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Abstract

We study Unmanned Aerial Vehicle (UAV) assisted 5G uplink connectivity for disaster response,
where a UAV acts as an aerial base station to restore service to ground users. We formulate a joint
control problem coupling UAV kinematics (bounded acceleration and velocity), per-subchannel uplink
power allocation, and uplink Non-Orthogonal Multiple Access (UL-NOMA) scheduling with adaptive
successive interference cancellation (SIC) under a minimum user-rate constraint. The wireless channel
follows 3GPP urban macro (UMa) with probabilistic Line of Sight/Non Line of Sight (LoS/NLoS),
realistic receiver noise and noise figure, and user equipment (UE) transmit-power limits. We propose
a bounded-action proximal policy optimization with generalized advantage estimation (PPO-GAE)
agent that parameterizes acceleration and power with squashed distributions and enforces feasibility
by design. Across four user distributions (clustered, uniform, ring, edge-heavy) and multiple rate
thresholds, our method increases the fraction of users meeting the target rate by 8.2− 10.1 percentage
points over strong baselines (OFDMA with heuristic placement, PSO-based placement/power, PPO
without NOMA) while reducing median UE transmit power by 64.6%. Results are averaged over ≥ 5
random seeds with 95% confidence intervals; ablations isolate the gains from NOMA, adaptive SIC
order, and bounded action parameterization. We discuss robustness to imperfect SIC and CSI errors,
and release code/configurations to support reproducibility.

Keywords: UAV-assisted 5G; Uplink NOMA; successive interference cancellation (SIC); uplink; PPO-
GAE; Emergency Communications

1. Introduction
Fifth-generation (5G) mobile networks deliver high data rates and stringent quality-of-service

(QoS) that guarantees low latency, high throughput, and reliable coverage through a dense and
flexible radio access network (RAN). In adverse situations such as natural disasters, power outages, or
sudden traffic surges, however, fixed terrestrial base stations (BSs) may become unavailable or severely
degraded. In these cases, rapidly deployable unmanned aerial vehicle base stations (UAV-BSs) offer a
practical means to restore coverage and capacity. Yet, realizing dependable uplink connectivity with a
UAV-BS is challenging: the air-to-ground (A2G) channel is dynamic and height-dependent, flight and
power budgets are constrained, and user scheduling must respect minimum-rate requirements while
coping with inter-user interference.

This work considers a scenario in which a fixed BS becomes inoperable and a single UAV-BS is
dispatched to serve affected users. We target the uplink and adopt non-orthogonal multiple access
(NOMA) with adaptive successive interference cancellation (SIC) to increase spectral efficiency under
minimum per-user throughput constraints. The decision-making problem is inherently continuous and
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coupled: the UAV must select its 3D motion while the network jointly schedules users and allocates
per-subchannel transmit powers. Classical trajectory planners (e.g., particle swarm or direct search)
can struggle with scalability and non-stationarity, and value-based deep reinforcement learning (DRL)
methods such as deep Q networks (DQN) operate in discrete action spaces and may suffer from
overestimation bias and target-network instability [1–5]. In contrast, policy-gradient methods directly
optimize in continuous action spaces and can offer improved stability.

Motivated by these considerations, we develop a continuous-control actor–critic solution based
on proximal policy optimization with generalized advantage estimation (PPO–GAE). PPO’s clipped
surrogate objective improves training stability, while the GAE estimator balances bias–variance trade-
offs for sample-efficient learning. We further enforce bounded actions to respect flight envelopes
and power limits, ensuring safe-by-construction decisions. The resulting agent jointly controls UAV
kinematics and uplink resource allocation to maximize the number of users whose minimum-rate
constraints are satisfied.

Research gap. Existing surveys synthesize broad UAV networking applications but do not provide
a unified, learning-based formulation that jointly optimizes UAV motion, uplink NOMA scheduling
with adaptive SIC, and per-subchannel power allocation under minimum-rate constraints in a realistic
3GPP A2G setting [6]. Metaheuristic trajectory designs (e.g., particle swarm and direct search) can
improve channel quality [7], yet they usually decouple motion from radio resource management and do
not exploit continuous-control RL. Offline neural surrogates for throughput prediction and deployment
planning [8] bypass closed-loop control and are less responsive to fast channel and traffic fluctuations
than on-policy methods such as PPO–GAE. Works on spectrum/energy efficiency in cognitive UAV
networks [9] and DRL for downlink multi-UAV systems under fronthaul limits [10] address important
but different regimes; they neither tackle the uplink NOMA case with adaptive SIC nor the bounded
continuous-action control that jointly handles UAV kinematics and per-subchannel power in disaster-
response scenarios. Consequently, there remains a need for a stable, continuous-control, learning-based
framework that closes this gap.

Our contributions are summarized as follows:

• Joint control formulation. We pose a coupled optimization that integrates UAV kinematics, uplink
NOMA scheduling with adaptive SIC ordering, and per-subchannel power allocation under
minimum user-rate constraints, with the objective of maximizing the number of served users.

• Bounded-action PPO–GAE agent. We design a continuous-action actor–critic algorithm
(PPO–GAE) with explicit action bounding for flight and power feasibility, yielding stable learning
and safe-by-construction decisions.

• Realistic A2G modeling & robustness. We employ a 3GPP-compliant A2G channel and evaluate
robustness to imperfect SIC and channel-state information (CSI), capturing practical impairments
often overlooked in prior art.

• Ablation studies. We isolate the gains due to (i) NOMA vs. OMA, (ii) adaptive SIC ordering, and
(iii) bounded action parameterization, and quantify their individual and combined benefits.

• Reproducibility. We release complete code and configurations to facilitate verification and
extension by the community.

Why PPO instead of DQN? Unlike DQN, which assumes a discrete and typically small action
space and is prone to overestimation bias and target-network lag—PPO directly optimizes a stochastic
policy over continuous actions and uses a clipped objective to curb destructive policy updates. This is
well aligned with the continuous, multi-dimensional action vector arising from simultaneous UAV
motion and power-control decisions, and it yields improved training stability and sample efficiency
compared with value-based baselines [1–5].

