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Abstract: Developing reliable Al systems to assist human clinicians in multi-modal medical diagnosis
has long been a key objective for researchers. Recently, Multi-modal Large Language Models (MLLMs)
have gained significant attention and achieved success across various domains. With strong reasoning
capabilities and the ability to perform diverse tasks based on user instructions, they hold great potential
for enhancing medical diagnosis. However, directly applying MLLMSs to the medical domain still
presents challenges. They lack detailed perception of visual inputs, limiting their ability to perform
quantitative image analysis, which is crucial for medical diagnostics. Additionally, MLLMs often
exhibit hallucinations and inconsistencies in reasoning, whereas clinical diagnoses must adhere strictly
to established criteria. To address these challenges, we propose MedAgent-Pro, an evidence-based
reasoning agentic system designed to achieve reliable, explainable, and precise medical diagnoses.
This is accomplished through a hierarchical workflow: at the task level, knowledge-based reasoning
generate reliable diagnostic plans for specific diseases following retrieved clinical criteria. While at
the case level, multiple tool agents process multi-modal inputs, analyze different indicators according
to the plan, and provide a final diagnosis based on both quantitative and qualitative evidence. Com-
prehensive experiments on both 2D and 3D medical diagnosis tasks demonstrate the superiority and
effectiveness of Med Agent-Pro, while case studies further highlight its reliability and interpretability.
The code is available at https:/ /github.com /jinlab-imvr/MedAgent-Pro.

Keywords: large language model; agentic system; medical diagnosis

1. Introduction

Medical diagnosis is a fundamental aspect of the clinical process, requiring doctors to perform
step-by-step reasoning based on medical guidelines while integrating various patient information
to analyze different indicators and reach accurate and well-informed conclusions [57]. This process
is time-consuming, and the growing demand for medical diagnosis is increasingly surpassing the
capacity of existing healthcare resources, placing a significant burden on medical services. To alleviate
this burden, efforts have been made to develop computer-aided diagnosis (CAD) techniques that assist
with specific diagnostic tasks, such as tumor segmentation and cancer grading. However, these models
function merely as tools, with the overall diagnostic process still relying heavily on human doctors.
As a result, the development of Al systems capable of autonomously handling the entire diagnostic
workflow has become a key research focus.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Example 1: Glaucoma Answer From MLLMs Answer From MedAgent-Pro

GPT-40: To confirm whether a patient has glaucoma, | According to relevant documents, the key indicators for diagnosing
it is usually necessary to comprehensively analyze glaucoma from fundus images are as follows:

multiple factors such as the morphology of the optic According to the segmentation result of optic cup and disc,

_disc' the thickness of the °Ptic n(?rve fiber layer, the vCDR is 0.681, higher than the risk thresold 0.6.
intraocular pressure, and visual field test.

It is difficult to diagnose glaucoma based on this
fundus photo alone.

The thickness of the patient's neuroretinal rim deviates from
the normal ISNT rule, with a much thinner temporal margin.

The patient have optic disc hemorrhage with associated cup-to-

LLaVa-Med: According to the fundus image, the disc and retinal pigmentation.
patient does not have glaucoma. The image shows a| The image shows an unclear optic disc boundary, which may
Fundus Image normal optic nerve without any signs of damage or | related to peripapillary atrophy.
abnormalities, which is an important indicator. Based on above findings, the patient are very likely to have glaucoma.
Example 2: Heart Disease Answer From MLLMs Answer From MedAgent-Pro
GPT-40: | can help you analyze the features of this According to relevant documents, the key indicators for diagnosing
3D echocardiography image, but | cannot directly heart disease from 3D echocardiography images are as follows:

diagnose heart disease. To determine whether a
patient has heart disease, professional medical
image analysis and a doctor's evaluation are
required.

