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Abstract: Starting with the well-established field equations that describe the radiation fields of 
lightning return strokes, the radiation fields generated when a charged particle is incident on or 
moving away from a perfectly conducting plane are obtained. These fields are known in the literature 
as transition radiation.  The field equations derived thus are used to evaluate the energy, momentum 
and the action associated with the transition radiation. The results show that for a charged particle 
moving with speed v , the longitudinal momentum associated with the transition radiation is 
approximately equal to /E c  for values of 1 /v c−  smaller than about 10-3 where E  is the total 
radiated energy and c is the speed of light in free space. The action of the transition radiation, defined 
as the product of the energy dissipated and the duration of the emission, increases as 1 /v c− decreases 
and, for an electron, it becomes equal to / 4h π when mv c v= −  where mv  is the speed pertinent to 
the lowest possible momentum associated with a particle confined inside the universe and h is the 
Planck constant. Combining these results with Heisenberg’s uncertainty principle, an expression that 
predicts the value of the elementary charge is derived.  

Keywords: transition radiation; Heisenberg’s uncertainty principle; electronic charge; elementary 
charge; size of the universe 

 

1. Introduction 

In several papers published recently in this journal, Cooray and Cooray [1, 2, 3] have analysed the 
radiation fields generated by a travelling wave antenna and the momentum and action associated with 
these fields. Combining the results obtained with Heisenberg’s uncertainty principle an expression for 
the elementary charge based on other universal parameters such as the Bohr radius and the radius of 
the universe was derived. In the travelling wave antenna, a current pulse is assumed to propagate from 
one end of the antenna to the other end with the speed of light. The assumption that the speed of 
propagation of the current pulse is equal to the speed of light in free space makes the analysis valid only 
for a current pulse propagating along a transmission line and not for the propagation of a charged 
particle in vacuum. In the travelling wave antenna, it is the electromagnetic field that propagates with 
the speed of light while the charged particles in the conductor are propagating with the drift speed, 
which is very much less than the speed of light. The question is whether a similar analysis can be 
conducted with material charged particles and derive results similar to those obtained in previous 
publications [1, 2, 3]. Important point here is that the speed of propagation of the charged particle can 
never be equal to the speed of light (even though it can reach speeds infinitesimally close to the speed 
of light), as in the case of a current pulse propagating along a conductor. Indeed, as is shown later the 
radiated energy goes to infinity as the speed of the particle becomes equal to the speed of light. In 
evaluating the radiation fields generated by moving charged particles, this fact has to be taken into 
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account in the analysis. The procedure that is being followed here is identical to the one that was used 
in the previously mentioned publications. The starting point of this analysis can be the electromagnetic 
field equations pertinent to one of the models that was constructed to evaluate the electromagnetic fields 
from lightning return strokes.   

 
One of the most popular models of return strokes is the transmission line model [4]. In this model, a 
current pulse of finite duration is assumed to propagate with constant speed, which is less than the 
speed of light, and without attenuation along a straight vertical line. In a recent publication Cooray and 
Cooray [5] showed that the field equations pertinent to this model can be obtained by treating the 
propagating current pulse as a movement of an equivalent charge emanating from a conducting plane 
(the ground in the case of lightning) and moving with constant speed. Thus, these field equations also 
describe the electromagnetic fields generated when a charged particle moving with constant speed is 
incident on or moving out from a conducting plane. The radiation fields generated by such events are 
known in the literature as transition radiation.  The existence of transition radiation was first predicted 
by Ginzberg and Frank [6], and later analysed in more details by others [7, 8]. In general, transition 
radiation is produced when a charged particle, moving with a certain speed, crosses a boundary 
between two mediums with different dielectric constants. The spectrum of the radiation depends on the 
dielectric constants of the two media. The same type of radiation is produced when a charged particle 
is ejected from or impinged on a vacuum-conductor interface. Here we will concentrate on the latter 
case. 

 
This study, in combination with the studies reported in the publications [1], [2] and [3], completes the 
analysis of the features of classical electromagnetic radiation, both in time and frequency domain, and 
their consequences when the charge associated with the propagating current pulses approaches the 
elementary charge.   