The remainder of this paper is organized as follows. Section 2 reviews related work on UAV-
enabled cellular systems, NOMA scheduling, and DRL for wireless control. Section 3 details the
system model, problem formulation, and the proposed bounded-action PPO–GAE algorithm. Section 4
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presents quantitative results, including ablations and robustness analyses. Section 5 discusses insights,
practical implications, and limitations. Section 6 concludes the paper and outlines future directions.

2. Related Work
UAV-assisted 5G networking has attracted sustained interest across wireless communications,

while reinforcement learning (RL) has emerged as a powerful tool for control and resource optimiza-
tion in nonstationary environments. Within this broad landscape, our work targets a specific and
underexplored setting: uplink emergency connectivity restoration with a single UAV acting as an aerial
base station, under realistic 3GPP urban macro (UMa) air-to-ground channels and practical device
constraints.

In [11], the authors study energy sustainability for UAVs via wireless power transfer from
flying energy sources, coordinating multiple agents with multi-agent DRL (MADRL). Their objective
emphasizes maximizing transferred energy and coordinating energy assets. By contrast, we address
emergency connectivity restoration for ground users with a single aerial base station, focusing on
minimum-rate coverage under UE power limits and receiver noise. Methodologically, we employ a
bounded-action PPO–GAE agent to jointly control UAV kinematics and uplink resource allocation,
whereas [11] centers on energy-transfer optimization and multi-agent coordination.

Trajectory learning without side information is demonstrated in [12], where deterministic policy
gradients operate in a continuous deterministic action space to learn UAV paths. Our formulation
differs in scope and modeling: we couple UAV motion with uplink NOMA scheduling (with adaptive
SIC) and per-subchannel power allocation, and we train an actor–critic PPO–GAE agent under realistic
3GPP UMa LoS/NLoS channels with rigorous ablations isolating the effects of NOMA, SIC ordering,
and bounded action parameterization.

A broad survey in [13] reviews supervised, unsupervised, semi-supervised, RL, and deep learning
techniques for UAV-enabled wireless systems, highlighting the promise of learning-based control. Our
approach contributes to this line by casting emergency uplink access as a continuous-control problem
and by leveraging PPO–GAE with action squashing to ensure feasibility under flight and power
constraints.

Work in [14] considers multiple UAVs serving as aerial base stations during congestion, aiming to
maximize throughput. The solution combines k-means clustering with a DQN variant, separating user
clustering from UAV control. In contrast, we focus on disaster-response scenarios where establishing
connectivity with minimum-rate guarantees is paramount; we jointly optimize motion, UL-NOMA
scheduling with adaptive SIC, and per-subchannel power in a single learning loop. Unlike [14], our
setting enforces minimum-rate fairness, adopts 3GPP-compliant channel modeling, and respects UE
transmit-power limits, while avoiding the discretization and overestimation issues that can affect DQN
in continuous domains.

The authors of [15] investigate UAV-aided MEC trajectory optimization for IoT latency/QoE,
primarily benchmarking computing-centric baselines. Our problem is communication-centric: we
model 3GPP UMa LoS/NLoS propagation, receiver noise figures, and UE power caps, and we optimize
the uplink access process itself rather than edge-computing pipelines.

Energy-efficiency maximization with quantum RL is explored in [16], where a layerwise quantum
actor–critic with quantum embeddings is proposed. While they mention disaster recovery, their
primary metric is energy efficiency. We target user-side QoS during emergencies, adopting bounded-
action PPO–GAE (with squashed distributions) to stabilize continuous control under kinematic and
power constraints; our method is immediately deployable on classical hardware and directly aligned
with current 5G UAV-assisted systems.

Path planning for post-disaster environments is addressed in [17] via an Adaptive Grey Wolf
Optimization (AGWO) algorithm focused on trajectory efficiency. Our formulation instead treats a
joint communication–control problem for UAV-assisted uplink access with NOMA and adaptive SIC,
solved via a continuous-control RL agent.
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Finally, [18] studies joint resource allocation and UAV trajectory optimization in downlink UAV-
NOMA networks with QoS guarantees using a heuristic matching-and-swapping scheduler and convex
optimization. We consider the complementary uplink case in disaster response, replacing heuristic
matching with an RL-driven policy (bounded-action PPO–GAE) that adapts online across varied user
spatial distributions.

2.1. UAV Path and Trajectory Optimization: Prior Art and Research Gap

Trajectory and placement optimization for UAVs spans surveillance, mapping, IoT data collection,
and cellular augmentation. Surveys synthesize challenges in 3D placement and motion planning
under realistic constraints, emphasizing the coupling between mobility and communication objectives
[19–25]. Algorithmically, metaheuristics (e.g., improved RRT with ACO) address obstacle avoidance;
continuous-control RL methods (e.g., DDPG, TD3) have been applied to target tracking and data
collection under imperfect CSI. UAVs are also orchestrated for 3D reconstruction and informative path
planning, where trajectories maximize information gain.

These lines of work largely optimize path efficiency or data-gathering utility, often decoupling
motion from radio resource management or focusing on downlink/IoT objectives. In contrast, we
close a specific gap: uplink emergency access with minimum-rate constraints, where the UAV must
jointly (i) respect kinematic limits, (ii) schedule UL-NOMA users with adaptive SIC, and (iii) allocate
per-subchannel powers—all under a realistic 3GPP UMa channel. Our bounded-action PPO–GAE
agent provides a unified, continuous-control solution that enforces feasibility by design and improves
minimum-rate coverage.

2.2. State of the Art in UAV Wireless Optimization and the Disaster-Response Uplink Gap

UAV-enabled wireless systems have been optimized for security, energy, spectrum efficiency, and
waveform robustness. Representative studies include physical-layer security with artificial noise and
Q-learning power control, energy-centric designs for rotary-wing platforms using trajectory/hovering
co-optimization and TSP-inspired tours, laser-/wireless-powered communications with joint energy
harvesting and throughput objectives, and uplink formulations that couple motion with transmit-
power control via successive convex approximation (SCA). NOMA-based designs exploit channel
disparities for capacity gains over OMA, while OFDM robustness under aerial Doppler has motivated
waveform-aware control. Disaster scenarios have been examined through fading/topology models
and aerial overlay architectures; game-theoretic approaches address adversarial jamming in vehicular
IoT [26–37].