According to the segmentation result of left
ventricle and myocardium, the Left Ventricular
Ejection Fraction (LVEF) of the patient is 26%,
significant below the normal value. The Left

. . ) Ventricular End-Diastolic Diameter (LVEDD) is
3D EChocardIOgraphy LLaVa-Med: :I'he echc?cardlog‘raphy image shows 62mm, which is larger then the normal value of
normal cardiac function, which means that the

male (42-58mm).
mmm patient does not have heart disease according to ( )

o oo | O v the information provided. The image demonstrates ConS}derlng the glv_en patle:t |nft:rmat|or1, the patient’s heart burc!en
normal left ventricular systolic function, which is an may increase (BMI=33.2). The Left Ventricular Mass Index (LVMI) is

Patient information important aspect of heart function. 130g/m?, which is larger then the normal value of male (50-118mm).
In summary, the patient tend to have cardiomyopathy hypertrophic.

Figure 1. Comparison of existing MLLMs and our MedAgent-Pro framework on two disease diagnoses. Red
text highlights the limitations of MLLMs, while green text represents the evidence-based diagnosis provided by
MedAgent-Pro. Our approach enhances diagnostic accuracy while offering comprehensive literature support and
visual evidence.

Recently, multi-modal large language models (MLLMs) [1,13,21,33,42] have garnered significant
attention for their strong interaction abilities. They can perform a variety of tasks based on user
prompts, including Medical Vision Question Answering (MedVQA) [51], Medical Report Generation
(MRG), and clinical decision support [9,20]. These advancements underscore the potential of MLLMs
in enhancing medical decision-making. However, despite these advancements, MLLM:s still fall short
of meeting the stringent standards required for disease diagnosis in clinical practice. Firstly, they
often exhibit hallucinations and inconsistencies in reasoning, making it difficult to strictly adhere to
established medical criteria. Moreover, many disease diagnoses clinically rely on quantitative evidence.
For example, the vertical optic cup-to-disc ratio is crucial for glaucoma diagnosis, and left ventricular
ejection fraction plays a key role in heart function evaluation. However, MLLMs struggle to perform
quantitative analysis on images, thus hard to be applied in clinical practice. As a result, current MLLMs
primarily function in one-hop medical visual question answering for diagnostic tasks, which falls
short of the expert-driven, evidence-based analysis required in real-world medical diagnosis. These
limitations raise significant safety concerns, highlighting the need for further advancements to improve
their reliability and clinical applicability.

Due to the extensive computational resources and high-quality data required for fine-tuning
[33], enabling MLLMs with quantitative analysis capabilities and domain-specific expertise remains
challenging, limiting their applicability in complex medical scenarios. Agentic systems [12,34,56,62,
72] offer a potential solution for assisting MLLMs in medical diagnosis. These systems, originally
developed for general-purpose applications, integrate MLLMs with external tools to extend their
capabilities beyond simple conversational interactions. Meanwhile, in the medical domain, specialized
Al models such as classification [74], grounding [6], and segmentation [45,66,78] have achieved great
success while existing medical literature provides essential clinical criteria for disease diagnosis.
By leveraging these resources, agentic systems can help compensate for the limitations of MLLMs,
enhancing their effectiveness in medical applications. Several studies have explored the development
of medical agentic systems [16,28,32]. However, most existing approaches adapt general-purpose
agentic frameworks to improve diagnostic accuracy without enhancing interpretability by providing
supporting evidence. These frameworks incorporate debate or collaboration mechanisms between
MLLMs to refine answers, but they still rely on empirical black-box decision-making and overlook the
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importance of expert-driven evidence, which is essential in modern medicine. In contrast, medical
diagnosis requires structured reasoning based on guidelines, integration of multi-modal patient data,
and evidence-based analysis to ensure reliability and safety. As a result, existing medical agentic
systems often oversimplify diagnostic tasks, merely focusing on empiricism-based question answering
rather than the in-depth, evidence-based analysis needed for real-world applications. These limitations
highlight the need for approaches tailored to the stringent requirements of medical decision-making.

