
Article Not peer-reviewed version

Effective Heuristics for Solving the

Multi-Item Uncapacitated Lot-Sizing

Problem with Near-Minimal Storage

Capacities

Warut Boonphakdee , Duangrat Hirunyasiri * , Peerayuth Charnsethikul

Posted Date: 3 June 2025

doi: 10.20944/preprints202506.0178.v1

Keywords: multi-item; lot size; near-minimal storage capacity; replenishment plan

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4194282
https://sciprofiles.com/profile/4221335
https://sciprofiles.com/profile/4142871

Article

A Push–Pull Heuristic for Solving the Multi-Item

Uncapacitated Lot-Sizing Problem under

Near-Minimal Storage Capacities

Warut Boonphakdee 1, Duangrat Hirunyasiri 2,* and Peerayuth Charnsethikul 3

1 Department of Industrial Engineering, Faculty of Engineering at Kamphaeng Saen, Kasetsart University,

Nakhon Pathom 73140, Thailand

2 Department of Textile Science, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand

3 Department of Industrial Engineering, Faculty of Engineering at Kamphaeng Saen, Kasetsart University,

Nakhon Pathom 73140, Thailand

* Correspondence: duangrat.c@ku.th

Abstract: In inventory management, storage capacity constraints complicate multi-item lot-sizing

decisions. As the number of items increases, deciding how much of each item to order without

exceeding capacity becomes more difficult. Dynamic programming works efficiently for a single

item, but when capacity constraints are nearly minimal across multiple items, novel heuristics are

required. However, previous heuristics have mainly focused on inventory bound constraints.

Therefore, this paper introduces push and pull heuristics to solve the multi-item uncapacitated lot-

sizing problem under near-minimal capacities.. First, a dynamic programming based on network

flow model was used to generate the initial replenishment plan for the single-item lot-sizing problem.

Next, under storage capacity constraints, the push operation moved the selected replenishment

quantities from the current period to subsequent periods to meet all demand requirements. Finally,

the pull operation shifted the selected replenishment quantities from the current period into earlier

periods, ensuring that all demand requirements were satisfied. The results of the random experiment

showed that the proposed heuristic generated solutions whose performance compared well with the

optimal solution. This heuristic effectively solves all randomly generated instances representing

worst‐case conditions, ensuring robust operation under near‐minimal storage. For large-scale

problems under near-minimal storage capacity constraints, the proposed heuristic achieved only

small optimality gaps while requiring less running time. However, small- and medium-scale

problems can be solved optimally by a Mixed-Integer Programming (MIP) solver with minimal

running time.

Keywords: multi-item; lot size; near-minimal storage capacity; replenishment plan

1. Introduction

In supply chain management, the inventory bound, or limitation storage is an im-portant

constraint. Raw materials cannot be stored in huge volumes, although the unit price of a raw material

unit is low. If raw materials have many different items and stock-keeping units (SKUs), it results in

complex problems. Supply chain management decisions depend on the procurement policy of the

organization. It comprises operating on minimum inventory cost while considering whether or not

to use an expanded storage. An expanded storage area is a feasible solution, which operates at the

lowest inventory cost. However, the investment cost for land lease and acquisition, including the rack

and shelving supply, must be considered as well. In the case of not considering an expanded storage

area, there are two feasible solutions. Firstly, when inventory is over, it must be kept in another area,

such as the production line; notwithstanding, this result is with late disbursement, lost materials, and

incorrect counting of the number of remaining materials. Total inventory cost is still low. Secondly,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 41

keep the amount of inventory under the storage capacity, but the order frequency must grow

evidently. As a result, the storage cost continues to be high. When the number of items or SKUs

increase, deciding how much of each item to order without exceeding capacity becomes more

difficult. In many process industries such as paper manufacturing, petrochemical manufacturing,

refineries, food processing, and pharmaceutical manufacturing, storage capacity has become a

limiting factor.

In practice, industries such as trailer assembly processes [11], raw-material perishability in

composites [22] must all contend with limited inventory bounds. Tight inventory bounds or near-

minimal storage capacities that slightly exceed demand require specialized heuristics. Industries

operating under Just-In-Time assembly, such as automotive plants [26], are especially sensitive to

these constraints. Therefore, the authors introduce a dynamic programming approach based on

network flow to generate an initial replenishment plan for each single item and develop a new

heuristic to manage the multi-item lot-sizing problem under near-minimal storage capacities.

Storage capacity has been defined by researchers as comprising two distinct categories, such as:

the number of ending inventory only, and the sum of the number for the beginning inventory and

replenishment. Firstly, most researchers proposed the storage capacity to be based on the number of

ending inventory only. Secondly, other researchers introduced the storage capacity to be the total of

the number of the beginning inventory and replenishment. Thus, many researchers have defined

inventory as the quantity of goods on hand at the end of a specific period. However, in the real world

problem, raw material stores usually receive the replenishment at the beginning of the period and

keep the inventory of the previous period together to be not over the storage capacity. Consequently,

this paper suggests that the total number of inventory in each period depends on the sum of inventory

and replenishment at the beginning of the period. There are two definitions of storage capacity: one

based on the number of ending inventory, and the other on the sum of beginning inventory plus

replenishment. These different definitions not only affect how inventory is calculated but also directly

impact the formulation of inventory planning models. As a result, various algorithms have been

developed to solve these models.

Lot sizing problems are typically solved using exact methods such as MIP , dynamic

programming and heuristic techniques. The earliest known MIP formulation for the lot-sizing

problem in the U. S. petroleum refining industry was introduced by Manne [18] in 1958. In his seminal

paper, he presented a mathematical model for the dynamic lot-sizing problem, which develop in

production planning and inventory control. Meanwhile,Wagner and Whitin [19] introduced a

forward algorithm based on the dynamic programming approach to search for optimal lot size

decisions. They established the optimal lot sizes for a single item when demand, inventory holding

charges, and setup costs change over time. For the management of procurement of materials with

storage capacity, consider both the single item and multi-item.

The dynamic programming approach have been implemented by various researches to solve the

single-item dynamic lot size problem. Love [1] introduced the first dynamic programming

formulation for the Economic Lot-Sizing Problem with Bounded Inventory (ELSB), where inventory

levels are constrained by the lower and upper bounds. His model considers both production

capacities and storage limitations, which are common in practical applications. It solved in O(T3) time

considering backlogging, time-dependent inventory bounds and piecewise concave production, and

storage costs when T is the number of periods in the planning horizon. Toczylowski [21] presented

an efficient O(T2) algorithm for the general single-item dynamic lot-sizing problem with limited

inventory levels and nonzero initial and safety stock levels. Loparic et al. [2] derived a dynamic

program or the shortest path problem using regeneration intervals to solve a single-item lot-sizing

problem with sales constraints and lower bounds on safety stocks. The limitation of this research is

that, in practice, safety stock levels often fluctuate. Sedano-Noda et al. [12] introduced an O(T logT)

greedy algorithm to provide optimal policies assuming reorder and linear holding costs without

setup costs or backlogging. However, the limitation of this research is that it considers only zero setup

costs, which is not practical. Liu and Tu [13] proposed the capacity production-planning (CPP)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 3 of 41

problem where the production quantity was limited by inventory capacity and stockout. This

problem occurs in petrochemical and glass manufacturing, crude oil refining, and food processing.

They applied a minimum-cost flow algorithm to construct the network. By applying standard

successive-shortest-path methods, they achieved an overall time complexity O(T3). Önal et al. [5]

modified dynamic programming procedure that restores optimality for the general bounded‐

inventory lot- sizing problem in O(T2). However, this study did not include any computational

experiments to validate the practical performance of the corrected method. Chu and Chu [14]

proposed the dynamic programming approach for the inventory-bounded outsourcing and

inventory-bounded outsourcing models. These models execute overall complexity time with O(T2 log

T) and O(T2), respectively. The limitation of this approach is impractical for planning horizons longer

than a few dozen periods. Hwang and Heuvel [15] presented the O(T2) algorithm based on dynamic

programming and the Monge property for solving a dynamic lot-sizing problem with backlogging

and inventory bounds when general production and inventory cost structures are concave. In

addition, they introduced the O(T log T) algorithm using the points-approach and a geometric

technique for fixed-charge cost structure as well as the O(T) algorithm using a line-segments

approach, including a geometric technique for the fixed-charge cost structure without speculative

motives. However,their algorithm does not provide an optimal solution for the ULS-IB problem.

Hwang et al. [16] developed the first polynomial-time O(T⁴) dynamic-programming algorithm to

solve the single-item deterministic Economic Lot-Sizing problem with lost sales and bounded

inventory (ELS-LB), under the assumption that each period’s inventory capacity is fixed. A drawback

of their DP algorithm is that it requires a long running time and a large amount of memory to

execute.Boonphakdee and Charnsethikul [23] developed a network- flow based on the dynamic

programming approach to solve the single-item uncapacitated lot-sizing problem. In this study, the

authors introduce their DP algorithm to generate the initial replenishment plan. Atamtürk and

Küçükyavuz [3] proposed a linear programming formulation that achieves tighter relaxations for the

single-item lot-sizing problem with inventory bounds and fixed costs.. Gutiérrez et al.[20] extended

the classical Wagner–Whitin model by time-varying storage capacities and allowing backlogging.

They developed a dynamic programming algorithm with time complexity of O(T³), where T is the

number of periods in the planning horizon Their algorithm applies only when both the production

cost and the holding or stockout cost functions are concave. Guan and Liu [4] introduced two

stochastic models for the single-item lot-sizing problem under uncertainty including inventory-

bound only and the other both inventory-bound and constant order-capacity constraints. They

developed dynamic programming algorithms from them with the time complexity O(T2) and

O(T2nLogT), respectivity, where T is the number of time periods and n is the number of possible order

capacities. However, stochastic DP requires complete and precise probability distributions of

demand for every period. Chu et al. [6] proposed a single-item dynamic lot-sizing model integrating

backlogging, outsourcing, and limited inventory. They developed a dynamic programming

algorithm that solves the lot-sizing problem in polynomial time with O(T³) time complexity, where T

is the number of periods in the planning horizon. As a result, their algorithm cannot support concave

setup or volume‐discount cost structures. Brahimi et al.[8] introduced the Two-Level dynamic Lot-

Sizing Problem with Bounded Inventory (2LLSP-BI), integrating raw-material procurement and

finished-product production planning under finite warehouse capacity constraints. They introduced

a new Lagrangian-relaxation heuristic which decomposes 2LLSP-BI into N single-item lot-sizing

subproblems. Each subproblem is solved by a dynamic programming. The time per Lagrangian

iteration is O(N⋅T2+T⋅Imax), where Imax is the number of the capacity bounds. The raw-material

inventory has a single static bound, whereas finished-goods storage is unbounded.Finally, Di Summa

and Wolsey [24] studied a mixed-integer program that provides a new convex-hull characterization

for the single-item discrete lot-sizing problem with a variable upper bound on the initial stock.

However, this formulation is in general too large to be practically useful.

