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Abstract: Recently, there has been a growing interest in the production of high-resolution maps of 

vaccination coverage. These maps have been useful for uncovering geographic inequities in coverage 

and improving targeting of interventions to reach marginalized populations. Different 

methodological approaches have been developed for producing these maps using mostly geolocated 

household survey data and geospatial covariate information. However, it remains unclear how much 

the predicted coverage maps produced by the various methods differ, and which methods yield more 

reliable estimates. Here, we explore the predictive performance of these methods and resulting 

implications for spatial prioritization to fill this gap. Using Nigeria Demographic and Health Survey 

as a case study, we generate 1x1 km and district level maps of indicators of vaccination coverage 

using geostatistical, machine learning (ML) and hybrid methods and evaluate predictive 

performance via cross-validation. Our results show similar predictive performance for five of the 

seven methods investigated, although two geostatistical approaches are the best methods. The worst-

performing methods are two ML approaches. We find marked differences in spatial prioritization 

using these methods, which could potentially result in missing important underserved populations, 

although broad similarities exist. Our study can help guide map production for other health and 

development metrics. 

Keywords: Bayesian geostatistics; machine learning; vaccination coverage; demographic and health 

survey; health and development indicators; INLA-SPDE 

 

1. Introduction 

Immunization is a core component of primary healthcare service delivery, reducing vaccine 

preventable morbidity and mortality (Shattock et al., 2024) and critical to achieving the Sustainable 

Development Goals (United Nations, 2015) and other global health policy goals such as the 

Immunization Agenda 2030 (World Health Organization, 2020) and Gavi Strategy 5.0 (Gavi The 

Vaccine Alliance, 2020). Yet, immunization and other health services remain inaccessible to 

vulnerable and marginalized populations, including those living in remote rural areas, conflict and 

humanitarian settings and the urban poor (Chopra et al., 2020, UNICEF and the Bill and Melinda 

Gates Foundation, 2021, Wigley et al., 2022). To design effective intervention strategies to reach these 

populations, accurate spatially detailed maps of vaccination coverage and other health and 

development indicators (HDIs) such as maternal literacy, poverty, school attendance, malaria 

prevalence, malnutrition and skilled birth attendance (Bosco et al., 2017, Mosser et al., 2019, Weiss et 

al., 2019, Kinyoki et al., 2020, Sbarra et al., 2021) can be useful. These maps enable decision makers to 

better understand the inequities that exist in service coverage and utilization and enhance the 
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targeting of population subgroups or entire populations in a more effective manner – a field of 

research known as precision public health (Dowell et al., 2016). Moreover, by providing current, 

reliable, robust and actionable evidence base, high-resolution maps of vaccination coverage and other 

HDIs help bridge the data gap that exist in many low- and middle-income countries where health 

management information systems and other administrative data sources such as vital registration are 

often incomplete and unreliable (Scobie et al., 2020, Mwinnyaa et al., 2021). 

Data for producing maps of vaccination coverage and other HDIs often come from nationally 

representative, geolocated household surveys such as the Demographic and Health Surveys, 

Multiple Indicator Cluster Surveys and national vaccination coverage surveys. Due to high 

operational costs, most surveys are designed to be representative at the provincial level (i.e., the first 

administrative level), meaning that classical approaches for analyzing survey data such as direct 

weighted estimators (Rao, 2005) can only produce estimates at this level. However, accurate estimates 

are most useful at lower administrative levels, e.g., the district or second administrative level at which 

vaccination programs and other interventions are planned and implemented. This, alongside 

developments in geostatistical modelling and improvements in computing power, has led to a 

proliferation of geostatistical and machine learning (ML) approaches to produce gridded estimates 

of HDIs from survey data. These methods rely heavily on the direct and proximate relationships that 

exist between (cluster level) data on HDIs and geospatial covariate data, as well as spatial and 

spatiotemporal dependence, to model and predict the spatial distributions of HDIs for single or 

multiple timepoints. The production of estimates of HDIs at the grid level, typically at 1 km or 5 km 

resolution, means that these are not tied to inconstant political or administrative boundaries and can 

be easily aggregated to operationally relevant areas of interest. Also, when integrated with other 

geospatial datasets, e.g., population maps (Tatem, 2017) and geolocated health facility data (Lim et 

al., 2008, Johns et al., 2022), precise estimates of at-risk or underserved populations can be produced. 

Research and survey programs such as WorldPop through its VaxPop project(Utazi et al., 2018b, 

Utazi et al., 2019, Utazi et al., 2021, Utazi et al., 2022), the Institute for Health Metrics and Evaluation 

(IHME)(Mosser et al., 2019, Sbarra et al., 2021) and the DHS program (Janocha et al., 2021) now 

routinely produce and distribute maps of HDIs. 

Popular geostatistical, ML and hybrid approaches for producing high-resolution maps of 

vaccination coverage and other HDIs include geostatistical models (GEOS) (Bosco et al., 2017, Utazi 

et al., 2021, Utazi et al., 2022, Alegana et al., 2024), generalized additive models (GAMs) (Takahashi 

et al., 2017, Kawakatsu et al., 2024), stacked generalization (STG) (Mosser et al., 2019, Sbarra et al., 

2021), boosted regression trees (BRT) (Kawakatsu et al., 2024), random forests (Browne et al., 2021), 

least absolute shrinkage and selection operator (LASSO) regression and deep learning/artificial 

neural networks (ANN) (Bosco et al., 2017). Model-based geostatistics (Diggle et al., 1998) explicitly 

accounts for spatial autocorrelation and the (non)linear effects of covariates and is often fitted in a 

Bayesian framework using the INLA-SPDE approach or MCMC techniques, although the former has 

gained more popularity in recent times due to its computational benefits. When non-linear effects (or 

smooth functions) of covariates are included in a geostatistical model, a semiparametric geostatistical 

model (SGEOS) (Wood, 2011, Wang et al., 2018) which eliminates the need for covariate data 

transformation is obtained. Also, the Bayesian implementation of geostatistical models provides a 

natural framework to account for the uncertainties associated with the predictions, as well as the 

input data. ML and hybrid approaches are especially suitable for modelling complex nonlinear 

relationships and interactions in the data, but this can sometimes result in a loss of interpretability. 

