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Abstract: Starting with the well-established field equations that describe the radiation fields of
lightning return strokes, the radiation fields generated when a charged particle is incident on or
moving away from a perfectly conducting plane are obtained. These fields are known in the literature
as transition radiation. The field equations derived thus are used to evaluate the energy, momentum
and the action associated with the transition radiation. The results show that for a charged particle
moving with speed v, the longitudinal momentum associated with the transition radiation is
approximately equal to E/c for values of 1—v/c¢ smaller than about 103 where £ is the total
radiated energy and c is the speed of light in free space. The action of the transition radiation, defined
as the product of the energy dissipated and the duration of the emission, increases as 1 — v/ ¢ decreases

and, for an electron, it becomes equal to #/47 when v=c—Vv_ where vV is the speed pertinent to
the lowest possible momentum associated with a particle confined inside the universe and # is the

Planck constant. Combining these results with Heisenberg’s uncertainty principle, an expression that
predicts the value of the elementary charge is derived.
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1. Introduction

In several papers published recently in this journal, Cooray and Cooray [1, 2, 3] have analysed the
radiation fields generated by a travelling wave antenna and the momentum and action associated with
these fields. Combining the results obtained with Heisenberg’s uncertainty principle an expression for
the elementary charge based on other universal parameters such as the Bohr radius and the radius of
the universe was derived. In the travelling wave antenna, a current pulse is assumed to propagate from
one end of the antenna to the other end with the speed of light. The assumption that the speed of
propagation of the current pulse is equal to the speed of light in free space makes the analysis valid only
for a current pulse propagating along a transmission line and not for the propagation of a charged
particle in vacuum. In the travelling wave antenna, it is the electromagnetic field that propagates with
the speed of light while the charged particles in the conductor are propagating with the drift speed,
which is very much less than the speed of light. The question is whether a similar analysis can be
conducted with material charged particles and derive results similar to those obtained in previous
publications [1, 2, 3]. Important point here is that the speed of propagation of the charged particle can
never be equal to the speed of light (even though it can reach speeds infinitesimally close to the speed
of light), as in the case of a current pulse propagating along a conductor. Indeed, as is shown later the
radiated energy goes to infinity as the speed of the particle becomes equal to the speed of light. In
evaluating the radiation fields generated by moving charged particles, this fact has to be taken into
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account in the analysis. The procedure that is being followed here is identical to the one that was used
in the previously mentioned publications. The starting point of this analysis can be the electromagnetic
field equations pertinent to one of the models that was constructed to evaluate the electromagnetic fields
from lightning return strokes.

One of the most popular models of return strokes is the transmission line model [4]. In this model, a
current pulse of finite duration is assumed to propagate with constant speed, which is less than the
speed of light, and without attenuation along a straight vertical line. In a recent publication Cooray and
Cooray [5] showed that the field equations pertinent to this model can be obtained by treating the
propagating current pulse as a movement of an equivalent charge emanating from a conducting plane
(the ground in the case of lightning) and moving with constant speed. Thus, these field equations also
describe the electromagnetic fields generated when a charged particle moving with constant speed is
incident on or moving out from a conducting plane. The radiation fields generated by such events are
known in the literature as transition radiation. The existence of transition radiation was first predicted
by Ginzberg and Frank [6], and later analysed in more details by others [7, 8]. In general, transition
radiation is produced when a charged particle, moving with a certain speed, crosses a boundary
between two mediums with different dielectric constants. The spectrum of the radiation depends on the
dielectric constants of the two media. The same type of radiation is produced when a charged particle
is ejected from or impinged on a vacuum-conductor interface. Here we will concentrate on the latter
case.

This study, in combination with the studies reported in the publications [1], [2] and [3], completes the
analysis of the features of classical electromagnetic radiation, both in time and frequency domain, and
their consequences when the charge associated with the propagating current pulses approaches the
elementary charge.

2. Electromagnetic fields of transmission line model
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r
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Figure 1: The geometry relevant to the derivation of field equations pertinent to the transmission line
model.