Across these threads, most methods optimize either mobility or power/scheduling, emphasize
downlink throughput or energy efficiency, rely on deterministic heuristics or convex surrogates, and
often adopt simplified channels. Our work targets the missing regime: uplink emergency connectivity
restoration under 3GPP UMa LoS/NLoS with realistic noise figures and UE power limits, solved by a
bounded-action PPO–GAE agent (with squashed/Beta policies) that jointly chooses UAV accelerations
and per-subchannel power while performing UL-NOMA scheduling with adaptive SIC. Compared
with OFDMA heuristics, PSO-style placement/power, and PPO without NOMA, our approach raises
minimum-rate coverage and markedly reduces median UE transmit power, with robustness to SIC
residuals and CSI errors. This positioning clarifies the gap our study fills and motivates the unified
learning-based framework developed in the following sections.

3. Materials and Methods
This section provides a concise yet comprehensive description of the uplink air-to-ground (A2G)

scenario, user distribution, parameter initialization, experiment model, optimization problem, con-
straints, and the reinforcement-learning solution framework.
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3.1. Initialization

Scenario assumptions and resources. We study a single-cell uplink multiple-access channel (MAC) served
by one UAV-based base station. Unless otherwise noted, all quantities are defined at the start of
training and remain fixed across episodes.

• Users and channel setting.
A set of N = 100 users, N = {1, 2, . . . , n, . . . , N}, transmit to the UAV over frequency-selective
channels impaired by additive Gaussian noise. Per-user channel gains and power variables are
denoted {g1, . . . , gN} and {P1, . . . , PN}, respectively.

• Spectrum partitioning and MAC policy.
The system bandwidth is W = 10 MHz, partitioned into S = 10 orthogonal subchannels, S =

{1, 2, . . . , s, . . . , S}, each with Ws = 1 MHz. We employ uplink non-orthogonal multiple access
(UL–NOMA) with at most two users per subchannel. User n allocates power {Pn,s}S

s=1 subject to
the per-UE budget

S

∑
s=1

Pn,s ≤ P(max)
n , (1)

which is enforced in the optimization (see constraints). The UL–NOMA pairing and successive
interference cancellation (SIC) rule are detailed later and used consistently during training (see
Algorithm 1).

• User field (spatial layout).
Users are uniformly instantiated within a 1000× 1000 m2 area (i.e., 1 km2). Alternative layouts
(e.g., clustered, ring, edge-heavy) can be sampled for robustness; the initialization here defines
the default field for the baseline experiments.

• UAV platform and kinematic bounds.
A single UAV acts as the RL agent and is controlled via 3D acceleration commands under hard
feasibility limits:

– altitude Hz ∈ [0, 121.92] m (≤ 400 ft),
– speed ∥v∥ ≤ vmax = 44.707 m/s (≈ 100 mph),
– acceleration ∥a∥ ≤ amax = 8.94 m/s2.

These bounds are baked into the action parameterization to guarantee feasibility by design (see
the PPO action head and spherical parameterization).

• Time discretization.
The environment advances in fixed steps of ∆t = 100 ms, which is used consistently in the
kinematic updates, scheduling decisions, and reward aggregation.

Regulatory note. The kinematic limits above are highlighted here and later reiterated in the constraint
set because they reflect operational requirements under FAA Part 107. Throughout training and
evaluation, these limits are strictly enforced in the controller (see Algorithm 1), ensuring that all
synthesized trajectories remain within safe operating regimes.

3.1.1. Notation and Symbols

Table 1 summarizes the main symbols used throughout the section; these symbols are referenced
within the channel model (as shown in Figures 1–4), the throughput/SIC expressions, and the training
pseudocode (as shown in Algorithm 1).
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Table 1. Symbols and definitions used across the system model, A2G channel/UMa propagation, UL–NOMA/SIC,
UAV kinematics, and the RL (PPO–GAE) formulation. Units are shown where applicable.

Symbol Meaning (units)

N, N Number/set of users; index n
S, S Number/set of subchannels; index s
W, Ws System and per-subchannel bandwidth (Hz)
pt = [xt, yt, Ht]⊤ UAV position at time t (m)
vt, at UAV velocity/acceleration (m·s−1, m·s−2)
vmax, amax Max UAV speed/acceleration
Hmin, Hmax Min/Max UAV altitude (m)
fc Carrier frequency (Hz)
gn,s Effective channel gain (linear) for UE n on subchannel s
Pn,s, Pmax

n UE power on s (W) and per-UE limit (W)
Ns Receiver noise on s (W); NF: noise figure (dB)
In,s Residual interference for UE n on s (W)
πs(·) SIC decoding order on subchannel s
ξ SIC residual factor in [0, 1]
Rn,s, Rmin Rate on s (bit·s−1); per-UE target rate
∆t Time step (s)
ρ, θ, ϕ Spherical-parameterized acceleration magnitude/angles
πθ , Vw Policy/value networks with parameters θ, w
γ, λ Discount factor and GAE parameter
Ât Generalized advantage estimate at time t

st System state at time t (features used by actor/critic)
at Agent action at time t (UAV accel. & power allocation)
rt Immediate reward at time t (dimensionless)
V(s; w) Critic value function parameterized by w

3.2. System Model

This study adopts the Al-Hourani air-to-ground (A2G) path-loss model for UAV communications,
which is widely used and validated in the literature [38–40]. We focus on an uplink setting with
UL–NOMA under realistic channel, noise, and device constraints. The geometric relationships and
line-of-sight (LoS) behavior are summarized in Figure 1, while elevation-dependent trends in loss and
LoS probability are illustrated in Figures 3 and 4 and later used by the rate model.