In practice, it is hard to handle only a single item in raw-material storage or on the production

line. Consequently, managing multiple items can be quite complex. It is difficult to keep each item

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 4 of 41

and to balance holding costs against ordering costs. Heuristic algorithms are commonly used to solve

the multi-item dynamic lot-sizing problem. Many researchers have been interested in creating the

heuristic algorithm for solving the multi-item uncapacitated lot-sizing problem with inventory

bound (MULSP-IB) due to the practical problem in the real world. This problem is like the multi-item

capacitated lot-sizing problem (MCLSP), where the items allocate to a machine with a production

capacity constraint. The MULSP-IB only has the limitation of on-hand inventory. Dixon and Poh [27]

proposed the smoothing approach. They developed the push and pull operations if all weight or

volume of inventory is maintained at more than the storage capacity. For the push operation,

replenishment in the existing period t is moved to the consecutive period t+1. On the other hand, the

pull operation postpones the replenishment in a backward direction from the existing period t to a

previous period t-1 so that all the weight or volume of inventory is maintained at less than the storage

capacity. This procedure runs in O(n⋅T). The authors apply the principle of this smoothing method

to implement the push and pull procedures. The push procedure postpones replenishment from the

current period to the next period, whereas the pull procedure shifts it back to the previous period.

Moreover, the authors compare this heuristic’s performance against other heuristics. Park [25]

studied the two systems together. He presented the solutions of integrated production and

distribution planning and investigated the effectiveness of their integration in a multi-plant, multi-

retailer, multi-item, and multi-period logistic environment. Additionally, he introduced the

optimization models and a heuristic solution for both integrated and decoupled planning. Akbalik et

al. [7] improved the dynamic programming running in O (2nTn+1) time with a polynomial growth rate

if the number of items (n) is fixed to solve the MULSP-IB. However, the Tn+1 factor makes the

algorithm impractical for larger multi-item instances. Gutiérrez et al. [17] extended the smoothing

technique of Dixon and Poh[27]. explored the multi-item dynamic lot-sizing problem with storage

capacities or inventory bounds. The problem has been presented to bound applying the weight of

inventory in a previous period plus the weight of replenishment in the current period. Its average

solution is over around 5% of the solution computed by CPLEX. The authors also compare its

performance against the proposed heuristics. Melo and Ribeiro [9] presented the multi-item

uncapacitated lot-sizing problem with shared inventory bounds. They developed two MIP-based

heuristics : a rounding scheme for generating the feasible solution and a relax-and-fix heuristic for

improving the solution. These MIP-based heuristics yield only near-optimal solutions on average

within about 2-4 % of the true optimum. Witt[10] introduced a mathematical model for the Multi-

Level Capacitated Lot-Sizing Problem with Inventory Constraints (MLCLSP-IC). His model

integrates capacity bounds at each level of a product Bill-of-Materials and explicit work-in-process

inventory limits. Although it is multi-level, the approach supports only a single item per level; it

cannot accommodate product families that share capacities or complex Bills of Materials with

alternative subassemblies. Finally, heuristics and MIP-based heuristics for solving MULSP-IB are

further explained in Table 1 as below.

Table 1. A systematic overview of heuristics and MIP-based approaches.

References Model. Stor. Algo. Cap.

Dixon and Poh[27] I&P BegInv. DP.&Heu. Limit.Inv.

Park[25] I&P&R&V EndInv. LR.Heu. Limit.Inv&P&R

Akbalik et al. [7] I&P EndInv. DP. Limit.Inv.

Gutiérrez et al. [17] I&P BegInv. DP.&Heu. Limit.Inv.

Melo and Ribeiro [9] I&P&PT&V EndInv. LP.R.Heu.&Heu. Limit.Inv.

Witt[10] I&P EndInv. Heu. Limit.Inv.

Abbreviations, Model. Model formulation I&P = inventory and production constraints; I&P&R&V =

inventory,production,retailer and vehicle ; &P&PT&V = inventory,production,production time and vehicle

constraints constraints; Stor. Storage capacity EndInv.= ending inventory BegInv.= sum of beginning inventory

and replenishment Algo. Algorithm DP.= Dynamic programming DP.&Heu.= Dynamic programming and

heuristic. LR.Heu.= Lagrangian‐relaxation‐based heuristic ; LP.Heu.&Heu = Linear programming-

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 5 of 41

relaxation-based heuristic and heuristic Heu. = Heuristic; Cap. CapacityLimit.Inv = Limited inventory

constraint Limit.Inv&P&R= Limited inventory,plant and vehicle.

In Table 1, the researchers considered only limited storage capacity and did not specifically

consider on the case of tight capacity constraints. Therefore, the authors are interested in near-

minimal storage capacity constraints, which occur in the automotive assembly industry [26].

This study proposes a new heuristic for computing the approximate replenishment plan for

multiple items in each period under storage capacity constraints. The novelty of this study considers

the proposed procedure, which can be executed effectively under near-minimal or worst-case storage

capacity constraint. Storage capacity is defined as the sum of the weight (or volume) of all items

carried over from the previous period and the weight (or volume) of all replenishments in the current

period. The authors introduce a dynamic programming approach based on network flow [23] to

determine the replenishment plan for each item and propose two methods for computing a multi-

item replenishment schedule under storage-capacity constraints. The proposed heuristics consist of

a push method and a pull method. The push method postpones replenishments forward from period

t to period t + k whenever the inventory level in period t exceeds the limited capacity, and repeats

this until the inventory in every period does not exceed its capacity. Then the pull method refines the

plan by moving replenishments backward from period t to earlier periods

The second section describes the mathematical formulation of MULSP-IB. The proposed

heuristic is effective for solving this problem by the modified push and pull operation. It improves

comparison with the push operation by Gutiérrez et al. shown in Section 3, and this heuristic is

examined by Gutiérrez’s example in Section 4. In Section 5, the randomly generated data has been

implemented for solving the different problem sizes. The performance of this proposed heuristic is

compared with the result of Gutiérrez et al.’s algorithm and the smoothing method. For the

robustness condition, the worst-case condition is analyzed, which is the near-minimal storage

capacity. In the sensitivity analysis, varying the storage capacities affects the total cost and inventory

levels. Finally, conclusions are provided in Section 6.

2. Problem Description

2.1. Problem Statement

The problem of MULSP-IB can be stated as this: Each demand dit must be partly or entirely

replenished at a period t by inventory . In this study, consider that demands and inventory bounds

are time-varying, and the total actual weight/volume of inventory is not over storage capacity. The

problem is to find the periods and the number of raw materials delivered within these periods. The

objective is to construct a replenished plan such that the total cost is minimized.

2.2. Problem Assumptions

Assumptions are provided to define certain parameters and decision variables as follows.

Assumption 1. Storage capacity is the upper bound of stock.

Assumption 2. A replenished item is stored first before it is used to satisfy demand. This means

that the inventory at the beginning of a period plus the replenish-ment is the actual inventory at the

end of the periods.

Assumption 3. The sum of demand is not over storage capacity in all periods, and the demands

are satisfied at the end of the period.

Assumption 4. Number of items is independent of the quantity of demand and the number of

procurement planning horizon.

Assumption 5. Initial inventory in the first period and ending inventory in the last period are

zero.

Assumption 6. Backlogging is not allowed.

Assumption 7. There is no consideration of lead time.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 6 of 41

2.3. Decision Variables and Parameters

Explanation of decision variables and parameters can be noted in the following.

 Indices i the number of items indexed from 1 to N t the number of periods indexed from 1 to T

 Parameters dit the demand of item i at period t

 Di,t the accumulative demand of item i from period t to period T

 fi,t the fixed ordering cost of item i at period t

 hi,t the holding cost of item i at period t

 pi,t the cost of procuring raw materials of item i at period t

 Ii,t the inventory level of item i at period t

 wi the unit weight of item i

 Ut the storage capacity at period t

 Decision variables xi,t the procurement quantity of item i at period t

 Yi,t if the replenishment of item i at period t occurs, Yit is 1. Otherwise, Yit is 0.

2.4 Mathematical Model

 his study proposes the model by Gutiérrez et al. [17], which states the MIP formulation as

follows:

= =

+ + , , , , , ,
1 1

min
N T

i t i t i t i t i t i t
i t

f Y p x h I
(1)

s.t −
− + = = =

, 1 , , ,
, 1,..., , 1,...,

i t i t i t i t
I I x d i N t T

 (2)

−
=

+  = , 1 ,
1

() , 1,...,
N

i i t i t t
i

w I x U t T
(3)

 = =
, , ,

, 1,..., , 1,...,
i t i t i t

x Y D i N t T
(4)

= = =
,0 ,

0, 1,...,
i N T

I I i N
(5)

 =  = =
, , 0

, 0, 1,..., , 1,...,
i t i t

x I i N t T
 (6)

 = =
,

{0,1}, 1,..., , 1,...,
i t

Y i N t T
(7)

The objective function of MULSP-IB minimizes the sum of ordering, purchased and holding

costs in constraint (1). Constraint (2) is the balance of the inventory equation. Each purchased unit

and inventory unit at the beginning of the period are always kept first, before moving to

production/customers following its demand in constraint (3). Constraint (4) link the purchased

variables with the binary variables Yit and accumulated demand (
T

it ik
k t

D d
=

=) of item i from periods

t to T . Constraint (5) is the initial inventory in the first period and the ending inventory in the last

period are zeroes. Constraint (6) defines the purchased quantity and inventory, which are not

negative. In constraint (7), if replenishment occurs at any period, Yit is 1. Otherwise, Yit is 0.

3. The Proposed Heuristic

 The push and pull strategies of Dixon and Poh [27] consider that excess storage capacity has

occurred. This is reduced by moving a replenishment quantity from the existing period t to t+1 when

the sum of both inventory and replenishment of all items (SIRallitems) for the existing period is over the

storage capacity, called the push operation. On the other hand, a replenishment quantity from period

t is returned to a previous period when SIRal litems is less than the storage capacity, called the pull

strategy. The push method focuses on reducing SIRallitems in the existing period until success only.

Therefore, each iteration enables the reduction of SIRallitems prominently, while ordering cost will grow

as necessary, causing total inventory cost to expand as necessary. Furthermore, Gutiérrez et al.’s he

ristic extend the push strategy in so far that a replenishment quantity can be moved from any period

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 7 of 41

t to t+k, (1,...,)k T t − . For any iteration, Gutiérrez et al.’s heuristic possibly moves a replenishment

quantity from a non-existing period to the next period, resulting inSIRallitems in the existing period not

also reducing. However, ordering costs still expanding is unnecessary. This study also applies Dixon

and Poh’s approach to both the push and pull strategies. For the push strategy, consider a

replenishment item in the existing period, which has the maximum sum of inventory and the

replenishment quantity (SIRmax). Consider an item of SIRmax condition, called iSIRmax that has an

inventory cost of zero at period t+k, (1,...,)k T t − called on tzero. Therefore, a replenishment quantity

is equal to its demand in the existing period, then it moves so as to add the original replenished

quantity at period tzero. After that, the replenishment quantity of the existing item is balanced for all

periods. It runs repeatedly until all SIRallitems are less than storage capacities. This procedure is called

the push method.

For the pull strategy, find the periods (tmin and tmax) with the minimum and maxi mum

differences between SIRallitems and their storage capacities (U), called SIRallitems_Umin and SIRallitems_Umax.

