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1 Introduction

In previous paper [1], Apalara considered the following laminated beam with structural damping

and second sound:

ρwtt +G(ψ − wx)x = 0, (x, t) ∈ (0, 1)× (0,+∞),

Iρ(3stt − ψtt)−D(3sxx − ψxx)−G(ψ − wx) + δθx = 0, (x, t) ∈ (0, 1)× (0,+∞),

3Iρstt − 3Dsxx + 3G(ψ − wx) + 4γs+ 4βst = 0, (x, t) ∈ (0, 1)× (0,+∞),

ρ3θt + qx + δ(3st − ψt)x = 0, (x, t) ∈ (0, 1)× (0,+∞),

τqt + αq + θx = 0, (x, t) ∈ (0, 1)× (0,+∞),

w(x, 0) = w0(x), ψ(x, 0) = ψ0(x), s(x, 0) = s0(x), wt(x, 0) = w1(x), x ∈ (0, 1),

ψt(x, 0) = ψ1(x), st(x, 0) = s1(x), θ(x, 0) = θ0(x), q(x, 0) = q0(x), x ∈ (0, 1),

wx(0, t) = ψ(0, t) = s(0, t) = q(0, t) = 0, t ∈ [0,+∞),

w(1, t) = ψx(1, t) = sx(1, t) = θ(1, t) = 0, t ∈ [0,+∞),
(1.1)

where ρ,G, Iρ, ρ3, D, γ, β, δ, α, τ are positive constants. Here w(x, t) denotes the transverse dis-

placement of the beam which departs from its equilibrium position, ψ(x, t) represents the rotation

angle, s(x, t) is proportional to the amount of slip along the interface at time t and longitudinal

spatial variable x, 3s − ψ denotes the effective rotation angle and the third equation of (1.1)

describes the dynamics of the slip, θ(x, t) is the difference temperature, q(x, t) is the heat flux.

The coefficients ρ,G, Iρ, D, γ, β > 0 denote the density of the beams, the shear stiffness, the mass

moment of inertia, the flexural rigidity, the adhesive stiffness of the beams, and the adhesive

damping parameter, respectively. Moreover, the constants ρ3, α, δ > 0 represent the physical

parameters from thermoelasticity theory, and τ denotes the relaxation time describing the time

lag in the response of the heat flux to a gradient in the temperature. In that paper, the author
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established the exponential decay and polynomial decay depend on the stability number

χτ =

(
1− ρ3Gτ

ρ

)(
D

Iρ
− G

ρ

)
− τGδ2

ρIρ
.

Beyond that, the author prove the well-posedness of the system. As for the previous results and

developments of laminated beam, the authors have stated and summarized in great detail in [1],

thus we just omit it here. The readers, for a better understanding of present work, are strongly

recommended to see [1] and the references therein.

For the lack of exponential decay, there are some results in recent time. Apalara et al. [2]

studied a one-dimensional thermoelastic Timoshenko system of the form

ρ1φtt − k(φx + ψ)x + δθx = 0, (x, t) ∈ (0, L)× (0,+∞),

ρ2ψtt − bψxx + k(φx + ψ) = 0, (x, t) ∈ (0, L)× (0,+∞),

ρ3θt + qx + δφtx = 0, (x, t) ∈ (0, L)× (0,+∞),

τqt + q + γθx = 0, (x, t) ∈ (0, L)× (0,+∞),

where the heat conduction is given by Cattaneo’s law and the coupling is via the displacement

equation. The authors proved the exponential decay (polynomial decay) result when the stability

number χτ = 0 (χτ ̸= 0). Moreover, when the stability number χτ ̸= 0, they showed that the

system lacks exponential stability if χτ = 0 holds. In [8], Santos et al. studied a Bresse-Fourier

system 

ρ1φtt − k(φx + ψ + lw)x − k0l(wx − lφ) + kθx = 0, (x, t) ∈ (0, L)× (0,+∞),

ρ2ψtt − bψxx + k(φx + ψ + lw)− kθ = 0, (x, t) ∈ (0, L)× (0,+∞),

ρ1wtt − k0(wx − lφ)x + kl(φx + ψ + lw)− klθ = 0, (x, t) ∈ (0, L)× (0,+∞),

ρ3θt − αθxx + k(φx + ψ + lw)t = 0, (x, t) ∈ (0, L)× (0,+∞),

The authors proved the system is not exponentially stable when k
ρ1

̸= b
ρ2

or k − k0 ̸= 0. In

addition, they established the exponential decay and polynomial decay deponed on the relation

between the wave speed propagation. For more papers related to the lack of exponential stability,

we refer the reader to [3, 4, 5, 7] and the references therein.