In the transmission line model a current pulse is assumed to propagate with uniform speed from ground
level along a vertical path with a constant speed v [4]. The geometry relevant to the calculation is shown
in Figure 1. The radiation field generated by the emanation of the current pulse from ground is given

by [5]
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i(t=r/c)vsin@ 1 1
E(t) = ( )2 + a, (1)
Arme,cr 1—fBcos@ 1+ PBcosd

where f#=v/c.Note that a, is an unit vector in the direction of increasing @ (see Figure 1). The first
term inside the bracket is generated by the emission of the current pulse from the conducting plane and

the second term is generated by its image in the perfectly conducting ground plane. The Poynting vector
associated with this radiation field is given by [5]

i(t—r/c)’ B*sin* @ 1 a

Am’e,cr’ (l—ﬁ2 (:05(92)2 '
These fields are also identical to those derived previously by Krider [9]. The radiation field expressions
remain the same if a negative current pulse propagates with constant speed v along the channel and

incident on the ground. This is the case with the electromagnetic fields generated by the termination of
negative corona currents in return strokes when they reach the ground end of the return stroke channel

[5].

S(t)= )

3. The transition radiation

As mentioned earlier, the transition radiation is generated when a charged particle moving with
constant speed is ejected or incident on a perfectly conducting ground. Let us represent the movement
of the charged particle as a propagating current pulse. The current pulse shape is related to the way in
which the charge is distributed across the charged particle. For a point charged particle the current pulse
will be represented by a Dirac delta function. The emission of a positively charged particle from a
perfectly conducting ground plane can then be represented, as in the case of the return stroke, by a
positive current pulse moving out from the ground plane. The incidence of a negatively charged particle
on the ground plane can be represented, as in the case of corona current pulses in return stroke models
[5], by a negative current pulse moving with constant speed and incident on the ground plane. Here,
the incidence of a negatively charged particle, —¢g, on a perfectly conducting ground plane is

considered. The geometry relevant to the analysis is shown in Figure 2. If the movement of the charged
particle with uniform speed Vv is represented by a current pulse i(¢) then the radiation field generated

during the encounter is given by Equation (1) and the corresponding Poynting vector is given by
Equation (2).

In the literature, the analysis of transition radiation is usually carried out in frequency domain but here
we will confine our analysis to the time domain. Moreover, in analysing the transition radiation the
charge is usually considered to be concentrated on a point particle but in the present study we represent
it as having a spatial distribution so that the movement of the charge can be represented by a current
pulse of finite duration. Of course, when the duration of the current pulse approaches zero (i.e. when it
is represented by a Dirac delta function) it reduces to the movement of a point charge.
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Figure 2: (a) A charged particle moves along the negative z-axis towards the ground plane. (b) The
definition of parameters pertinent to the expression derived for the electric radiation field. In the

diagram a, and @, are unit vectors in the radial and increasing @ directions.

Let us consider a negatively charged particle propagating with speed v and incident on a perfectly
conducting ground plane. The direction of motion of the charged particle is along the negative z-axis
and the conducting plane is located on the x-y plane (Figure 2a). The results to be derived would be
identical if a positively charged particle moving out of the conducting plane with speed v is considered
instead. The process of interaction between the charged particle and the conducting plane is
represented by a Gaussian current pulse that moves along the negative z-axis towards the plane and
incident on it. Transition radiation is produced during the interaction of the current pulse with the
conducting plane.

In the analysis the Gaussian current pulse is represented by
2 2
i(t)y=ie " 3)
In the above equation i, is a constant having units of Amperes, ¢ is the time and O is a parameter that

controls the width of the Gaussian current pulse. The charge, ¢, associated with this current pulse is

given by

q=iT (4)
In Equation (4), 7 is the duration of the current pulse and it is given by

T=1270" (5)
Thus, the current pulse can also be written as

i(t) = ——L— "2 ©)

276

Observe thatas 0 — 0 the current pulse reduces to a Dirac delta function. Usually the field expression
for transition radiation is given by assuming that the current pulse is a Dirac delta function. However,
as shown in reference [10] this will lead to physical inconsistencies when calculating the total energy
associated with the radiation.