To align Al system with evidence-cased modern medical protocol, we propose a reasoning
agentic workflow for evidence-based multi-modal Medical diagnosis, termed Med Agent-Pro, to enable
comprehensive, evidence-based medical diagnosis. Med Agent-Pro achieves this by incentivizing the
reasoning capabilities of MLLMs by integrating the retrieved medical guideline and medical expert
tools. It adopts a hierarchical structure, where the task level formulates unified diagnostic plans for
specific diseases, while the case level executes the plan and makes diagnostic decisions for suspected
patients. At the task level, MLLMs act as planner agents, performing knowledge-based reasoning to
generate reliable diagnostic plans by integrating retrieved clinical criteria. At the case level, medical
expert models act as tool agents, analyzing both quantitative and qualitative indicators. Finally, a
decider agent ensures a comprehensive and accurate diagnosis for each patient, supported by clinical
literature and visual evidence. Our key contributions are listed below:

e  We propose MedAgent-Pro, a reasoning agentic workflow that can provide accurate and explain-
able medical diagnoses supported by visual evidence and clinical guidelines.

e At the task level, MLLMs perform knowledge-based reasoning to generate well-founded diag-
nostic plans. Without fine-tuning, this is accomplished by integrating retrieved clinical criteria,
ensuring greater reliability in diagnosis.

* At the case level, various medical expert tools execute the corresponding steps in the plan to
process multi-modal patient information, providing interpretable qualitative and quantitative
analyses to support evidence-based decision-making.

¢  We evaluate MedAgent-Pro on both 2D and 3D multi-modal medical diagnosis, where it achieves
state-of-the-art performance, surpassing both general MLLMs and task-specific solutions. Addi-
tionally, case studies highlight Med Agent-Pro’s superior interpretability and reliability beyond
quantitative results.

2. Related Work
2.1. AI-Driven Multi-Modal Medical Diagnosis

Medical diagnosis is one of the most critical and complex tasks in clinical practice, demand-
ing both expertise and precision. The development of artificial intelligence (AI) systems capable of
assisting human clinicians in diagnostic decision-making has emerged as a key research objective
[5,29,47,58]. However, multi-modal diagnosis presents significant challenges, as it requires the inte-
gration of both qualitative and quantitative assessments of patients’ visual examinations alongside
a comprehensive analysis of diagnostic findings and patient-specific information. To address these
challenges, prior research has primarily focused on developing visual models to support medical
diagnosis, encompassing tasks such as classification [2,4,14,73,74], detection [7,8,15,22,61], and segmen-
tation [3,25,45,55,64,66,76]. These models extract critical diagnostic indicators, which are subsequently
synthesized by medical professionals to formulate clinical decisions.

In parallel, efforts have been made to develop end-to-end Al architectures for medical diagnosis
with minimal human intervention, particularly through multi-modal approaches like Vision Question
Answering (VQA) [27,71,75]. The emergence of MLLMs [1,13,42,69] has further expanded the potential
of Al-driven diagnosis, as these models exhibit advanced reasoning capabilities approaching human-
level performance across various domains. Several studies have explored fine-tuning general-purpose
MLLMs for medical applications [33,52], achieving competitive performance in Medical VQA tasks.
Despite these advancements, most existing Medical VQA datasets [23,31,41] remain overly simplistic
compared to real-world diagnostic scenarios. They primarily focus on classification tasks, lacking
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comprehensive analytical depth and explanatory reasoning, making them insufficient for revealing the
interpretability limitations of MLLM-based diagnoses. While some methods improve explainability by
linking text outputs to specific image regions [30,39,40,70], they still fall short of structured reasoning
necessary for rigorous diagnosis. Consequently, further research is required to advance the application
of MLLMs in real-world medical diagnosis, with particular emphasis on their reliability, interpretability,
and clinical integration.

2.2. LLM-based Al Agents

Developing reliable autonomous intelligent systems has long been regarded as a highly promising
research avenue. With the advent of the agent concept, which refers to an entity capable of perceiving its
environment and taking action, agent-based intelligent systems have garnered considerable attention
in recent years. Large language models (LLMs) have shown remarkable potential in reasoning and
planning, closely aligning with human expectations for agents that can perceive their surroundings,
make informed decisions, and take actions within interactive environments. Driven by this potential,
LLM-based agents have made significant advancements in navigating complex environments and
tackling intricate tasks across diverse applications such as industrial engineering [37,49,53,67], scientific
experimentation [10,19,44], embodied agents [11,24,65], gaming [18,36,54], and societal simulation
[26,46,68].

With these advancements, LLM-based agents surpass traditional task-specific models by dynami-
cally adapting to diverse applications without additional training. However, their capabilities remain
prone to hallucinations, often leading to inconsistent answers for the same case. Moreover, LLMs
excel at qualitative analysis but struggle with generating precise quantitative results. As a result, an
agentic system relying solely on LLMs is insufficient for medical diagnosis [35,43,59,79]. Instead, a
more structured, tool-based system is needed to ensure accuracy and reliability in clinical applications.

