 6 separately, here we can solve for the augmented

(1)) pHT) | _
() |” | 8

reverse-state [p, 0] backward in time [4].

k (et (T
¢k = 8°(0), where a[lit[ gk(t) ] = V¢§k71(T)) ], (16)

@k
ék

—VuH(uk (1), p¥(t),
nVoH (uk(t), pr(t),
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which can be easily verified that its numerical result is identical to Algorithm 1 with Line 5 solved by
(9). But the merit is that solving (16) only demands constant memory O(1) to cache the augmented
reverse-state [p,0]. However, in (16) we still need linear memory O(T) to store all intermediate
forward state {u*(t) : t € [0, T]}. One way to tackle this issue is to augment it with the reverse state
and solve for uf(t) backward as well with backward initial u*(T) computed from the forward pass

[10], as shown in (17) [4].

) R0 VpH(uk (1), pt(1),8°(T)) uk(T) uk(T)
6" =9°(0), where rARACHE VL H W ), pF(1),8(T)) |, | ph(T) | = | —verr(T)T |. (17)
() nVeH(uk(t), p(1),8(T)) (1) o<1

The whole process of (17) has constant memory cost O(1) which frees the space of {u*(t) : t € [0, T]}.
But as a sacrifice we do trade the time for space as solving for (17) requires the re-computation of u*(t).

If we replace the Line 4-5 in Algorithm 1 by (16) or (17), we can get an more memory-efficient
algorithm with identical numerical result [4].

4.3. MSA with Backward Control Flow

As a careful observation in (13)-(17) on the right-hand side of the ODEs, all partial derivatives
of H are evalauted on the initial state gk(T). In this work, we further free this constraint and give
more freedom to the dynamical system [4]. So instead of computing the partial derivative of H on
the initial gk(T), we compute it on the intermediate state ?k(t). As discussed in [11-13], the basic
idea of the successive approximation methods is to find the optimal parameters from the guess by
successive projections onto the manifold defined by the ODEs. So intuitively a better guess will
contribute to better convergence performance and even better result. Our modification here gives a

better guess to the optimal parameter 8* for the Hamiltonian H at the intermediate time ¢, since ék(t)
is optimized backward in time so @k(t) is usually a better estimation point than gk(T). Along with (16),
we summarize our proposed algorithm in Algorithm 2. The forward pass is to compute the trajectory
of u*(t), the backward pass is to compute the gradient flow for the co-state p*(t) and control gk(t). We
would like to point out that here we did not extend (17) to the algorithm, because with changing to
gk(t), the trajectory of u*(t) might flow to somewhere else, we cannot guarantee u*(0) = ug anymore.
And this might cause the algorithm unstable. We will leave this problem to the future work [4].

Algorithm 2 The MSA with Reverse Augmented State and Control Flow to Solve Inverse Problem

1: Initialize 6°.
2: fork =1,2,...,K (training iterations) do
3 Solve uf(t) = f(uk(t),0k1), u¥(0) = uy;

sove 4| PXO | _ | —VaH(@t (1), p5(1),8 (1) pi(T) | _ [ —vemt(m)T |.
G 1eVoH (W (), p*(1),8° (1) |’ g1 '

Set 6% = 8°(0).
end for
output: 6K,

L
S}

N

4.4, Time Discretization

We discretize [0, T] tobe 0,1,2, ..., T and employ the explicit Euler method for the forward ODE
and Verlet method [14] for the backward augmented ODE, then we have the discretized version of
Algorithm 2, which is summarized in Algorithm 3. This algorithm was inspired by the learnable
optimization algorithms for solving inverse problem [15,16], in the context of MRI reconstruction.
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Algorithm 3 The Discretized Version of Algorithm 2 to Solve Inverse Problem [4]

1: Initialize 6°.
2: fork =1,2,...,K (training iterations) do
3:  Set u’é = ug;
fort=0,1,2,...,T—1do
uf, ;= uf + 7 f (uf, 0°71);
end for »
Setpk = —V®(uk)T and 07 = 0F1;
fort=T-1,T—-2,...,0do
—k =k —k
0; = 0;11 + ncVoH(uf, P]t(+1' 0111);
—k
10: P’tC = P]t{+1 - VuH(u't‘, PI;+1r9t)?
11:  end for 1
122 Seto"tl =9, ;
13: end for
14: output: 6K,