In [1], Apalara brought up an interesting open problem to study the lack of exponential

stability of problem (1.1), that is, the system is not exponentially stable unless χτ = 0. The aim

of this paper is to give a positive answer to the open problem proposed by Apalara [1], that is we

will prove the system is not exponentially stable unless stability number

χτ =

(
1− ρ3Gτ

ρ

)(
D

Iρ
− G

ρ

)
− τGδ2

ρIρ
= 0.

More precisely, we will recall a standard and widely used technique for the investigation of the

decay properties of an abstract contraction semigroup S(t) = eAt acting on a Hilbert space H.

The remaining part of this paper is organized as follows. In section 2, we present some

hypotheses needed for our work and state the main result. In section 3, we show that the system

is not exponential stable if χτ ̸= 0. We use c throughout this paper to denote a generic positive

constant.
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2 Preliminaries and main results

In this section, we begin with some materials and known result for problem (1.1). First, let

ξ = 3s− ψ, then (1.1) can be rewritten as follows:

ρwtt +G(3s− ξ − wx)x = 0, (x, t) ∈ (0, 1)× (0,+∞),

Iρξtt −Dξxx −G(3s− ξ − wx) + δθx = 0, (x, t) ∈ (0, 1)× (0,+∞),

3Iρstt − 3Dsxx + 3G(3s− ξ − wx) + 4γs+ 4βst = 0, (x, t) ∈ (0, 1)× (0,+∞),

ρ3θt + qx + δξxt = 0, (x, t) ∈ (0, 1)× (0,+∞),

τqt + αq + θx = 0, (x, t) ∈ (0, 1)× (0,+∞),

w(x, 0) = w0(x), ξ(x, 0) = ξ0(x), s(x, 0) = s0(x), wt(x, 0) = w1(x), x ∈ [0, 1],

ξt(x, 0) = ξ1(x), st(x, 0) = s1(x), θ(x, 0) = θ0(x), q(x, 0) = q0(x), x ∈ [0, 1],

wx(0, t) = ξ(0, t) = s(0, t) = q(0, t) = 0, t ∈ [0,+∞),

w(1, t) = ξx(1, t) = sx(1, t) = θ(1, t) = 0, t ∈ [0,+∞).
(2.1)

Next, let

Φ = (w, u, ξ, v, s, z, θ, q)T

and

Φ0(x) = (w0, w1, ξ0, ξ1, s0, s1, θ0, q0)
T ,

where u = wt, v = ξt and z = st. Hence, problem (2.1) is equivalent to the following abstract

Cauchy problem: {
∂tΦ(x, t) = AΦ(x, t),

Φ(x, 0) = Φ0(x),
(2.2)

where A is a operator defined by

AU =



u

−G
ρ
(3s− ξ − wx)x

v

G

Iρ
(3s− ξ − wx) +

D

Iρ
ξxx −

δ

Iρ
θx

z

−G
Iρ
(3s− ξ − wx)−

4γ

3Iρ
s− 4β

3Iρ
z +

D

Iρ
sxx

− 1

ρ3
qx −

δ

ρ3
vx

−α
τ
q − 1

τ
θx



.
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Now, we consider the following spaces:

H1
∗ (0, 1) =

{
η

∣∣∣∣ η ∈ H1(0, 1) : η(0) = 0

}
, H̃1

∗ (0, 1) =

{
η

∣∣∣∣ η ∈ H1(0, 1) : η(1) = 0

}
,

H2
∗ (0, 1) = H2(0, 1) ∩H1

∗ (0, 1), H̃2
∗ (0, 1) = H2(0, 1) ∩ H̃1

∗ (0, 1)

and define the functional space of Φ as follows:

H = H̃1
∗ (0, 1)× L2(0, 1)×H1

∗ (0, 1)× L2(0, 1)×H1
∗ (0, 1)× L2(0, 1)× L2(0, 1)× L2(0, 1), (2.3)

where H is a Hilbert space endowed with the inner product defined, for Φ, Φ̃ ∈ H, by(
Φ, Φ̃

)
H
=ρ

∫ 1

0
uũdx+ Iρ

∫ 1

0
vṽdx+ 3Iρ

∫ 1

0
zz̃dx+ ρ3

∫ 1

0
θθ̃dx+ τ

∫ 1

0
qq̃dx

+G

∫ 1

0
(3s− ξ − wx)(3s̃− ξ̃ − w̃x)dx+D

∫ 1

0
ξxξ̃xdx

+ 4γ

∫ 1

0
ss̃dx+ 3D

∫ 1

0
sxs̃xdx.