If the index of period tmin is higher than the index of period tmax, consider a SIRmin item called iSIRmin

for period tmin. Return the replenished quantity, which is the demand of iSIRmin of period tmin, to add

the original replenished quantity of the same item at period tmax. Then, calculate all SIRallitems again. If

a new SIRallitems for period tmax is still greater than storage capacity at that period, find a new item with

SIRmax called iSIRmax. Next, determine the period tzero on iSIRmax and calculate the round-up of the new

SIRallitems_U for period tmax divided by its weight, called SIRallitems_Uroundup. Move the replenished

quantity, SIRallitems_Uroundup for period tmax, to period tzero. Finally, balance the replenished plan again.

This procedure is called the pull method. It can effectively improve the solution generated by the

push method. Next, determine the period tzero on iSIRmax and calculate the round-up of the new

SIRallitems_U for period tmax divided by its weight, called SIRallitems_Uroundup. Move the replenished

quantity, SIRallitems_Uroundup for period tmax, to period tzero. Finally, balance the replenished plan again.

This procedure is called the pull method. It can effectively improve the solution generated by the

push method. This study proposes a new procedure for solving MULSP-IB. It has a property

suggesting that the sum of both the inventory and the replenished quantity for all items

 (SIRallitems) agree with less storage capacity, satisfying all demands for the existing period

 or equal storage capacity for that period. This property is presented to clarify the logical

 flow of arguments as follows:

Theorem 1. If t is a period such that ,
0

i t
x  for some items i satisfying , 1 , , ,i t i t i t i t k

I x D D
− +
+ = − ,

(1,...,)k T t − , then , 1 ,
1

()
N

i t i t t
i

I x U
−

=

+  .

Proof of Theorem 1. For a contradiction method, the assumption is , 1 ,
1

()
N

i t i t t
i

I x U
−

=

+  .

 Given , 1 , , ,i t i t i t i k
I x D D

−
+ = − . It implies that the total inventory is sufficient to satisfy or

 exceed the storage limitation. However, some ,
0

i t
x  and , 1 , , ,i t i t i t i t k

I x D D
− +
+ = − are used

 to satisfy the demands such that no additional replenishments can exceed the storage

 limitation. Therefore, there is no additional inventory available to satisfy or exceed the

 limitation.

Theorem 2. If t is a period such that ,
0

i t
x  for some items i satisfying , 1 , , ,i t i t i t i t k

I x D D
− +
+  − ,

(1,...,)k T t −

, then , 1 ,
1

()
N

i t i t t
i

I x U
−

=

+ = .

Proof of Theorem 2. For a contradiction method, let us study a replenishment (,
0

i t
x ) that there is

an item i, for which the assumption is , 1 ,
1

()
N

i t i t t
i

I x U
−

=

+  . In the case of , 1 ,
1

()
N

i t i t t
i

I x U
−

=

+  , given

, 1 , , ,i t i t i t i t k
I x D D

− +
+  − , the inventory level and extended replenishments (, 1 ,i t i t

I x
−
+) are not sufficient

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 8 of 41

to satisfy the sum of the consecutive demand (, ,i t i t k
D D

+
−). Further, in the case of , 1 ,

1

()
N

i t i t t
i

I x U
−

=

+ 

, there is additional inventory to be over the storage capacity. However, the given condition

, 1 , , ,i t i t i t i k
I x D D

−
+  − does not satisfy the demand. Therefore, the sum of inventory and replenished

quantity cannot exceed the storage capacity. To satisfy demand, the sum of the inventory and

replenished quantity of all items in each period must either be less than or equal to the storage

capacity explained by Theorems 1 and 2, respectively.

3.1. The Push Method

The objective of this method is to seek the approximate solution of MULSP-IB. The procedure

for this method can be explained by the pseudo-algorithms as follows:

1: procedure InitialSolution(N, T, U, d, h, f)

2: Input:

3:N← number of items

4:T← number of periods

5:U[1..T] ← inventory bounds per period (network-flow based)

6:d[1..N][1..T] ← demand of item i in period t

7:h[1..N][1..T] ← holding cost of item i in period t

8:f[1..N][1..T] ← ordering cost of item i in period t

9: Output:

10:x[1..N][1..T]← initial replenishment plan

11: for i ← 1 to N do

12:x[i][1..T] ← NetworkFlowDP(i, U, d[i], h[i], f[i])

13: end for

14: return x

15: end procedure

16: procedure PushAlgorithm(N, T, U, d, h, f, x)

17: Input:

18:N← number of items

19:T← number of periods

20:U[1..T] ← storage capacity per period

21:d[1..N][1..T] ← demand of item i in period t

22:x[1..N][1..T] ← initial replenishment plan

23: Output:

24:x[1..N][1..T], TotalCost

25: for t ← 1 to T do

26:// Compute SIR for each item at period t

27:for i ← 1 to N do

28: if t == 1 then

29: inv[i] ← x[i][1] - d[i][1]

30: else

31: inv[i] ← inv_prev[i] + x[i][t] - d[i][t]

32: end if

33: tailDemand ← 0

34: for k ← t to T do

35: tailDemand ← tailDemand + d[i][k]

36: end for

37: SIR[i] ← inv[i] + tailDemand

38: inv_prev[i] ← inv[i]

39:end for

40:SIRall ← Σ_{i=1..N} SIR[i]

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 9 of 41

41:slack ← SIRall - U[t]

42:while slack > 0 do

43: iMax ← argmax_{i=1..N} SIR[i]

44: Δ ← d[iMax][t]

45: x[iMax][t] ← x[iMax][t] - Δ

46: if t < T then

47: x[iMax][t+1] ← x[iMax][t+1] + Δ

48: end if

49: // Recompute inventory and SIR

50: SIRall ← 0

51: for i ← 1 to N do

52: if t == 1 then

53:inv[i] ← x[i][1] - d[i][1]

54: else

55:inv[i] ← inv_prev[i] + x[i][t] - d[i][t]

56: end if

57: tailDemand ← 0

58: for k ← t to T do

59: tailDemand ← tailDemand + d[i][k]

60:end for

61: SIR[i] ← inv[i] + tailDemand

62: inv_prev[i] ← inv[i]

63: SIRall ← SIRall + SIR[i]

64: end for

65: slack ← SIRall - U[t]

66:end while

67: end for

68: // Calculate total cost

69: TotalCost ← 0

70: for i ← 1 to N do

71:for t ← 1 to T do

72: if x[i][t] > 0 then

73: TotalCost ← TotalCost + f[i][t]

74: end if

75: TotalCost ← TotalCost + inv_prev[i] * h[i][t]

76:end for

77: end for

78: return x, TotalCost

79: end procedure

In line no. 16, pseudo code of dynamic programming based on network flow can be shown in

Appendix A.1. The logical sequence including selection rules of the push method can be explained

in Figure 1.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 10 of 41

Figure 1. Flow chart of the push method.

No

Start

Dynamic programming

based on network flow

Search for the maximum of SIR

Move dimax,t to Ximax,tmax

So, Ximax,tmax =dimax,t

Ximax,t = Ximax,t -dimax,t

index i =imax on the maximum of SIR

Search for the X that is zero on

index i= imax ,index t = tmax

Compute

- inventory

- SIR = the sum of previous

inventory+X

- SIRallitem = Combine the

sum of previous

inventory+X

- Diff = SIRallitem - U

Compute total cost

Input N,T,d,f,h,U

X=Replenishment plan

Compute

- Inventory

- SIR

- SIRallitem

- Diff

If diff ≤ 0

Approximate

replenishment plan

If t =T-1

Yes

Yes

No

For t=1:T-1

No

End

Yes

If diff > 0

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 11 of 41

In Fig. 1, the algorithm stops computing if the difference (diff) between the sum of

 previous inventory plus replenishment quantity (SIRalitem) and the storage capacity (U) for

 each period is less than or equal to zero. This selection rule determines whether to perform

 the next step of the algorithm. From the pseudo code, dynamic programming

 based on network flow algorithm has time complexity
2

max
()O NTD that depends on

 Dmax, the largest demand value across all items i and all time periods t. Therefore, large

 demand values significantly influence the running time when solving large-scale prob

 lems. The push algorithm has time complexity  ()O N T W where W is number of it-

 erations of the while loop per period. If the total inventory exceeds the storage capacity

 by a large amount, many iterations (W) will be needed to reduce the overcapacity ;other

 wise, iteration stops. Therefore, in large-scale problems, inventory overcapacity is likely,

 causing the proposed algorithm to have a high running time.

 The replenishment plan generated by the push method can be improved to re

 duce the total cost using the pull method, which will be discussed in the next section.

3.2. The Pull Method

 The objective of this method is to improve the replenishment plan, which is com

 puted by the push method. Some replenishments may be returned from the existing pe

 riod to the previous period so that the sum of inventory and replenished quantity of all

 items for the previous period is added to equal its storage capacity. The procedure for the

 pull method shows the pseudocode of algorithms as follows

 1: PROCEDURE Pull method

 2: INPUT:

 3: X [i, t]← initial replenished quantity for item i in period t

 computed by the push method

 4: demand[i, t]← demand of item i in period t

 5: SIR[i, t] ← the sum of previous inventory and replenished

 quantity of item i in period t

 6: U← storage capacity for period t

 7: w[i, t] ←weight (or size) of item i in period t

 8: T←total number of periods

 9: OUTPUT:

 10: replenishment plan[i, t] ←adjusted replenished quantities

 11: inventoryCost ←updated total inventory cost

 12: // Compute initial aggregate SIR per period

 13: FOR t ← 1 TO T DO

 14:SIRallitems[t] ← Σᵢ SIR[i, t]

 15:SIRallitems_SC[t] ← Σᵢ (SIR[i, t] · w[i, t])

 16: END FOR

 17: // Find periods with min/max aggregate SC usage

 18: Tmin ← arg minₜ SIRallitems_SC[t]

 19: Tmax ← arg maxₜ SIRallitems_SC[t]

 20: // Loop until the lightest-loaded period index is not after the heaviest

 21: IF Tmax< Tmin DO

 22:// 1) Move the smallest-rate demand from Tmin to Tmax

 23:i_min ← arg minᵢ SIR[i, Tmin]

 24:qty ← demand[i_min, Tmin]

 25:X[i_min, Tmax] ← X[i_min, Tmin] + qty

 26:X[i_min, Tmin] ← X[i_min, Tmin] - qty

 27:// 2) Rebalance and update all metrics

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 12 of 41

 28:CALL UpdateMetrics()

 29:// 3) If Tmax still exceeds capacity, boost its replenishment

 30:IF SIRallitems_SC[Tmax] > U THEN

 31: i_max ← arg maxᵢ SIR[i, Tmax]

 32: adjustment ← ⌈SIRallitems_SC[Tmax] / w[i_max, Tmax]⌉

 33: X[i_max, Tmax] ← X[i_max, Tmax] + adjustment

 34: CALL UpdateMetrics()

 35:END IF

 36:// 4) Recompute Tmin and Tmax for next iteration

 37:Tmin ← arg minₜ SIRallitems_U[t]

 38:Tmax ← arg maxₜ SIRallitems_U[t]

 39: END IF

 40: RETURN (X, inventoryCost)

 41: END PROCEDURE

 42: // Subroutine to recalculate inventory levels, SIR, aggregate metrics, and cost

 43: PROCEDURE UpdateMetrics

 44: FOR t ← 1 TO T DO

 45:FOR each item i DO

 46: // Recompute SIR[i, t] based on new replenishment qty and demand

 47: SIR[i, t] ← ComputeSIR(X[i, t], demand[i, t])

 48:END FOR

 49:SIRallitems[t] ← Σᵢ SIR[i, t]

 50:SIRallitems_U[t] ← Σᵢ (SIR[i, t] · w[i, t])

 51: END FOR

 52: inventoryCost ← ComputeTotalCost(X, demand, holdingCosts, order

 ingCosts)

 53: END PROCEDURE

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 13 of 41

Figure 2. Flow chart of the pull method.