2. Electromagnetic fields of transmission line model 

 
Figure 1: The geometry relevant to the derivation of field equations pertinent to the transmission line 
model. 

 
In the transmission line model a current pulse is assumed to propagate with uniform speed from ground 
level along a vertical path with a constant speed v [4]. The geometry relevant to the calculation is shown 
in Figure 1. The radiation field generated by the emanation of the current pulse from ground is given 
by [5] 
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where /v cβ = . Note that θa  is an unit vector in the direction of increasing θ  (see Figure 1). The first 
term inside the bracket is generated by the emission of the current pulse from the conducting plane and 
the second term is generated by its image in the perfectly conducting ground plane. The Poynting vector 
associated with this radiation field is given by [5] 
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These fields are also identical to those derived previously by Krider [9]. The radiation field expressions 
remain the same if a negative current pulse propagates with constant speed v  along the channel and 
incident on the ground. This is the case with the electromagnetic fields generated by the termination of 
negative corona currents in return strokes when they reach the ground end of the return stroke channel 
[5].  

 

3. The transition radiation  

As mentioned earlier, the transition radiation is generated when a charged particle moving with 
constant speed is ejected or incident on a perfectly conducting ground. Let us represent the movement 
of the charged particle as a propagating current pulse. The current pulse shape is related to the way in 
which the charge is distributed across the charged particle. For a point charged particle the current pulse 
will be represented by a Dirac delta function.  The emission of a positively charged particle from a 
perfectly conducting ground plane can then be represented, as in the case of the return stroke, by a 
positive current pulse moving out from the ground plane. The incidence of a negatively charged particle 
on the ground plane can be represented, as in the case of corona current pulses in return stroke models 
[5], by a negative current pulse moving with constant speed and incident on the ground plane. Here, 
the incidence of a negatively charged particle, q− , on a perfectly conducting ground plane is 
considered. The geometry relevant to the analysis is shown in Figure 2. If the movement of the charged 
particle with uniform speed v  is represented by a current pulse ( )i t  then the radiation field generated 
during the encounter is given by Equation (1) and the corresponding Poynting vector is given by 
Equation (2).  

 
In the literature, the analysis of transition radiation is usually carried out in frequency domain but here 
we will confine our analysis to the time domain. Moreover, in analysing the transition radiation the 
charge is usually considered to be concentrated on a point particle but in the present study we represent 
it as having a spatial distribution so that the movement of the charge can be represented by a current 
pulse of finite duration. Of course, when the duration of the current pulse approaches zero (i.e. when it 
is represented by a Dirac delta function) it reduces to the movement of a point charge. 
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Figure 2: (a) A charged particle moves along the negative z-axis towards the ground plane. (b) The 
definition of parameters pertinent to the expression derived for the electric radiation field. In the 
diagram ra  and θa  are unit vectors in the radial and increasing θ  directions. 

 
Let us consider a negatively charged particle propagating with speed v  and incident on a perfectly 
conducting ground plane. The direction of motion of the charged particle is along the negative z-axis 
and the conducting plane is located on the x-y plane (Figure 2a). The results to be derived would be 
identical if a positively charged particle moving out of the conducting plane with speed v  is considered 
instead.  The process of interaction between the charged particle and the conducting plane is 
represented by a Gaussian current pulse that moves along the negative z-axis towards the plane and 
incident on it. Transition radiation is produced during the interaction of the current pulse with the 
conducting plane.   

  
In the analysis the Gaussian current pulse is represented by 

2 2/2
0( ) ti t i e σ−=             (3) 

In the above equation 0i  is a constant having units of Amperes, t  is the time and σ  is a parameter that 
controls the width of the Gaussian current pulse. The charge,q , associated with this current pulse is 
given by 

0q i τ=               (4)    
In Equation (4), τ  is the duration of the current pulse and it is given by 

22τ πσ=             (5) 
Thus, the current pulse can also be written as 

 
2 2/2
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Observe that as 0σ →  the current pulse reduces to a Dirac delta function. Usually the field expression 
for transition radiation is given by assuming that the current pulse is a Dirac delta function. However, 
as shown in reference [10] this will lead to physical inconsistencies when calculating the total energy 
associated with the radiation. 

