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Abstract: Recently, there has been a growing interest in the production of high-resolution maps of
vaccination coverage. These maps have been useful for uncovering geographic inequities in coverage
and improving targeting of interventions to reach marginalized populations. Different
methodological approaches have been developed for producing these maps using mostly geolocated
household survey data and geospatial covariate information. However, it remains unclear how much
the predicted coverage maps produced by the various methods differ, and which methods yield more
reliable estimates. Here, we explore the predictive performance of these methods and resulting
implications for spatial prioritization to fill this gap. Using Nigeria Demographic and Health Survey
as a case study, we generate 1x1 km and district level maps of indicators of vaccination coverage
using geostatistical, machine learning (ML) and hybrid methods and evaluate predictive
performance via cross-validation. Our results show similar predictive performance for five of the
seven methods investigated, although two geostatistical approaches are the best methods. The worst-
performing methods are two ML approaches. We find marked differences in spatial prioritization
using these methods, which could potentially result in missing important underserved populations,
although broad similarities exist. Our study can help guide map production for other health and
development metrics.

Keywords: Bayesian geostatistics; machine learning; vaccination coverage; demographic and health
survey; health and development indicators; INLA-SPDE

1. Introduction

Immunization is a core component of primary healthcare service delivery, reducing vaccine
preventable morbidity and mortality (Shattock et al., 2024) and critical to achieving the Sustainable
Development Goals (United Nations, 2015) and other global health policy goals such as the
Immunization Agenda 2030 (World Health Organization, 2020) and Gavi Strategy 5.0 (Gavi The
Vaccine Alliance, 2020). Yet, immunization and other health services remain inaccessible to
vulnerable and marginalized populations, including those living in remote rural areas, conflict and
humanitarian settings and the urban poor (Chopra et al., 2020, UNICEF and the Bill and Melinda
Gates Foundation, 2021, Wigley et al., 2022). To design effective intervention strategies to reach these
populations, accurate spatially detailed maps of vaccination coverage and other health and
development indicators (HDIs) such as maternal literacy, poverty, school attendance, malaria
prevalence, malnutrition and skilled birth attendance (Bosco et al., 2017, Mosser et al., 2019, Weiss et
al., 2019, Kinyoki et al., 2020, Sbarra et al., 2021) can be useful. These maps enable decision makers to
better understand the inequities that exist in service coverage and utilization and enhance the
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targeting of population subgroups or entire populations in a more effective manner — a field of
research known as precision public health (Dowell et al., 2016). Moreover, by providing current,
reliable, robust and actionable evidence base, high-resolution maps of vaccination coverage and other
HDIs help bridge the data gap that exist in many low- and middle-income countries where health
management information systems and other administrative data sources such as vital registration are
often incomplete and unreliable (Scobie et al., 2020, Mwinnyaa et al., 2021).

Data for producing maps of vaccination coverage and other HDIs often come from nationally
representative, geolocated household surveys such as the Demographic and Health Surveys,
Multiple Indicator Cluster Surveys and national vaccination coverage surveys. Due to high
operational costs, most surveys are designed to be representative at the provincial level (i.e., the first
administrative level), meaning that classical approaches for analyzing survey data such as direct
weighted estimators (Rao, 2005) can only produce estimates at this level. However, accurate estimates
are most useful at lower administrative levels, e.g., the district or second administrative level at which
vaccination programs and other interventions are planned and implemented. This, alongside
developments in geostatistical modelling and improvements in computing power, has led to a
proliferation of geostatistical and machine learning (ML) approaches to produce gridded estimates
of HDIs from survey data. These methods rely heavily on the direct and proximate relationships that
exist between (cluster level) data on HDIs and geospatial covariate data, as well as spatial and
spatiotemporal dependence, to model and predict the spatial distributions of HDIs for single or
multiple timepoints. The production of estimates of HDIs at the grid level, typically at 1 km or 5 km
resolution, means that these are not tied to inconstant political or administrative boundaries and can
be easily aggregated to operationally relevant areas of interest. Also, when integrated with other
geospatial datasets, e.g., population maps (Tatem, 2017) and geolocated health facility data (Lim et
al., 2008, Johns et al., 2022), precise estimates of at-risk or underserved populations can be produced.
Research and survey programs such as WorldPop through its VaxPop project(Utazi et al., 2018b,
Utazi et al., 2019, Utazi et al., 2021, Utazi et al., 2022), the Institute for Health Metrics and Evaluation
(IHME)(Mosser et al., 2019, Sbarra et al., 2021) and the DHS program (Janocha et al., 2021) now
routinely produce and distribute maps of HDIs.

Popular geostatistical, ML and hybrid approaches for producing high-resolution maps of
vaccination coverage and other HDIs include geostatistical models (GEOS) (Bosco et al., 2017, Utazi
et al.,, 2021, Utazi et al., 2022, Alegana et al., 2024), generalized additive models (GAMs) (Takahashi
et al.,, 2017, Kawakatsu et al., 2024), stacked generalization (STG) (Mosser et al., 2019, Sbarra et al.,
2021), boosted regression trees (BRT) (Kawakatsu et al., 2024), random forests (Browne et al., 2021),
least absolute shrinkage and selection operator (LASSO) regression and deep learning/artificial
neural networks (ANN) (Bosco et al., 2017). Model-based geostatistics (Diggle et al., 1998) explicitly
accounts for spatial autocorrelation and the (non)linear effects of covariates and is often fitted in a
Bayesian framework using the INLA-SPDE approach or MCMC techniques, although the former has
gained more popularity in recent times due to its computational benefits. When non-linear effects (or
smooth functions) of covariates are included in a geostatistical model, a semiparametric geostatistical
model (SGEOS) (Wood, 2011, Wang et al., 2018) which eliminates the need for covariate data
transformation is obtained. Also, the Bayesian implementation of geostatistical models provides a
natural framework to account for the uncertainties associated with the predictions, as well as the
input data. ML and hybrid approaches are especially suitable for modelling complex nonlinear
relationships and interactions in the data, but this can sometimes result in a loss of interpretability.
ML can automatically identify the relevant covariates/features in the data, unlike geostatistical
modelling which may require a separate covariate selection process. Whilst ML approaches rely only
on covariates to make predictions and would be expected to perform well if these are highly
informative, geostatistical and hybrid approaches additionally leverage residual spatial (and
temporal) autocorrelation. ML approaches are computationally less demanding, can handle large-
scale and high-dimensional data better, and are sometimes less challenging to implement (e.g., GAM,
LASSO and BRT) (James et al., 2013, Berrocal et al., 2020). However, some ML approaches such as
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BRT, ANN and LASSO do not produce uncertainty estimates, leaving users with the task of exploring
additional techniques to quantify these uncertainties (Veronesi and Schillaci, 2019, Berrocal et al.,
2020).