Start

Input

N,T,X,w,d,SIR,U,diff
Push method

Search for the period

with the min/max diff[t]

Tmin = the period with the minimum diff[t]

Tmax = = the period with the maximum diff[t]

If Tmax < Tmin

Search for the minimum SIR of period Tmax

imin=index i of the minimum of SIR

Reurn Ximin,tmin to Ximin,tmax

So, Ximin,tmax =Ximin,tmax+Ximin,tmin

Ximax,tmin = 0

Compute

- Inventory

- SIR

- SIRallitems

- Diff of Tmin/max= SIRallitemsof Tmin/max - U

If diff of Tmax> 0

Search for the maximum of SIR

index i =imax on the maximum of SIR

Search for the X that is zero on

index i= imax ,index t = Tmax

Move q to Ximax,tmax

So, Ximax,tmax = q

Ximax,tmin = Ximax,tmin -q

Compute

- Inventory

- SIR

- SIRallitems

- Diff of Tmin/max

Yes

No

Compute total cost

Approximate

replenishment plan

End

q =round(SCtmin -Utmin)/ wtmin

No

Yes

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 14 of 41

In Fig. 2, the algorithm proceeds to compute an improved solution if the index of the

 period with the minimum diff (Tmin) is greater than the index of the period with the max

 imum diff (Tmax). This selection rule determines whether to perform the next step of the

 algorithm. The push algorithm has time complexity O(N2T2) when L N T , where L is

 the number of loop. The total running time depends on how many iterations L the algo

 rithm performs to balance the load between periods. If L grows large (close to N·T in the

 worst case), running time can grow quadratically. To explain the heuristic algorithm, the

 authors use a numerical example to demonstrate it in the next section.

4. A Numerical Example

 This study presents the simple example by Gutiérrez et al. [17] to explain the procedure for

both proposed methods. Data from this example is shown in Table 2.

Table 2. A simple example by Gutiérrez et al. [17].

Periods t 1 2 3 4 5

Ut 756 673 633 758 608

Item 1,w1=1

 d1,t 115 114 96 106 136

D1,t 567 452 338 242 136

f1,t 595 100 969 240 945

p1,t 4 7 9 10 4

h1,t 1 1 1 1 1

Item 2,w1=4

 d2,,t 87 52 111 142 118

D2,t 510 423 371 260 118

f2,t 255 696 125 637 249

p2,t 3 3 0 8 4

h2,t 1 1 1 1 1

4.1. The Initial Solution

The optimal replenished plan for each item, which is independent, can be solved by the network

flow based on a dynamic programming approach [22]. Thus, the optimal replenished plan is the

initial solution for this example, as shown in Table 3.

Table 3. Initial solution for each item.

Periods t Item 1 2 3 4 5

Replenished plan

1

567 0 0 0 0

2

139 0 371 0 0

Inventory

1

452 338 242 136 0

2

52 0 260 118 0

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 15 of 41

Inventory cost

1

4x567+1x452+595

=3,315

338 242 136 0

2

3x139+1x52+255

=724

0 385 118 0

Sum of inventory and replenishment (SIR)

1

567x1=567 452 338 242 1

3

6

2

139x4=556 208 1,484 1,040 4

7

2

SIRallitems 1,123 660 1,822 1,282 6

0

8

SC 756 673 633 758 6

0

8

SIRallitems_U +367 -13 1,189 524 0

4.2. Solution of the Push Method

 From Table 3, SIRallitems values of periods 1, 3, and 4 are positive and their SIRallitems

values are certainly excess. Next, the replenished quantity for period one is moved as

follows.

Period 1

Iteration 1

1. Select item 1, which has the maximum SIR (SIRmax) of 567, and find period tzero = 5 on item 1,

which has an inventory cost of zero.

2. Insert the replenished quantity, which equals the demand of item 1 for period tzero =

3. 136 units, on a replenished plan on item 1 for period tzero. For balance demand, de

4. crease the replenishment of item 1 for period 1 to 567-136 =431 units.

5. Balance a replenished plan and update inventory, SIR,SIRallitems, SIRallitems_U, and total inventory

cost (see Table 4).

6. SIRallitems_U for period 1 is reduced to 987-756 = +231. Afterward, go to steps 1-4.

Iteration 2

1. Select item 2, which has SIRmax of 556, and find period tzero = 2 on item 2, which has an inventory

cost of zero.

2. Insert the replenished quantity, which equals the demand of item 2 for period tzero = 52 units, on

a replenished plan on item 2 for period tzero. For balance demand,

3. decrease the replenishment of item 2 for period 1 to 139-52 =87 units.

4. Balance a replenished plan and update inventory, SIR, SIRallitems, SIRallitems_U, and

5. total inventory cost (see Table 5).

6. SIRallitems_U for period 2 is still reduced to 779-756 = +23. Then, go to steps 1- 4.

Iteration 3

1. Select item 1, which has SIRmax of 431, and find period tzero = 4 on item 1, which has an inventory

cost of zero.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 16 of 41

2. Insert the replenished quantity, which equals the demand of item 2 for period tzero= 106 units, on

a replenished plan on item 1 for period tzero. For balance demand, decrease the replenishment of

item 1 for period 1 to 431-106 = 325 units.

3. Balance a replenished plan and update inventory, SIR,SIRallitems, SIRallitems_U, and total

4. inventory cost (see Table 6).

5. SIRallitems_U for period 1 is reduced to 673-756 = -83. Stop the iteration and select period 3, which

has the SIRallitems_U value of +947. Proceed to steps 1-4 for period 3.

Period 3

Iteration 1

1. Select item 2, which has SIRmax of 1,484, and find period tzero = 5 on item 2, which has

2. an inventory cost of zero.

3. Insert the replenished quantity, which equals the demand of item 2 for period tzero=118 units, on

a replenished plan on item 2 at period tzero. For balance demand, decrease the replenishment of

item 2 for period 3 to 371-118 = 253 units.

4. Balance a replenished plan and update inventory, SIR,SIRallitems, SIRallitems_U,

5. and total inventory cost (see Table 7).

6. SIRallitems_U for period 3 is still reduced to 1,108-633 = +475. Afterward, go to steps 1- 4.

Iteration 2

1. Select item 2, which has SIRmax of 348, and find period tzero = 4 on item 2,

2. which has an inventory cost of zero.

3. Insert the replenishment, which equals the demand of item 2 at period tzero =

4. 142 units on a replenished plan on item 2 at period tzero. For balance demand, decrease the

replenishment of item 2 at period 3 to 253-142 = 111 units.

5. Balance a replenished plan and update inventory, SIR,SIRallitems, SIRallitems_U,

6. and total inventory cost (see Table 8).

7. SIRallitems_U for period 3 is reduced to 540-633= = -93. Stop the loop at

8. period 3. Then, find the next SIRallitems_U to be positive. However, all SIRallitems_U values are

negative and zero (-83, -255, -93, -84, 0). Thereafter, stop all iterations of the push method.

Table 4. Execution flow of iteration 1 for period 1 using the push method.

Periods t Item 1 2 3 4 5

Replenished plan 1 567-136=431 0 0 0 136

 2 139 0 371 0 0

Ending

inventory

 1 316 202 106 0 0

 2 52 0 260 118 0

Inventory cost 1 4x431+1x316+595

=2,635

202 106 0 1,489

 2 724 0 385 118 0

Sum of

inventory and

replenishment (SIR)

 1 1x431=431 316 202 106 136

2 556 208 1,484 1,040 472

SIRallitems 987 524 1,686 1,146 608

SC 756 673 633 758 608

SIRallitems_U +231 -

149

+1,053 +388 0

Table 5. Execution flow of iteration 2 for period 1 using the push method.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 17 of 41

Periods t Item 1 2 3 4 5

Replenished plan 1 431 0 0 0 136

2
139-52

=87
52 371 0 0

Ending

inventory

1 316 202 106 0 0

2 0 0 260 118 0

Inventory cost 1 2,635 202 106 0 1,489

2
3x87+255

=516

3x52+696

=852

3x371+1x260+125

=385
118 0

Sum of

inventory and

replenishment (SIR)

1 431 316 202 106 136

2 4x87=348 4x87=208 1,484 1,040 472

SIRallitems 779 524 1,686 1,146 608

SC 756 673 633 758 608

SIRallitems_U +23 -149 +1,053 +388 0

Table 6. Execution flow of iteration 3 for period 1 using the push method.

Periods t Item 1 2 3 4 5

Replenished plan 1 431-106=325 0 0 106 136

2 87 52 371 0 0

Ending inventory 1 210 96 0 0 0

2 0 0 260 118 0

Inventory cost 1 4x325+1x210+595

=2,105

96 0 1,300 1,489

2 516 852 385 118 0

Sum of

inventory and replenishment (SIR)

1 325 210 96 106 136

2 348 208 1,484 1,040 472

SIRallitems 673 418 1,580 1,146 608

SC 756 673 633 758 608

SIRallitems_U -83 -

255

+947 +388 0

Table 7. Execution flow of iteration 1 for period 3 using the push method.

Periods t Item 1 2 3 4 5

Replenished plan 1 325 0 0 106 136

2 87 52 371-118=253 0 118

Ending inventory 1 210 96 0 1,300 1,489

2 0 0 142 0 0

Inventory cost 1 2,105 96 0 1,300 1,489

2 516 852 1x142+125=267 0 721

Sum of

inventory and replenishment (SIR)

1 325 210 96 106 136

2 348 208 4x253=1,012 568 472

SIRallitems 673 418 1,108 674 608

SC 756 673 633 758 608

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 18 of 41

SIRallitems_U -83 -

255

+475 -84 0

Table 8. Execution flow of iteration 2 for period 3 using the push method.

Periods t Item 1 2 3 4 5

Replenished plan 1 325 0 0 106 136

 2 87 52 253-142=111 142 118

Ending

inventory

 1 210 96 0 0 0

 2 0 0 0 0 0

Inventory cost 1 2,105 96 0 1,300 1,489

 2 516 852 125 8x142+637

 = 1,773

721

Sum of

inventory and

replenishment

(SIR)

 1 325 210 96 106 136

2 348 208 4x111=444 568 472

SIRallitems 673 418 540 674 608

SC 756 673 633 758 608

SIRallitems_U -83 -255 -93 -84 0

From Table 8, the push method can generate a total inventory cost equal to 8,977. However, the

GAMS/CPLEX solver can execute this problem with an optimal solution of 8,521. The gap between

these solutions is
8,977 8,521

x100%
8,521

 − 
 
 

= 5.35%. This gap is still high. Therefore, this study proposes

the pull method to improve the solution.