3. Methods

Our MedAgent-Pro framework consists of two main stages: task-level reasoning and case-level
diagnosis, as shown in Figure 2. At the task level, the planner agent utilizes retrieved medical pipelines
to formulate a diagnostic plan that aligns with established medical principles for each disease. At the
case level, specialized models follow the plan’s steps to analyze multi-modal patient data, extracting
diverse biomarkers and indicators. Finally, the decider agent integrates all information to generate an
explainable diagnosis supported by visual evidence. In the following sections, we introduce the agents
and tools involved and provide a detailed explanation of the two-step process.
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Knowledge-Based Task-Level Reasoning Evidence-based Case-level Diagnosis

& Case: What is my diagnosis ?

v Task: How to diagnosis <disease>?
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Figure 2. The overall structure of our MedAgent-Pro framework. The blue text indicates different roles of agents,
and the black text indicates medical information.

3.1. Agents Involved in MedAgent-Pro

In this section, we first introduce the various agents in our Med Agent-Pro framework and specify
the models that function as each agent.

3.1.1. Agents in Task-lavel Reasoning

e Retrieve-Augumented Generation (RAG) Agent We utilize RAG to retrieve relevant medical
documents, ensuring the development of reliable diagnostic processes that follow clinical criteria.
For retrieval, we employ the built-in functionality of LangChain [60], and retrieve from medical
library [48,50].

¢  Planner Agent The planner agent generates a diagnostic plan based on the retrieved guidelines
and available tools. We employ GPT-4o [1] as the planner agent due to its strong reasoning
capabilities.

3.1.2. Agents in Case-Lavel Diagnosis

®  Orchestrator Agent responsible for conducting a preliminary analysis of the patient’s multi-modal
information and determining which steps of the diagnostic plan will be executed. We employ

GPT-4o [1] since it can recognize different input effectively.

e Tool Agents We utilize various tool agents to complete different tasks in the diagnostic plans,
including:

- Classification Models We use image classification models for analyzing some quantitative
indicators. We use some general classification models like BioMedclip [74], as well as some
task-specific models like RetiZero [63] for Ophthalmic.

-  Segmentation Models We use the Medical SAM Adapter [66] as the segmentation model
due to its ability to achieve strong performance on the target task with only a small amount
of data. To further optimize its effectiveness, we trained task-specific adapters for the target
task like optic cup/disc segmentation.

- Vision Question Answering (VQA) Models We utilize VQA models to generate visual
descriptions of medical images rather than performing complex reasoning. We employ
general VQA models such as LLaVa-Med [33], alongside task-specific models like VisionUnite
[38] for ophthalmic applications.
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¢ Coding Agent The coding module is designed to generate simple code for computing additional
metrics from the raw outputs of vision models (i.e. segmentation masks). We use GPT-o01 for its
strong coding ability.

*  Summary Agent: Since LLM outputs are often lengthy, we introduce a summary agent to refine
the LLM decider’s response into a simple "yes" or "no" for accuracy evaluation. Additionally,

"o

the summary agent condenses the VQA tool’s output into "yes," "no," or "uncertain." We employ
GPT-4o [1] for its strong summarization capabilities.

¢  Decider Agent: In charge of making the final diagnosis based on the indicators obtained from
previous steps. The implementation includes two approaches, which will be introduced in the

following sections.

3.2. Knowledge-Based Task-Level Reasoning

The goal of this phase is to devise a diagnostic process that aligns with medical guidelines for
specific diseases. The planning process is generally divided into two steps. First, we gather information
on the clinical diagnosis process for the disease. In previous studies, this step is generally handled by
LLMs themselves. However, due to the inherent hallucination phenomenon and inconsistencies in
reasoning, the information provided by these models is often highly unpredictable, which contradicts
the structured nature of clinical diagnosis.

To address this issue, we introduce a Retrieval-Augmented Generation (RAG) agent to ensure
the reliability of the information by retrieving medical resources, including clinical guidelines and
hospital protocols. When processing queries about specific diseases, the agent consults medical
texts, guidelines, and protocols to summarize relevant information [48,50], rather than relying on
unsupported LLM-generated content. This approach enables evidence-based planning, enhancing the
reliability and accuracy of the diagnostic process.

