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Lack of exponential decay for a laminated beam with
structural damping and second sound
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In previous work (Z. Angew. Math. Phys. 68(2), 2017), Apalara considered a one-
dimensional thermoelastic laminated beam under Cattaneo’s law of heat conduction
and proved the exponential and polynomial decay results depend on the stability
number y,. In this paper, we continue to study the same system and show that the
solution of the concerned system lacks of exponential decay result in the case x, # 0
which solves the open problem proposed by Apalara (Z. Angew. Math. Phys. 68(2),
2017).
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1 Introduction

In previous paper [1], Apalara considered the following laminated beam with structural damping
and second sound:

pwi + G —wz), =0, (x,t) € (0,1) x (0, +00),
I,(3stt — Vi) — D(3S00 — Yza) — G(¥ — wy) + 660, = 0, (x,t) € (0,1) x (0,4+00),
31,51 — 3Dszp + 3G (Y — wy) + 4ys +48s, = 0, (x,t) € (0,1) x (0, +00),
p3bt + gz + 6(3s¢ — t)e = 0, (2,t) € (0,1) x (0, +00),
Tq +aq+ 0, =0, x,t) € (0,1) x (0,4+00),
w(x,0) = wo(z), ¥ (x,0) = Po(x), s(x,0) = so(x), wi(z,0) = wi(x), z € (0,1),
Yi(z,0) = 1(x), s¢(z,0) = s1(x),0(x,0) = Op(x),q(x,0) = qo(z), =€ (0,1),
w,(0,t) = 1(0,t) = s(0,t) = q(0,¢t) =0, t €[0,+00),

(w(l,t) = ¥a(1,1) = s2(1,1) = 0(1,¢) = t € [0,400),

(1.1)
where p,G,1,,p3,D,~,3,6,a,7 are positive constants. Here w(x,t) denotes the transverse dis-
placement of the beam which departs from its equilibrium position, ¢ (x,t) represents the rotation
angle, s(z,t) is proportional to the amount of slip along the interface at time ¢ and longitudinal
spatial variable x, 3s — 1 denotes the effective rotation angle and the third equation of (1.1)
describes the dynamics of the slip, 6(z,t) is the difference temperature, g(x,t) is the heat flux.
The coefficients p, G, 1,, D,~, 3 > 0 denote the density of the beams, the shear stiffness, the mass
moment of inertia, the flexural rigidity, the adhesive stiffness of the beams, and the adhesive
damping parameter, respectively. Moreover, the constants ps,a,d > 0 represent the physical
parameters from thermoelasticity theory, and 7 denotes the relaxation time describing the time
lag in the response of the heat flux to a gradient in the temperature. In that paper, the author
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established the exponential decay and polynomial decay depend on the stability number

= <1_p3GT> <D_G> _7G52
! p L p pl,

Beyond that, the author prove the well-posedness of the system. As for the previous results and

developments of laminated beam, the authors have stated and summarized in great detail in [1],
thus we just omit it here. The readers, for a better understanding of present work, are strongly
recommended to see [1] and the references therein.

For the lack of exponential decay, there are some results in recent time. Apalara et al. [2]
studied a one-dimensional thermoelastic Timoshenko system of the form

p1p1e — k(Pa + 1) + 002 =0, (z,t) € (0,L) x (0, +00),
P2 — bge + k(g + 1) =0, (z,t) € (0, L) x (0, +00),
P30 + gz + 0 = 0, (x,t) € (0,L) x (0,+00),
Tq +q+70, =0, (z,t) € (0,L) x (0,400),

where the heat conduction is given by Cattaneo’s law and the coupling is via the displacement
equation. The authors proved the exponential decay (polynomial decay) result when the stability
number x; = 0 (xr # 0). Moreover, when the stability number x, # 0, they showed that the
system lacks exponential stability if x, = 0 holds. In [8], Santos et al. studied a Bresse-Fourier

system
p1ow — k(py + 0 4+ lw), — kol(wy, — L) + kO, =0, (z,t) € (0,L) x (0, +00),
P2 — bibey + k(0r + 0 + lw) — k6 =0, (z,t) € (0,L) x (0,+00),
prwys — ko(we — 1)z + kl(0p + v +1lw) — kI =0, (x,t) € (0,L) x (0, +00),
p30; — alyr + k(@ + ¥ + lw)y = 0, (x,t) € (0,L) x (0,+00),

The authors proved the system is not exponentially stable when pﬁl #* p% or k—ky # 0. In
addition, they established the exponential decay and polynomial decay deponed on the relation
between the wave speed propagation. For more papers related to the lack of exponential stability,
we refer the reader to [3, 4, 5, 7] and the references therein.