4.3. Solution of the Pull Method

From Table 8, all SIRallitems_U are negative or zero. Therefore, the pull method can generate an

improved replenished plan. The procedure for this method can beexplained as follows.

1. Search the SIRallitems_Umin and SIRallitems_SCmax to be -255 and -83 for periods 2 and 1 from Table 8.

So,the index of both periods is tmin=2 and tmax=1. So, tmin is more than tmax.

2. Find the SIRmin for period tmin to be 208 on item 2 from Table 8. Return the replenishment of item

2 at period 2 to add the original replenished quantity on item 2 for period tmax=1. Thus, the new

amount replenished quantity of item 2 for period 1 is 87+52 = 139 units. For balance demand, the

replenished quantity of item 2 for period tmin is reduced to zero (see Table 9).

3. Recalculate SIR,SIRallitems, SIRallitems_U, and total inventory cost (see Table 9).

4. SIRallitems_U of item 2 for period 1 (= +125) is still a positive number. Thus, search

 the item with SIRmax (= 325) excluding item 2 at period 1, to be 1.

5. For reducing SIRallitems_U to zero at period 1, the SIRallitems_U is divided by the

 weight of item 1 for period 1 (+125 / 1=125) on item 1 at period tmin =2 to be 0+125 = 125 units

(see Table 9). For balance demand, reduce the replenishment of item 1 in the previous period (t=1) to

be = 325-125 = 200 units.

6. Recalculate SIR,SIRallitems, SIRallitems_U, and total inventory cost (see Table 10).

7. SIRallitems_U of period 1 is zero and SIRallitems_U of period 2 (tmin) is still -255

 (see Table 10), which is the same as Table 9.

8. Find the SIRallitems_Umin and SIRallitems_Umax to be -255 and -84 in periods 2 and 3 from

 Table 10. The index of both periods is tmin=2 and tmax=3. So, tmin is less than tmax. Then,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 19 of 41

 stop the iteration.

Table 9. Execution flow in steps 1 to 4 using the pull method.

Periods t Item 1 2 3 4 5

Replenished

plan

1 325 0 0 106 136

2
87+52

=139

52-

52

=0

111 142 118

Ending

inventory

1 210 96 0 0 0

2 52 0 0 0 0

Inventory cost 1 2,105 96 0 1,300 1,489

2
3x139+1x52+255

= 724
0 125 1,773 721

Sum of

inventory and

replenishment

(SIR)

1
1x325

=325
210 96 106 136

2
4x139

=556
208 444 568 472

SIRallitems 881 418 540 674 608

SC 756 673 633 758 608

SIRallitems_U +125 -

255

-93 -84 0

Table 10. Execution flow in steps 1 to 4 using the pull method.

Periods t Item 1 2 3 4 5

Replenished

plan
1

325-125

=200
0+125=125 0 106 136

2 139 0 111 142 118

Ending

inventory

1 85 96 0 0 0

2 52 0 0 0 0

Inventory cost
1

4x200+1x85+595

=1,480
1,071 0 1,300 1,489

2 724 0 125 1,773 721

Sum of

inventory and

replenishment (SIR)

1
1x200

=200
210 96 106 136

2 556 208 444 568 472

SIRallitems 756 418 540 674 608

SC 756 673 633 758 608

SIRallitems_U 0 -255 -93 -84 0

Therefore, the inventory cost is effectively improved to 8,683. The GAMS/CPLEX

solver can calculate the optimal solution of 8,521 units. Both the proposed heuristic

and Gutiérrez et al. [17] can also calculate the approximate solution the same as 8,683

and the smoothing method of Nixon and Poh [27] can run about 9,494 (see Table11). Its

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 20 of 41

replenished plan is shown in Table 11.

Table 11. Replenished plan solved by Gutiérrez et al. [17] and smoothing method [27].

 Gutiérrez et al. [17]
Inventory

cost

 Period 1 2 3 4 5

 Item 1 200 125 0 106 136 5,340

2 139 0 111 142 118 3,343

Total inventory cost 8,683

Nixon and Poh [27] Inventory

cost

 Period 1 2 3 4 5

 Item 1 115 210 0 106 136 5,510

2 87 52 111 142 118 3,987

Total inventory cost 9,497

From Tables 10 and 11, the gaps between the proposed heuristic, Gutiérrez et al.

[17], the smoothing method [27], and GAMS/CPLEX are 1.9 %, 1.9 %, and 11.45 %, re

spectively. Both the proposed heuristic and Gutiérrez et al. [17] execute approximately

five replenishment orders, whereas the smoothing method executes about six. Conse

quently, the smoothing method incurs a higher total inventory cost than the other ap

proaches due to the increased ordering cost. For further testing, Minner[18] recom

 mended generating test instances as follows: products varied between 3 and 10 and peri

 ods varied between 4 and 18, demands are drawn from a uniform (or normal) distribution

 over a specified range (e.g.\ U[0,100], setup costs are drawn similarly (e.g.\ U[50,150],

 unit production costs are drawn from U[1,10], holding costs are held constant h =1,

 weights are drawn from U[1,N], and warehouse capacity bounds are taken as

+

= =

 
= = +  

 
 , , 1

1 1

, ()
N N

i i t t i i t
n n

A w d U A B w D a fixed fraction B =10%. In the format for the stor

 age capacity, parameter A is the sum of the demand onall items at period t with the

 lower bound (B=1%). Authors generate the example data following Minner [18] proce

 dure as shown in Table 12.

Table 12. A simple example by formatted data of Minner [18].

Periods t 1 2 3 4 5 6

Ut 1161 529 768 973 721 806

Item 1,w1=2

 d1,t 44 47 64 67 67 9

f1 96

p1 6

h1 1

Item 2,w2=5

 d2,,t 83 21 36 87 70 88

f2 74

p2 10

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 21 of 41

h2 1

Item 3,w1=4

 d,3,t 88 12 58 65 39 87

f3 67

p3 9

h3 1

A instance of Minner [18] was computed by heuristics and the resulting solutions are

 presented in Table 13.

Table 13. Total cost and gap solution obtained by the proposed heuristic, Gutiérrez et al. [17] and smoothing

[27].

Heuristics/MIP solver GAMS/

CPLEX

Push and Pull Gutiérrez et al.

[17]

Smoothing

[27]

Total cost 9,928 9,928 10,054 10,030

% Gap solution - 0 1.27 1.02

No. of additional

orders

- 3 4 4

In Table 13, the push-and-pull heuristic achieves an optimality gap of approximately

 0 %, outperforming Gutiérrez et al. [17], which has a gap of 1.27 %, and the smoothing method

 [27], with a gap of 1.02 %. The proposed heuristic places about three replenishment orders,

 whereas both Gutiérrez et al. [17] and the smoothing method place around four. Conse

 quently, the push-and-pull heuristic’s performance is further validated in Section 5 on a set

 of randomly generated problem instances.

5. Computational Result

For confidence in using heuristics, this study compares the solutions for the

 proposed heuristic, algorithm by Gutiérrez et al., and GAMS/CPLEX solver. The set of

 randomly generated problems is identical to the cost framework of Minner [18]. Each

 problem runs on formatting parameters, as shown in Table 14.

Table 14. Formatting parameters.

Number of periods, T 6 12 24

Number of items, N

10,20,40,60,80,…,160 10,20,30,…,80 10,20,…,160

Number of instances 10 10 5

Weight distribution, iw Uniform, ~ [1,10]
i

w

Demand distribution, ,i td Uniform, ,
~ [30,150]

i t
d

Ordering cost distribution, ,i tf Uniform, ,
~ [100,150]

i t
f

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 22 of 41

Inventory bounds, Ut

+
= =

 
= = +  

 
 , , 1

1 1

, ()
N N

i i t t i i t
n n

A w d U A B w D ,

B = {1%,5%,10%, 20%}

C o s t o f p r o c u r i n g r a w m a t e r i a l s , p i , t = z e r o a n d h o l d i n g c o s t , h i , t = 1

 The parameter B is the additional capacity generated from the accumulative demand

of period t+1 with the upper bound. If the upper bound is high, such as B = 20%, the

problem can be solved more easily. Otherwise, it is more difficult to address.

This study implements MATLAB 2024 A software to solve the network flow

 algorithm based on dynamic programming for the initial solution, the proposed

 algorithm [28], and Gutiérrez et al.’s algorithm [29].The solution for the MIP model is

generated by GAMS 46.3.0 licensed for continuous and discrete problems. An HP

Pavilion X360 Notebook running Windows 10 with an Intel Core i7 64-bit processor at

1.99 GHz and 24 GB of RAM was used to execute both the heuristics and MIP formula

tion. MATLAB software uses general-purpose programming that is more flexible and al

lows users to apply specified code. For generating the optimization solution, the

GAMS/CPLEX solver is concentrated on optimization, which is less flexible but powerful

for LP, MIP, and NLP problems [31].

 The solution for the GAMS/CPLEX solver compares all the results of the experi

ment. It can be explained with the solution gap equation below.

Solution of heuristic-Solution of GAMS/CPLEX
Solution gap (%) = x 100

Solution of GAMS/CPLEX

 
 
 

5.1. Experiment Results

This study divides the category for the random example into three sub-categories: A small-scale

problem based on the number of periods N =6, a medium-scale problem based on the number of

periods N=12, and a large-scale problem based on the number of periods N=24. This experiment

shows their solution gaps and computation times varying the parameter B in Tables 15-18, as follows

Table 15. Computation times and solution gaps with near-minimal storage capacity using parameter B = 1%.

NxT

Avg.

Push &

pull

heuristi

c time

(s.)

Avg.

Gutiérr

ez’s

heuristi

c time

(s.)

Avg.

GAM

S/CPL

EX

time

(s.)

Min. gap (%) Max. gap (%) Avg. gap

(%)

Push

&

pull

heuri

stic

Gutiérr

ez ’s

heuristi

c

Pull

&

push

heuri

stic

Gutiérr

ez ’s

heuristi

c

Pull

&

push

heuri

stic

G

ut

ié

rr

ez

’s

he

ur

ist

ic

10x6
6.26 6.24 0.49 0.00 0.21 2.77 3.78 0.57

1.

89

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 23 of 41

20x6 6
11.45 11.16 0.88 0.38 1.03 5.29 8.30

1.

04

40x6
21.90 21.24 2.56 0.28 2.87 0.88 5.02 0.72

3.

48

60x6
32.48 30.99 5.31 0.44 2.24 1.05 4.53 0.82

3.

57

80x6
44.25 41.81 7.27 0.67 2.65 1.13 4.47 0.91

3.

44

100x6
56.24 51.91 11.92 0.47 3.14 1.17 4.99 0.92

3.

82

120x6
69.42 60.82 12.28 0.55 2.90 1.15 4.60 0.89

3.

64

140x6
84.99 71.33 15.84 0.52 3.03 1.76 5.05 0.94

4.

07

160x6
100.72 81.98 57.13 0.04 2.98 8.51 11.90 2.08

5.

09

 36.73 34.53 6.26
1.16

3.

99

10x12
61.85 64.78 0.85 0.22 2.54 1.32 7.27 0.79

5.

36

20x12
131.74 140.63 3.67 0.73 2.44 1.68 7.31 1.23

4.