Once the diagnostic information is generated, it needs to be structured into an actionable diag-
nostic workflow. Specifically, the planning agent assigns tasks to different tool agents based on the
available tools for the task. The result is a multi-step diagnostic process, where each step follows a
triplet format: (object, tool, action). This format specifies which tools and operations should be applied
to the input object or intermediate results of each modality at each stage. By structuring the process in
this way, the system provides clear and practical diagnostic steps tailored to each specific case.

3.3. Evidence-Based Case-Level Diagnosis

Existing MLLMs approach medical diagnosis through end-to-end VQA. However, this method of-
ten lacks effective visual explanations and primarily relies on qualitative analysis without quantitative
results to support the diagnosis. Although some methods enhance explainability by linking outputs to
specific regions in input images, they merely highlight attended areas without providing underlying
reasoning. In contrast, our proposed MedAgent-Pro system leverages advanced vision models as
specialized tools, utilizing their fine-grained visual perception capabilities to perform detailed analyses
rather than relying on the limited visual processing abilities of MLLMs.

Specifically, when given multi-modal patient inputs, the orchestrator agent automatically iden-
tifies the input modality, matches it with the object field in the planned triplet, and executes the
corresponding diagnostic steps. Based on these steps, various specialized models are involved as
tool agents to conduct detailed analyses. Additionally, the coding agent generates code to process
visual data for computing quantitative indicators or producing intermediate results as inputs for
subsequent steps. Finally, the summary agent consolidates the analysis of each indicator into "yes,"
"no," or "uncertain" options, while the decider agent integrates all indicators, formulates the final
diagnosis, and provides supporting evidence. In this paper, we explore two approaches for the final
diagnosis. The first, LLM decider, involves feeding all obtained indicators into an LLM (GPT-40 in our
case), allowing it to autonomously integrate the information and generate a diagnosis. The second
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approach, MOE (mixture-of-experts) decider, utilizes an LLM to assign weights to different indicators
with a threshold-based 6, and compute a final risk score s for the decision-making process:

1, abnormal

s=Y wix;,xj =1 0.5, uncertain 1)

M=

I
—_

1
0, normal

where 7 is the total number of indicators, w; represents the weight assigned to the i-th indicator, and x;
encodes the indicator’s status. The final decision is determined by:

o sick, s>0
decision = 2)
healthy, s <6

For example, diagnosing glaucoma requires a comprehensive analysis of a patient’s multi-modal
data, including fundus images, OCT scans, and IOP measurements. When provided with only a fundus
image, the orchestrator agent queries the diagnostic plan and identifies four indicators: The VQA tools
first scan the entire image to detect potential disc hermorrhages, while the segmentation tools identify
the optic cup and disc. The coding agent then calculates the vertical cup-to-disc ratio by calculating
their vertical diameter, and then extracts the region around the optic disc for further analysis. The
VQA module examines this region to identify signs of peripapillary atrophy, while the coding agent
computes rim thickness in different directions. Similarly, when provided with 3D echocardiography and
basic patient information (height, weight, etc.), the orchestrator agent queries the diagnostic plan and
identifies four key indicators. The segmentation tools first detect the myocardium and left ventricle
at both start-diastolic and end-diastolic phases. The coding agent then calculates the left ventricular
ejection fraction, start-diastolic diameter, and end-diastolic diameter. By incorporating the patient’s
height and weight, the left ventricular mass index is further derived. Once all indicators are obtained,
the summary agent consolidates the findings, and the decider agent formulates the final diagnosis.
A detailed implementation and the results of each agent are provided in the case study within the
experimental section.

4. Experiment

We evaluated the performance of Med Agent-Pro in two essential and complex diagnostic tasks:
glaucoma and heart disease. Diagnosing both diseases requires a comprehensive evaluation of multiple
factors, including both qualitative and quantitative analysis. While current MLLMs struggle in most
cases without the aid of external tools.