Then, the domain of A is defined by

D(A) =

{
Φ ∈ H | w ∈ H̃2

∗ (0, 1), ξ, s ∈ H2
∗ (0, 1), θ ∈ H̃1

∗ (0, 1), q ∈ H1
∗ (0, 1),

u ∈ H̃1
∗ (0, 1), v, z ∈ H1

∗ (0, 1), wx(0, t) = ξx(1, t) = sx(1, t) = 0

}
.

The well-posedness of problem (2.2) is ensured by

Theorem 2.1 [1, Theorem 3.1] Let Φ0 ∈ H, then problem (2.2) exists a unique weak solution

Φ ∈ C(R+;H). Moreover, if Φ0 ∈ D(A), then

Φ ∈ C(R+;D(A)) ∩ C1(R+;H).

Our main result reads as follows:

Theorem 2.2 Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space H. Assume

that the stability number χτ ̸= 0, then the semigroup S(t) on H is not exponentially stable.

3 The lack of exponential stability

In this section, we prove the system is not exponential stable by making use of Prüss theorem to

dissipative systems [6, 8].

Theorem 3.1 Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space H. Then S(t)

is exponentially stable if and only if

ρ(A) ⊃ {iλ : λ ∈ R} ≡ iR and lim
|λ|→∞

∥(iλI −A)−1∥L(H) <∞,

where ρ(A) is the resolvent set of the operator A.
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Proof of Theorem 2.2. We use the above theorem to prove the lack of exponential stability.

The main idea of the proof is to show that there exist a sequence of imaginary number λµ, µ ∈ N+

such that

∥(λµI −A)−1∥L(H) <∞,

which is equivalent to prove that there exist Fµ ∈ H (∥Fµ∥H ≤ 1) and Vµ ∈ D(A) with

∥(λµI −A)−1Fµ∥H = ∥Vµ∥H → ∞.

Hence, we obtain that

(λµ −A)Vµ = Fµ. (3.1)

Rewriting the spectral equation (3.1) in term of its components, we have λµ = λ,

λv1 − v2 = f1,

λρv2 −G∂xxv1 −G∂xv3 + 3G∂xv5 = ρf2,

λv3 − v4 = f3,

λIρv4 +G∂xv1 +Gv3 −D∂xxv3 − 3Gv5 + δ∂xv7 = Iρf4,

λv5 − v6 = f5,

3λIρv6 − 3G∂xv1 − 3Gv3 + (9G+ 4γ) v5 − 3D∂xxv5 + 4βv6 = 3Iρf6,

λρ3v7 + ∂xv8 + δ∂xv4 = ρ3f7,

λτv8 + αv8 + ∂xv7 = τf8,

(3.2)

where V = (v1, v2, v3, v4, v5, v6, v7, v8)
T ∈ D(A) and F = (f1, f2, f3, f4, f5, f6, f7, f8)

T ∈ H.

Next, choosing f1 = f3 = f4 = f5 = f6 = f7 = f8 = 0 and f2 =
1
ρ cos

(µπ
2 x
)
, we obtain

λ2ρv1 −G∂xxv1 −G∂xv3 + 3G∂xv5 = cos
(µπ

2
x
)
,

λ2Iρv3 +G∂xv1 +Gv3 −D∂xxv3 − 3Gv5 + δ∂xv7 = 0,

λ2Iρv5 −G∂xv1 −Gv3 +

(
3G+

4γ

3

)
v5 −D∂xxv5 + λ

4β

3
v5 = 0,

λρ3v7 + ∂xv8 + λδ∂xv3 = 0,

λτv8 + αv8 + ∂xv7 = 0.

(3.3)

Then, taking the boundary conditions into consideration, we set

v1 =A cos
(µπ

2
x
)
, v3 = B sin

(µπ
2
x
)
, v5 = C sin

(µπ
2
x
)
,

v7 = E cos
(µπ

2
x
)
, v8 = F sin

(µπ
2
x
)
.
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Consequently, (3.3) becomes

(
λ2ρ+G

(µπ
2

)2)
A−G

(µπ
2

)
B + 3G

(µπ
2

)
C = 1,

−G
(µπ

2

)
A+

(
λ2Iρ +G+D

(µπ
2

)2)
B − 3GC − δ

(µπ
2

)
E = 0,

G
(µπ

2

)
A−GB +

(
λ2Iρ + 3G+

4γ

3
+ λ

4β

3
+D

(µπ
2

)2)
C = 0,

λδ
(µπ

2

)
B + λρ3E +

(µπ
2

)
F = 0,

−
(µπ

2

)
E + (λτ + α)F = 0.