53

30x12
204.64 216.34 8.57 1.24 4.21 1.93 7.17 1.51

5.

66

40x12
260.38 273.55 39.66 1.08 4.14 1.89 7.85 1.42

5.

54

50x12
328.35 321.77 74.41 1.15 4.89 1.77 6.64 1.39

5.

71

60x12
409.28 458.70 102.65 1.18 4.98 1.90 6.16 1.39

5.

65

70x12
495.31 679.99 380.50 0.23 4.97 1.46 6.77 1.24

5.

61

80x12
520.24 537.58 2388.1 1.21 4.22 1.48 6.56 1.30

5.

67

 271.5 370.23 333.20
1.33

5.

57

10x24

3,037.37 3,429.14 2.31 0.95 6.04** 1.58 7.73** 1.27

6.

89

**

20x24

6,507.96 5,765.73 59.68 1.58 7.16* 2.20 7.16* 1.83

7.

16

*

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 24 of 41

30x24

7,303.46 8,694.35

3,549.

2 1.11 7.42* 2.21 7.42 1.84

7.

42

*

40x24 12,903.5

5

13,484.4

0

57,788

.2 0.91 7.49* 2.07 7.49* 1.54

7.

49

*

5,994.42 5,357.88 12,280

1.66

7.

30

 *,** One and two instances 10x6-160x6 small-scale problem, 10x12-80x12 medium-scale problem and 10x24-40x24

large-scale problem.

Table 16. Computation times and solution gaps when parameter B = 5%.

NxT

Avg.

Push &

pull

heuristic

time (s.)

Avg.

Gutiérre

z’s

heuristic

time (s.)

Avg.

GAMS

/CPLE

X time

(s.)

Min. gap (%) Max. gap (%) Avg. gap (%)

Push

& pull

heuris

tic

Gutiérre

z ’s

heuristic

Pull &

push

heuris

tic

Gutiérre

z ’s

heuristic

Pull &

push

heuris

tic

Gutiérre

z ’s

heuristic

10x6 5.65 5.67 0.56 0.00 0.77 3.33 6.54 1.39 3.96

20x6 9.77 10.36 1.04 0.89 1.66 2.35 9.30 1.59 5.33

40x6 21.41 23.14 5.91 1.23 3.27 2.23 8.20 1.72 6.46

60x6 29 31.99 10.34 1.00 5.13 2.32 9.23 1.73 7.31

80x6 35.13 36.28 27.42 1.00 3.98 2.59 8.53 1.76 6.88

100x6 44.65 46.03 33.74 0.92 5.84 1.80 8.29 1.60 6.83

120x6 53.20 54.55 29.79 1.48 5.53 2.11 7.68 1.58 6.71

140x6 63.23 64.96 57.33 0.92 4.89 1.85 6.95 1.53 6.23

160x6 72.58 76.85 33.79 0.98 5.48 2.88 8.21 1.70 6.29

 29.11 30.33 18.43 1.64 6.56

10x12 71.52 62.86 0.89 0.62 0.96 2.49 12.53 1.47 7.01

20x12 142.7 132.49 2.33 0.73 2.18 1.62 7.89 1.21 4.69

30x12 189.3 213.94 3.90 0.65 1.50 1.35 7.76 1.02 4.91

40x12 254.2 256.25 7.00 0.63 2.90 1.23 6.24 0.93 4.38

50x12 319.9 339.75 14.92 0.64 0.13 1.01 5.38 0.88 3.96

60x12 417.6 422.97 18.73 0.66 2.91 1.27 5.62 0.93 4.30

70x12 498.1 526.02 36.40 0.69 2.99 1.18 5.36 0.87 3.94

80x12 523.7 519.15 24.03 0.67 2.11 1.15 6.65 0.82 4.01

 272.22 368.08 12.03 0.92 4.43

10x24 1,398.7 1,578.05 0.45 0.14 1.68 1.68 5.01 0.94 3.19

20x24 6,592.9 7,140.05 6.22 0.31 1.62 0.79 3.08 0.59 2.48

30x24 9,608.8 9,364.59 47.16 0.24 1.06 0.80 2.46 0.58 1.95

40x24 12,824.7 13,504.5 61.94 0.22 1.91 0.58 3.07 0.40 2.60

 8,117.58 8,465.86 5.98 0.55 2.41

10x6-160x6 small-scale problem, 10x12-80x12 medium-scale problem and 10x24-40x24 large-scale problem .

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 25 of 41

Table 17. Computation times and solution gaps when parameter B = 10%.

NxT

Avg.

Push &

pull

heuristi

c time

(s.)

Avg.

Gutiérr

ez’s

heuristi

c time

(s.)

Avg.

GAM

S/CPL

EX

time

(s.)

Min. gap (%) Max. gap (%) Avg. gap (%)

Push

& pull

heuris

tic

Gutiérre

z ’s

heuristic

Pull &

push

heuris

tic

Gutiérre

z ’s

heuristic

Pull &

push

heuris

tic

Gutiérre

z ’s

heuristic

10x6 5.83 5.64 0.31 0.00 0.02 1.71 12.28 0.84 4.93

20x6 10.10 10.19 0.42 0.44 0.73 1.62 13.44 1.11 5.00

40x6 20.40 22.22 2.35 0.51 2.29 2.16 6.55 1.12 4.66

60x6 29.51 28.04 2.04 0.54 2.12 1.88 7.13 1.10 3.97

80x6 35.23 36.34 4.82 0.50 2.55 1.55 5.87 1.01 4.30

100x

6
44.68 45.50 7.19 0.48 2.00 1.28 6.22 0.87 4.06

120x

6
54.61 54.74 11.24 0.63 2.19 4.05 5.38 1.12 4.06

140x

6
62.91 63.74 7.35 0.58 2.65 1.06 5.10 0.80 3.40

160x

6
73.68 73.68 7.30 0.56 2.45 2.04 5.25 0.96 3.63

 29.25 29.6 3.97 0.93 3.92

10x1

2
66.41 62.41 0.45 0.04 0.31 1.74 4.26 0.74 1.74

20x1

2
141.27 132.11 0.69 0.25 0.25 0.86 4.26 0.57 1.58

30x1

2
187.59 210.50 1.25 0.39 1.17 1.11 3.27 0.59 1.86

40x1

2
264.08 256.14 2.23 0.36 0.45 0.74 2.32 0.48 1.42

50x1

2
325.22 317.78 2.91 0.26 1.02 0.64 2.92 0.46 1.67

60x1

2
414.79 408.41 3.13 0.28 0.20 0.63 3.22 0.47 2.01

70x1

2
496.28 495.38 5.75 0.31 1.43 0.77 2.73 0.48 1.98

80x1

2
517.69 524.16 6.43 0.32 1.41 0.61 2.33 0.45 1.85

 272.6 358.76 2.58 0.49 1.81

10x2

4
3,177.71 3,508.17 0.53 1.60 1.08 2.52 2.65 0.56 1.74

20x2

4
6,924.87 7,841.10 1.72 0.98 0.88 1.90 1.74 0.45 1.15

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 26 of 41

30x2

4
9,188.50 9,681.13 2.38 0.14 0.28 0.45 1.82 0.31 1.10

40x2

4

13,527.0

6

13,764.7

0
3.32 0.16 1.03 0.65 1.78 0.34 1.24

 8,278.51 8,773.25 2.14 0.38 1.23

10x6-160x6 small-sclae problem, 10x12-80x12 medium-scale problem and 10x24-40x24 large-scale problem.

Table 18. Computation times and solution gaps when parameter B = 20 %.

NxT

Avg.

Push &

pull

heuristi

c time

(s.)

Avg.

Gutiérr

ez’s

heuristi

c time

(s.)

Avg.

GAM

S/CPL

EX

time

(s.)

Min. gap (%) Max. gap (%) Avg. gap (%)

Push

& pull

heuris

tic

Gutiérre

z ’s

heuristic

Pull &

push

heuris

tic

Gutiérre

z ’s

heuristic

Pull &

push

heuris

tic

Gutiérre

z ’s

heuristic

10x6 5.85 5.71 0.29 0.00 0.65 2.50 4.83 0.83 2.48

20x6 10.02 10.25 0.34 0.09 0.14 1.51 2.18 0.68 1.18

40x6 22.22 22.94 1.74 0.26 1.07 1.29 2.40 0.57 1.76

60x6 29.54 29.66 0.87 0.20 1.21 1.14 2.34 0.60 1.75

80x6 35.24 35.71 0.90 0.44 1.18 1.03 2.17 0.62 1.71

100x

6
45.18 45.34 2.02 0.31 1.14 0.84 2.07 0.61 1.71

120x

6
53.90 55.09 1.87 0.36 1.53 0.89 1.53 0.65 1.72

140x

6
62.99 64.38 1.66 0.47 1.67 0.92 2.75 0.67 1.97

160x

6
73.13 74.91 1.81 0.35 1.53 1.66 2.82 0.76 1.87

 37.56 38.22 1.28 0.66 1.79

10x1

2
36.14 32.01 0.28 0.00 0.00 1.07 2.34 0.39 0.65

20x1

2
71.55 62.07 0.45 0.00 0.00 0.88 1.65 0.34 0.91

30x1

2
185.60 205.13 0.52 0.12 0.25 0.76 1.42 0.37 0.87

40x1

2
264.97 258.89 0.70 0.17 0.60 0.49 1.24 0.36 0.92

50x1

2
330.85 322.59 1.20 0.19 0.61 0.53 2.38 0.35 1.03

60x1

2
491.05 501.27 3.97 0.20 0.61 0.47 1.30 0.33 0.94

70x1

2
491.05 501.27 3.97 0.20 0.61 0.47 1.30 0.33 0.94

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 27 of 41

80x1

2
515.24 541.88 2.10 0.25 0.59 0.44 1.16 0.34 0.84

 264.63 358.40 1.61 0.36 0.87

10x2

4
3,018.94 3,196.81 0.63 0.82 0.08 1.64 1.07 0.34 0.60

20x2

4
7,084.67 6,422.94 1.14 0.17 0.16 2.41 0.73 0.28 0.47

30x2

4
9,889.41 9,612.80 1.40 0.15 0.38 0.61 0.75 0.31 0.57

40x2

4

13,706.4

9

12,863.7

7
1.78 0.13 0.41 0.31 0.73 0.20 0.56

 8,506.37 8,101.12 2.12 0.27 0.55

10x6-160x6 small-scale problem, 10x12-80x12 medium-scale problem and 10x24-40x24 large-scale problem.

Figure 3. Average solution gap of both heuristics under storage capacities when parameter B=1,5,10 and 20%.

5.1. Solution Gap

In Figure 3, the average solution gaps for the push and pull algorithm on large-scale

 problem are 0.55%,0.38%, and 0.20% for parameter B = 5%, 10% and 20%, respectively.

 Gutiérrez et al.’s heuristic generates solution gaps of about 2.41%, 1.23% and 0.55 %.