4.1. Datasets and Evaluation Metrics

For glaucoma diagnosis, we use the REFUGE2 dataset [17], which is a 2D retinal fundus image
dataset containing 1200 RGB images at a resolution of 2124 x 2056 annotated by experts. Each image
includes segmentation masks for the optic disc and optic cup, along with a classification label indicating
whether the patient has glaucoma.

For heart disease diagnosis, we utilize the MITEA dataset [77], a 3D echocardiography dataset
comprising 536 images from 143 human subjects. Each image contains segmentation masks for the
left ventricular myocardium and cavity, along with a classification label identifying the patient’s heart
condition across seven categories: healthy, aortic regurgitation, dilated cardiomyopathy, amyloidosis,
hypertrophic cardiomyopathy, hypertrophy, and transplant. Due to the limited number of samples for
each specific heart condition, we simplify the task to a binary classification: determining whether the
patient has heart disease.

While the greatest advantage of our MedAgent-Pro system lies in the interpretability of medical
diagnosis, we also conducted quantitative experiments to validate the superiority of our approach. For
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evaluation, we take two common metrics for classification: mACC and F1 score. The mACC represents
the average accuracy across all classes; the F1 score provides robustness against class imbalance;
Throughout all experiments, the best results are highlighted in bold, while the second-best results are
underlined.

4.2. Comparison with Multi-modal Foundation Models

We conduct comprehensive experiments to demonstrate the superiority of our Med Agent-Pro
framework. We have included comparisons with advanced multi-modal LLM methods such as
BioMedClip [74], GPT-40 [1], LLaVa-Med [33], and Janus [13]. Notably, since existing MLLMs cannot
process 3D images, we randomly select three slices from the 3D echocardiography as visual input and
repeat this process ten times to calculate the mean value to minimize randomness.

When comparing with general LLMs, we use mACC and F1 scores as evaluation metrics and
evaluate both ways of the decider agent. For comparison with the REFUGE2 challenge method, since
only AUC results are available for these methods and LLMs provide binary classifications without
probability scores like traditional methods, we only include the comparison with the MOE decider.

As shown in Table 1, our Med Agent-Pro framework significantly outperforms the current state-of-
the-art multi-modal foundation models across both diagnostic tasks. The mACC metric improves by
32.3 and 19.8%, and the F1 score increases by 55.1% and 14.8%, demonstrating the effectiveness of our
design on multi-agentic workflow. When faced with complex diagnoses such as glaucoma and heart
disease, LLMs struggle to make accurate judgments based solely on the general appearance of fundus
or echocardiography images, as they lack the ability to analyze visual features effectively. Particularly,
GPT-40 often refuses to provide a clear diagnosis, while LLaVa-Med, despite being fine-tuned with
medical knowledge, tends to classify all patients as healthy. The proposed MedAgent-Pro framework
integrates various specialized models as tool agents to provide both analysis of both qualitative and
quantitative indicators, thus approach enables precise and comprehensive diagnosis.

Table 1. Comparison with single foundation models on two diagnosis tasks (%). "-" means the method refuses to
give a clear diagnosis for most of the cases.

Glaucoma Heart Disease

Method mACC F1 mACC F1

GPT-4o [1] - - - -
LLaVa-Med [33] 50.0 0.0 50.0 0.0
Janus-Pro-7B [13] 53.4 13.3 52.3 10.7
BioMedClip [74] 58.1 21.3 47.0 37.8
MedAgent-Pro (MOE Decider) 90.4 76.4 66.8 52.6
MedAgent-Pro (LLM Decider) 75.9 44.8 63.8 441

It can also be observed that within our Med Agent-Pro framework, the MOE decider consistently
outperforms the LLM decider, achieving improvements of 14.5% and 3.0% in the mAcc metric for
glaucoma and heart disease diagnosis, respectively. This is because the final diagnosis relies on
multiple indicators, making it difficult for a single LLM to effectively integrate and analyze all relevant
information. As a result, the LLM decider often focuses on only a subset of indicators while overlooking
others, leading to reduced diagnostic accuracy. Meanwhile, the MOE decider can alleviate this issue
by assigning weight for various indicators, facilitating a comprehensive decision-making.