3.2.1. A2G Channel in 3GPP UMa

• Environment and propagation modes.
Following [41,42], the UAV base station (UAV-BS) is modeled as a low-altitude platform (LAP)
operating in a 3GPP Urban Macro (UMa) environment. Radio propagation alternates probabilisti-
cally between LoS and NLoS conditions depending primarily on the elevation angle between the
UAV and a given user equipment (UE); see Figure 1 for the geometry.
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Figure 1. A2G geometry and probabilistic LoS/NLoS propagation in a 3GPP UMa environment. The UE at
(x̃n, ỹn) observes the UAV at horizontal offset rnj and altitude Hj, yielding elevation angle ψn. The LoS probability
PLoS(ψn) in (3) governs whether the link follows LoS (with excess loss ηLoS) or NLoS (ηNLoS). Free-space loss (4)
plus excess loss produces PLLoS/PLNLoS, which are converted to linear gains and mixed in (7) for rate calculations.
The quantities used in (2)–(7) are annotated in the sketch.

• Geometry and LoS probability (Al-Hourani).
Let the UAV be at horizontal coordinates (xj, yj) and altitude Hj, and user n be at (x̃n, ỹn). The
ground distance and slant range are

rnj =
√
(xj − x̃n)2 + (yj − ỹn)2, dnj =

√
H2

j + r2
nj. (2)

With elevation angle (degrees) ψn = 180
π tan−1(Hj/rnj

)
, the LoS probability is

PLoS =
1

1 + a exp[−b(ψn − a)]
, PNLoS = 1− PLoS, (3)

with (a, b) = (9.61, 0.16) for urban environments [41]. Larger elevation angles typically increase
PLoS, but higher altitudes also increase distance dnj, creating a distance–visibility trade-off.

• Path loss (dB) and effective channel gains (linear).
Free-space loss at carrier fc is

LFS(dnj) = 20 log10

(
4π fcdnj

c

)
, (4)

with fc = 2 GHz and c the speed of light. Excess losses for UMa are typically ηLoS = 1 dB and
ηNLoS = 20 dB, yielding

PLLoS = LFS(dnj) + ηLoS, PLNLoS = LFS(dnj) + ηNLoS. (5)

Convert to linear scale before mixing:

gLoS = 10−PLLoS/10, gNLoS = 10−PLNLoS/10, (6)

and form the effective per-UE, per-subchannel gain as

gn,s = PLoS gLoS + PNLoS gNLoS. (7)

• Computation recipe (linked to Figure 1).
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1. Compute rnj and dnj via (2).
2. Evaluate PLoS(ψn) using (3); set PNLoS = 1− PLoS.
3. Compute LFS and add excess losses in (5).
4. Convert to linear gains via (6).
5. Mix LoS/NLoS per (7) (or sample the state in Monte Carlo).

• Interpretation and design intuition.
Raising altitude improves visibility (higher PLoS) but increases distance (higher LFS). Optimal
placement therefore balances these effects and is decided jointly with scheduling and power
control by the RL agent (see Algorithm 1). The net elevation trends are shown next.

Figure 2. Illustrative UAV trajectory over a uniform N=100-UE layout in 1 km2. This reference track respects
geofencing and kinematic limits, and it is used to contextualize the elevation-dependent path-loss and LoS
probability profiles in Figures 3 and 4.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 September 2025 doi:10.20944/preprints202509.2037.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.2037.v1
http://creativecommons.org/licenses/by/4.0/


9 of 27

Figure 3. Path loss versus elevation angle in UMa for LoS, NLoS, and their effective mixture. The x-axis shows
elevation angle (degrees), and the y-axis shows path loss (dB). The effective curve reflects the expectation implied
by (7), capturing the trade-off between improved LoS at higher elevation and increased distance.

Figure 4. LoS probability versus elevation angle under the Al-Hourani model [41]. The sigmoid transition (notably
around 30◦–40◦) highlights rapid gains in LoS as the UAV moves toward overhead, guiding vertical and lateral
placement for coverage.
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3.2.2. Throughput Model (UL–NOMA with SIC)

• Rate expression and interference structure.
Using Shannon’s formula, the rate of user n on subchannel s is

Rn,s = Ws log2

(
1 +

Pn,sgn,s

In,s + Ns

)
, (8)

where Ws is the subchannel bandwidth, Pn,s the UE transmit power, gn,s the effective channel gain
from (7), and In,s the post-SIC residual interference.

• Receiver noise and SIC residuals. Per-subchannel noise (thermal plus receiver figure) is

Ns [dBm] = −174 + 10 log10(Ws) + NF, Ns [W] = 10(Ns [dBm]−30)/10, (9)

with NF = 7 dB. UL–NOMA decodes in ascending received power or under an adaptive rule; the
interference for user n on subchannel s is

In,s = ∑
k∈Us : π(k)>π(n)

αk→n Pk,sgk,s, (10)

where π(·) denotes the decoding order, Us the scheduled set on s, and αk→n ∈ {ξ, 1} models
imperfect SIC with residual factor ξ ∈ [0, 1]. The elevation-driven behavior of gn,s and its impact
on Rn,s are visualized in Figures 3 and 4.

3.2.3. Aerodynamic/Kinematic Update Model

• Semi-implicit (trapezoidal) integration.
We update the UAV state from velocity and acceleration at time t (given v(t−1) and a(t−1)
previously). The velocity update is

V(t) = V(t− 1) + ∆t a(t), (11)

and the position update is
Pos(t) = Pos(t− 1) + D, (12)

where the traveled distance is

D =
∫ t

t−1
∥V(τ)∥ dτ ≈ ∥V(t− 1)∥+ ∥V(t)∥

2
∆t. (13)

This trapezoidal scheme preserves kinematic feasibility and aligns with the illustrative trajectory
in Figure 2. In practice, velocity and position are clipped to respect the speed, altitude, and
geofencing limits enforced by the controller (see Algorithm 1).

3.3. Problem Formulation

We jointly optimize per-UE power allocation and UAV acceleration to maximize rate coverage—the
number of users meeting a target throughput within each episode. Unless otherwise stated, we consider
N = 100 users over a 1 km2 area and S = 10 subchannels. Time is slotted as t ∈ T = {0, 1, . . . , T} with
step ∆t = 0.1 s and horizon T = 200 (i.e., 200 time steps per episode; training uses 1000 episodes). The
chosen user density aligns with typical population scales [43] and demonstrates scalability.