ML can automatically identify the relevant covariates/features in the data, unlike geostatistical 

modelling which may require a separate covariate selection process. Whilst ML approaches rely only 

on covariates to make predictions and would be expected to perform well if these are highly 

informative, geostatistical and hybrid approaches additionally leverage residual spatial (and 

temporal) autocorrelation. ML approaches are computationally less demanding, can handle large-

scale and high-dimensional data better, and are sometimes less challenging to implement (e.g., GAM, 

LASSO and BRT) (James et al., 2013, Berrocal et al., 2020). However, some ML approaches such as 
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BRT, ANN and LASSO do not produce uncertainty estimates, leaving users with the task of exploring 

additional techniques to quantify these uncertainties (Veronesi and Schillaci, 2019, Berrocal et al., 

2020). 

Currently, little is known about the comparative predictive performance of these ML and 

geostatistical approaches, especially in the context of mapping vaccination coverage. There is a lack 

of substantial evidence on how much the predicted maps produced by these approaches differ and 

which approaches yield more reliable estimates. This is likely due to the effort and technical expertise 

required to execute the different approaches and a cavalier attitude to methodological rigour. As 

maps of vaccination coverage and other HDIs become increasingly popular, it is imperative to better 

understand the advantages and limitations of each modelling approach. The goal of this study is, 

therefore, to critically evaluate these popular approaches for mapping vaccination coverage and other 

HDIs in terms of their predictive accuracy and associated uncertainties. We investigate four machine 

learning approaches (ANN, BRT, GAM and LASSO), two geostatistical models (GEOS and SGEOS) 

and one hybrid approach (STG). Our evaluation is based on a case study mapping the coverage of 

the first dose of the diphtheria-tetanus-pertussis (DTP1) and the first dose of the measles-containing 

vaccine (MCV1) vaccines using the 2018 Nigeria Demographic and Health Survey (NDHS) (National 

Population Commission - NPC and ICF, 2019). 

2. Methodology 

2.1. Data 

2.1.1. Vaccination Coverage Data 

Data on the coverage of DTP1 and MCV1 vaccines were obtained from the 2018 NDHS (National 

Population Commission - NPC and ICF, 2019) for children aged 12-23 months and 9-35 months, 

respectively. The NDHS was conducted between August and December 2018 and utilized a stratified, 

two-stage sampling design to produce estimates of indicators at the national, regional and state 

levels, and for urban and rural areas. Stratification was achieved by separating each of the 36 states 

and the Federal Capital Territory (FCT) into urban and rural areas. Samples were drawn from within 

each stratum in two stages: the first stage involved the selection of survey clusters (enumeration 

areas) from a national sampling frame using a probability proportional to size sampling scheme, 

while the second stage involved selecting households randomly from household lists within the 

selected clusters. Detailed information on the methods employed in the survey is published 

elsewhere (National Population Commission - NPC and ICF, 2019). The NDHS was selected because 

of ease of data access and having been used extensively in previous work to map coverage (Dong 

and Wakefield, 2021, Aheto et al., 2023, Utazi et al., 2023, Kawakatsu et al., 2024). 

The survey was implemented in a total of 1389 clusters, with 11 of the 1400 clusters selected 

initially dropped due to security reasons. Also, in Borno State, only 11 of the 27 local government 

areas were considered in the survey due to high insecurity. For each vaccine, we used information 

obtained from both home-based records and maternal/caregiver recall, following DHS guidance 

during data extraction (Croft et al., 2023). Hence, our analysis captures crude DTP1 and MCV1 

coverage estimates (World Health Organization, 2018). At the cluster level, we aggregated the 

individual level data to produce numbers of children surveyed, numbers vaccinated and empirical 

proportions of children vaccinated as shown in Figure 1. 
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Figure 1. Cluster level estimates of proportions of children aged 12-23 months and 9-35 months who had received 

DTP1 and MCV1, respectively, obtained using the 2018 Nigeria Demographic and Health Survey. 

2.1.2. Geospatial Covariate and Population Data 

To enhance the prediction of vaccination coverage using the approaches investigated, we 

obtained some geospatial covariate information — see supplementary Figures S1 and S2 and 

supplementary Table 1. These covariates have been successfully used in previous work (Bosco et al., 

2017, Utazi et al., 2019, Utazi et al., 2022, Utazi et al., 2023) to model and predict vaccination coverage 

and other HDIs. These comprise variables measuring a range of conditions in the study country 

which may have direct or proximate relationships with vaccination coverage. These include 

remoteness (travel time to the nearest health facility and distance to cultivated areas), socioeconomic 

(poverty index, household wealth, maternal education), health (ownership of health or vaccination 

card/document, skilled birth attendance, access to media and use of mobile phone/internet) and 

urbanicity/development (nightlight intensity and urban/rural areas) variables. 

The externally sourced geospatial covariates (supplementary Table 1) were processed and 

harmonized at 1 × 1 km resolution, at which we planned to produce grid level coverage estimates. To 

extract the values of the covariates for each cluster location, we used the approach described in Utazi 

et al (Utazi et al., 2018b) and Perez-Haydrich et al (Perez-Haydrich et al., 2013) which accounts for 

the displacement of the clusters (this displacement often occurs within districts in DHS surveys). For 

the DHS-derived covariates, we first calculated their values at the cluster level using detailed 

definitions provided in supplementary Table 1 and then used the krig() function in the fields 

package in R (Nychka et al., 2017) to create corresponding 1 × 1 km interpolated surfaces, with the 

optimal range parameter set to the first quartile of the distances between the clusters (other distance 

quartiles yielded almost the same results). The kriging interpolation was carried out using the logit-

transformed cluster level data in each case due to its underlying Gaussian assumption, after which 

the estimates were back-transformed to the unit interval. 

We checked for multicollinearity by examining the correlations between the covariates and by 

fitting non-spatial binomial regression models to estimate their variance inflation factors (VIFs). All 

the covariates included in the study had VIF values less than 5.0 for both vaccination coverage 

indicators, i.e., DTP1 and MCV1. Furthermore, for one of the modelling approaches (equations (1) 

and (2)), we examined the distributions of the covariates and their relationships with vaccination 

coverage (on the empirical logit scale), following which we log- or logit-transformed some skewed 

covariates to improve their linear relationships with vaccination coverage. The plots of the covariates 

and their relationships with vaccination coverage are shown in supplementary Figures S3 and S4. All 

14 covariates were used in our study, as VIFs were acceptable and to facilitate using the ML 

approaches, as they are often trained using ample covariate information. 

To aggregate the coverage estimates to the district and other administrative levels, we obtained 

2018 gridded estimates of numbers of children aged under 5 years from WorldPop (Tatem, 2017), 

which we used as a proxy population layer for the age groups included in the study. 
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2.2. Geostatistical and Machine Learning Modelling Approaches 

We consider seven modelling approaches to predict vaccination coverage at 1x1 km resolution 

as indicated previously. In all analyses, we accounted for the NDHS complex sampling design, 

namely urban-rural stratification by including an urban-rural covariate and, when using 

geostatistical modelling approaches, between-cluster variation (Dong and Wakefield, 2021, 

Gascoigne et al., 2025). The modelling approaches are described in detail as follows and illustrated 

in Figure 2. 