Currently, little is known about the comparative predictive performance of these ML and
geostatistical approaches, especially in the context of mapping vaccination coverage. There is a lack
of substantial evidence on how much the predicted maps produced by these approaches differ and
which approaches yield more reliable estimates. This is likely due to the effort and technical expertise
required to execute the different approaches and a cavalier attitude to methodological rigour. As
maps of vaccination coverage and other HDIs become increasingly popular, it is imperative to better
understand the advantages and limitations of each modelling approach. The goal of this study is,
therefore, to critically evaluate these popular approaches for mapping vaccination coverage and other
HDIs in terms of their predictive accuracy and associated uncertainties. We investigate four machine
learning approaches (ANN, BRT, GAM and LASSO), two geostatistical models (GEOS and SGEOS)
and one hybrid approach (STG). Our evaluation is based on a case study mapping the coverage of
the first dose of the diphtheria-tetanus-pertussis (DTP1) and the first dose of the measles-containing
vaccine (MCV1) vaccines using the 2018 Nigeria Demographic and Health Survey (NDHS) (National
Population Commission - NPC and ICF, 2019).

2. Methodology
2.1. Data

2.1.1. Vaccination Coverage Data

Data on the coverage of DTP1 and MCV1 vaccines were obtained from the 2018 NDHS (National
Population Commission - NPC and ICF, 2019) for children aged 12-23 months and 9-35 months,
respectively. The NDHS was conducted between August and December 2018 and utilized a stratified,
two-stage sampling design to produce estimates of indicators at the national, regional and state
levels, and for urban and rural areas. Stratification was achieved by separating each of the 36 states
and the Federal Capital Territory (FCT) into urban and rural areas. Samples were drawn from within
each stratum in two stages: the first stage involved the selection of survey clusters (enumeration
areas) from a national sampling frame using a probability proportional to size sampling scheme,
while the second stage involved selecting households randomly from household lists within the
selected clusters. Detailed information on the methods employed in the survey is published
elsewhere (National Population Commission - NPC and ICF, 2019). The NDHS was selected because
of ease of data access and having been used extensively in previous work to map coverage (Dong
and Wakefield, 2021, Aheto et al., 2023, Utazi et al., 2023, Kawakatsu et al., 2024).

The survey was implemented in a total of 1389 clusters, with 11 of the 1400 clusters selected
initially dropped due to security reasons. Also, in Borno State, only 11 of the 27 local government
areas were considered in the survey due to high insecurity. For each vaccine, we used information
obtained from both home-based records and maternal/caregiver recall, following DHS guidance
during data extraction (Croft et al., 2023). Hence, our analysis captures crude DTP1 and MCV1
coverage estimates (World Health Organization, 2018). At the cluster level, we aggregated the
individual level data to produce numbers of children surveyed, numbers vaccinated and empirical
proportions of children vaccinated as shown in Figure 1.
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Figure 1. Cluster level estimates of proportions of children aged 12-23 months and 9-35 months who had received

DTP1 and MCV1, respectively, obtained using the 2018 Nigeria Demographic and Health Survey.

2.1.2. Geospatial Covariate and Population Data

To enhance the prediction of vaccination coverage using the approaches investigated, we
obtained some geospatial covariate information — see supplementary Figures S1 and S2 and
supplementary Table 1. These covariates have been successfully used in previous work (Bosco et al.,
2017, Utazi et al., 2019, Utazi et al., 2022, Utazi et al., 2023) to model and predict vaccination coverage
and other HDIs. These comprise variables measuring a range of conditions in the study country
which may have direct or proximate relationships with vaccination coverage. These include
remoteness (travel time to the nearest health facility and distance to cultivated areas), socioeconomic
(poverty index, household wealth, maternal education), health (ownership of health or vaccination
card/document, skilled birth attendance, access to media and use of mobile phone/internet) and
urbanicity/development (nightlight intensity and urban/rural areas) variables.

The externally sourced geospatial covariates (supplementary Table 1) were processed and
harmonized at 1 x 1 km resolution, at which we planned to produce grid level coverage estimates. To
extract the values of the covariates for each cluster location, we used the approach described in Utazi
et al (Utazi et al., 2018b) and Perez-Haydrich et al (Perez-Haydrich et al., 2013) which accounts for
the displacement of the clusters (this displacement often occurs within districts in DHS surveys). For
the DHS-derived covariates, we first calculated their values at the cluster level using detailed
definitions provided in supplementary Table 1 and then used the krig () function in the fields
package in R (Nychka et al., 2017) to create corresponding 1 x 1 km interpolated surfaces, with the
optimal range parameter set to the first quartile of the distances between the clusters (other distance
quartiles yielded almost the same results). The kriging interpolation was carried out using the logit-
transformed cluster level data in each case due to its underlying Gaussian assumption, after which
the estimates were back-transformed to the unit interval.