• Scope, horizon, and decision variables.
At each time t ∈ T , the controller selects (i) per-UE per-subchannel transmit powers
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{Pn,s(t)}n∈N , s∈S and (ii) the UAV acceleration vector a(t) ∈ R3. The instantaneous rate of
UE n on subchannel s is given by (8), with channel gains from (7). The aggregate rate of UE n is

Rn(t) = ∑
s∈S

Rn,s(t), (14)

where Rn,s(t) follows Shannon’s law with UL–NOMA/SIC interference structure (cf. System
Model).

• Objective: rate-coverage maximization.
Let Rmin = 0.5 Mbps be the per-UE target rate. Define the coverage indicator

xn(t) =

1, if Rn(t) ≥ Rmin,

0, otherwise.
(15)

The optimization objective over an episode is

arg max
{Pn,s(t)}, a(t)

T

∑
t=0

N

∑
n=1

xn(t). (16)

• Constraints.We enforce communication, kinematic, geofencing, and regulatory constraints at every
time step t:

– Per-UE power budget:

S

∑
s=1

Pn,s(t) ≤ P(max)
n (e.g., 23 dBm), ∀n. (17)

– Non-negativity:
Pn,s(t) ≥ 0, ∀n, s. (18)

– UL–NOMA scheduling and SIC order (at most two UEs per subchannel; valid SIC decoding
order):

|Us(t)| ≤ 2, πs(t) is a valid SIC order, ∀s. (19)

– Kinematics (acceleration and velocity; FAA bound [44]):

∥a(t)∥ ≤ amax = 8.94 m/s2, ∥v(t)∥ ≤ vmax = 100 mph (≈ 44.7 m/s). (20)

– Geofencing (UAV horizontal):
x(t), y(t) ∈ [−0.5, 1.5] km. (21)

– User field (fixed deployment region):

x̃n, ỹn ∈ [0, 1] km, ∀n. (22)

– Altitude bound (FAA Part 107 [44]):

0 ≤ z(t) ≤ 121.92 m. (23)

• Solution strategy.
We solve the coupled communication–control problem with a reinforcement-learning approach
based on Proximal Policy Optimization with Generalized Advantage Estimation (PPO–GAE),
using bounded continuous actions to ensure feasibility and training stability; see Algorithm 1 for the
training loop placed near its first reference in the text.
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• Reward shaping.
To align the RL objective with rate coverage while enforcing feasibility, the per-step reward is

rt ≡ Rt =
N

∑
n=1

xn(t) − Penaltyconstraints, (24)

with a composite penalty

Penaltyconstraints = Powerpenalty + Accelerationpenalty + Positionpenalty, (25)

where each term is implemented as a hinge (or indicator) cost that activates only upon violation
(e.g.,

(
∥a(t)∥/amax − 1

)
+

). The weights of these terms are tuned during simulation to reflect
constraint priority.

• State and actions.
State at time t. We include (i) channel-gain status {gn,s(t)}, (ii) UAV kinematic state (previous
position/velocity) (Pos(t−1), v(t−1)), and (iii) current allocation summaries (e.g., Pn,s(t) or
normalized logits, subchannel occupancy, and recent SIC order statistics).
Actions at time t. Two heads are produced by the actor: (i) UAV acceleration a(t), and (ii) per-UE
per-subchannel power fractions that are normalized into feasible powers.

• Action representation (spherical parameterization).
To guarantee ∥a(t)∥ ≤ amax by design, the actor outputs spherical parameters âi(t) =

[ρi(t), θi(t), ϕi(t)] and maps them to Cartesian acceleration:

ai(t) =

ax
i (t)

ay
i (t)

az
i (t)

 = amax

ρi(t) sin(θi(t)) cos(ϕi(t))
ρi(t) sin(θi(t)) sin(ϕi(t))

ρi(t) cos(θi(t))

, (26)

with feasible domains ρi(t) ∈ [0, 1], θi(t) ∈ [−π, π], and ϕi(t) ∈ [0, π]. This parameterization
simplifies constraint handling and improves numerical stability [45].

• Action sampling (Beta-distribution heads).
The components ρi(t), θi(t), and ϕi(t) are sampled from Beta distributions B(ϵρ

i , β
ρ
i ), B(ϵθ

i , βθ
i ),

and B(ϵϕ
i , β

ϕ
i ), respectively, naturally producing values on [0, 1]. After linear remapping (for

angles), this yields bounded, well-behaved continuous actions and stable exploration near the
acceleration limit amax.

• Training Hyperparameters
To ensure stable learning and reproducibility across layouts, we adopt a conservative PPO–
GAE configuration drawn from widely used defaults and tuned with small grid sweeps around
clipping, entropy, and rollout length. Unless otherwise stated, all values in Table 2 are fixed across
experiments, with linear learning-rate decay and early stopping to avoid overfitting to any one
topology.
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Table 2. PPO–GAE training hyperparameters used in all experiments. Values are held fixed unless noted.

Component Setting

Policy / Value architecture Two-layer MLP [256, 256] (ReLU), orthogonal initialization
Optimizer Adam; learning rate 3× 10−4; linear decay over training
Discount factor γ 0.99
GAE parameter λ 0.95
PPO clipping ϵ 0.20
Entropy coefficient 0.01
Value loss coefficient 0.50
Gradient clipping Global ℓ2 norm 0.5
Rollout length (per update) 2048 environment steps
Minibatch size 64
PPO epochs per update 10
Action distribution Beta heads (bounded in [0, 1]); spherical accel. mapping
Episode horizon & step T = 200 steps; ∆t = 0.1 s
Random seeds 5 training seeds; 5 disjoint evaluation seeds
Early stopping Coverage plateau; patience 20 updates

• PPO–GAE framework (losses and advantages).
The actor is trained with the clipped surrogate,

Lactor(θ) = −Et

[
min

(
πθ(at|st)

πθold
(at|st)

Ât, clip
(

πθ
πθold

, 1− ϵ, 1 + ϵ
)

Ât

)]
, (27)

while the critic minimizes the value regression loss,

Lcritic(w) = Et

[(
rt + γV(st+1; w)−V(st; w)

)2
]
. (28)

Generalized Advantage Estimation uses TD error δt = rt + γV(st+1; w)−V(st; w) and

Ât =
∞

∑
l=0

(γλ)l δt+l , (29)

balancing bias and variance via λ ∈ [0, 1].
• Training loop and placement.