2.2.1. Bayesian Geostatistical Regression Model (GEOS) 

The first model that we consider is a Bayesian geostatistical model with a Binomial likelihood. 

Letting 𝑌(𝒔𝑖)  denote the number of children vaccinated at survey location 𝒔𝑖  (𝑖 = 1, … , 𝑛)  and 

𝑚(𝒔𝑖) the number of children sampled at the location, the first level of the model assumes that 

𝑌(𝒔𝑖)|𝑝(𝒔𝑖) ∼ Binomial(𝑚(𝒔𝑖), 𝑝(𝒔𝑖)), (1) 

where 𝑝(𝒔𝑖) (0 ≤ 𝑝(𝒔𝑖) ≤ 1) is the true vaccination coverage at location 𝒔𝑖 . We model 𝑝(𝒔𝑖) using 

the logistic regression model 

logit(𝑝(𝒔𝑖)) = 𝐱(𝒔𝑖)
𝑇𝜷 + 𝜔(𝒔𝑖) + 𝜖(𝒔𝑖), (2) 

where 𝐱(𝒔𝑖) is a vector of covariate data associated with 𝒔𝑖 which includes an urban-rural covariate, 

𝜷 is a vector of the corresponding regression coefficients, 𝜖(𝒔𝑖) is an independent and identically 

distributed (iid) Gaussian random effect with variance, 𝜎𝜖
2 , used to model non-spatial residual 

variation or between-cluster variation, and 𝜔(𝒔𝑖) is a Gaussian spatial random effect used to capture 

residual spatial correlation in the model. That is, 𝝎 = (𝜔(𝒔1), … , 𝜔(𝒔𝑛) )𝑇 ∼ 𝑁(0, Σ𝜔), where Σ𝜔 is 

assumed to follow the Matérn covariance function (Matérn, 1960) given by Σ𝜔(𝒔𝑖 ,  𝒔𝑗) =
𝜎2

2𝜈−1Γ(𝜈)
(𝜅 ∥ 𝒔𝑖 − 𝒔𝑗 ∥)

𝜈
 𝐾𝜈  (𝜅 ∥ 𝒔𝑖 − 𝒔𝑗 ∥). The notation ∥. ∥ denotes the Euclidean distance, 𝜎2 > 0 is 

the marginal variance of the spatial process, 𝜅 is a scaling parameter related to the range 𝑟(𝑟 =
√8𝜈

𝜅
) 

– the distance at which spatial correlation is close to 0.1, and 𝐾𝜈 is the modified Bessel function of 

the second kind and order 𝜈 > 0. For identifiability reasons, we set the smoothing parameter, 𝜈 = 1, 

see (Lindgren et al., 2011). 

We complete the Bayesian model specification of the model by assigning a 𝑁(0,103𝑰) prior to 

the regression parameter, 𝜷, and a penalized complexity (PC) (Simpson et al., 2017) prior to 𝜎𝜖 such 

that 𝑝(𝜎𝜖 > 3) = 0.01. Similarly, following Fuglstad et al (Fuglstad et al., 2019), we placed a joint PC 

prior on the covariance parameters of the spatial random effect, 𝝎, such that 𝑝(𝑟 < 𝑟0) = 0.01 and 

𝑝(𝜎 > 3) = 0.01, with 𝑟0 chosen to be the 5% of the extent of the country in the north-south direction. 

The model was fitted using the INLA-SPDE approach implemented in the R-INLA package 

(Lindgren et al., 2015, R Core Team, 2021). The INLA approach – a faster alternative to MCMC – 

performs approximate Bayesian inference through a numerical approximation of the marginal 

posterior distributions of each unknow quantity in the model. The SPDE approach works by 

representing 𝝎 as a Gaussian Markov random field to reduce the computational burden associated 

with the estimation of Σ𝜔 (Lindgren et al., 2011). Predictions at 1x1 km resolution were obtained 

using the fitted model by drawing samples from the posterior predictive distributions of 𝑝(𝒔𝑖) at 

the grid locations. Throughout, predictions at the administrative level were obtained as population-

weighted averages taken over all the grid cells falling within each administrative area (Utazi et al., 

2022). 

2.2.2. Bayesian Semiparametric Geostatistical Regression Model (SGEOS) 

This model extends the GEOS model in equations (1) and (2) through using smooth functions to 

account for the nonlinear effects of some covariates. The model assumes that the true vaccination 

coverage at location 𝒔𝑖 , 𝑝(𝒔𝑖), can be expressed as 
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logit(𝑝(𝒔𝑖)) = 𝛽0 + ∑ x𝑗(𝒔𝑖)𝛽𝑗
𝑝
𝑗=1 +  ∑ 𝑓𝑘(z𝑘(𝒔𝑖))𝑞

𝑘=1 + 𝜔(𝒔𝑖) + 𝜖(𝒔𝑖), (3) 

where 𝛽0  is an intercept term, x1(𝒔𝑖), … , x𝑝(𝒔𝑖) are linear covariates with regression coefficients 

𝛽1, … , 𝛽𝑝, and 𝑓1(. ), … , 𝑓𝑞(. ) are smooth functions used to account for the non-linear effects of the 

covariates z1(𝒔𝑖), … , z𝑞(𝒔𝑖). Other terms in the model are as defined previously in equation (2). We 

specify a second-order random walk prior for 𝑓(. ) such that 

𝑓(𝑢𝑖|𝑢𝑖−1, 𝑢𝑖−2) ∼ 𝑁(2𝑢𝑖−1 − 𝑢𝑖−2, 𝜎𝑢
2) , (4) 

which is the Bayesian equivalent of a cubic smoothing spline (Wang et al., 2018) For identifiability, a 

sum-to-zero constraint is imposed on each of the smooth functions since the model includes an 

intercept term (Wang et al., 2018). Model (3) was also fitted in a Bayesian framework using the INLA-

SPDE approach. During implementation, where necessary, we used the inla.group()function to 

bin the covariates into groups according to both their cluster and grid level values, using the quantile 

option. We then extracted the computed values of the smooth function 𝑓(. ) for each grouped data 

point which were used to make predictions post model-fitting. 