3.1 Expression for the total energy dissipated by transition radiation 

One can see from Equation (2) that the energy dissipated by transition radiation per unit solid angle is 
given by  
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Performing the Fourier transformation, the energy dissipated per unit solid angle per unit frequency is 
given by [11] 

( )
22 2

22 2 2
0

( )sin
2 1 cos

AW
c

ωβ θ
ω π ε β θ

Δ =
ΔΩΔ −

        (8) 

where ( )A ω  is the Fourier spectrum of ( / )i t r c− . This is the traditional equation that is being used 
in analysing the transition radiation [6, 7, 8]. In the limit when the current is represented by a Delta 
function ( )A qω =  and the spectrum becomes flat and independent of frequency. Unfortunately, in 

this case the total energy dissipated by all frequencies goes to infinity. This shows that representing a 
point particle by a Delta function and at the same time to assume that the plane is perfectly conducting 
leads to physical inconsistencies. One solution is to appeal to the quantum nature of the radiation and 
to cut off the integral at an upper frequency limit given by cω . The order of magnitude of this frequency 
can be obtained by noting that the energy associated with a photon of a given frequency ω  is equal to 

/ 2hω π and the total energy dissipated as transition radiation cannot be larger than the total kinetic 
energy of the particle. This is reasonable because the particle cannot radiate more energy than its kinetic 
energy. This in turn indicates that, in order to avoid physical inconsistencies, the duration of the current 
waveform should not be smaller than about 2 / cπ ω . Fortunately, as one can see later, the results to be 
obtained in this paper are independent of the duration of the current pulse.  Now, confining our analysis 
to the time domain, the total energy lost by the charged particle as transition radiation is given by 
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Performing the spatial integral we obtain 
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Note that if (1 ) 1β− << , i.e. 1β ≈ , the above expression reduces to 
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3.2. Expression for the momentum transported by the transition radiation 

Consider the radiation moving in a radial direction associated with the angle θ . The flux of momentum 
transported by the radiation field moving in that direction is given by 
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Due to symmetry only the z-component of this momentum is not zero and it is given by 
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Thus, the total momentum transported by the radiation in the z-direction is given by 
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After performing the spatial integral the above equation can be written as 
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Note that if (1 ) 1β− << , i.e. 1β ≈ , the above expression for the momentum reduces to 
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Comparison of Equation (16) with Equation (11) shows that when ln(1 ) ln 2β−   the vertical 

component of the momentum transported by the transition radiation reduces to 
/zP U cΔ ≈ Δ                    (17) 

This indicates that when ln(1 ) ln 2β−   the radiation, and hence the energy transported, is directed 

mostly along the z-axis. It is of interest to observe that the above condition is rarely satisfied in the case 
of lightning return strokes because the speed of propagation of the current pulse is considerably less 
than the speed of light. 

 

3.3. The action associated with the transition radiation 

The action associated with the transition radiation is defined as the product of the duration over which 
the transition radiation is generated and the total energy transported by it. In order to evaluate this 
quantity let us first perform the time integral associated with the Equation 10 with the expression for 
the current given by Equation (6). Once this is done the result is given by 
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Then the action, A ,  associated with the transition radiation is given by 
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Substituting for τ  from Equation 5 we obtain 
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Observe that the action is independent of the duration of the pulse. Note also that in the case when 
1β <  and (1 ) 1β−   the Equation (20) reduces to 
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Note that the action goes to infinity when 1β → . In other words, the action becomes infinity as the 
speed of the particle reaches the speed of light. The next question that one has to answer is the following: 
How close does the speed of a particle can approach the speed of light? In the next section we will show 
that the speed of the particle cannot reach a speed which is arbitrarily close to the speed of light but 
there is an upper bound to the speed which is less than the speed of light. 