We checked for multicollinearity by examining the correlations between the covariates and by
fitting non-spatial binomial regression models to estimate their variance inflation factors (VIFs). All
the covariates included in the study had VIF values less than 5.0 for both vaccination coverage
indicators, i.e., DTP1 and MCV1. Furthermore, for one of the modelling approaches (equations (1)
and (2)), we examined the distributions of the covariates and their relationships with vaccination
coverage (on the empirical logit scale), following which we log- or logit-transformed some skewed
covariates to improve their linear relationships with vaccination coverage. The plots of the covariates
and their relationships with vaccination coverage are shown in supplementary Figures S3 and S4. All
14 covariates were used in our study, as VIFs were acceptable and to facilitate using the ML
approaches, as they are often trained using ample covariate information.

To aggregate the coverage estimates to the district and other administrative levels, we obtained
2018 gridded estimates of numbers of children aged under 5 years from WorldPop (Tatem, 2017),
which we used as a proxy population layer for the age groups included in the study.
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2.2. Geostatistical and Machine Learning Modelling Approaches

We consider seven modelling approaches to predict vaccination coverage at 1x1 km resolution
as indicated previously. In all analyses, we accounted for the NDHS complex sampling design,
namely urban-rural stratification by including an urban-rural covariate and, when using
geostatistical modelling approaches, between-cluster variation (Dong and Wakefield, 2021,
Gascoigne et al., 2025). The modelling approaches are described in detail as follows and illustrated
in Figure 2.

2.2.1. Bayesian Geostatistical Regression Model (GEOS)

The first model that we consider is a Bayesian geostatistical model with a Binomial likelihood.
Letting Y(s;) denote the number of children vaccinated at survey location s; (i =1,..,n) and
m(s;) the number of children sampled at the location, the first level of the model assumes that

Y(s)Ip(s;) ~ Binomial(m(s;), p(sy), (1)

where p(s;) (0 < p(s;) < 1) is the true vaccination coverage at location s;. We model p(s;) using
the logistic regression model

logit(p(s:)) = x(s)" B + w(s) +€(s1), (2)

where x(s;) isa vector of covariate data associated with s; which includes an urban-rural covariate,
B is a vector of the corresponding regression coefficients, €(s;) is an independent and identically
distributed (iid) Gaussian random effect with variance, 2, used to model non-spatial residual
variation or between-cluster variation, and w(s;) is a Gaussian spatial random effect used to capture
residual spatial correlation in the model. That is, @ = (w(sy), ..., w(sy) )" ~ N(0,%,), where X, is

assumed to follow the Matérn covariance function (Matérn, 1960) given by Z,(s;, s;) =
2

2V+r(v)(K Il's; —s; II)V K, (i Il s; — s; II). The notation |I. || denotes the Euclidean distance, 0% > 0 is

the marginal variance of the spatial process, k is a scaling parameter related to the range r(r = ?)

— the distance at which spatial correlation is close to 0.1, and K, is the modified Bessel function of
the second kind and order v > 0. For identifiability reasons, we set the smoothing parameter, v =1,
see (Lindgren et al., 2011).

We complete the Bayesian model specification of the model by assigning a N(0,10°I) prior to
the regression parameter, g, and a penalized complexity (PC) (Simpson et al., 2017) prior to o, such
that p(o. > 3) = 0.01. Similarly, following Fuglstad et al (Fuglstad et al., 2019), we placed a joint PC
prior on the covariance parameters of the spatial random effect, w, such that p(r <1,) = 0.01 and
p(o > 3) = 0.01, with 1, chosen to be the 5% of the extent of the country in the north-south direction.

The model was fitted using the INLA-SPDE approach implemented in the R-INLA package
(Lindgren et al., 2015, R Core Team, 2021). The INLA approach — a faster alternative to MCMC —
performs approximate Bayesian inference through a numerical approximation of the marginal
posterior distributions of each unknow quantity in the model. The SPDE approach works by
representing @ as a Gaussian Markov random field to reduce the computational burden associated
with the estimation of X, (Lindgren et al., 2011). Predictions at 1x1 km resolution were obtained
using the fitted model by drawing samples from the posterior predictive distributions of p(S;) at
the grid locations. Throughout, predictions at the administrative level were obtained as population-
weighted averages taken over all the grid cells falling within each administrative area (Utazi et al.,
2022).

2.2.2. Bayesian Semiparametric Geostatistical Regression Model (SGEOS)

This model extends the GEOS model in equations (1) and (2) through using smooth functions to
account for the nonlinear effects of some covariates. The model assumes that the true vaccination

coverage at location §;, p(S;), can be expressed as
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logit(p(s;)) = Bo + Z?:l X;(s))B; + ZZ=1fk(Zk(Si)) + w(s;) +€(s;), (3)

where B, is an intercept term, x;(S;),...,X,(S;) are linear covariates with regression coefficients
B, s ﬁp, and f;(.), ..., f3(.) are smooth functions used to account for the non-linear effects of the
covariates z;(S;), ...,z4(S;). Other terms in the model are as defined previously in equation (2). We
specify a second-order random walk prior for f(.) such that

fQuilui—g, ui—p) ~ NQuj—q — ui—z.sz) , (4)

which is the Bayesian equivalent of a cubic smoothing spline (Wang et al., 2018) For identifiability, a
sum-to-zero constraint is imposed on each of the smooth functions since the model includes an
intercept term (Wang et al., 2018). Model (3) was also fitted in a Bayesian framework using the INLA-
SPDE approach. During implementation, where necessary, we used the inla.group () function to
bin the covariates into groups according to both their cluster and grid level values, using the quantile
option. We then extracted the computed values of the smooth function f(.) for each grouped data
point which were used to make predictions post model-fitting.