2.2.3. Generalized Additive Model (GAM) 

Generalized additive models also provide a mechanism to account for non-linear relationships 

by allowing non-linear functions of all continuous covariates whilst maintaining additivity. The 

model is given by 

logit(𝑝(𝒔𝑖)) = 𝛽0 + 𝛽1x1(𝒔𝑖) + ∑ 𝑓𝑘(z𝑘(𝒔𝑖))𝑞
𝑘=1 + 𝑔(𝒔𝑖), (5) 

where x1 denotes the urban-rural covariate and 𝑓1(. ), … , 𝑓𝑞(. ) are functions used to account for the 

non-linear effects of other covariates. For our analyses, we chose cubic smoothing splines for 𝑓(. ), 

noting that other choices are also possible (James et al., 2013). The function 𝑔(. ) is used to account 

for the effect of space in the model, for which we specified a two-dimensional smoother - an isotropic 

smooth of latitude and longitude on the sphere with a second-order penalty (Wahba, 1981). The 

model was fitted in a frequentist framework and implemented in R using the mgcv package (Wood 

and Wood, 2015). 

2.2.4. Boosted Regression Model/Trees (BRT) 

Boosting is a tree-based method that also allows modelling complex, non-linear relationships 

between an outcome variable and various predictor variables (James et al., 2013). The method is based 

on the generation of a collection of sequentially fitted regression trees that optimize the predictive 

value of the response variable based on local predictor values. The boosting algorithm proceeds by 

fitting a regression tree to the data using the outcome variable as the response in the first iteration. 

The fitted tree is then scaled by a shrinkage parameter and added to the fitted function (this is set 

equal to zero in the first iteration) to update the residuals. In subsequent iterations of the algorithm, 

the regression trees are fitted using the residuals as the response. The process continues until a 

desired number of iterations or trees have been fitted. The output from the boosted model for location 

𝒔𝑖 can be expressed as 

𝑔̂(𝑝(𝒔𝑖)) = ∑ 𝜆𝐵
𝑏=1 𝑔̂𝑏(𝑝̃(𝒔𝑖)), (6) 

where, 𝑔̂(. )  denotes the final prediction from the model, 𝑔̂𝑏(. )  is the prediction from the 𝑏 th 

component regression tree, 𝜆 is a shrinkage parameter and 𝐵 is the number of trees/iterations. 𝜆 

controls the rate at which the boosting learns and is usually chosen to be small. For our application, 

we set 𝜆 = 0.01 as recommended in (James et al., 2013) and chose 𝐵 = 10,000. Another important 

tuning parameter when fitting a boosting model is the number of splits in each tree or the interaction 

depth, which controls the complexity of the boosted ensemble. This is often set equal to the default 
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value of 1. The BRT model is implemented in our study using the gbm package in R (Ridgeway and 

Ridgeway, 2004). Due to the unavailability of the binomial distribution in the gbm package, we elected 

to model the logit-transformed cluster level vaccination coverage 𝑝(𝒔𝑖)  using a Gaussian 

distribution and then back-transformed all the predictions post model-fitting. We note that as in 

model (5), the set of covariates used in fitting the model included the longitude and latitude 

coordinates to account for spatial variation. 

2.2.5. Least Absolute Shrinkage and Selection Operator (LASSO) Regression 

Lasso regression performs both variable selection and regularization and is particularly suitable 

for modelling contexts where a large or considerable number of covariates are available. The method 

implements automatic covariate selection through a penalty term (the 𝐿1 penalty) included in its 

objective function, which uses a tuning or regularization parameter to control the amount of 

regularization, i.e., how much the regression coefficients are shrunken towards zero. The method 

finds regression coefficients 𝜷̂ 𝛼
𝐿  that minimize the objective function 

ln 𝐿(𝜷|data) + 𝛼 ∑ |𝛽𝑗|𝑝
𝑗=1 , (7) 

where 𝛼 is the regularization parameter and all other terms are as defined previously. The first term 

in (7) is the log-likelihood function which can be obtained from the binomial regression model in 

equations (1) and (2) when the spatial and non-spatial random effects are excluded. Sufficiently large 

values of 𝛼 will force some regression coefficients to be equal to zero. In practice, 𝛼 is chosen via a 

grid search using cross-validation techniques. As in the GAM approach, the covariate data 

considered in the analysis using (7) included the longitude and latitude coordinates of the data 

locations. The LASSO regression model was implemented in our work using the glmnet package in 

R (Friedman et al., 2021). 

2.2.6. Stacked Generalization Using a Bayesian Geostatistical Model (STG) 

In statistical learning, stacked generalisation or stacked regression is an ensemble method for 

combining predictions from multiple models, often referred to as child models. In the hybrid variant 

implemented in our work, the child models are different ML approaches, predictions from which are 

combined using a geostatistical model (Bhatt et al., 2017, Mosser et al., 2019, Sbarra et al., 2021). 

Through these child models, the STG approach accounts for complex, nonlinear relationships 

between the covariates and the outcome. The geostatistical modelling framework is then used to 

account for residual spatial autocorrelation. The STG approach was proposed/utilized in (Bhatt et al., 

2017) and has been used to model vaccination coverage and various HDIs (Mayala et al., 2019, Mosser 

et al., 2019, Sbarra et al., 2021). 

Following Sbarra et al (Sbarra et al., 2021), we considered the following child models: GAM, BRT 

and LASSO regression. These child models were implemented as described previously, but excluding 

the geographical coordinates of the data locations in the covariate data. To obtain final predictions 

for the outcome, the predictions from these child models are included as covariates in the 

geostatistical model: 

logit(𝑝(𝒔𝑖)) = 𝛽0 + 𝛽1x𝐺𝐴𝑀(𝒔𝑖) + 𝛽2x𝐵𝑅𝑇(𝒔𝑖) + 𝛽3xLASSO(𝒔𝑖) + 𝜔(𝒔𝑖) + 𝜖(𝒔𝑖), (8) 

where 𝛽0, 𝛽1, 𝛽2 and 𝛽3 are regression coefficients and other terms are as described previously in 

equation (2). As in (Mosser et al., 2019, Sbarra et al., 2021), a sum-to-one constraint is imposed on the 

regression coefficients corresponding to the child models, such that ∑ 𝛽𝑗
3
𝑗=1 = 1. This constraint helps 

to mitigate the effect of extreme predictions in the child models (Bhatt et al., 2017, Mosser et al., 2019, 

Sbarra et al., 2021) included in (8). As is usually the case in stacked generalization, Bhatt et al (Bhatt 

et al., 2017, Mosser et al., 2019, Sbarra et al., 2021) recommended the use of K-fold cross-validation 

predictions from the child models to calibrate the model (i.e., estimate the parameters) in (8), and 

then refitting the child models using the full data and using the predictions from these in (8) without 
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refitting the model. We noted that using the cross-validation predictions from the child models in (8) 

compared to the full data predictions did not necessarily yield improvements in predictive 

performance in our analyses. The STG approach was implemented in our work using the INLA-SPDE 

approach and the INLABRU package in R (Lindgren et al., 2024). 