In [1], Apalara brought up an interesting open problem to study the lack of exponential
stability of problem (1.1), that is, the system is not exponentially stable unless x; = 0. The aim
of this paper is to give a positive answer to the open problem proposed by Apalara [1], that is we

will prove the system is not exponentially stable unless stability number

2
TR
P I, p plp

More precisely, we will recall a standard and widely used technique for the investigation of the

decay properties of an abstract contraction semigroup S(t) = e acting on a Hilbert space .

The remaining part of this paper is organized as follows. In section 2, we present some
hypotheses needed for our work and state the main result. In section 3, we show that the system
is not exponential stable if x, # 0. We use ¢ throughout this paper to denote a generic positive
constant.
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2 Preliminaries and main results

In this section, we begin with some materials and known result for problem (1.1). First, let
& = 3s — 1), then (1.1) can be rewritten as follows:

[ pwis + G(3s — € —wy)z = 0, (z,t) € (0,1) x (0,400),
L6 — D&y — G(3s — § — wy) + 60, = 0, (z,t) € (0,1) x (0, +00),
31,51 — 3Dsze +3G(35s — & —wy) +4ys +48s, =0, (z,t) € (0,1) x (0, +00),
P30t + 4z + 08z = 0, (z,t) € (0,1) x (0,400),
T+ aq+ 0, =0, z,t) € (0,1) x (0, +00),
w(z,0) = wo(z),{(x,0) = &o(x), s(x,0) = so(x), we(x,0) = wi(z), x € [0,1],

&(z,0) = &1 (x), s¢(x,0) = s1(x),0(x,0) = Oy(x),q(x,0) = qo(x), = €]0,1],
w,(0,t) = £(0,t) = s(0,t) = q(0,t) =0, t € [0,400),
[ w(l,t) = &(1,t) = s.(1,t) = 0(1,t) =0, t € [0, +00).
(2.1)
Next, let
= (w,u,&0,s,2,0,q)7
and

Do(x) = (wo, w1, &0, &1, 50, 51,00, 90)"
where u = wy, v = & and z = s;. Hence, problem (2.1) is equivalent to the following abstract
Cauchy problem:

{ 0P (x,t) = AD(x,t), 2.2)

(I)(x70) = (I)()(CL'),
where A is a operator defined by

U
——(B8s =& —wy)
v
D )
7(38 - é - wx) + *gxm 79:5
I, I, I,
AU = .
4 43 D
—I—p(3s € —wy) B—Ips S—Ipz+ I—psm
1 1)
———(x — —VUg
P3 P3
1
_gq_ 70x
T T
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Now, we consider the following spaces:
0. = {n| ne m 0.0 00 =0f w00 = {n | 5 e 0.1 :01) =0}

HZ(0,1) = H*(0,1) N HL(0,1), H(0,1) = H*(0,1) N H}(0,1)
and define the functional space of ® as follows:
H = H0,1) x L?(0,1) x H}(0,1) x L*(0,1) x H(0,1) x L?(0,1) x L?(0,1) x L?(0,1), (2.3)

where H is a Hilbert space endowed with the inner product defined, for ®, & € #, by

1 1 1 1 1
(@,@) :,0/ uadx+f,,/ v@dx+31p/ zzdx+p3/ 00dx+7-/ gGdz
H 0 0 0 0 0
1 B 1 B
+G/ (3s—§—w$)(3§—§—w$)dx+D/ &6dn
0 0
1 1
+4’y/ s§dx—|—3D/ SzpSzde.
0 0
Then, the domain of A is defined by
D(A) = {<I> €M |weH0,1),¢s € HX(0,1),0 € H(0,1),q € H}(0,1),
we 01,0,z € H0),0s(0.0) = (06 = (1,6 = 0}

The well-posedness of problem (2.2) is ensured by

Theorem 2.1 [1, Theorem 3.1] Let ®g € H, then problem (2.2) exists a unique weak solution
® € C(RT;H). Moreover, if ®9 € D(A), then

® € C(RT; D(A) NCHRT; H).
Our main result reads as follows:

Theorem 2.2 Let S(t) = et be a Cy-semigroup of contractions on Hilbert space H. Assume
that the stability number x, # 0, then the semigroup S(t) on H is not exponentially stable.

3 The lack of exponential stability

In this section, we prove the system is not exponential stable by making use of Priiss theorem to
dissipative systems [6, 8].