3.1 Expression for the total energy dissipated by transition radiation

One can see from Equation (2) that the energy dissipated by transition radiation per unit solid angle is
given by
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AW _i(t—r/c)* B*sin> 0 1 ”
AQ 4m’ec (1- f* cos )
Performing the Fourier transformation, the energy dissipated per unit solid angle per unit frequency is
given by [11]
. 2
AW [’sin’6 |A(a))| ®

AQA®  27e,c (1-Bcos &)’

where A(@) is the Fourier spectrum of i(f —7/¢) . This is the traditional equation that is being used
in analysing the transition radiation [6, 7, 8]. In the limit when the current is represented by a Delta
function |A(a))| =¢g and the spectrum becomes flat and independent of frequency. Unfortunately, in
this case the total energy dissipated by all frequencies goes to infinity. This shows that representing a

point particle by a Delta function and at the same time to assume that the plane is perfectly conducting
leads to physical inconsistencies. One solution is to appeal to the quantum nature of the radiation and

to cut off the integral at an upper frequency limit given by @), . The order of magnitude of this frequency
can be obtained by noting that the energy associated with a photon of a given frequency @ is equal to
h@ /271 and the total energy dissipated as transition radiation cannot be larger than the total kinetic

energy of the particle. This is reasonable because the particle cannot radiate more energy than its kinetic
energy. This in turn indicates that, in order to avoid physical inconsistencies, the duration of the current

waveform should not be smaller than about 277/ @, . Fortunately, as one can see later, the results to be

obtained in this paper are independent of the duration of the current pulse. Now, confining our analysis
to the time domain, the total energy lost by the charged particle as transition radiation is given by

i(t—r/c)dt |
AU—U; J'B 72T sin’® 0dOd g

©)
Ame,c 00 (l—ﬂz cos &’ )2
Performing the spatial integral we obtain
[J.i(t—r/c)za’t}ﬂ2 ,
AU =-= 1 (1+'38)ln 1+ —% (10)
27 ¢ 4 B 1-8) B

Note that if (1— £) <<1, i.e. =1, the above expression reduces to

Ii(t—r/c)zdt

R SALUREE

4re,c

3.2. Expression for the momentum transported by the transition radiation

Consider the radiation moving in a radial direction associated with the angle @ . The flux of momentum
transported by the radiation field moving in that direction is given by

i(t—r/c)’ f*sin* @ 1 .
Am’e,c’'r’ (1—,82 cos 02)2

Due to symmetry only the z-component of this momentum is not zero and it is given by

M(7) = (12)


http://dx.doi.org/10.20944/preprints201704.0112.v2
http://dx.doi.org/10.4236/ns.2017.97022

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 July 2017 d0i:10.20944/preprints201704.0112.v2

i(t—r/c)’ B*sin’ @ cos 6

Ap,(1)= (13)
an’e,c’r? (1—ﬂ2 cos 6’ )2
Thus, the total momentum transported by the radiation in the z-direction is given by
i(t—r/c)dt|p?
Ux, 722 sin’ @ cos OdOd
AP, = 2. 2 5 o2 (14)
4n°gyc 00 (1—,3 cosé )
After performing the spatial integral the above equation can be written as
i(t—r/c)’dt |B
(_J;. 1 I 1 B 1
AP = 5 sIn—+—In——-— (15)
2re e 28 B 2 1-p 28
Note that if (1— ) <<1,i.e. =1, the above expression for the momentum reduces to
( j it—r/ c)zdt]
1
AP == . {ln - 1} (16)
4me,c -4

Comparison of Equation (16) with Equation (11) shows that when |1n(1 — ﬂ)| > In2 the vertical
component of the momentum transported by the transition radiation reduces to

AP =AU /c (17)
This indicates that when |ln(1 -p )| > In2 the radiation, and hence the energy transported, is directed

mostly along the z-axis. It is of interest to observe that the above condition is rarely satisfied in the case
of lightning return strokes because the speed of propagation of the current pulse is considerably less
than the speed of light.