4.3. Case Study

Figure 3 illustrates the workflow of a typical case within our MedAgent-Pro framework. At
the task level, the retrieval agent gathers relevant information to establish clinical criteria, while the
planner agent formulates a diagnostic plan based on the given criteria and available tools. At the
case level, the orchestrator agent selects the appropriate steps from the plan based on the input data,
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engaging various tool agents for indicator analysis. Finally, the summary agent consolidates the

findings, and the decider agent delivers the final diagnosis.

Knowledge-Based Task Level Reasoning

Evidence-based Case-level Diagnosis |

% Task: How to diagnose glaucoma?

Q] Retrieve Agent: According to retrieved information [1][2], the
diagnosis of glaucoma needs to focus on the following aspects:

1. Patient History and Risk Factors: Ask about family history of glaucoma....

[1] Kass, Michael A. "The ocular hypertension treatment study." Journal of glaucoma 3.2 (1994): 97-
100.

[2] Hood, Donald C., et al. "Glaucomatous damage of the macula." Progress in retinal and eye
research 32 (2013): 1-21.

=3 Toolbox: | have the following tools:

Segmentation model: Segment Optic Disc and Optic Cup
Coding module: Write code/program to deal with vision results
VQA model: Describe the input ophthalmology images

@ Planner Agent: The diagnosis plan involves:

Step 1: Object: Medical records; Tool: VQA module; Action: Analysis risk factors

Step k+1: Object: Eye photos; Tool: VQA model; Action: Confirm visual field defects

@{E Orchestrator Agent: The input is Fundus image,
the following steps will be conducted: step j,..., step k

7] VOQA Model: According to observation of the
original image, it is hard to determine whether the

patient have optic disc hemorrhages (DH)....

&2 Vision Model: Here is the segmentation
results of optic disc and optic cup.

[ Coding Module: The computation result of
vertical Cup-to-Disc Ratio (vCDR) is 0.624, and the
optic disc region are cropped for the following steps.

[~]VQA Model: The image shows an unclear optic

disc boundary, which may related to peripapillary

atrophy (PPA). ’»

5] Coding Module: The rim thickness (RT) in the four direction
is..., obey the ISNT rule (I>S>N>T).

@ Summary Agent: Based on the above analysis, vCDR and
peripapillary atrophy are abnormal, Drance hemorrhages are
uncertain, and rim thickness is normal.

8 Decider Agent: The weights for the four indicators (vCDR,
RT, PPA, DH) are [0.3, 0.3, 0.2, 0.2]. The final risk score is
0.65, exceeding the threshold of 0.4, indicating that the
patient has glaucoma.

Figure 3. A case study for glaucoma diagnosis, which illustrates the workflow for a case in our Med Agent-Pro

framework.

4.4. Comparison with Task-specific Models

Additionally, we compare MedAgent-Pro with domain-specific approaches, including fine-tuned
MLLMs for ophthalmology [38,63] and the top-performing methods from the REFUGE2 challenge
leaderboard [17]. Since the REFUGE2 leaderboard only provides the AUC metric, which measures
the area under the ROC curve, and the LLM decider outputs only categorical decisions without
probabilistic scores, we limit the comparison to the MOE decider.

As shown in Table 2, Med Agent-Pro maintains its superiority in comparison with the REFUGE2
challenge winners and state-of-the-art MLLMs in ophthalmology. The AUC metric has improved by
6.8%, while the mACC and F1 scores have increased by 4.6% and 3.3%, respectively. The improvement
is particularly impressive, given that the challenge winners employed numerous techniques and that
expert MLLMs were trained on millions of ophthalmology data, whereas the MLLMs in our Med Agent-
Pro framework maintain a zero-shot setting. This finding further demonstrates that leveraging MLLMs
for a specific domain does not necessarily require fine-tuning but can instead be achieved through
domain-specific tools, highlighting the potential of our Med Agent-Pro framework.

Table 2. Comparison with REFUGE2 challenge winners and ophthalmology MLLMs (%).