 When comparing the solution gaps, the proposed heuristic performs better than Gutiér

 rez et al.’s heuristic. The performance of the solution gap depends on the value of pa

 rameter B. If parameter B increases, the solution gap is lower . The proposed algorithm

 can determine the number of replenished quantities to move relaxed while satisfying all

 demands with a high parameter B. Gutiérrez et al.’s heuristic sometimes moves the

replenished quantity from any period to period t+k, when {1,2,..., }k T t − .Ordering

cost must be paid more frequently when inserting the replenished quantity for

period t+k in more time, causing total inventory cost to grow. Unfortunately, the

amount of SIRallitem _U for period t does not also decline. While the push and

pull heuristic moves each replenished quantity from period t to a consecutive

period only with zero inventory cost, it can certainly reduce the replenished

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 28 of 41

quantity for period t so that the amount of SIRallitems _U reduces.

5.2. Worst Cases Analysis

 For the robust condition of the push & pull heuristic, this study introduces

the near-minimal storage capacity. The performance of a heuristic depends on the value

of the storage capacity. Suppose each storage capacity is likely near the sum of demand

for each period, called near-minimal storage capacity. Moving the partial or whole re

plenished quantities to the next period is difficult.

 In Table 15, it is difficult for Gutiérrez et al.’s heuristic to execute any random

instances with near-minimal storage capacities. It can calculate only one and two from

five and ten instances, such as 20x24, 30x24, and 40x24 problems (NxT). Other solutions

cannot satisfy the demand. Meanwhile, the push and pull heuristic can calculate all

random instances with these storage capacities. Its solution gap performs well on the

small-and medium-scale problem, at about 1.15% and 1.33%, the same as the other in

stances with high storage capacities (parameter B =5-20%).

At the same time, Gutiérrez et al.’s heuristic gap solution is about 3.99% and 5.57%.

Therefore, the push and pull heuristic enables computing the replenished plan signifi

cantly better with near-minimal storage capacities.

For large-scale problems (T=24), MATLAB cannot run on the extension of the

number of periods due to being out-of-memory. When increasing the number of periods,

its memory usage exceeds 76 GB. The limitation of the system memory space (RAM and

swap file) used by MATLAB for this computer is about 76 GB.

To strengthen empirical benchmarking and provide better justification, compare the

proposed heuristics with additional baseline methods, including the smoothing heuristic

[27] , implemented using the state-of-the-art code [31]. The authors compare their solu

tion gap performance, which is shown in Table 19.

Table 19. Gap performance of the proposed, Gutiérrez et al., and smoothing heuristics under storage capacities

with parameter B = 1%, 5%, 10%, and 20%.

Parameter B

The push and pull heuristic

Problem

size

10X6 small-

scale

problem

10X12

medium-

scale

problem

10X24

large-scale

problem

1%
Avg. 0.57 0.79 1.27

Max. 0.73 1.32 1.58

5%
Avg. 1.39 1.47 0.94

Max. 2.62 2.49 1.27

10%
Avg. 0.85 0.74 0.56

Max. 1.81 1.74 1.2

20%
Avg. 1.84 0.34 0.34

Max. 2.5 0.88 1.64

 Gutiérrez et al.’s heuristic

1%
Avg. 1.89 5.36 6.89

Max. 3.51 7.27 7.73

5%
Avg. 3.96 7 0.94

Max. 6.54 11.84 1.04

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 29 of 41

10%
Avg. 4.92 1.74 1.74

Max. 12.28 4.26 2.65

20%
Avg. 2.48 0.65 0.6

Max. 4.83 2.34 1.07

 Smoothing heuristic [27]

1%
Avg. 1.89 4.24 5.97

Max. 3.4 6.24 6.79

5%
Avg. 3.96 4.68 2.3

Max. 6.54 7.53 2.46

10%
Avg. 4.13 2.04 2.8

Max. 9.83 3.51 8.46

20%
Avg. 1.7 0.73 0.77

Max. 3.35 1.53 1.35

In Table 19, the proposed heuristic shows good average gap performance on large-

scale problems, such as the 10x24 case, with gaps of about 1.27% and 0.34% under storage

capacities B = 1% and 20%, respectively. In comparison, Gutiérrez et al.’s heuristic has

gaps of approximately 6.89% and 1.07%, while the smoothing heuristic has gaps of about

5.97% and 1.35%, respectively. As a result, the gap performances of Gutiérrez et al.’s and

the smoothing heuristics differ by only a small amount. Therefore, the proposed heuristic

is able to compute an approximate replenishment plan that is better than the previous

heuristics.

5.3. Computation Time

 This study implements the codes based on the state-of-the-art methods for both heu

ristics. Both the push & pull heuristic and the heuristic by Gutiérrez et al. have the same

time complexity, denoted as 2()O W N T  . Therefore, the running times of the two

heuristics are nearly the same.The time complexity for the network flow based on dy

namic programming algorithm [22] has
2

max
()O NTD for generating the initial solu

tion. The computation time of both heuristics combines the running time for the net

work flow based on dynamic programming for the initial solution with the running

 time of each heuristic. The worst-case complexity of the GAMS/CPLEX solver has

 x(2)N TO , which is an exponential growth rate. However, this solver enhances perfor

mance with the branch-cut and benders decomposition algorithm for reducing the run

ning time efficiency in large-scale problems [28] when compared with MATLAB soft

ware. For computation time, this study focuses on small-to-medium and large-scale

problems with near-minimal storage capacity. Therefore, the data in Figure 4 include

both small-to-medium and large-scale problems (see Table 15) with storage capacities

parameter B=1-20%. Both the heuristics and MIP solver generate solutions under stor

age capacities. The computation time for these conditions is shown in Figures 4-7, as

follows:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 30 of 41

Figure 4. Average computation time with near-minimal storage capacity (B=1%) using a) push and pull heuristic

b) Gutiérrez et al.’s heuristic, , and c) GAMS/CPLEX solver.

271.5 370.23 333.2

5,994.42
5,357.88

12,280

0

2000

4000

6000

8000

10000

12000

14000

Push&pull heuristic Gutierrez et al's heuristic GAMS/CPLEX Solver

Small-scale problem Medium-scale problem Large-scale problem

Running time (second)

36.73 34.53 6.26

272.22 368.08
12.03

8,117.58
8,465.86

5.98
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Push&pull heuristic Gutierrez et al's heuristic GAMS/CPLEX Solver

Small-scale problem Medium-scale problem Large-scale problem

30.33 18.43

Running time (second)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 31 of 41

Figure 5. Average computation time with near-minimal storage capacity (B=5%) using a) push and pull heuristic

b) Gutiérrez et al.’s heuristic, , and c) GAMS/CPLEX solver.

Figure 6. Average computation time with near-minimal storage capacity (B=10%) using a) push and pull

heuristic b) Gutiérrez et al.’s heuristic, , and c) GAMS/CPLEX solver.

Figure 7. Average computation time with near-minimal storage capacity (B=20%) using a) push and pull

heuristic b) Gutiérrez et al.’s heuristic, and c) GAMS/CPLEX solver.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 32 of 41

 In Figure 4, the computation time generated by the GAMS/CPLEX solver increases

 exponentially for the large-scale problem under near-minimal storage capacities (B =

 1%). In general, the CPLEX solver must execute effectively with a branch-and-cut al

 gorithm and special heuristic. However, the running time for solving a large-scale

 problem includes poor performance with near-minimal storage capacities. The MIP

 solver must determine lot size with high running time to generate an optimal solution.

 This is a limitation of the MIP solver. In contrast, the computation time for both heu

 ristics, which generate approximate solutions for large-scale problems, performs well

 compared to the MIP solver. Nevertheless, the computation time of the MIP solver on

 small- to medium-scale and large-scale problems performs well compared to both heu

 ristics when the storage capacities have higher B values (see Figures 5–7). The running

 times for both heuristics are nearly the same due to their similar time complexity.

 Therefore, considering the storage capacity constraints, both heuristics perform

 well under near-minimal capacity for large-scale problems, whereas the MIP solver

 computes efficiently with shorter running times for small- and medium-scale prob

 lems. For high storage capacity constraints (B = 5–20%), the MIP solver performs well

 with shorter running times across all problem scales.

5.4. Sensitivity Analysis

 Authors present a sensitivity analysis on the varied parameter B to show its impact

on the cost performance of the proposed heuristics, order frequency, and inventory lev

els. The results of this analysis are shown in Figures 8 to 10 below.

Figure 8. Total cost vs. storage capacity parameter B (1%–20%) for different problem Scales.

7378.60 6995.40 6718.70 6593.10

14405.90
13372.60 13041.60 12880.40

27987.00
26070.60 25722.60 25530.00

0

5,000

10,000

15,000

20,000

25,000

30,000

1% 5% 10% 20%

10x6 Small-scale problem 10x12 Medium-scale problem 10x24 Large-scale problem

Unit: Currency

Parameter B

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 33 of 41

Figure 9. Inventory level vs. storage capacity parameter B (1%–20%) for different problem scales

Figure 10. Order frequency vs. storage capacity parameter B (1%–20%) for different problem scales.

 In Figure 8, the total cost for each problem size is high when the storage capacity

 is near minimal, and it decreases as the storage capacity increases. Under the near-min

 imal storage capacity constraint, the inventory level for each problem size is low due

 to the limited storage space (see Figure 9). This results in more frequent orders with

 smaller replenishment quantities to meet all demand. The higher order frequency

causes an increase in the total cost (see Figure 10).

 Under high storage capacity constraints, the total cost for each problem size is

153
770

1239
1593

917

2632
3274

3680
3070

6628
7115

7825

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1% 5% 10% 20%

10x6 Small-scale problem 10x12 Medium-scale problem 10x24 Large-scale problem
Parameter B

Inventory level

19

12

6
3

37

15

7
3

60

17

11

4

0

10

20

30

40

50

60

70

1% 5% 10% 20%

10x6 Small-scale problem 10x12 Medium-scale problem 10x24 Large-scale problem

Parameter B

Order frequency

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 34 of 41

low, but the inventory level is higher due to the increased storage space. The order

frequency is also lower in order to reduce the total cost.

 In summary, tight storage space leads to higher total costs due to increased or

der frequency. On the other hand, larger storage capacity results in lower total costs

but requires higher investment to expand the storage space.

5.5. Statistical Validation of Heuristic Stability and Reliability

For validation of heuristic stability and reliability, the authors evaluate the total cost

 and running time of the proposed heuristic using statistical parameters such as average,

 standard deviation, minimum and maximum values, and confidence intervals, as shown

 in Table 20.

Table 20. Statistics parameters of total cost computed by the push and pull methods under near-minimal storage

capacities (B=1%).

(a) Lower and upper confidence interval 3x s=  with 99.7% confidence interval, s = standard deviation.