2.2.7. Artificial Neural Networks (ANN) 

An artificial neural network (ANN) is a ML technique that mimics the functioning of the animal 

brain. An ANN model is particularly useful in modelling contexts where data are large and complex, 

with potential nonlinearities and interactions between the covariates. The network consists of layers 

of connected neurons that serve as data processing units, where each neuron applies a linear 

transformation to its inputs, followed by a non-linear activation function. For our work, we used a 

multilayer perceptron network (Park and Lek, 2016), which consists of an input layer, multiple 

hidden layers and an output layer. The input layer receives the features from the data, processes and 

transmits these to the hidden layers which process the information further through interconnected 

neurons, while the output layer produces the final predictions. For a spatial location 𝒔 with covariate 

vector 𝐱(𝒔) = (x1(𝒔), x2(𝒔), … , x𝑝(𝒔))
𝑇

, the predicted value from an ANN with a single hidden layer 

can be expressed as: 

Output layer: 𝑝(𝒔)̂ = 𝑏3 + ∑ 𝑤𝑗
3𝑧𝑗

2𝐿2
𝑗=1 (𝒔), 

Hidden layer: 𝑧𝑙
2(𝒔) = 𝑓(𝑏𝑙

2 + ∑ 𝑤𝑗𝑙
2𝑧𝑗

1(𝒔)𝐿1
𝑗=1 ), 𝑙 = 1, … , 𝐿2, 

Input layer: 𝑧𝑙
1(𝒔) = 𝑓(𝑏𝑙

1 + ∑ 𝑤𝑗𝑙
1x𝑗(𝒔)𝑝

𝑗=1 ), 𝑙 = 1, … , 𝐿1, (9) 

where 𝐿1 and 𝐿2 are the numbers of neurons in the input and hidden layers, respectively, 𝑓(. ) is 

the activation function, 𝑏𝑙
1, 𝑏𝑙

2, 𝑏3  and 𝑤𝑗𝑙
1 , 𝑤𝑗𝑙

2 , 𝑤𝑗
3  are bias and weight parameters estimated to 

minimize mean squared error in the training data. Furthermore, 𝑧𝑙
1(𝒔), 𝑧𝑙

2(𝒔) and 𝑝(𝒔)̂ are outputs 

from the layers as shown in equation (9). 

Fitting an ANN requires tuning the number of hidden layers, the number of neurons in each 

layer, and choosing the activation function. Other parameters such as the number of epochs (the 

number of times the entire data is passed through the network during training), stopping metric, 

stopping tolerance and stopping rounds are also tuned during model fitting. These early stopping 

criteria help to avoid overfitting in the model. A common choice for the activation function 𝑓(. ) is 

the rectified linear unit (relu), defined as 𝑓(x) = max{0, x} . The model was fitted using the 

h2o.deeplearning() function in the H2O package in R (Fryda et al., 2024). Since the H2O package does 

not support the binomial distribution, we elected to model the logit-transformed cluster-level 

vaccination coverage, denoted by 𝑝(𝒔) in equation (9) using a Gaussian distribution and then back-

transformed the predictions post model fitting. Based on a hold-out cross-validation exercise with an 

80% training and 20% testing split, the final selected model has two hidden layers with, with 100 

neurons each, with the number of epochs set to 100. The chosen stopping metric was the root mean 

square error (RMSE) while the stopping tolerance and rounds were set equal to 0.001 and 5, 

respectively. We checked the sensitivity of these choices by running several cases with different 

justifiable parameter values but obtained the same results each time. 
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Figure 2. Methodological overview. A schematic illustrating the implementation of geostatistical and machine 

learning approaches investigated in the study. 

2.3. Uncertainty Estimation Using Delete-a-Block Jackknife Cross-Validation 

To estimate the uncertainties associated with the ML approaches: BRT, LASSO and ANN, we 

employed a delete-a-block jackknife technique. This is a variant of the delete-1 jackknife (Wang and 

Yu, 2021) in which a block of observations is deleted at a time. The spatial blocks were formed by 

drawing observations at random from the observed data. These can also be formed using spatially 

contiguous observations, but this approach is more likely to affect the underlying spatial structure in 

the data and can potentially introduce some artificial patterns in the uncertainty estimates, depending 

on the sizes of the blocks. The choice of the block size was guided by the need to have as many 

iterations as computationally logical (relative to the number of observations in the data) whilst 

preserving the underlying spatial correlation in the data. Having many iterations ensures stability in 

the results (i.e., the uncertainty estimates) and also reduces the numbers of observations deleted at 

each iteration. We noted during test runs that block sizes of up to 𝑏 = 40 observations produced 

variogram estimates that were very similar to those of the full data in our applications 

(supplementary Figures S5 and S6). We also noted that there were no material differences in the 

estimates obtained for numbers of replicates 𝑟 ≥ 100 . We, therefore, set 𝑟 = 100  in our work, 

corresponding to block sizes of 𝑛/𝑟, where 𝑛 is the number of observations or spatial locations in 

the data as defined previously in (1). For all three ML approaches, we obtained the jackknife estimates 

of the uncertainties (i.e., the standard deviations) associated with the grid level predictions as 

√𝑟−1

𝑟
∑ (𝑝̂𝑗(𝒔) − 𝑝̅𝑗𝑎𝑐𝑘̂(𝒔))

2
𝑟
𝑗=1  , where 𝑝̂𝑗(𝒔)  is the 𝑗 th coverage estimate for grid location 𝒔  and 

𝑝̅𝑗𝑎𝑐𝑘̂(𝒔) is the jackknife estimate of the mean across all the replicates. 