2.2.3. Generalized Additive Model (GAM)

Generalized additive models also provide a mechanism to account for non-linear relationships
by allowing non-linear functions of all continuous covariates whilst maintaining additivity. The
model is given by

logit(p(sl-)) = Po + P1x1(s)) + Zzzlfk(zk(si)) + g(s;), (5)

where X; denotes the urban-rural covariate and f;(.), ..., f;(.) are functions used to account for the
non-linear effects of other covariates. For our analyses, we chose cubic smoothing splines for f(.),
noting that other choices are also possible (James et al., 2013). The function g(.) is used to account
for the effect of space in the model, for which we specified a two-dimensional smoother - an isotropic
smooth of latitude and longitude on the sphere with a second-order penalty (Wahba, 1981). The
model was fitted in a frequentist framework and implemented in R using the mgcv package (Wood
and Wood, 2015).

2.2.4. Boosted Regression Model/Trees (BRT)

Boosting is a tree-based method that also allows modelling complex, non-linear relationships
between an outcome variable and various predictor variables (James et al., 2013). The method is based
on the generation of a collection of sequentially fitted regression trees that optimize the predictive
value of the response variable based on local predictor values. The boosting algorithm proceeds by
fitting a regression tree to the data using the outcome variable as the response in the first iteration.
The fitted tree is then scaled by a shrinkage parameter and added to the fitted function (this is set
equal to zero in the first iteration) to update the residuals. In subsequent iterations of the algorithm,
the regression trees are fitted using the residuals as the response. The process continues until a
desired number of iterations or trees have been fitted. The output from the boosted model for location
s; can be expressed as

§(B(s)) = X5-143"B(s0), (6)

where, g(.) denotes the final prediction from the model, g°(.) is the prediction from the bth
component regression tree, A is a shrinkage parameter and B is the number of trees/iterations. 1
controls the rate at which the boosting learns and is usually chosen to be small. For our application,
we set 1 = 0.01 as recommended in (James et al., 2013) and chose B = 10,000. Another important
tuning parameter when fitting a boosting model is the number of splits in each tree or the interaction
depth, which controls the complexity of the boosted ensemble. This is often set equal to the default
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value of 1. The BRT model is implemented in our study using the gbm package in R (Ridgeway and
Ridgeway, 2004). Due to the unavailability of the binomial distribution in the gbm package, we elected
to model the logit-transformed cluster level vaccination coverage p(s;) using a Gaussian
distribution and then back-transformed all the predictions post model-fitting. We note that as in
model (5), the set of covariates used in fitting the model included the longitude and latitude
coordinates to account for spatial variation.

2.2.5. Least Absolute Shrinkage and Selection Operator (LASSO) Regression

Lasso regression performs both variable selection and regularization and is particularly suitable
for modelling contexts where a large or considerable number of covariates are available. The method
implements automatic covariate selection through a penalty term (the L; penalty) included in its
objective function, which uses a tuning or regularization parameter to control the amount of
regularization, i.e., how much the regression coefficients are shrunken towards zero. The method
finds regression coefficients B, that minimize the objective function

In L(Bldata) + a X¥_,|;]. (7)

where « is the regularization parameter and all other terms are as defined previously. The first term
in (7) is the log-likelihood function which can be obtained from the binomial regression model in
equations (1) and (2) when the spatial and non-spatial random effects are excluded. Sufficiently large
values of a will force some regression coefficients to be equal to zero. In practice, a is chosen via a
grid search using cross-validation techniques. As in the GAM approach, the covariate data
considered in the analysis using (7) included the longitude and latitude coordinates of the data
locations. The LASSO regression model was implemented in our work using the glmnet package in
R (Friedman et al., 2021).

2.2.6. Stacked Generalization Using a Bayesian Geostatistical Model (STG)

In statistical learning, stacked generalisation or stacked regression is an ensemble method for
combining predictions from multiple models, often referred to as child models. In the hybrid variant
implemented in our work, the child models are different ML approaches, predictions from which are
combined using a geostatistical model (Bhatt et al., 2017, Mosser et al., 2019, Sbarra et al., 2021).
Through these child models, the STG approach accounts for complex, nonlinear relationships
between the covariates and the outcome. The geostatistical modelling framework is then used to
account for residual spatial autocorrelation. The STG approach was proposed/utilized in (Bhatt et al.,
2017) and has been used to model vaccination coverage and various HDIs (Mayala et al., 2019, Mosser
et al., 2019, Sbarra et al., 2021).

Following Sbarra et al (Sbarra et al., 2021), we considered the following child models: GAM, BRT
and LASSO regression. These child models were implemented as described previously, but excluding
the geographical coordinates of the data locations in the covariate data. To obtain final predictions
for the outcome, the predictions from these child models are included as covariates in the
geostatistical model:

logit(p(s;)) = Bo + B1x M (s;) + BoxBRT (s;) + Bax4559(s)) + w(sy) + e(s;), (8)

where B, 1,8, and f5; are regression coefficients and other terms are as described previously in
equation (2). As in (Mosser et al., 2019, Sbarra et al., 2021), a sum-to-one constraint is imposed on the
regression coefficients corresponding to the child models, such that ¥3_, #; = 1. This constraint helps
to mitigate the effect of extreme predictions in the child models (Bhatt et al., 2017, Mosser et al., 2019,
Sbarra et al., 2021) included in (8). As is usually the case in stacked generalization, Bhatt et al (Bhatt
et al., 2017, Mosser et al., 2019, Sbarra et al., 2021) recommended the use of K-fold cross-validation
predictions from the child models to calibrate the model (i.e., estimate the parameters) in (8), and
then refitting the child models using the full data and using the predictions from these in (8) without
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refitting the model. We noted that using the cross-validation predictions from the child models in (8)
compared to the full data predictions did not necessarily yield improvements in predictive
performance in our analyses. The STG approach was implemented in our work using the INLA-SPDE
approach and the INLABRU package in R (Lindgren et al., 2024).