Theorem 3.1 Let S(t) = et be a Cy-semigroup of contractions on Hilbert space H. Then S(t)
1s exponentially stable if and only if

p(A) D {irx: A\eR}=iR and |A1\Tm 1GAT — A) 7Y 2z < 00,
—00

where p(A) is the resolvent set of the operator A.
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Proof of Theorem 2.2. We use the above theorem to prove the lack of exponential stability.
The main idea of the proof is to show that there exist a sequence of imaginary number A, p € N
such that

1L = A) "l ) < 0o,

which is equivalent to prove that there exist F), € H (||F,|lx < 1) and V,, € D(A) with
1T = A) " Fullae = Vil — oo
Hence, we obtain that
Ay — AV, =F,. (3.1)

Rewriting the spectral equation (3.1) in term of its components, we have A, = A,

,

vy —vg = fi,

Apva — GOpyvy — GOyu3 + 3G0,v5 = pfa,

Avg — vy = f3,

Myvy + GOpv1 + Guz — D0Oypv3 — 3Gus + §0,v7 = 1, fa,

(3.2)
Avs — vg = f5,
3M v — 3G0v1 — 3Gv3 + (9G + 4v) v5s — 3D0,,v5 + 4Bvs = 31, fs,
Ap3v7 + Opvs + 00zv4 = p3 fr,
ATvg + avg + Oyvr = T fs,
where V = (v1,v2, v3, 04,05, 06, v7,08)" € D(A) and F = (f1, fa, f3, fa, f5, fo. f7, [s)T € H.
Next, choosing fi = f3=fa=fs=fs = fr=fs=0and fo = %cos (“TW:E), we obtain
( A2 pu1 — GOypv1 — GOyu3 + 3GO,v5 = cos (%z) )
N1z + GOpvr + Gug — DOy — 3Gu5 + §0,v7 = 0,
4 4
)\QIpv5 — GOpv1 — Gug + <3G + ;) vs — D05 + )\?ﬁ% =0, (3.3)
Ap3v7 + Opvg + Ad0,v3 = 0,
ATvg + avg + Oyvr = 0.

\
Then, taking the boundary conditions into consideration, we set
v1 =A cos (%:{:) , v3= Bsin (%x) , wvs =Csin (%x) ,

vy = FE cos (%x) , vg = F'sin (%x) .
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Consequently, (3.3) becomes

<A2p+G(“;))A G( )B+3G( )021,

—G< )A+<A2IP+G+D(“2”) )B—‘sac-&(‘gr)E:o,

G(%)A—GBJr ()\21 +3G+§+A4B (2)2>czo, (3.4)

s
2

\—(?)E—F()\T—FQ)F:O.

)\5( )B+>\p3E+< )F:o,

Now, we take \2p + G (“7) = 0 such that X\ = z\/g (47), then, (3.4) can be rewritten as
7r

'—G(%)BMG(%)C 1,
G (E5) a+ (—IPpG (M;)2+G+D(M27T)2)B—3GC’—5<M;)E:O,
I

22 E. (3.6)

B. (3.7)

Combining (3.5 d (3. 5)3, we obtain

( o (5))
+< IPG (%)2 4% i?ﬁ(’?)+1}(’”‘§)j0—5(‘?)}3:0. (3.8)
Then, replacing (3.7) in (3.8), we get

(~22 ()" + D (5)*) + ey

C=-

A
B=-£B. )
e (3.9)

® ‘ Q
—
m‘t
N—
[N}
_I_
ey
+
-~
&
o Q]
>R
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Gathering (3.5)5 and (3.9), we obtain

A
G4 A, +3GEE

A= 3.10
G (&) (310)

Next, substituting (3.9) into (3.5),, we arrive at

Letng—f,xlzl—#. In case x1 = 0, we get

B — %, for p large.
3702, /S (1)
Then
A%—%, B—0, C—=0, E—>i, F— X I — 00.

30 3@'57'\/97
Thus, we obtain
HVMH% > G/1(31)5 — 3 — v,)2dx
0
= G/l <3C sin (%x) — Bsin <H—27ra:> + A (%) sin (%x))de
0
=G <30 —B+ A (%))2/01 (sin (%x)fdx
2

X (mr

2
N@ 7) — 00, as u — oQ.

In case x1 # 0, we have

XX1

B — — BLxs - 00C) (%), for u large.
Therefore Lo Gy
4= 3G Ly, + xx1G?’ B=0, 00, B~ 3plxr + pGxx1
F— iGox , b — 00.
Bplox- + pxle)\/g
Consequently,

Vall 2 G [ 35 — 05— wre 2

0
e [} Gosn(52) - pan(52) () sn ()
G <3C’ — B+ A (%))2/01 (sin (%x))zdx
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GI2x*x2
2 (3G L x- + xx1G2)*

~
~

P 2
<?> — 00, as y — 00.

From the above, it is easy to see that
Vil — o0, as pp — oo,

which is the desired conclusion.
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