The PPO–GAE training procedure for joint UAV motion, UL–NOMA scheduling, and power
allocation is summarized in Algorithm 1.
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Algorithm 1 Bounded-action PPO–GAE for joint UAV motion, UL–NOMA scheduling, and power
allocation [46]. The procedure alternates between (i) trajectory collection under the frozen policy πθold

,
(ii) advantage/target computation (GAE), and (iii) minibatch PPO updates for actor and critic with
clipping. Symbols and losses are defined in Section 3 (System/Rate Models) and (RL Formulation).

Require: Initial actor parameters θ, critic parameters w; horizon T; number of parallel actors E; PPO
clip ϵ; discount γ; GAE parameter λ; number of epochs K; minibatch size M ≤ NT

Ensure: Updated parameters (θ, w) that maximize the coverage-driven reward rt

1: θold ← θ ▷ Sync old and current policy parameters
2: for training iteration = 1, 2, . . . do

Phase A: Trajectory collection (frozen policy)
3: for each actor e ∈ {1, . . . , E} in parallel do
4: Roll out πθold

for T steps and store transitions {(st, at, rt, st+1)}T
t=1

5: end for
6: Concatenate all actors’ trajectories into a dataset D

Phase B: Advantage and target computation (GAE)
7: for each time index t in D do
8: Compute advantages Ât ← GAE(rt, st, st+1; V(·; w), γ, λ)
9: Compute critic targets yt ← rt + γV(st+1; w)

10: end for

Phase C: PPO updates (minibatch, K epochs)
11: for epoch = 1, . . . , K do
12: for each minibatch B ⊂ D of size M do
13: Actor step: maximize the clipped surrogate Lactor on B (with ϵ)
14: Critic step: minimize the value loss Lcritic on B using targets yt
15: end for
16: end for

17: Policy sync: θold ← θ
18: end for

3.4. Evaluation Protocol, Baselines, and Metrics

This subsection specifies the data generation, train/validation splits, baselines, metrics, statistical
treatment, and ablations used to evaluate the proposed solution.

• User layouts (testbeds).
We evaluate four canonical spatial layouts within a 1 km2 field (Section 3, Initialization):

1. Uniform: users are sampled i.i.d. uniformly over [0, 1]× [0, 1] km.
2. Clustered: users are drawn from a mixture of isotropic Gaussian clusters (centers sampled

uniformly in the field; cluster spreads chosen to keep users within bounds).
3. Ring: users are placed at approximately fixed radius around the field center with small

radial/azimuthal jitter, producing pronounced near–far differences.
4. Edge-heavy: sampling density is biased toward the four borders (users within bands near

the edges), emulating disadvantaged cell-edge populations.

Unless stated otherwise, the UAV geofence is the 2 km× 2 km square centered on the user field
(Section 3), with altitude constrained by FAA Part 107.

• Train/validation protocol.
Training uses 1000 episodes with horizon T = 200 time steps (step ∆t = 0.1 s). We employ five
training random seeds and five disjoint evaluation seeds (Section 3), fixing all hyperparameters
across runs. After each PPO update (rollout length 2048 steps), we evaluate the current policy on
held-out seeds and report the mean and 95% confidence intervals (CIs).

• Baselines.
We compare the proposed PPO+UL–NOMA agent against:
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– PPO (OFDMA): same architecture/hyperparameters, but limited to one UE per subchannel
(OMA) and no SIC.

– OFDMA + heuristic placement: grid/elevation search for a feasible hovering point and
altitude; OFDMA scheduling with per-UE power budget.

– PSO (placement/power): particle-swarm optimization over (x, y, z) plus a global per-UE
power scaling factor; OFDMA scheduling.

All baselines share the same bandwidth, noise figure, and UE power constraints as the proposed
method.

• Ablations.
To quantify the contribution of each component we perform:

– No-NOMA: PPO agent with OMA only.
– Fixed SIC order: PPO+NOMA with a fixed decoding order (ascending received power),

disabling adaptive reordering.
– No mobility: PPO+NOMA with UAV motion frozen at its initial position (power/scheduling

still learned).
– Robustness sweeps: imperfect SIC residual factor ξ ∈ [0, 1] and additive CSI perturbations

to channel gains.

• Primary and secondary metrics.
The primary metric is rate coverage, i.e., the fraction of users meeting the minimum rate Rmin =

0.5 Mbps:

Coverage =
1
N

N

∑
n=1

⊮{Rn ≥ Rmin}. (30)

Secondary metrics include: (i) per-user rate CDFs to characterize fairness, (ii) median UE transmit
power to reflect energy burden at the user side, and (iii) training curves (coverage vs. PPO up-
dates) to assess convergence behavior. Coverage-vs-update plots are shown in Figures 5–8; CDFs
in Figure 12(a)–(d). Aggregate comparisons appear in Tables 4 and 5; ablations are summarized
in Figures 9–10.

• Statistical treatment and reporting.
For each configuration (layout×method), we average metrics over evaluation seeds and episodes,
and report the mean ± 95% CI. CIs are computed from the empirical standard error under a
t-distribution with degrees of freedom equal to the number of independent trials minus one.
Where appropriate (paired comparisons across seeds), we also report percentage-point (pp) gains.

• Reproducibility.
All random seeds, environment initializations, and hyperparameters are logged. The symbols
used throughout are collected in Table 1 (Section 3).

4. Results
This section reports quantitative and qualitative results for the proposed bounded-action PPO–

GAE controller with UL-NOMA and adaptive SIC. Unless otherwise stated, all curves are averaged
across five evaluation seeds (cf. Section 3.4); one PPO update corresponds to T=2048 environment
steps. Across all four user layouts, the learned policy serves close to 90% of users above the target rate
in steady state, with consistent gains over the OFDMA-constrained baseline.