2.2.7. Artificial Neural Networks (ANN)

An artificial neural network (ANN) is a ML technique that mimics the functioning of the animal
brain. An ANN model is particularly useful in modelling contexts where data are large and complex,
with potential nonlinearities and interactions between the covariates. The network consists of layers
of connected neurons that serve as data processing units, where each neuron applies a linear
transformation to its inputs, followed by a non-linear activation function. For our work, we used a
multilayer perceptron network (Park and Lek, 2016), which consists of an input layer, multiple
hidden layers and an output layer. The input layer receives the features from the data, processes and
transmits these to the hidden layers which process the information further through interconnected
neurons, while the output layer produces the final predictions. For a spatial location s with covariate

T
vector x(s) = (x1 (8),x2(8), ..., Xp (s)) , the predicted value from an ANN with a single hidden layer

can be expressed as:

Output layer: 5(8) = b3 + Z?il wiz} (s),

Hidden layer: z2(s) = f(b? + zj.;lwﬁz}(s)),l =1,..,L,,

Input layer: z}(s) = f(b} + 25';1 wjix;(8)),1=1,..,Ly, (9)
where L; and L, are the numbers of neurons in the input and hidden layers, respectively, f(.) is
the activation function, b/,b?,b® and wj,wj,w} are bias and weight parameters estimated to
minimize mean squared error in the training data. Furthermore, z/(s), zZ(s) and ﬁ/(s\) are outputs
from the layers as shown in equation (9).

Fitting an ANN requires tuning the number of hidden layers, the number of neurons in each
layer, and choosing the activation function. Other parameters such as the number of epochs (the
number of times the entire data is passed through the network during training), stopping metric,
stopping tolerance and stopping rounds are also tuned during model fitting. These early stopping
criteria help to avoid overfitting in the model. A common choice for the activation function f(.) is
the rectified linear unit (relu), defined as f(x) = max{0,x}. The model was fitted using the
h2o.deeplearning() function in the H20 package in R (Fryda et al., 2024). Since the H20 package does
not support the binomial distribution, we elected to model the logit-transformed cluster-level
vaccination coverage, denoted by f(s) in equation (9) using a Gaussian distribution and then back-
transformed the predictions post model fitting. Based on a hold-out cross-validation exercise with an
80% training and 20% testing split, the final selected model has two hidden layers with, with 100
neurons each, with the number of epochs set to 100. The chosen stopping metric was the root mean
square error (RMSE) while the stopping tolerance and rounds were set equal to 0.001 and 5,
respectively. We checked the sensitivity of these choices by running several cases with different
justifiable parameter values but obtained the same results each time.
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learning approaches investigated in the study.

2.3. Uncertainty Estimation Using Delete-a-Block Jackknife Cross-Validation

To estimate the uncertainties associated with the ML approaches: BRT, LASSO and ANN, we
employed a delete-a-block jackknife technique. This is a variant of the delete-1 jackknife (Wang and
Yu, 2021) in which a block of observations is deleted at a time. The spatial blocks were formed by
drawing observations at random from the observed data. These can also be formed using spatially
contiguous observations, but this approach is more likely to affect the underlying spatial structure in
the data and can potentially introduce some artificial patterns in the uncertainty estimates, depending
on the sizes of the blocks. The choice of the block size was guided by the need to have as many
iterations as computationally logical (relative to the number of observations in the data) whilst
preserving the underlying spatial correlation in the data. Having many iterations ensures stability in
the results (i.e., the uncertainty estimates) and also reduces the numbers of observations deleted at
each iteration. We noted during test runs that block sizes of up to b = 40 observations produced
variogram estimates that were very similar to those of the full data in our applications
(supplementary Figures S5 and S6). We also noted that there were no material differences in the
estimates obtained for numbers of replicates r = 100. We, therefore, set v = 100 in our work,
corresponding to block sizes of n/r, where n is the number of observations or spatial locations in
the data as defined previously in (1). For all three ML approaches, we obtained the jackknife estimates
of the uncertainties (i.e., the standard deviations) associated with the grid level predictions as

r—-1\r

2
=1 (ﬁj(s) —ﬁ]ack(s)) , where p;(s) is the jth coverage estimate for grid location s and

Djack () is the jackknife estimate of the mean across all the replicates.

2.4. Model Validation Using k-Fold Cross-Validation and Variogram Analysis

To evaluate the out-of-sample predictive performance of the modelling approaches, we
conducted a k -fold cross-validation exercise, setting k =10 . For each indicator-method
combination, we created the cross-validation folds in two ways: random folds and spatially stratified
folds. For the random folds, the survey locations were assigned to each of the k folds in a random
manner; whereas with the spatially stratified method, each fold comprised neighbouring cluster
locations. We calculated the following measures of predictive performance: the correlation between

observed (p;) and predicted (p;) values, root mean square error (RM SE = \/ YD —p)?/ m),
1 A . 1 ~

mean absolute error (MAE = —di=1 |D; — pl-|), average bias (AVG_BlaS =— (P - pi))

and the continuous ranked probability score ( CRPS(F;,p;) = Er,|X; — pil — 3EF,1X; — X{|) (REF},

where F;(.) is the cumulative distribution function corresponding to the predictive distribution of

the ith cluster level estimate, and X; and X; are two independent random variables distributed
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according to F;(.). With r posterior samples, the CRPS can be estimated as CRPS(F;,p;) =
CO)/ |}5L-(j )~ il — #Z?zl D=1 |ﬁi(j )~ ﬁia) |, which is then averaged over all the locations within each
fold and over all the k folds. While the other metrics (also averaged over all the k folds) measure
the accuracy of the point predictions produced by the approaches, the CRPS measures the accuracy
of both the point and uncertainty estimates as it utilizes the entire posterior predictive distribution to
determine the discrepancies between the observations and the predictions. Also, the CRPS is only
computed for the three Bayesian approaches (GEOS, SGEOS and STG) in our work as it requires the
posterior distributions of the estimates. The closer the AVG_Bias, MAE and RMSE estimates are to
zero and the smaller the CRPS, the better the predictions. Correlation values closer to one indicate
better predictive ability.