3.3. The action associated with the transition radiation

The action associated with the transition radiation is defined as the product of the duration over which
the transition radiation is generated and the total energy transported by it. In order to evaluate this
quantity let us first perform the time integral associated with the Equation 10 with the expression for
the current given by Equation (6). Once this is done the result is given by

o TF (1+ﬂ2)ln[1+ﬂ}i as)
l6r%e,co| B 1-8) B

Then the action, 4, associated with the transition radiation is given by

A=raU=_"0F [(l+’32)ln(l+ﬁJ—i} (19)

167°%¢,co| 1-8) B
Substituting for 7 from Equation 5 we obtain
A:ﬁqzﬁz[(H'Bz)ln[Hﬂ)—i} (20)
l6g,c | B 1-8) B
Observe that the action is independent of the duration of the pulse. Note also that in the case when
B <1 and (1- ) <1 the Equation (20) reduces to

42 {m(”ﬁj—l} 1)

8re,c -8
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Note that the action goes to infinity when [ — 1. In other words, the action becomes infinity as the

speed of the particle reaches the speed of light. The next question that one has to answer is the following;:
How close does the speed of a particle can approach the speed of light? In the next section we will show
that the speed of the particle cannot reach a speed which is arbitrarily close to the speed of light but
there is an upper bound to the speed which is less than the speed of light.

4. The upper bound of the speed that can be achieved by a particle confined in the current universe

All particles in nature are restricted by a maximum speed, which is the speed of light in free space. So
in principle, any particle can reach a speed which is less than but infinitesimally close to the speed of
light. This means that there is no upper limit to the exponent k£ which is defined by the expression

(1-p=10" 22)
That is, the value of the parameter k is unbounded. On the other hand Heisenberg’s uncertainty
principle dictates that both the momentum and the location of a particle cannot be measured to infinite
accuracy. That is, if the speed of the particle is well defined, i.e. the momentum is well defined, there is
a large uncertainty in the location of the particle. When one confines the particle to a given volume, the
maximum uncertainty associated with the location of the particle is specified and that in turn
determines, through the Heisenberg’s uncertainty principle, the minimum uncertainty with which the
momentum of the particle, and hence the speed of the particle, can be specified. As the size of the region
that confines the particle decreases the uncertainty associated with its speed increases. This fact is
utilized in text books to illustrate that an electron cannot be confined inside a nucleus because its speed
and its energy becomes so large that it will escape from the confinement. In the same way, the
uncertainty principle makes it impossible for us to define the momentum and the speed of a particle
located inside the universe to an infinite accuracy. Thus, in any experiment, real or gedanken, carried
out inside the universe, the speed of a particle confined inside the universe cannot be specified to an
accuracy better than the one dictated by the uncertainty principle. Consider a particle of mass m moving

with a defined speed v along the z-axis. Let us denote the diameter of the universe by D, . Since the
particle is confined inside the universe, the uncertainty in the location of the particle along the x and y
directions is D, . This is the case because the particle has to be somewhere inside the universe. This
makes the momentum of the particle in the x and y direction greater than zero. Using the quantum
mechanical theory of particle in a box one can show that the minimum speed associated with the particle
along the x and y axis, say Vv, , is given by the equation

Dumvm =~h/2 (23)
One can use non-relativistic momentum in deriving the above equation because for known masses this
speed is extremely small in comparison to the speed of light. Thus the minimum speed along the x and
y axis is given by

p o (24)

" 2D m
This, of course, is an order of magnitude estimation based on the assumption that the universe can be
approximated by a box with equal dimensions. In the case of an electron this speed is given by (replacing
h/m from the expression for the Bohr radius)
_ meo,

vme D

u

(25)

In Equation (25), & is the fine structure constant and 4, is the Bohr radius. Since the limiting speed in

free space is the speed of light, the maximum speed v, .. that can be realized by a particle moving along

the z-axis is given by
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c= V2 +2v) 26)
For speeds v, comparable to the speed of light, the above equation gives

v..=c(l-v /c) (27)
Note that in deriving Equation 27 we have assumed that(1+Vv, /¢) = 1. From this and from (24) one

can conclude that the minimum value of (1— /3) that can be realized by a particle confined inside the

universe is given by

h
=P =3ty (28)
In the case of an electron the minimum value of (1— /) is given by
(1= /) in =701, / D, (29)
It is of interest to note that an electron moving with this maximum speed will have an energy on the
order of 10 GeV.