Notation for Results and Reporting Conventions

We summarize below the symbols and metrics used throughout this section.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 September 2025 doi:10.20944/preprints202509.2037.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.2037.v1
http://creativecommons.org/licenses/by/4.0/


16 of 27

Table 3. Symbols and Definitions. Units are shown where applicable.

Symbol Meaning (units)

U PPO update index (dimensionless)
T Steps per PPO update (T=2048; dimensionless)
N Number of users (N=100)
Rmin Minimum-rate threshold (0.5 Mbps)
C Rate coverage: fraction of users with Rn ≥ Rmin ([0, 1])
FR(r) CDF of per-user rate: Pr{Rn ≤ r}
“pp” Percentage points; e.g., 100(CNOMA−COFDMA)
Layout One of {uniform, clustered, ring, edge-heavy}

4.1. Convergence of Rate Coverage Across Layouts

We first examine how the proposed PPO+NOMA agent converges in terms of rate coverage across
different user distributions. By comparing learning curves with the PPO+OFDMA baseline, we can
evaluate the stability of training and the steady-state coverage achieved under diverse spatial layouts.

Figure 5. Coverage C vs. PPO updates U for uniform user distribution. The blue curve represents PPO with
NOMA and adaptive SIC, while the orange curve shows PPO constrained to OFDMA. Each update equals T=2048
environment steps. PPO+NOMA converges near C≈0.185; PPO+OFDMA saturates near 0.095 (see Table 4).

As shown in Figure 5, PPO+NOMA learns faster and reaches a higher steady-state coverage than
PPO+OFDMA under a uniform layout. The bounded-action parameterization ensures stable training
and prevents feasibility violations noted in Section 3.
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Figure 6. Coverage C vs. PPO updates U for clustered users. Despite spatial correlation, the learned PPO+NOMA
policy attains C≈0.178 whereas PPO+OFDMA remains near 0.096, demonstrating robustness to non-uniform UE
placement.

Figure 6 confirms that the advantage of PPO+NOMA persists with clustered users, where co-
located UEs intensify interference patterns.

Figure 7. Coverage C vs. PPO updates U for ring distribution. PPO+NOMA converges to C≈0.186 vs. 0.098 for
PPO+OFDMA. The gain stems from exploiting near–far disparities via adaptive SIC ordering.

In ring deployments (Figure 7), adaptive SIC is particularly effective, pairing strong and weak
users on the same subchannel to improve aggregate coverage.
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Figure 8. Coverage C vs. PPO updates U for edge-heavy users. This is the most challenging scenario due to low
SNRs. PPO+NOMA reaches C≈0.195 vs. 0.095 for PPO+OFDMA, the largest gain among layouts (Table 4).

Figure 8 shows the edge-heavy case, where PPO+NOMA yields the maximum improvement
(about 10.1 pp), underscoring the benefit of power-domain multiplexing when many users are disad-
vantaged.

4.2. Ablation Studies: Contribution of Each Component

To understand the relative importance of each design element in our framework, we conduct abla-
tion studies. These isolate the effect of NOMA, adaptive SIC ordering, and UAV mobility by removing
one component at a time, thereby highlighting their individual contributions to overall performance.
Figures 9 and 10 demonstrate that removing any single component degrades performance. NOMA is
essential for large gains; adaptive SIC further improves multiplexing; and learned mobility polishes
residual inefficiencies by repositioning the UAV (cf. Algorithm 1).
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Figure 9. Ablation study under clustered users. Bars compare coverage C for: full Learned PPO+NOMA+adaptive
SIC (highest, ≈0.18); No NOMA (OMA only, ≈0.09); No adaptive SIC (fixed decoding order, ≈0.145); and No
mobility (UAV path frozen, ≈0.175).

Figure 10. Ablation study under uniform users. The component-wise trends mirror Figure 9, confirming that
NOMA, adaptive SIC ordering, and UAV mobility each add measurable and complementary gains.
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Figure 11. Representative learned UAV trajectory (uniform users). The policy performs an initial exploration phase,
then stabilizes near an altitude/lateral location that balances LoS probability and path loss (see Figures 3–4), while
respecting acceleration, velocity, and altitude limits.

4.3. Learned UAV Behavior

As shown in Figure 11, the agent discovers a feasible track and a hovering position that maximizes
long-term coverage subject to the FAA-compliant kinematic bounds (Section 3) The UAV’s trajectory is
a direct representation of actor network’s output of acceleration vectors.

4.4. Per-User Rate Distributions (Fairness Analysis)

Figures 12(a)–(d) confirm that the proposed framework improves not only mean coverage but also
fairness, by lifting the lower tail of the distribution across all layouts. Across clustered, uniform, ring,
and edge-heavy deployments, the CDFs consistently show that a larger proportion of users are served
above the target rate, with smoother distribution tails and reduced probability mass near outage.
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(a) (b)

(c) (d)

Figure 12. CDF FR(r) of per-user rates across four user distributions:: (a) CDF FR(r) of per-user rates for uniform
users. Most users exceed the target Rmin=0.5 Mbps; the sharp rise reflects narrow performance dispersion around
the operating point. (b) CDF FR(r) for clustered users. Despite hotspots and interference, the CDF remains
right-shifted beyond Rmin, indicating robust coverage under spatial correlation. (c) CDF FR(r) for ring users. The
distribution remains favorable above Rmin, evidencing effective pairing of near/far users via adaptive SIC. (d)
CDF FR(r) for edge-heavy users. Even with many disadvantaged users, PPO+NOMA maintains high coverage
with only a small tail below the threshold.

4.5. Comparison with OFDMA and PSO Baselines

Table 4. Coverage comparison: PPO with NOMA vs. PPO constrained to OFDMA (values are fractions; Gain is
absolute difference in percentage points).

Distribution Coverage (NOMA) Coverage (OFDMA) Gain (pp)

clustered 0.17840 0.09595 8.245
edge 0.19543 0.09486 10.057
ring 0.18599 0.09800 8.799
uniform 0.18063 0.09800 8.263

Table 4 aggregates the steady-state rate-coverage across layouts. Gains range from 8.2 to 10.1 pp,
with the largest improvement in edge-heavy deployments where SIC best exploits channel disparities.
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Table 5. PSO baseline (OFDMA only): optimized UAV position (x, y, z), global transmit-power scale pscale, and
achieved coverage.