 

4. The upper bound of the speed that can be achieved by a particle confined in the current universe 

All particles in nature are restricted by a maximum speed, which is the speed of light in free space. So 
in principle, any particle can reach a speed which is less than but infinitesimally close to the speed of 
light. This means that there is no upper limit to the exponent k  which is defined by the expression 

(1 ) 10 kβ −− =                      (22) 
That is, the value of the parameter k  is unbounded. On the other hand Heisenberg’s uncertainty 
principle dictates that both the momentum and the location of a particle cannot be measured to infinite 
accuracy. That is, if the speed of the particle is well defined, i.e. the momentum is well defined, there is 
a large uncertainty in the location of the particle. When one confines the particle to a given volume, the 
maximum uncertainty associated with the location of the particle is specified and that in turn 
determines, through the Heisenberg’s uncertainty principle, the minimum uncertainty with which the 
momentum of the particle, and hence the speed of the particle, can be specified. As the size of the region 
that confines the particle decreases the uncertainty associated with its speed increases. This fact is 
utilized in text books to illustrate that an electron cannot be confined inside a nucleus because its speed 
and its energy becomes so large that it will escape from the confinement. In the same way, the 
uncertainty principle makes it impossible for us to define the momentum and the speed of a particle 
located inside the universe to an infinite accuracy. Thus, in any experiment, real or gedanken, carried 
out inside the universe, the speed of a particle confined inside the universe cannot be specified to an 
accuracy better than the one dictated by the uncertainty principle. Consider a particle of massm moving 
with a defined speed v  along the z-axis. Let us denote the diameter of the universe by uD . Since the 
particle is confined inside the universe, the uncertainty in the location of the particle along the x and y 
directions is uD . This is the case because the particle has to be somewhere inside the universe. This 
makes the momentum of the particle in the x and y direction greater than zero. Using the quantum 
mechanical theory of particle in a box one can show that the minimum speed associated with the particle 
along the x and y axis, say mv , is given by the equation 

/ 2u mD mv h≈                   (23) 
One can use non-relativistic momentum in deriving the above equation because for known masses this 
speed is extremely small in comparison to the speed of light. Thus the minimum speed along the x and 
y axis is given by 

m 2 u

hv
D m

≈                                        (24) 

This, of course, is an order of magnitude estimation based on the assumption that the universe can be 
approximated by a box with equal dimensions. In the case of an electron this speed is given by (replacing 

/h m  from the expression for the Bohr radius) 

0
me

u

c av
D

π α=                                          (25)   

In Equation (25), α  is the fine structure constant and 0a  is the Bohr radius. Since the limiting speed in 

free space is the speed of light, the maximum speed maxv  that can be realized by a particle moving along 
the z-axis is given by 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 July 2017                   doi:10.20944/preprints201704.0112.v2

Peer-reviewed version available at Natural Science 2017, 9, 219-230; doi:10.4236/ns.2017.97022

http://dx.doi.org/10.20944/preprints201704.0112.v2
http://dx.doi.org/10.4236/ns.2017.97022


8 
 

2 2
max 2 mc v v= +                     (26) 

For speeds maxv  comparable to the speed of light, the above equation gives 

max (1 / )mv c v c= −                    (27) 

Note that in deriving Equation 27 we have assumed that m(1 / ) 1v c+ ≈ . From this and from (24) one 

can conclude that the minimum value of (1 )β−  that can be realized by a particle confined inside the 
universe is given by 

min(1 )
2 u

h
mcD

β− =                     (28) 

In the case of an electron the minimum value of (1 )β−  is given by 

min 0(1 ) / Duaβ πα− =                      (29) 
It is of interest to note that an electron moving with this maximum speed will have an energy on the 
order of 1016 GeV. 