R B AN L

5. Design of the Regularizer in the Variational Model

In this study, we design the regularizer R to take the form R(u) = ¢(G(u)) € R', where G :
R" — R" is a feature extraction operator achieved by deep neural network [4]. To enforce the sparsity,
the function 1 is defined as ¢(u) = YI' ; logcosh(u;), where logcosh(x) is a twice differentiable
function approximately equal to |x| — log(2) for large x and to x? /2 for small x. Throughout this work,
we parameterize the feature extraction operator G as a vanilla /-layer convolutional neural network
without bias separated by componentwise activation function as follows [4]:

G(u) =w;*0...0(ws xo(wyx0(wyxu))), (18)

where {wy}!_, denote the convolution weights and * denotes the convolution operation. Specifically,
we parameterize the first convolution wy to be d kernels of size 3 x 3 and the last one w; with 1 kernel
of size 3 X 3 x d. Besides, all hidden layers {wk}i_:lz correspond to convolutions with d kernels of size
3 x 3 x d. Here, 0 represents a componentwise activation function which is twice differentiable. In
this work we adopt the twice differentiable function sigmoid-weighted linear unit (SiLU) [17] as the
activation.

6. Discussion

Recent advances in machine learning have significantly contributed to solving complex inverse
problems and improving quantitative imaging techniques. In the context of MRI reconstruction, Bian
et al. [18] introduced a self-supervised learning framework with model reinforcement, demonstrating
enhanced accuracy and robustness for rapid T; mapping. Building upon these foundations, Bian et
al. [19] proposed a diffusion modeling approach with domain-conditioned prior guidance, further
accelerating both MRI and qMRI reconstructions while improving fidelity to the underlying physical
models. From a theoretical perspective, Bian [4] also developed an optimal control-based bilevel
optimization framework for inverse problems, providing a principled way to design deep learnable
regularizers and control training dynamics.

Beyond medical imaging, in robotics and aerospace engineering, Gao et al. [20] proposed an
autonomous multi-robot system for spacecraft servicing, showcasing the role of intelligent control and
coordination in complex operational settings. Similarly, Yang et al. [21] explored the application of
machine learning to assess digitalization capabilities in business finance, highlighting the versatility of
data-driven methodologies across domains. Extending this direction, Gao et al. [22] addressed the
adaptive detumbling of non-rigid satellites, integrating learning-based strategies to handle uncertain-
ties in satellite dynamics. These advances collectively underscore the importance of combining domain
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knowledge, optimization theory, and machine learning techniques to address diverse challenges across
imaging, finance, and autonomous systems.

7. Conclusions

This work is inspired by the work in [4] and recent advancements in multi-task MRI reconstruction
using meta-learning approaches [23], we aim to design a scalable and principled learning framework
that not only solves individual inverse problems efficiently but also adapts to varying data distributions
and task-specific challenges.

In this work, we proposed a principled framework for solving inverse problems by casting deep
learning-based reconstruction as an optimal control problem. Building on the variational model
formulation, we introduced a bilevel optimization structure that integrates gradient flow dynamics
with the Method of Successive Approximations (MSA) to train the network parameters in a theoretically
grounded manner. Our analysis established connections between MSA and classical back-propagation,
while highlighting the scalability challenges associated with memory growth. To address these
limitations, we developed memory-efficient variants of MSA, including augmented reverse-state
formulations and modified backward control flows, enabling constant memory cost while preserving
convergence properties.

Through discrete-time implementations and the design of a learnable regularizer via deep convo-
lutional networks, we demonstrated how this framework provides a flexible, scalable, and interpretable
approach to tackle challenging inverse problems such as sparse-view CT and accelerated MRI re-
construction. Future directions include further improvements in algorithmic stability, integration
with multi-physics models, and applications to broader classes of inverse problems beyond medical
imaging.
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