Distribution x (m) y (m) z (m) pscale Coverage

clustered 864.70 -36.89 21.45 0.600 0.10
uniform 742.46 1445.02 91.09 0.921 0.10
ring 1490.73 -150.89 165.55 0.312 0.10
edge 920.32 360.25 246.87 0.953 0.10

Table 5 reports the PSO–OFDMA baseline. Even with optimized placement and a tuned global
power scale, coverage saturates at ≈ 0.10 for all layouts. This reinforces that placement-only heuristics
under OFDMA cannot match joint mobility–power–scheduling learned with NOMA and adaptive SIC
(Algorithm 1).

Across all topologies, PPO+NOMA with adaptive SIC achieves higher and more stable rate-
coverage, improves fairness by elevating the lower-rate tail, and outperforms both OFDMA-
constrained PPO and PSO-based placement baselines.

5. Discussion and Limitations
This section interprets the empirical findings, discusses practical implications for UAV-assisted uplink
connectivity, and identifies limitations and avenues for future research.

5.1. Key Findings and Practical Implications

• Coverage gains across diverse layouts.
Across uniform, clustered, ring, and edge-heavy deployments, the proposed PPO+UL–NOMA
agent consistently improves rate coverage relative to strong baselines (Tables 4 and 5). Typical gains
over PPO with OFDMA lie in the 8–10 pp range, with the largest improvements in edge-heavy
scenarios (Figure 8) where near–far disparities are most pronounced and adaptive SIC can be
exploited effectively.

• Fairness and user experience.
Per-user rate CDFs (Figures 12(a)–(d)) show that the learned policy not only raises average
performance but also shifts the distribution upward so that most users exceed Rmin. This is
particularly relevant for emergency and temporary coverage, where serving many users with a
minimum quality-of-service (QoS) is paramount.

• Lower user-side power.
Relative to baselines, the learned controller reduces median UE transmit power (by up to tens of
percent in our runs), reflecting more favorable placement and pairing decisions. Lower UE power
is desirable for battery-limited devices and improves thermal/noise robustness at the receiver.

• Feasibility by design.
The bounded-action parameterization guarantees kinematic feasibility, contributing to stable train-
ing and trajectories that respect FAA altitude and speed limits. The learned paths (Figure 11)
exhibit quick exploration followed by convergence to stable hovering locations that balance
distance and visibility (Section 3).

5.2. Limitations and Threats to Validity

• Single-UAV, single-cell abstraction.
Results are obtained for one UAV serving a single cell. Interference coupling and coordination in
multi-UAV, multi-cell networks are not modeled and may affect achievable coverage.

• Channel and hardware simplifications.
We adopt a widely used A2G model (Al-Hourani in 3GPP UMa) with probabilistic LoS/NLoS and
a fixed noise figure. Small-scale fading dynamics, antenna patterns, and hardware impairments
(e.g., timing offsets) are abstracted, and Shannon rates are used as a proxy for link adaptation.
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• Energy, endurance, and environment.
UAV battery dynamics, wind/gusts, no-fly zones, and backhaul constraints are outside our scope.
These factors can influence feasible trajectories and airtime.

• Objective design.
We optimize rate coverage at a fixed Rmin. Other system objectives; e.g., joint optimization of
coverage, average throughput, and energy introduce multi-objective trade-offs that we do not
explore here.

5.3. Future Work

We identify several natural extensions: (i) Multi-UAV coordination via MARL with interference-
aware pairing and collision-avoidance constraints; (ii) Energy-aware control that co-optimizes flight
energy, airtime, and user coverage under battery/endurance models; (iii) Environment realism,
including wind fields, no-fly zones, and 3D urban geometry; (iv) Robust learning, with explicit
modeling of SIC residuals and CSI uncertainty, and safety layers for constraint satisfaction; (v) Multi-
objective optimization, e.g., Pareto-efficient policies trading coverage, throughput, and energy; and
(vi) Sample-efficient training through model-based RL, curriculum learning, or offline pretraining
before online fine-tuning.

6. Conclusions
We studied joint UAV motion control, uplink power allocation, and UL–NOMA scheduling under a
realistic A2G channel and regulatory kinematic constraints. Our bounded-action PPO–GAE agent coor-
dinates UAV acceleration with per-subchannel power and adaptive SIC to maximize rate coverage. Across
four canonical spatial layouts, it consistently outperforms PPO with OFDMA and placement/power
baselines, raising the fraction of users above the minimum-rate threshold and reducing median UE
transmit power (Figures 5–8, 12; Tables 4–5). Ablations indicate that UL–NOMA with adaptive SIC,
feasibility-aware actions, and joint trajectory–power decisions are all critical to the gains.

Limitations include the single-UAV/single-cell abstraction, simplified environment physics, and
the use of a single primary objective. Future work will address multi-UAV settings, energy/flight-time
constraints, weather and airspace restrictions, and multi-objective formulations. We plan to release
seeds, configuration files, and environment scripts to facilitate reproducibility and benchmarking in
this domain.
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Abbreviations
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Adam Adaptive Moment Estimation (optimizer)
CDF Cumulative Distribution Function
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CSI Channel State Information
FAA Federal Aviation Administration
GAE Generalized Advantage Estimation
LAP Low-Altitude Platform
LoS Line-of-Sight
MAC Multiple Access Channel
MARL Multi-Agent Reinforcement Learning
MDPI Multidisciplinary Digital Publishing Institute
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NOMA Non-Orthogonal Multiple Access
OMA Orthogonal Multiple Access
OFDMA Orthogonal Frequency-Division Multiple Access
pp Percentage Points
PPO Proximal Policy Optimization
PSO Particle Swarm Optimization
QoS Quality of Service
RL Reinforcement Learning
SIC Successive Interference Cancellation
SNR Signal-to-Noise Ratio
UE User Equipment
UAV Unmanned Aerial Vehicle
UAV-BS Unmanned Aerial Vehicle Base Station
UL Uplink
UL–NOMA Uplink Non-Orthogonal Multiple Access
UMa Urban Macro (3GPP)
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