 

5. Upper limit of the action associated with the transition radiation generated by a charged particle 

Due to confinement inside the universe, the minimum value of (1 )β− that can be realized by a particle 
is given by Equation 28 and for an electron it is given by Equation 29. Thus, the maximum action 
associated with the transition radiation, mA ,  is obtained by substituting the expression for min(1 )β−  
given in Equation 28 into Equation 21. This is given by 

2

0

42 ln 1
8

u
m

mD cqA
c hπε
  = −    

                    (30) 

Since the first term inside the bracket is much larger than unity one can write this as 
2

0

42 ln
8

u
m

mD cqA
c hπε
  =     

                    (31) 

In the case of an electron the maximum action associated with the transition radiation, emA , is given by 
2

0 0

22 ln
8

u
me

DeA
c aπε πα
  

=   
  

                     (32) 

If we substitute numerical values to the parameters in the above equation we find that 
/ 4meA h π≈                          (33) 

This shows that if one imposes the condition that / 4A h π≥ ,  the magnitude of the charge generating 
the transition radiation has to satisfy the condition q e≥ . In other words, if the smallest action that 
could be measured is limited to / 4h π  then the smallest charge that could be detected using the 
transition radiation as a vehicle is the elementary charge. That is, / 4A h q eπ≥ → ≥ . A result identical 
to this was obtained also for the radiation generated by dipoles and antennas in references [1], [2] and 
[3]. In those studies, the parameter q is the charge associated with the current pulse propagating along 
the antenna. Possible reasons for the inequality given above is discussed in the next section. 

 

6. Discussion 

The results presented earlier, namely, that the maximum action of the transition radiation associated 
with the elementary charge is of the order of / 4h π , can be explained by appealing again to the 
uncertainty principle. Consider a charged particle moving with speed v  along the z-axis towards the 
perfectly conducting plane. Its speed is well defined but its location along the z-axis is known only to 
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an accuracy comparable to the size of the universe. At a certain time the charged particle will approach 
the conducting plane and just at the moment it strikes the plane it gives rise to the transition radiation. 
Let us attempt to detect the location of the charged particle just before it hits the plane using transition 
radiation. The transition radiation allows the location of the charged particle only to an accuracy of 
about / vτ . This is the uncertainty in distance over which the transition radiation is emitted. During 
this process the momentum of the charged particle will become uncertain by an amount /U cΔ , the 
longitudinal momentum that is being lost to the transition radiation. These two quantities should satisfy 
the uncertainty principle, and therefore, 

4
U hv
c

τ
π

Δ ≥                        (34) 

For values of v   close to the speed of light it reduces to equation 

4
hUτ
π

Δ ≥                         (35) 

Another way to look at the problem is to utilize the fact that the origin of a radiation pulse can be located 
only to an accuracy of its effective wavelength. In the present case the duration of the radiation field is 
τ  and the effective wavelength associated with it is about cτ . Thus the uncertainty in the location of 
the origin of transition radiation is about cτ  which, when used in the uncertainty principle, will give 
rise to Equation (35). Now, substituting relevant parameters to the left side of Equation (35) rearranging 
the terms we obtain 

2 02
1ln

1

h cq ε

β

≥
 
 − 

                                               (36) 

Since the smallest value of (1 )β−  is denoted by min(1 )β− , the smallest value of the charge is given 

when (1 )β− = min(1 )β− . Making this substitution in Equation 36 we find that the smallest value of the 

charge that can be associated with the transition radiation is given by (after substituting for min(1 )β−
from Equation 28)  

2 02
4ln u

h cq
mD c
h

ε≈
 
 
 

                                          (37) 

If we substitute for the mass m  in Equation (37) the rest mass of an electron, the above equation should 
give the smallest value of the charge that is associated with a particle having that rest mass. From this 
we find that the elementary charge, i.e. the charge associated with the electron, is given by  

2 0

0

2
2ln u

h cq
D
a

ε

πα

≈
 
 
 

                                   (38a) 

This equation also predicts that the fine structure constant is given by 
1
42 ln e um cD
h

α ≈
 
 
 

                                                               (38b) 

All the parameters in the above equations are known. A relationship which is qualitatively similar to 
the one given in Equation (38a) was derived previously by Cooray and Cooray [3] by studying the 
electromagnetic radiation fields of long antennas. Now, the exact size of the universe is not known but 
the diameter of the visible universe is about 8.8 x 1026 m. If we substitute these parameters in Equation 
(38a) we obtain 191.66 10q −≈ ± ×  C. The value obtained for 1/ α  is 128. In this respect it is interesting 
to note that in a recent study it was shown that the real universe is at least 250 times larger than the 
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observable universe [12]. If we accept this value we obtain 191.61 10q −≈ ± ×  C and1/ α = 135. Exact fits 

to the elementary charge (i.e. 191.602 10−× C) and 1/ α  (i.e. 137) are obtained when the size of the 
universe is about 800 times the visible universe.  