(3.4)

Now, we take λ2ρ+G
(µπ

2

)2
= 0 such that λ = i

√
G
ρ

(µπ
2

)
, then, (3.4) can be rewritten as

−G
(µπ

2

)
B + 3G

(µπ
2

)
C = 1,

−G
(µπ

2

)
A+

(
−IρG

ρ

(µπ
2

)2
+G+D

(µπ
2

)2)
B − 3GC − δ

(µπ
2

)
E = 0,

G
(µπ

2

)
A−GB +

(
−IρG

ρ

(µπ
2

)2
+ 3G+

4γ

3
+ i

4β

3

√
G

ρ

(µπ
2

)
+D

(µπ
2

)2)
C = 0,

iδ

√
G

ρ

(µπ
2

)2
B + iρ3

√
G

ρ

(µπ
2

)
E +

(µπ
2

)
F = 0,

−
(µπ

2

)
E +

(
iτ

√
G

ρ

(µπ
2

)
+ α

)
F = 0.

(3.5)

From (3.5)5, we have

F =

(µπ
2

)
iτ
√

G
ρ

(µπ
2

)
+ α

E. (3.6)

Substituting (3.6) into (3.5)4 yields

E =

Gδτ
ρ

(µπ
2

)3 − iδα
√

G
ρ

(µπ
2

)2(
1− Gτρ3

ρ

) (µπ
2

)2
+ iρ3α

√
G
ρ

(µπ
2

)B. (3.7)

Combining (3.5)2 and (3.5)3, we obtain(
−IρG

ρ

(µπ
2

)2
+D

(µπ
2

)2)
B

+

(
−IρG

ρ

(µπ
2

)2
+

4γ

3
+ i

4β

3

√
G

ρ

(µπ
2

)
+D

(µπ
2

)2)
C − δ

(µπ
2

)
E = 0. (3.8)

Then, replacing (3.7) in (3.8), we get

C = −

(
− IρG

ρ

(µπ
2

)2
+D

(µπ
2

)2)
+

−Gδ2τ
ρ (µπ

2 )
4
+iδ2α

√
G
ρ (

µπ
2 )

3(
1−Gτρ3

ρ

)
(µπ

2 )
2
+iρ3α

√
G
ρ (

µπ
2 )

− IρG
ρ

(µπ
2

)2
+ 4γ

3 + i4β3

√
G
ρ

(µπ
2

)
+D

(µπ
2

)2 B = −Aµ

Cµ
B. (3.9)
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Gathering (3.5)3 and (3.9), we obtain

A =
G+Aµ + 3G

Aµ

Cµ

G
(µπ

2

) B. (3.10)

Next, substituting (3.9) into (3.5)1, we arrive at

B = − 1

G
(µπ

2

)
+

3GAµ

Cµ

(µπ
2

) .
Let χ = D

G − Iρ
ρ , χ1 = 1− τρ3G

ρ . In case χ1 = 0, we get

B → iρ3αχ

3τδ2
√

G
ρ

(µπ
2

)2 , for µ large.

Then

A→ − χ

3G
, B → 0, C → 0, E → χ

3δ
, F → χ

3iδτ
√

G
ρ

, µ→ ∞.

Thus, we obtain

∥Vµ∥2H ≥ G

∫ 1

0
(3v5 − v3 − v1x)

2dx

= G

∫ 1

0

(
3C sin

(µπ
2
x
)
−B sin

(µπ
2
x
)
+A

(µπ
2

)
sin
(µπ

2
x
))2

dx

= G
(
3C −B +A

(µπ
2

))2 ∫ 1

0

(
sin
(µπ

2
x
))2

dx

≈ χ2

18G

(µπ
2

)2
→ ∞, as µ→ ∞.

In case χ1 ̸= 0, we have

B → − χχ1

(3Iρχτ + χχ1G)
(µπ

2

) , for µ large.

Therefore

A→ − Iρχχτ

3GIρχτ + χχ1G2
, B → 0, C → 0, E → − τδGχ

3ρIρχτ + ρGχχ1
,

F → iGδχ

(3ρIρχτ + ρχχ1G)
√

G
ρ

, µ→ ∞.

Consequently,

∥Vµ∥2H ≥ G

∫ 1

0
(3v5 − v3 − v1x)

2dx

= G

∫ 1

0

(
3C sin

(µπ
2
x
)
−B sin

(µπ
2
x
)
+A

(µπ
2

)
sin
(µπ

2
x
))2

dx

= G
(
3C −B +A

(µπ
2

))2 ∫ 1

0

(
sin
(µπ

2
x
))2

dx
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≈
GI2ρχ

2χ2
τ

2 (3GIρχτ + χχ1G2)2

(µπ
2

)2
→ ∞, as µ→ ∞.

From the above, it is easy to see that

∥Vµ∥H → ∞, as µ→ ∞,

which is the desired conclusion.
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