5. Upper limit of the action associated with the transition radiation generated by a charged particle

Due to confinement inside the universe, the minimum value of (1— /) that can be realized by a particle
is given by Equation 28 and for an electron it is given by Equation 29. Thus, the maximum action
associated with the transition radiation, 4,,, is obtained by substituting the expression for (1— /).,

given in Equation 28 into Equation 21. This is given by

2¢° [, (4mD
4 = V2 In| 222 4 (30)
8reyc | h
Since the first term inside the bracket is much larger than unity one can write this as
2¢° [, (4mD
A4 = V2 In| 22 (31)
8reyc | h

In the case of an electron the maximum action associated with the transition radiation, 4, , is given by

2
4 = e {m( 2D, ] (32)

me
8re,c moa,

If we substitute numerical values to the parameters in the above equation we find that

A, =hl4rx (33)
This shows that if one imposes the condition that 4 >/ /47x, the magnitude of the charge generating
the transition radiation has to satisfy the condition g = e. In other words, if the smallest action that
could be measured is limited to / /47 then the smallest charge that could be detected using the
transition radiation as a vehicle is the elementary charge. Thatis, 4 =/ /47w — g = e. A resultidentical

to this was obtained also for the radiation generated by dipoles and antennas in references [1], [2] and
[3]. In those studies, the parameter ¢ is the charge associated with the current pulse propagating along

the antenna. Possible reasons for the inequality given above is discussed in the next section.

6. Discussion

The results presented earlier, namely, that the maximum action of the transition radiation associated
with the elementary charge is of the order of /h/47x, can be explained by appealing again to the
uncertainty principle. Consider a charged particle moving with speed v along the z-axis towards the
perfectly conducting plane. Its speed is well defined but its location along the z-axis is known only to
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an accuracy comparable to the size of the universe. At a certain time the charged particle will approach
the conducting plane and just at the moment it strikes the plane it gives rise to the transition radiation.
Let us attempt to detect the location of the charged particle just before it hits the plane using transition
radiation. The transition radiation allows the location of the charged particle only to an accuracy of
about 7/v. This is the uncertainty in distance over which the transition radiation is emitted. During
this process the momentum of the charged particle will become uncertain by an amount AU /¢, the
longitudinal momentum that is being lost to the transition radiation. These two quantities should satisfy
the uncertainty principle, and therefore,

AU _ h
TVv—2— (34)
c 4r
For values of v close to the speed of light it reduces to equation
h
TAU 2— (35)
Az

Another way to look at the problem is to utilize the fact that the origin of a radiation pulse can be located
only to an accuracy of its effective wavelength. In the present case the duration of the radiation field is
7 and the effective wavelength associated with it is about 7c¢ . Thus the uncertainty in the location of
the origin of transition radiation is about 7c¢ which, when used in the uncertainty principle, will give
rise to Equation (35). Now, substituting relevant parameters to the left side of Equation (35) rearranging
the terms we obtain

25 \/Eheoc

q ]
|: / :|

Since the smallest value of (1— /) is denoted by (1— /)
when (1- ) =(1- /)., - Making this substitution in Equation 36 we find that the smallest value of the

(36)

min» the smallest value of the charge is given

charge that can be associated with the transition radiation is given by (after substituting for (1— /)

from Equation 28)
1 (4mD c]
ln T u
h

If we substitute for the mass m in Equation (37) the rest mass of an electron, the above equation should
give the smallest value of the charge that is associated with a particle having that rest mass. From this
we find that the elementary charge, i.e. the charge associated with the electron, is given by

2 x/zheoc

(38a)
2D,
In
aa,
This equation also predicts that the fine structure constant is given by
1
o (38b)

- 4m cD
\/Eln( e uj
h

All the parameters in the above equations are known. A relationship which is qualitatively similar to
the one given in Equation (38a) was derived previously by Cooray and Cooray [3] by studying the
electromagnetic radiation fields of long antennas. Now, the exact size of the universe is not known but
the diameter of the visible universe is about 8.8 x 10% m. If we substitute these parameters in Equation
(38a) we obtain g = +1.66X10™" C. The value obtained for 1/ ¢ is 128. In this respect it is interesting

to note that in a recent study it was shown that the real universe is at least 250 times larger than the
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observable universe [12]. If we accept this value we obtain ¢ = +1.61x1 07" Cand1/ r=135. Exact fits

to the elementary charge (i.e. 1.602x107"” C) and 1/« (i.e. 137) are obtained when the size of the
universe is about 800 times the visible universe.