2.4. Model Validation Using k-Fold Cross-Validation and Variogram Analysis 

To evaluate the out-of-sample predictive performance of the modelling approaches, we 

conducted a 𝑘 -fold cross-validation exercise, setting 𝑘 = 10 . For each indicator-method 

combination, we created the cross-validation folds in two ways: random folds and spatially stratified 

folds. For the random folds, the survey locations were assigned to each of the 𝑘 folds in a random 

manner; whereas with the spatially stratified method, each fold comprised neighbouring cluster 

locations. We calculated the following measures of predictive performance: the correlation between 

observed (𝑝𝑖) and predicted (𝑝̂𝑖) values, root mean square error (𝑅𝑀𝑆𝐸 = √∑ (𝑝̂𝑖 − 𝑝𝑖)2/𝑚𝑖 ), 

mean absolute error (𝑀𝐴𝐸 =
1

𝑚
∑ |𝑝̂𝑖 − 𝑝𝑖|

𝑚
𝑖=1 ), average bias (𝐴𝑉𝐺_𝐵𝑖𝑎𝑠 =

1

𝑚
∑ (𝑝̂𝑖 − 𝑝𝑖)

𝑚
𝑖=1 ) 

and the continuous ranked probability score ( 𝐶𝑅𝑃𝑆(𝐹𝑖 , 𝑝𝑖) = 𝐸𝐹𝑖
|𝑋𝑖 − 𝑝𝑖| − 1

2
𝐸𝐹𝑖

|𝑋𝑖 − 𝑋𝑖
∗|)  {REF}, 

where 𝐹𝑖(. ) is the cumulative distribution function corresponding to the predictive distribution of 

the 𝑖th cluster level estimate, and 𝑋𝑖  and 𝑋𝑖
∗ are two independent random variables distributed 
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according to 𝐹𝑖(. ) . With 𝑟  posterior samples, the CRPS can be estimated as 𝐶𝑅𝑃𝑆(𝐹𝑖 , 𝑝𝑖) =
1

𝑟
∑ |𝑝̂𝑖

(𝑗)
− 𝑝𝑖| − 1

2𝑟2 ∑ ∑ |𝑝̂𝑖
(𝑗)

− 𝑝̂𝑖
(𝑙)

|𝑟
𝑙=1

𝑟
𝑗=1

𝑟
𝑗=1 , which is then averaged over all the locations within each 

fold and over all the 𝑘 folds. While the other metrics (also averaged over all the 𝑘 folds) measure 

the accuracy of the point predictions produced by the approaches, the CRPS measures the accuracy 

of both the point and uncertainty estimates as it utilizes the entire posterior predictive distribution to 

determine the discrepancies between the observations and the predictions. Also, the CRPS is only 

computed for the three Bayesian approaches (GEOS, SGEOS and STG) in our work as it requires the 

posterior distributions of the estimates. The closer the AVG_Bias, MAE and RMSE estimates are to 

zero and the smaller the CRPS, the better the predictions. Correlation values closer to one indicate 

better predictive ability. 

Additionally, to further examine the fits of the different methods, we checked their 

(standardized) in-sample residuals for spatial autocorrelation using variograms and the associated 

variogram envelopes, which were obtained by permutation, using the geoR package in R (Ribeiro Jr 

et al., 2024). 

3. Results 

3.1. In- and Out-of-Sample Predictive Performance Using Cross-Validation and Variogram Analysis 

With respect to the metrics used to evaluate the accuracy of the point estimates produced by the 

methods at the cluster level (correlation, RMSE, MAE and AVG_BIAS), we found that GEOS, SGEOS 

and, to a great extent, LASSO had the best out-of-sample predictive performance in most cases 

(Figure 3 and supplementary Table 2). The values of these metrics for GAM and STG were also very 

close to those of the three best approaches, indicating only slightly worse predictive performance. 

BRT and ANN generally had the worst predictive performance, which can be clearly seen when 

considering the AVG_Bias and RMSE estimates in Figure 3. 

Among the three Bayesian approaches for which we computed the CRPS metric, we found that 

GEOS and SGEOS outperformed the STG method based on this metric, which is also consistent with 

the results obtained using the other metrics. All the methods had fairly similar predictive 

performance under the two types of cross-validation folds investigated (i.e., random and spatially 

stratified folds) according to all the metrics except the correlations which showed that nearly all the 

methods had better predictive performance under the random folds. These results indicate that the 

methods can reasonably predict not only random but also spatial blocks of missing values in 

unsampled areas. There was no evidence of improved predictive performance for MCV1 despite 

having relatively larger cluster level sample sizes than DTP1 (supplementary Figure S7). This is likely 

due to the cluster level sample sizes for MCV1 not being large enough to induce noticeable 

improvements in predictive performance. 
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Figure 3. Model validation. Out-of-sample predictive performance of the geostatistical and machine learning 

approaches investigated based on a k-fold cross-validation exercise using cluster level data (see supplementary 

Table 2). 

Furthermore, when examining the out-of-sample predictions in low coverage areas (i. e., areas 

with cluster level proportions 𝑝(𝒔𝑖) ≤ 0.4 - supplementary Figures S8 and S9), we found that the 

prediction errors (RMSE, random folds) for ANN and BRT were consistently larger (RMSE ≥ 0.33) 

than those of the other approaches (0.24 ≤  RMSE ≤  0.3), although there was evidence of 

overestimation in all the approaches. For DTP1, the lowest prediction errors were obtained for the 

GEOS and SGEOS methods, whereas for MCV1, these were obtained for SGEOS, GEOS and STG. 

The variograms of the in-sample residuals for DTP1 and MCV1 shown in supplementary Figures 

S10 and S11 indicate that of all seven approaches investigated, there was strong evidence of residual 

spatial autocorrelation in the ANN and BRT methods. The variograms for both methods closely 

resembled those of the outcome variables (i. e., the cluster level proportions of vaccinated children – 

supplementary Figures S5 and S6). Also, the lack of evidence of spatial autocorrelation in the 

residuals is strongest for the geostatistical approaches – GEOS, SGEOS and STG. 

3.2. 1x1 km Estimates of Vaccination Coverage and Associated Uncertainties 

The rationale for the differences observed in the out-of-sample predictive performance of the 

approaches is apparent when investigating the 1x1 km predicted maps of vaccination coverage and 

associated uncertainties produced through using these approaches. Figure 4 (a) shows strong 

similarities between the predicted surfaces produced by GAM, LASSO, GEOS, SGEOS and STG. 

Broadly similar patterns demonstrating a north-south divide in coverage can also be seen in the 

predicted maps produced using ANN and BRT, but their estimates are closer to the extremes of the 

unit interval and smoother in the lower and higher coverage areas than those of the other approaches. 
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Figure 4. Predicted DTP1 coverage estimates. 1x1 km modelled estimates of DTP1 coverage produced through 

using different geostatistical and machine learning approaches shown using (top) maps and (bottom) density 

plots. 

The over-smoothing of the coverage estimates by ANN and BRT relative to the other approaches 

is evident in the distributions of the grid level DTP1 predictions shown in Figure 4 (b). All the 

methods produced bimodal distributions reflecting the characteristic spatial distribution of 

vaccination coverage in Nigeria {REFs}. However, the grid level estimates produced by ANN and 

BRT are more peaked near zero and one than those produced by the other approaches, suggesting 

overestimation in high coverage areas and underestimation in low coverage areas by both 

approaches. This also explains the higher AVG_BIAS and RMSE values for both approaches relative 

to other approaches. For MCV1, supplementary Figures S12 (a-b) show similar patterns in the grid 

level estimates produced by all the approaches, with strong evidence of over-smoothing in low and 

high coverage areas by ANN and BRT relative to the other approaches. 