REFUGE2 Winners Ophthalmology Expert MLLMs
Team Name AUC Rank Method mAcc F1
VUNO EYE TEAM 88.3 1 RetiZero [63] 50.8 184
MIG 87.6 2 VisionUnite [38] 85.8 73.1
MAI 86.1 3 MedAgent-Pro (LLM decider) 759 448
MedAgent-Pro (MOE decider) 95.1 - MedAgent-Pro (MOE decider) 904  76.4

4.5. Ablation Study

In the diagnosis of glaucoma, four key indicators are analyzed in fundus images: vertical Cup-to-
Disc Ratio (vCDR), Rim Thickness (RT), Peripapillary Atrophy (PPA), and Disc Hemorrhages (DH). To
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further analyze the accuracy of the indicators themselves and their impact on the final diagnosis, we
conduct comprehensive ablation studies as shown in Table 3.

Table 3. Ablation study of single and multiple indicators in glaucoma diagnosis (%).

Indicators Single Indicator Multiple Indicators
MOE Decider LLM Decider
vCDR RT PPA DH mACC F1 MACC 1 ACC i
v 81.7 65.9 - - - -
v 70.8 31.3 - - - -
v 81.0 74.6 - - - -
v 66.8 29.6 - - - -
v v - - 87.0 55.0 71.5 55.4
v v - - 93.8 78.7 69.7 52.0
v v - - 80.4 70.4 52.8 14.3
v v v - - 90.1 81.5 73.3 61.3
v v v v - - 90.4 76.4 75.9 44.8

Columns 5 and 6 of Table 3 analyze the impact of individual indicators. Each indicator’s positive
or negative result is directly taked as the final outcome without passing through the decider agent. The
accuracy of indicators varies significantly, with vCDR and PPA being notably more accurate than the
other two. On one hand, different indicators vary in their relevance to glaucoma. For example, vCDR
is the gold standard for glaucoma diagnosis in clinical practice, whereas the others are not. On the
other hand, some indicators are inherently more challenging to analyze. For example, when analyzing
DH, the lack of effective detection tools necessitates the use of VQA and classification tools. However,
these tools lack fine-grained perception of image details, thereby reducing accuracy.

When multiple indicators are combined for the final diagnosis, we can get the below findings: 1)
The MOE decider effectively leverages multiple indicators, leading to a significant improvement: when
using only one indicator, the highest mACC achieved is 81.7%, while the highest F1 score is 74.6%.
However, with the MOE decider incorporating multiple indicators, the mACC increases to 90.4% and
the F1 score reaches 81.5%. By compensating for the limitations of relying on a single indicator, the
MOE decider achieves a more holistic and reliable diagnosis. 2) However, the LLM decider experiences
a performance decline for multiple indicators, particularly in the absence of vCDR, where the F1
score drops to just 14.3% (7th row). This is because LLMs tend to adopt a conservative diagnostic
approach—when critical information (vCDR) is missing, they often fail to make a definitive diagnosis.
Furthermore, when multiple indicators are provided, LLMs may hesitate to confirm glaucoma even if
only one appears normal and others are clearly abnormal. 3) Less accurate indicators can negatively
impact the correctness of the final diagnosis. Comparing the last two rows, the F1 score drops by 5.1%
and 16.5%, respectively. This decline is due to the low accuracy of DH, which has a high false positive
rate, leading to a significant number of misdiagnoses.

5. Conclusion and Future Work

This paper introduces MedAgent-Pro, a reasoning-based agentic system designed to deliver
accurate, evidence-based medical diagnoses. The system adopts a hierarchical structure: at the task
level, knowledge-based reasoning generates reliable diagnostic plans by integrating retrieved clinical
criteria, while at the case level, evidence-based diagnosis conducts step-by-step indicator analysis
using multiple tool agents. Finally, a decider agent synthesizes all indicators and provides a final
diagnosis supported by visual evidence. Comprehensive experiments show that Med Agent-Pro
surpasses both general MLLMs and expert methods in diagnosing two diseases, demonstrating its
exceptional accuracy and interpretability.

Future works will involve the following aspects: First, we aim to expand the datasets to further
demonstrate the generalization capability of MedAgent-Pro. This includes increasing data scale,
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diversifying tasks, and incorporating more modalities to validate the framework’s performance in

complex scenarios and multi-modal inputs. Additionally, human-in-the-loop validation with expert

doctors will help assess clinical applicability and provide detailed analyzes to generate qualitative

results, demonstrating the superior interpretability of our method compared to MLLMs. These

advancements will further enhance the reliability and impact in computer-aided diagnosis.
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