A strict interpretation of Equations (38a) and (38b) shows that the elementary charge or the fine
structure constant decreases slowly as the universe expands. Actually, discussion on whether the
fundamental constants of nature can change with the age of the universe is still going on in the current
literature and no conclusions on this topic can be made at the present time. On the other hand, recall
that the Heisenberg’s uncertainty principle will give only an order of magnitude estimation of the
smallest detectable charge. Thus, Equations (38a) and (38b) should be considered as order of magnitude
estimates. Indeed, since the diameter of the universe appears inside the logarithmic term the variation
of this parameter does not influence the value of the charge or the fine structure constant significantly.
The size of the universe corresponding to any age of the universe can easily be calculated using the
variation of scale factor with time [11]. For example, ten billion light years ago or when the universe
was 3.77 billion years old the size of the universe was about a factor 0.42 smaller. If we plug this into
the equation (38a) (and assuming that the current size of the universe is 800 times larger than the visible
universe) we will obtain 1.609 x 10° C for the elementary charge. The value we get when the universe
was 380,000 years old, i.e. when the universe became transparent and atoms are formed, is 1.66 x 10
C. The matter dominated epoch of the universe started when it was 47,000 years old and the value for
the elementary charge we get for that age is 1.66 x 10 C. But, at these times the consistency and the
temperature of the universe is very different to the present one and it is questionable whether the simple
considerations made in deriving the above equations are valid at all. However, these numbers show
that the predicted variation of the elementary charge is very small and all the numbers given above are
of the same order of magnitude.

As an exercise, let us treat the elementary charge, fine structure constant and the Planck constant as
absolute universal constants that do not change as the universe aged and consider the predictions of
equations 38a and 38b. The first obvious solution is that the diameter of the universe is a constant i.e.
the universe is stationary. This conclusion is against the current scientific wisdom. The other solution is
to treat the Bohr radius as a parameter which is directly proportional to the diameter of the universe i.e.

to treat D, / a, as a universal constant. This can be realized in two ways while keeping the elementary

charge and the fine structure constant as universal constants. The first solution is to treat the mass of
the electron as a variable that decreases with the growth of the universe. In the other solution, the mass
of the electron remains constant but the speed of light has to be inversely proportional to the diameter

of the universe while the impedance of free space, /1, / €, , remains constant. In this case, the speed

of light will have a high value close to the beginning of the universe and decreases as the universe age.
In this respect, it is of interest to point out that there are cosmologies where the speed of light is assumed
to decrease with the age of the universe and they are known as Variable Speed of Light (VSL)
cosmologies [13]. The important point here is that the variable speed in our case is not an assumption
but a consequence of the assumption that the fine structure constant and the elementary charge are
universal constants.

Finally, it is important to stress that the calculations presented in this paper are based purely on classical
electrodynamics and these results motivate a thorough analysis of the same problem using quantum
electrodynamics.

7. Conclusions

Starting from electromagnetic fields pertinent to the transmission line model of the lightning return
stroke with a current propagation speed less than the speed of light, expressions for the time domain
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fields and the associated energy, momentum and action of transition radiation generated when a
charged particle is incident on a perfectly conducting ground plane are derived. The field expressions
show that the energy, momentum and the action depend on the charge and the speed of propagation of
the charged particles. After showing that there is an upper limit, which is less than the speed of light in
free space, to the maximum speed that can be achieved by the charged particle, the action of the
transition radiation fields pertinent to this limiting speed is used to estimate the elementary charge and
the fine structure constant by appealing to the Heisenberg’s uncertainty principle. The estimated charge
and the fine structure constant lie within a few percent of the elementary charge if the size of the
universe is assumed to be equal to the size of the observable universe.
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