Additionally, to further examine the fits of the different methods, we checked their
(standardized) in-sample residuals for spatial autocorrelation using variograms and the associated
variogram envelopes, which were obtained by permutation, using the geoR package in R (Ribeiro Jr
et al., 2024).

3. Results

3.1. In- and Out-of-Sample Predictive Performance Using Cross-Validation and Variogram Analysis

With respect to the metrics used to evaluate the accuracy of the point estimates produced by the
methods at the cluster level (correlation, RMSE, MAE and AVG_BIAS), we found that GEOS, SGEOS
and, to a great extent, LASSO had the best out-of-sample predictive performance in most cases
(Figure 3 and supplementary Table 2). The values of these metrics for GAM and STG were also very
close to those of the three best approaches, indicating only slightly worse predictive performance.
BRT and ANN generally had the worst predictive performance, which can be clearly seen when
considering the AVG_Bias and RMSE estimates in Figure 3.

Among the three Bayesian approaches for which we computed the CRPS metric, we found that
GEOS and SGEOS outperformed the STG method based on this metric, which is also consistent with
the results obtained using the other metrics. All the methods had fairly similar predictive
performance under the two types of cross-validation folds investigated (i.e., random and spatially
stratified folds) according to all the metrics except the correlations which showed that nearly all the
methods had better predictive performance under the random folds. These results indicate that the
methods can reasonably predict not only random but also spatial blocks of missing values in
unsampled areas. There was no evidence of improved predictive performance for MCV1 despite
having relatively larger cluster level sample sizes than DTP1 (supplementary Figure S7). This is likely
due to the cluster level sample sizes for MCV1 not being large enough to induce noticeable
improvements in predictive performance.
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Figure 3. Model validation. Out-of-sample predictive performance of the geostatistical and machine learning
approaches investigated based on a k-fold cross-validation exercise using cluster level data (see supplementary
Table 2).

Furthermore, when examining the out-of-sample predictions in low coverage areas (i. e., areas
with cluster level proportions p(s;) < 0.4 - supplementary Figures S8 and S9), we found that the
prediction errors (RMSE, random folds) for ANN and BRT were consistently larger (RMSE = 0.33)
than those of the other approaches (024 < RMSE < 0.3), although there was evidence of
overestimation in all the approaches. For DTP1, the lowest prediction errors were obtained for the
GEQOS and SGEOS methods, whereas for MCV1, these were obtained for SGEOS, GEOS and STG.

The variograms of the in-sample residuals for DTP1 and MCV1 shown in supplementary Figures
510 and S11 indicate that of all seven approaches investigated, there was strong evidence of residual
spatial autocorrelation in the ANN and BRT methods. The variograms for both methods closely
resembled those of the outcome variables (i. e., the cluster level proportions of vaccinated children —
supplementary Figures S5 and S6). Also, the lack of evidence of spatial autocorrelation in the
residuals is strongest for the geostatistical approaches — GEOS, SGEOS and STG.

3.2. 1x1 km Estimates of Vaccination Coverage and Associated Uncertainties

The rationale for the differences observed in the out-of-sample predictive performance of the
approaches is apparent when investigating the 1x1 km predicted maps of vaccination coverage and
associated uncertainties produced through using these approaches. Figure 4 (a) shows strong
similarities between the predicted surfaces produced by GAM, LASSO, GEOS, SGEOS and STG.
Broadly similar patterns demonstrating a north-south divide in coverage can also be seen in the
predicted maps produced using ANN and BRT, but their estimates are closer to the extremes of the
unit interval and smoother in the lower and higher coverage areas than those of the other approaches.
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Figure 4. Predicted DTP1 coverage estimates. 1x1 km modelled estimates of DTP1 coverage produced through
using different geostatistical and machine learning approaches shown using (top) maps and (bottom) density

plots.

The over-smoothing of the coverage estimates by ANN and BRT relative to the other approaches
is evident in the distributions of the grid level DTP1 predictions shown in Figure 4 (b). All the
methods produced bimodal distributions reflecting the characteristic spatial distribution of
vaccination coverage in Nigeria {REFs}. However, the grid level estimates produced by ANN and
BRT are more peaked near zero and one than those produced by the other approaches, suggesting
overestimation in high coverage areas and underestimation in low coverage areas by both
approaches. This also explains the higher AVG_BIAS and RMSE values for both approaches relative
to other approaches. For MCV1, supplementary Figures 512 (a-b) show similar patterns in the grid
level estimates produced by all the approaches, with strong evidence of over-smoothing in low and
high coverage areas by ANN and BRT relative to the other approaches.

The uncertainties associated with the predictions have broadly similar spatial patterns across
the methods, with lower uncertainties in areas where coverage estimates are either close to the
endpoints (an artefact of the binomial distribution) of the unit interval or where data locations are
dense, and higher uncertainties in areas where the estimates are closer to 0.5 or where data locations
are sparse (Figures 5 (a) and (b)).
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Figure 5. Uncertainty estimates for DTP1. Estimates of the uncertainties associated with 1x1 km estimates of
DTP1 coverage produced using different geostatistical and machine learning approaches shown using (a) maps

and (b) density plots.