 
A strict interpretation of Equations (38a) and (38b) shows that the elementary charge or the fine 
structure constant decreases slowly as the universe expands. Actually, discussion on whether the 
fundamental constants of nature can change with the age of the universe is still going on in the current 
literature and no conclusions on this topic can be made at the present time. On the other hand, recall 
that the Heisenberg’s uncertainty principle will give only an order of magnitude estimation of the 
smallest detectable charge. Thus, Equations (38a) and (38b) should be considered as order of magnitude 
estimates. Indeed, since the diameter of the universe appears inside the logarithmic term the variation 
of this parameter does not influence the value of the charge or the fine structure constant significantly. 
The size of the universe corresponding to any age of the universe can easily be calculated using the 
variation of scale factor with time [11]. For example, ten billion light years ago or when the universe 
was 3.77 billion years old the size of the universe was about a factor 0.42 smaller. If we plug this into 
the equation (38a) (and assuming that the current size of the universe is 800 times larger than the visible 
universe) we will obtain 1.609 x 10-19 C for the elementary charge. The value we get when the universe 
was 380,000 years old, i.e. when the universe became transparent and atoms are formed, is 1.66 x 10-19 
C. The matter dominated epoch of the universe started when it was 47,000 years old and the value for 
the elementary charge we get for that age is 1.66 x 10-19 C. But, at these times the consistency and the 
temperature of the universe is very different to the present one and it is questionable whether the simple 
considerations made in deriving the above equations are valid at all. However, these numbers show 
that the predicted variation of the elementary charge is very small and all the numbers given above are 
of the same order of magnitude.  

 
As an exercise, let us treat the elementary charge, fine structure constant and the Planck constant as 
absolute universal constants that do not change as the universe aged and consider the predictions of 
equations 38a and 38b. The first obvious solution is that the diameter of the universe is a constant i.e. 
the universe is stationary. This conclusion is against the current scientific wisdom. The other solution is 
to treat the Bohr radius as a parameter which is directly proportional to the diameter of the universe i.e. 
to treat 0/uD a  as a universal constant. This can be realized in two ways while keeping the elementary 
charge and the fine structure constant as universal constants. The first solution is to treat the mass of 
the electron as a variable that decreases with the growth of the universe. In the other solution, the mass 
of the electron remains constant but the speed of light has to be inversely proportional to the diameter 

of the universe while the impedance of free space, 0 0/μ ε , remains constant. In this case, the speed 

of light will have a high value close to the beginning of the universe and decreases as the universe age. 
In this respect, it is of interest to point out that there are cosmologies where the speed of light is assumed 
to decrease with the age of the universe and they are known as Variable Speed of Light (VSL) 
cosmologies [13]. The important point here is that the variable speed in our case is not an assumption 
but a consequence of the assumption that the fine structure constant and the elementary charge are 
universal constants.     

 
Finally, it is important to stress that the calculations presented in this paper are based purely on classical 
electrodynamics and these results motivate a thorough analysis of the same problem using quantum 
electrodynamics. 
 

7. Conclusions 

Starting from electromagnetic fields pertinent to the transmission line model of the lightning return 
stroke with a current propagation speed less than the speed of light, expressions for the time domain 
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fields and the associated energy, momentum and action of transition radiation generated when a 
charged particle is incident on a perfectly conducting ground plane are derived. The field expressions 
show that the energy, momentum and the action depend on the charge and the speed of propagation of 
the charged particles. After showing that there is an upper limit, which is less than the speed of light in 
free space, to the maximum speed that can be achieved by the charged particle, the action of the 
transition radiation fields pertinent to this limiting speed is used to estimate the elementary charge and 
the fine structure constant by appealing to the Heisenberg’s uncertainty principle. The estimated charge 
and the fine structure constant lie within a few percent of the elementary charge if the size of the 
universe is assumed to be equal to the size of the observable universe.   
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