The uncertainties associated with the predictions have broadly similar spatial patterns across 

the methods, with lower uncertainties in areas where coverage estimates are either close to the 

endpoints (an artefact of the binomial distribution) of the unit interval or where data locations are 

dense, and higher uncertainties in areas where the estimates are closer to 0.5 or where data locations 

are sparse (Figures 5 (a) and (b)). 
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Figure 5. Uncertainty estimates for DTP1. Estimates of the uncertainties associated with 1x1 km estimates of 

DTP1 coverage produced using different geostatistical and machine learning approaches shown using (a) maps 

and (b) density plots. 

However, due to the over-smoothing by ANN and BRT, the uncertainties associated with both 

approaches are much smaller than those of other approaches (Figure 5 (b)) in areas of lower and 

higher coverage, even in comparison with LASSO for which we used the same jackknife approach to 

produce its uncertainty estimates. In areas with mid-level coverage estimates, the uncertainties 

associated with the estimates produced by BRT are noisier and relatively much higher than other 

approaches. For MCV1 (supplementary Figures S13 (a-b)), similar patterns can be observed, with the 

uncertainties associated with both ANN and BRT being much higher in many areas relative to the 

other approaches. 
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Figure 6. National and grid level coverage estimates. Comparisons between national (a-b) and grid level (c-d) 

coverage estimates produced through using geostatistical and machine learning approaches. In panels (a-b), the 

national estimates are compared with the direct survey estimates (dotted red lines) while panels (c-d) show the 

correlations between the grid level estimates. 

At the national level, the estimates produced through using these approaches revealed that ANN 

(and BRT to some extent; and GEOS – MCV1 only) overestimated coverage for both DTP1 and MCV1 

relative to the direct survey estimate that is often considered to be the gold standard (Figures 6a-b). 

On the other hand, whilst there are strong correlations between the grid level estimates produced by 

these approaches (Figures 6c-d), it is evident that ANN and BRT are most dissimilar to other 

approaches, particularly for DTP1. 

3.3. Exploring Spatial Prioritization Using District Level Coverage Estimates 

To further investigate the utility of the coverage estimates produced by the methods for spatial 

prioritization, we computed district level coverage estimates using their respective 1x1 km predicted 

maps and then ranked the districts based on these estimates. We note that the comparisons 

undertaken here using rankings obtained from the district-level coverage estimates are purely for 

illustration since estimates of numbers of unvaccinated children can characterise disease risk more 

accurately and are better suited for this purpose. 
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Figure 7. Spatial prioritization. (a-b) Ranking of districts from lowest (rank 1) to highest (rank 774) based on 

DTP1 coverage estimates produced using geostatistical and machine learning approaches, and (c) the range of 

the ranks per district. In panel (b), the districts have been ordered using the ranking produced by the GEOS 

method. 

Figures 7 (a-c) demonstrate that although there are broad similarities between the rankings of 

the district level DTP1 coverage estimates produced by the different methods, remarkable differences 

exist, both when examining groups of ranks (Figure 7a) and, more evidently, the individual ranks 

(Figure 7b). The differences between the rankings generally appear relatively smaller in areas of 

lower coverage in the northern parts of the country and much larger in higher coverage areas (Figure 

6c). Also, these differences appear more pronounced when considering smaller numbers of areas 

(e.g., the 80th to 100thlowest coverage areas) than larger numbers of areas (e.g., the 100 lowest 

coverage areas) (Figure 7b). The median of the ranges of the ranks per district (Figure 7c) at the 

national level is 112.5 (interquartile range (IQR) = 100, maximum value = 428), indicating marked 

differences among the methods. Among the five methods with similar predictive performance (i.e., 

GAM, LASSO, GEOS, SGEOS and STG), the median of the ranges of the ranks per district reduces to 

83 (IQR = 89, maximum value = 337), which still indicates considerable differences. However, when 

examining pairs of methods with more similar predictive accuracy, there were large reductions in the 

differences between the rankings. For example, for the GEOS and SGEOS methods, the median of the 

ranges of the ranks per district is 17 (IQR=32). 

Similar patterns were observed for MCV1 (supplementary Figure S14), with the median of the 

ranges of the ranks per district estimated to be 141 (IQR=114, maximum value = 499) for all the 

methods at the national level, 87 (IQR=82, maximum value = 336) for GAM, LASSO, GEOS, SGEOS 

and STG, and 26 (IQR=50) for the GEOS and SGEOS methods. These differences in the rankings 
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produced by the methods are also apparent in the bivariate plots of the ranks shown in 

supplementary Figures S15 and S16. 

4. Discussion 

For the first time, our study evaluated the performance of seven geostatistical and ML 

approaches for producing estimates of vaccination coverage at resolved spatial scales. All the 

methods were implemented using standard computers with a maximum run time of < 3 hours per 

method needed (much lower for some ML approaches) to produce predictions at 1x1 km resolution, 

except the SGEOS method which was executed using a high memory computer with a run time of ≈ 

2.5 hours. 

Our analyses revealed similar out-of-sample predictive performance at the cluster level for five 

of the methods - GEOS, SGEOS, LASSO, GAM and STG, although stronger predictive performance 

was observed for GEOS, SGEOS and LASSO methods. Out of all seven approaches investigated, 

ANN and BRT had the worst predictive performance. The over-smoothing observed in both 

approaches relative to others can be due to the way their algorithms learn from data or the different 

outcome distribution (Gaussian instead of binomial) used for both approaches. We observed that it 

did not matter which group of covariates were used to predict coverage when using both approaches, 

e.g., kriged DHS covariates and other geospatial covariates, as the over-smoothing persisted in both 

cases – see supplementary Figure S17. Interestingly, when considering the Bayesian approaches, we 

found that GEOS and SGEOS generally outperformed the STG method, despite the extensive use of 

the latter approach for producing gridded estimates of HDIs (Bhatt et al., 2017, Mosser et al., 2019, 

Sbarra et al., 2021). These results were further corroborated when examining the in-sample 

predictions from the methods for residual spatial autocorrelation and when comparing their out-of-

sample predictions in low coverage areas. We did not find evidence of better predictive performance 

for MCV1 due to greater cluster level sample sizes relative to DTP1. This is likely due to the sample 

sizes for MCV1 not being large enough to make a difference. The effect of cluster-level sample sizes 

on in- and out-of-sample predictive performance is well explored in Utazi et al (Utazi et al., 2022). 