However, due to the over-smoothing by ANN and BRT, the uncertainties associated with both
approaches are much smaller than those of other approaches (Figure 5 (b)) in areas of lower and
higher coverage, even in comparison with LASSO for which we used the same jackknife approach to
produce its uncertainty estimates. In areas with mid-level coverage estimates, the uncertainties
associated with the estimates produced by BRT are noisier and relatively much higher than other
approaches. For MCV1 (supplementary Figures S13 (a-b)), similar patterns can be observed, with the
uncertainties associated with both ANN and BRT being much higher in many areas relative to the

other approaches.


https://doi.org/10.20944/preprints202412.2190.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 December 2024 d0i:10.20944/preprints202412.2190.v1

14 of 22

Prgportion Vaccinated (DTP1)

Proportion Vaccinated (MCV1)

Figure 6. National and grid level coverage estimates. Comparisons between national (a-b) and grid level (c-d)
coverage estimates produced through using geostatistical and machine learning approaches. In panels (a-b), the
national estimates are compared with the direct survey estimates (dotted red lines) while panels (c-d) show the

correlations between the grid level estimates.

At the national level, the estimates produced through using these approaches revealed that ANN
(and BRT to some extent; and GEOS — MCV1 only) overestimated coverage for both DTP1 and MCV1
relative to the direct survey estimate that is often considered to be the gold standard (Figures 6a-b).
On the other hand, whilst there are strong correlations between the grid level estimates produced by
these approaches (Figures 6c-d), it is evident that ANN and BRT are most dissimilar to other
approaches, particularly for DTP1.

3.3. Exploring Spatial Prioritization Using District Level Coverage Estimates

To further investigate the utility of the coverage estimates produced by the methods for spatial
prioritization, we computed district level coverage estimates using their respective 1x1 km predicted
maps and then ranked the districts based on these estimates. We note that the comparisons
undertaken here using rankings obtained from the district-level coverage estimates are purely for
illustration since estimates of numbers of unvaccinated children can characterise disease risk more
accurately and are better suited for this purpose.
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DTP1 coverage estimates produced using geostatistical and machine learning approaches, and (c) the range of
the ranks per district. In panel (b), the districts have been ordered using the ranking produced by the GEOS
method.

Figures 7 (a-c) demonstrate that although there are broad similarities between the rankings of
the district level DTP1 coverage estimates produced by the different methods, remarkable differences
exist, both when examining groups of ranks (Figure 7a) and, more evidently, the individual ranks
(Figure 7b). The differences between the rankings generally appear relatively smaller in areas of
lower coverage in the northern parts of the country and much larger in higher coverage areas (Figure
6¢). Also, these differences appear more pronounced when considering smaller numbers of areas
(e.g., the 80th to 100thlowest coverage areas) than larger numbers of areas (e.g., the 100 lowest
coverage areas) (Figure 7b). The median of the ranges of the ranks per district (Figure 7c) at the
national level is 112.5 (interquartile range (IQR) = 100, maximum value = 428), indicating marked
differences among the methods. Among the five methods with similar predictive performance (i.e.,
GAM, LASSO, GEOS, SGEOS and STG), the median of the ranges of the ranks per district reduces to
83 (IQR = 89, maximum value = 337), which still indicates considerable differences. However, when
examining pairs of methods with more similar predictive accuracy, there were large reductions in the
differences between the rankings. For example, for the GEOS and SGEOS methods, the median of the
ranges of the ranks per district is 17 (IQR=32).

Similar patterns were observed for MCV1 (supplementary Figure 514), with the median of the
ranges of the ranks per district estimated to be 141 (IQR=114, maximum value = 499) for all the
methods at the national level, 87 (IQR=82, maximum value = 336) for GAM, LASSO, GEOS, SGEOS
and STG, and 26 (IQR=50) for the GEOS and SGEOS methods. These differences in the rankings
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produced by the methods are also apparent in the bivariate plots of the ranks shown in
supplementary Figures 515 and 516.

4. Discussion

For the first time, our study evaluated the performance of seven geostatistical and ML
approaches for producing estimates of vaccination coverage at resolved spatial scales. All the
methods were implemented using standard computers with a maximum run time of < 3 hours per
method needed (much lower for some ML approaches) to produce predictions at 1x1 km resolution,
except the SGEOS method which was executed using a high memory computer with a run time of =
2.5 hours.

Our analyses revealed similar out-of-sample predictive performance at the cluster level for five
of the methods - GEOS, SGEOS, LASSO, GAM and STG, although stronger predictive performance
was observed for GEOS, SGEOS and LASSO methods. Out of all seven approaches investigated,
ANN and BRT had the worst predictive performance. The over-smoothing observed in both
approaches relative to others can be due to the way their algorithms learn from data or the different
outcome distribution (Gaussian instead of binomial) used for both approaches. We observed that it
did not matter which group of covariates were used to predict coverage when using both approaches,
e.g., kriged DHS covariates and other geospatial covariates, as the over-smoothing persisted in both
cases — see supplementary Figure S17. Interestingly, when considering the Bayesian approaches, we
found that GEOS and SGEOS generally outperformed the STG method, despite the extensive use of
the latter approach for producing gridded estimates of HDIs (Bhatt et al., 2017, Mosser et al., 2019,
Sbarra et al., 2021). These results were further corroborated when examining the in-sample
predictions from the methods for residual spatial autocorrelation and when comparing their out-of-
sample predictions in low coverage areas. We did not find evidence of better predictive performance
for MCV1 due to greater cluster level sample sizes relative to DTP1. This is likely due to the sample
sizes for MCV1 not being large enough to make a difference. The effect of cluster-level sample sizes
on in- and out-of-sample predictive performance is well explored in Utazi et al (Utazi et al., 2022).