The 1x1 km predicted maps of the indicators revealed that while GAM, LASSO, GEOS, SGEOS 

and STG produced very similar results, ANN and BRT produced grid level estimates that were over-

smoothed relative to the other approaches, with the estimates being close to the endpoints of the 

coverage scale. Although the uncertainties produced by these approaches had very similar spatial 

distributions, the uncertainties for ANN and BRT were either relatively smaller (for DTP1)– an 

artefact of the binomial distribution and over-smoothing – or appeared relatively noisier in some 

areas and relatively higher (for MCV1) than those of the other approaches. The correlations between 

the grid level estimates produced by the approaches are generally high (≥ 0.78), but these also 

indicated relatively lower correlations between ANN and BRT and other approaches, particularly for 

DTP1. Further comparisons with direct survey estimates at the national level revealed that ANN 

consistently overestimated coverage. There was also some evidence of overestimation by BRT. We 

note that given the differences between the predictions obtained through using ANN and BRT and 

other approaches, both ANN and BRT approaches are also likely to produce other subnational 

estimates (e.g., at the provincial level) that do not align well with direct survey estimates. 

Considering the importance of district level estimates of vaccination coverage and 

corresponding estimates of numbers of zero-dose and under-vaccinated children for program 

planning and implementation, we further investigated the utility of the coverage estimates produced 

by the different approaches for spatial prioritization at the district level. We found remarkable 

differences in their rankings of the districts, although there were broad similarities especially when 

considering larger numbers of areas. The differences in the ranks per district seemed greatest in areas 

of higher coverage and more modest in lower coverage areas, which might have been affected by the 

spatial distribution of vaccination coverage in the study country. We further observed a reduction in 

differences in rankings among methods with similar predictive performance, as expected, and even 

substantial reductions between pairs of methods with similar predictive performance. These results 
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hold significant implications for vaccination programming, especially in resource-constrained 

settings where only a limited number of areas can be targeted per time, since inaccurate identification 

of priority areas for interventions could result in missing important vulnerable populations, 

suboptimal resource allocation, reduced impact and persistence of disease circulation and outbreaks. 

The predictive accuracy of these approaches should therefore guide their use for map production and 

operationalization. 

Although our study is the first of its kind in relation to vaccination coverage estimation, our 

findings are broadly consistent with those of other studies that compared geostatistical and ML 

approaches in other applications such as air pollution (Berrocal et al., 2020) and soil organic carbon 

mapping (Veronesi and Schillaci, 2019), which also found that geostatistical models outperformed 

ML approaches. However, our results are somewhat different from those of Bosco et al (Bosco et al., 

2017) who used ANN and a Bayesian geostatistical model to map various HDIs across multiple 

countries and found that both approaches had very similar predictive performance, with the latter 

being the preferred approach due to ease of implementation (i.e., not requiring many tuning 

parameters). This may be due to differences in study design and geography, model implementation 

choices including parameter tuning, the cross-validation approaches used, the nature of the outcome 

indicators or the geospatial covariates included in both studies, which make direct comparisons of 

the results less tenable. 

There are a number of factors that underlie the results obtained in our study. Our data were 

taken from a specific geography. It will be useful to explore how these methods perform in other 

settings with different sampling designs and spatial distributions of vaccination coverage, although 

we investigated the latter to some degree by considering two indicators of vaccination coverage. Also, 

other factors that can potentially influence the comparisons of these methods are varying levels of 

spatial autocorrelation in the outcome data and varying numbers and types of covariates included in 

the model and their relationships with vaccination coverage (Bosco et al., 2017). The 

underperformance observed in ANN and BRT may depend on some of these factors, since ML 

approaches rely on covariates to make predictions whilst the geostatistical approaches additionally 

leverage residual spatial autocorrelation, but it also reveals a lack of robustness of both approaches 

to some modelling contexts. For geostatistical models, these attributes have been investigated in 

detail in previous work using simulation studies (e.g., Utazi et al (Utazi et al., 2018a)) . However, we 

would like to clarify that a simulation study would only be ideal when comparing only geostatistical 

models such as the GEOS, SGEOS and STG models investigated here, since simulating data from a 

geostatistical model or a sampling design based on geostatistical techniques would confer an undue 

advantage on these models over ML techniques. It will also be interesting to investigate the 

performance of these approaches in scenarios where the survey is representative at the district or the 

second administrative level, although the relevance of the modelled estimates is weakened in this 

case. Furthermore, other approaches for estimating the uncertainties associated with the ML 

approaches are also possible. For example, a spatial bootstrap algorithm (this did not perform well 

in our study during initial trials) or an approach that involves interpolating spatial cross-validation 

residuals to create an uncertainty map, similar to Blanco et al (Guio Blanco et al., 2018), could be used. 

Whilst the use of geostatistical and ML approaches to produce high-resolution maps of HDIs 

has grown in popularity, other small area estimation methods for producing maps of HDIs exist 

(Tzavidis et al., 2018, Utazi et al., 2021, Paige et al., 2022), but these assume a discrete spatial domain, 

meaning that estimates can only be produced for a given administrative level at a time. Some of these 

methods are well explored in Utazi et al (Utazi et al., 2021). Furthermore, in the ML arena, there are 

other hybrid approaches aiming to overcome the limitation of ML approaches not explicitly 

accounting for spatial autocorrelation in the data through (i) creating features that imitate the spatial 

autocorrelation in the outcome and using these as additional covariates in conventional ML methods 

(Sekulić et al., 2020, Fouedjio and Arya, 2024), (ii) combining ML predictions with the kriging of the 

prediction residuals (Kaya et al., 2022) and (iii) locally calibrated ML algorithms (Hagenauer and 

Helbich, 2022, Fouedjio and Arya, 2024). Future work in mapping vaccination coverage and other 
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HDIs may involve the exploration of these hybrid approaches. In geostatistical models, spatially 

varying coefficient models (Gelfand et al., 2003) can also be used to account for the spatial non-

stationarity in the regression relationship between vaccination coverage and geospatial covariate 

information. 

In conclusion, our results provide valuable guidance to practitioners regarding the utility of 

these modelling approaches for producing maps of vaccination coverage and other HDIs. While most 

of the approaches we investigated had good predictive accuracy and produced similar results, some 

approaches were relatively better, with significant implications for spatial prioritization. Effort 

should be made to either identify the best modelling framework for each analytical context or to use 

approaches that have been shown to be more robust and reliable in other contexts. 
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