The 1x1 km predicted maps of the indicators revealed that while GAM, LASSO, GEOS, SGEOS
and STG produced very similar results, ANN and BRT produced grid level estimates that were over-
smoothed relative to the other approaches, with the estimates being close to the endpoints of the
coverage scale. Although the uncertainties produced by these approaches had very similar spatial
distributions, the uncertainties for ANN and BRT were either relatively smaller (for DTP1)- an
artefact of the binomial distribution and over-smoothing — or appeared relatively noisier in some
areas and relatively higher (for MCV1) than those of the other approaches. The correlations between
the grid level estimates produced by the approaches are generally high (= 0.78), but these also
indicated relatively lower correlations between ANN and BRT and other approaches, particularly for
DTP1. Further comparisons with direct survey estimates at the national level revealed that ANN
consistently overestimated coverage. There was also some evidence of overestimation by BRT. We
note that given the differences between the predictions obtained through using ANN and BRT and
other approaches, both ANN and BRT approaches are also likely to produce other subnational
estimates (e.g., at the provincial level) that do not align well with direct survey estimates.

Considering the importance of district level estimates of vaccination coverage and
corresponding estimates of numbers of zero-dose and under-vaccinated children for program
planning and implementation, we further investigated the utility of the coverage estimates produced
by the different approaches for spatial prioritization at the district level. We found remarkable
differences in their rankings of the districts, although there were broad similarities especially when
considering larger numbers of areas. The differences in the ranks per district seemed greatest in areas
of higher coverage and more modest in lower coverage areas, which might have been affected by the
spatial distribution of vaccination coverage in the study country. We further observed a reduction in
differences in rankings among methods with similar predictive performance, as expected, and even
substantial reductions between pairs of methods with similar predictive performance. These results
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hold significant implications for vaccination programming, especially in resource-constrained
settings where only a limited number of areas can be targeted per time, since inaccurate identification
of priority areas for interventions could result in missing important vulnerable populations,
suboptimal resource allocation, reduced impact and persistence of disease circulation and outbreaks.
The predictive accuracy of these approaches should therefore guide their use for map production and
operationalization.

Although our study is the first of its kind in relation to vaccination coverage estimation, our
findings are broadly consistent with those of other studies that compared geostatistical and ML
approaches in other applications such as air pollution (Berrocal et al., 2020) and soil organic carbon
mapping (Veronesi and Schillaci, 2019), which also found that geostatistical models outperformed
ML approaches. However, our results are somewhat different from those of Bosco et al (Bosco et al,,
2017) who used ANN and a Bayesian geostatistical model to map various HDIs across multiple
countries and found that both approaches had very similar predictive performance, with the latter
being the preferred approach due to ease of implementation (i.e.,, not requiring many tuning
parameters). This may be due to differences in study design and geography, model implementation
choices including parameter tuning, the cross-validation approaches used, the nature of the outcome
indicators or the geospatial covariates included in both studies, which make direct comparisons of
the results less tenable.

There are a number of factors that underlie the results obtained in our study. Our data were
taken from a specific geography. It will be useful to explore how these methods perform in other
settings with different sampling designs and spatial distributions of vaccination coverage, although
we investigated the latter to some degree by considering two indicators of vaccination coverage. Also,
other factors that can potentially influence the comparisons of these methods are varying levels of
spatial autocorrelation in the outcome data and varying numbers and types of covariates included in
the model and their relationships with vaccination coverage (Bosco et al, 2017). The
underperformance observed in ANN and BRT may depend on some of these factors, since ML
approaches rely on covariates to make predictions whilst the geostatistical approaches additionally
leverage residual spatial autocorrelation, but it also reveals a lack of robustness of both approaches
to some modelling contexts. For geostatistical models, these attributes have been investigated in
detail in previous work using simulation studies (e.g., Utazi et al (Utazi et al., 2018a)) . However, we
would like to clarify that a simulation study would only be ideal when comparing only geostatistical
models such as the GEOS, SGEOS and STG models investigated here, since simulating data from a
geostatistical model or a sampling design based on geostatistical techniques would confer an undue
advantage on these models over ML techniques. It will also be interesting to investigate the
performance of these approaches in scenarios where the survey is representative at the district or the
second administrative level, although the relevance of the modelled estimates is weakened in this
case. Furthermore, other approaches for estimating the uncertainties associated with the ML
approaches are also possible. For example, a spatial bootstrap algorithm (this did not perform well
in our study during initial trials) or an approach that involves interpolating spatial cross-validation
residuals to create an uncertainty map, similar to Blanco et al (Guio Blanco et al., 2018), could be used.

Whilst the use of geostatistical and ML approaches to produce high-resolution maps of HDIs
has grown in popularity, other small area estimation methods for producing maps of HDIs exist
(Tzavidis et al., 2018, Utazi et al., 2021, Paige et al., 2022), but these assume a discrete spatial domain,
meaning that estimates can only be produced for a given administrative level at a time. Some of these
methods are well explored in Utazi et al (Utazi et al., 2021). Furthermore, in the ML arena, there are
other hybrid approaches aiming to overcome the limitation of ML approaches not explicitly
accounting for spatial autocorrelation in the data through (i) creating features that imitate the spatial
autocorrelation in the outcome and using these as additional covariates in conventional ML methods
(Sekuli¢ et al., 2020, Fouedjio and Arya, 2024), (ii) combining ML predictions with the kriging of the
prediction residuals (Kaya et al., 2022) and (iii) locally calibrated ML algorithms (Hagenauer and
Helbich, 2022, Fouedjio and Arya, 2024). Future work in mapping vaccination coverage and other
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HDIs may involve the exploration of these hybrid approaches. In geostatistical models, spatially
varying coefficient models (Gelfand et al., 2003) can also be used to account for the spatial non-
stationarity in the regression relationship between vaccination coverage and geospatial covariate
information.

In conclusion, our results provide valuable guidance to practitioners regarding the utility of
these modelling approaches for producing maps of vaccination coverage and other HDIs. While most
of the approaches we investigated had good predictive accuracy and produced similar results, some
approaches were relatively better, with significant implications for spatial prioritization. Effort
should be made to either identify the best modelling framework for each analytical context or to use
approaches that have been shown to be more robust and reliable in other contexts.
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