Problem Average

(currency)

Standard

deviation

Lower

confidence

interval(a)

Upper

confidence

interval(a)

Min. total

cost

Max. total

cost

 10x6 7378.6 158.1 6904.4 7852.7 7114 7640

20x6 14570 261.2 13786.2 15353.79 14200 15081

40x6 29012.2 340.2 27991.6 30032.8 28409 29498

60x6 43445 400.0 42244.9 44645.1 42930 43941

80x6 58025.2 544.1 56393.1 59657.3 57059 58883

100x6 72482.8 565.9 70784.9 74180.6 71498 73354

120x6 86833 607.5 85010.5 88655.5 85551 87392

140x6 101220.8 645.9 99282.9 103158.7 99805 101875

160x6 115562.2 710.6 113430.5 117693.9 114175 116367

 10x12 14405.9 184.0 13853.8 14957.9 14160 14742

20x12 28599.9 232.3 27902.9 29296.9 28134 28871

30x12 42776.4 329.6 41787.7 43765.1 42106 43239

40x12 56862.5 365.5 55765.9 57959.1 56166 57551

50x12 70941.3 335.1 69936.1 71946.5 70393 71384

60x12 85055.2 584.1 83302.9 86807.5 83928 85927

70x12 99057.1 546.9 97416.1 100698.1 97851 99605

80x12 113184.8 514.6 111641.1 114728.5 112018 114040

10x24 27987 335.1 26981.6 28992.4 27722 28410

20x24 55547.6 460.6 54165.7 56929.5 54820 56051

30x24 82909 476.8 81478.7 84339.3 82590 83730

40x24 110034.8 762.3 107748.0 112321.6 108971 111105

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 35 of 41

Table 21. Statistics parameters of running time computed by the push and pull methods under near-minimal

storage capacities (B=1%).

(a)Lower and upper confidence interval 3x s=  with 99.7% confidence interval , s = standard deviation.

Tables 20 and 21, all total cost and running time values fall within the lower and upper

 bounds of the 99.7% confidence intervals around the average values. It indicates that the

 heuristic's performance is reliable, and low variability is a direct measure of its stability.

6. Conclusions

This study proposes a novel push-pull heuristic for solving the multi-item un-

capacitated lot-sizing problem under near-minimal storage capacities. When capacity

constraints are nearly minimal across multiple items, novel heuristics are required. Pior

heuristics did not directly consider the tight storage capacity constraints. The just-in-

time operation in the assembly automobile industry is difficult to share the storage ca

pacity on the multi-item parts. The proposed heuristic can be applied to manage tight

storage capacity while keeping multiple items. To compute the initial replenishment plan,

authors implement a dynamic programming based on network flow to generate a single-

item lot size plan for all periods under unlimited storage capacity of each period. The

push procedure identifies iteratively the maximal sum of beginning inventory plus the

replenishment quantity which moves to the next period without violating the near -min

imal storage capacity. Each iteration will increase inventory cost with the ordering

Problem Average

(second)

Standard

deviation

Lower

confidence

interval(a)

Upper

confidence

interval(a)

Min. total

cost

Max. total

cost

 10x6 6.25 0.54 4.63 7.88 5.79 7.59

20x6 11.45 0.31 10.53 12.38 11.04 12.02

40x6 21.90 0.37 20.78 23.04 21.37 22.54

60x6 32.48 0.46 31.09 33.87 31.75 33.17

80x6 44.25 0.93 41.45 47.05 43.04 45.86

100x6 56.24 0.94 53.43 59.05 55.02 57.71

120x6 69.42 1.26 65.65 73.18 67.90 71.21

140x6 84.98 2.49 77.52 92.46 82.41 91.25

160x6 100.72 1.46 96.35 105.09 98.57 103.74

 10x12 61.85 5.27 46.03 77.68 55.48 71.94

20x12 131.74 4.84 117.23 146.26 126.34 141.33

30x12 204.63 16.03 156.53 252.74 182.15 236.27

40x12 260.38 23.67 189.36 331.41 229.37 311.10

50x12 328.35 34.155 225.89 430.82 279.38 402.51

60x12 409.28 40.99 286.31 532.24 351.43 492.47

70x12 495.31 40.97 372.41 618.22 443.17 585.65

80x12 520.24 26.18 441.69 598.79 478.54 566.50

10x24 3257.11 608.49 1431.63 5082.59 2647.19 4108.03

20x24 6507.96 340.99 5485 7530.92 6159.20 6964.99

30x24 9103.45 416.01 7855.43 10351.48 8471.77 9610.50

40x24 14628.15 1370.03 10518.05 18738.25 11694.79 14786.62

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 36 of 41

cost .The push and pull procedure requires fewer iterations during computation. In

comparison, Gutiérrez et al.’s heuristic selects successive periods, resulting in more iter

ations and increased ordering costs to meet the near-minimal capacity constraints.The

result of computation shows that the proposed heuristic performs well on the gap solu

tion under near-minimal storage capacities. The running time of the proposed heuristic

performs well on large-scale problem, whereas GAMS/CPLEX solver run with minimal

run time on small-and medium-scale problem. However, in the sensitivity analysis, a

near-minimal storage capacity constraint results in high inventory costs due to the in

creased frequency of orders.

Future research could expand this proposed heuristic for applying this proposed

heuristic then evaluating in a assembly automobile plant to improve the practical ap

plicability and credibility. Another extension, it could run with the stochastic demand or

lead time constraints to make it applicable across a wider range of academic settings.

Author Contributions: Conceptualization, W.B. and D.H. and P.C.; methodology, W.B. and D.H.; software,

W.B.; validation, W.B. and D.H.; formal analysis, W.B. and D.H.; investigation, W.B. and D.H.; resources, D.H.;

data curation, W.B. and D.H.; writing—original draft preparation, W.B. and D.H. ; writing—review and editing,

W.B.,D.H. and P.C.; visualization, W.B. and D.H.; supervision, P.C.; projectadministration, W.B. and D.H.;

funding acquisition, W.B. and D.H. All authors have readand agreed to the published version of the manuscript

Funding: This study received no external funding.

Data Availability Statement: The data presented in this study are available and can request to the corresponding

author.

Acknowledgments: The authors would like to express our sincere appreciations to all constructive comments

and recommendations from reviewers leading to theimproved final version of this manuscript. This study was

supported by the Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Thailand.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Appendix A.1

 Pseudo code of dynamic programming based on network flow

 1: PROCEDURE MultiItemLotSizing

 2: // d[N][T] ← demand matrix (rows: items, cols: periods)

 3: // order[N][T] ← fixed ordering cost matrix

 4: // weight[N]← per-item weight (for capacity constraint)

 5: // pc[N][T]← per-unit production cost matrix

 6: // h← unit holding cost

 7: // Output:

 8: // sol[N][T]← lot‐sizes for each item and each period

 9: // invencost[N] ← total inventory cost per item

10: CONST M ← 10^10// “infinite” penalty

11: CONST extra ← 1// cost offset for indexing

12:

13: FOR g ← 1 TO N DO// for each item

14:// 2. Compute sumdemand and cumdemand

15:FOR k ← 1 TO T DO

16: sumdemand[g][k] ← Σ_{i=1..T} d[g][i]

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 37 of 41

17:END FOR

18:cumdemand[g][1] ← sumdemand[g][1]

19:FOR k ← 2 TO T DO

20: cumdemand[g][k] ← cumdemand[g][k−1] + sumdemand[g][k]

21:END FOR

22:

23:// 3. Build DP network of size S = T + Σ_k sumdemand[g][k] + 1

24:S ← T + Σ_{k=1..T} sumdemand[g][k] + 1

25:ALLOCATE dcost[1..S][1..S]

26:

27:// 4. Fill dcost for “period 0” (building initial inventory)

28:FOR inv ← 0 TO sumdemand[g][1] DO

29: lot ← inv − 0 + 0

30: IF lot > 0 THEN

31: y ← 1

32: ELSE

33: y ← 0

34: END IF

35: dcost[1][inv+1] ← inv*h + lot*pc[g][1] + y*order[g][1] + extra

36:END FOR

37:

38:// 5. Fill dcost for periods 1..T−1

39:node_i ← 1

40:FOR p ← 1 TO T−1 DO

41: prev_node_i ← node_i

42: FOR inv_prev ← 0 TO sumdemand[g][p] DO

43: node_i ← prev_node_i + inv_prev

44: FOR inv_curr ← 0 TO sumdemand[g][p+1] DO

45:lot ← inv_curr − inv_prev + d[g][p]

46:IF lot > 0 THEN

47:y ← 1

48:ELSE

49:y ← 0

50:END IF

51:// compute holding penalty

52:IF lot == 0 AND inv_prev − inv_curr == d[g][p] THEN

53:hold ← inv_curr * h

54:ELSE IF lot > 0 AND inv_prev − inv_curr + lot == d[g][p] THEN

55:hold ← inv_curr * h

56:ELSE

57:hold ← M

58:END IF

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 38 of 41

59:// assemble cost

60:IF hold == M THEN

61:cost ← M

62:ELSE

63:cost ← hold + lot*pc[g][p] + y*order[g][p]

64:END IF

65:dcost[node_i][node_i + sumdemand[g][p+1] + 1] ← cost + extra

66: END FOR

67: END FOR

68: node_i ← node_i + sumdemand[g][p+1] + 1

69:END FOR

70:

71:// 6. Fill dcost for final period T

72:FOR inv_prev ← 0 TO sumdemand[g][T] DO

73: node_i ← node_i + inv_prev

74: lot ← 0 − inv_prev + d[g][T] // end inventory is forced to 0

75: IF lot > 0 THEN

76: y ← 1

77: ELSE

78: y ← 0

79: END IF

80: IF lot == 0 AND inv_prev − 0 == d[g][T] THEN

81: hold ← 0 * h

82: ELSE IF lot > 0 AND inv_prev − 0 + lot == d[g][T] THEN

83: hold ← 0 * h

84: ELSE

85: hold ← M

 86: END IF

 87: IF hold == M THEN

 88: cost ← M

 89: ELSE

 90: cost ← hold + lot*pc[g][T] + y*order[g][T]

 91: END IF

 92: dcost[node_i][S] ← cost + extra

 93:END FOR

 94:

 95:// 7. Solve DP by backward recursion

 96:ALLOCATE fn[1..S+1] ← 0

 97:ALLOCATE fnmat[1..S][1..S]

 98:// 7.1 Initialize last column

 99:FOR i ← 1 TO S DO

 100:fnmat[i][S] ← dcost[i][S]

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 39 of 41

 101: END FOR

 102: fn[S] ← MIN_{i=1..S} fnmat[S][i]

 103: // 7.2 Recurrence

 104: FOR i ← S−1 DOWNTO 1 DO

 105:FOR j ← i TO S DO

 106: IF dcost[i][j] > 0 THEN

 107: fnmat[i][j] ← dcost[i][j] + fn[j+1]

 108: END IF

 109:END FOR

 110:fn[i] ← MIN_{j=i..S} fnmat[i][j]

 111: END FOR

 112:

 113: // 8. Trace optimal path

 114: INITIALIZE optimalsol[0..T+1][1..5] ← 0

 115: current_node ← 1

 116: FOR period ← 0 TO T DO

 117:// find next node j where fn[current_node] == fnmat[current_node][j]

 118:SELECT smallest j ≥ current_node such that fn[current_node] == fnmat[current_node][j]

 119:lot ← corresponding lot‐size on arc (current_node→j)

 120:inv ← previous_inv − demand + lot

 121:optimalsol[period+1] ← (prev_inv, lot, demand, inv, arc_cost − extra)

 122:current_node ← j + 1

 123: END FOR

 124:

 125: // 9. Record item‐level solution

 126: FOR p ← 1 TO T DO

 127:sol[g][p] ← max(0, optimalsol[p+1].lot)

 128: END FOR

 129: invencost[g] ← fn[1] − extra

 130: END FOR

 131:

 132: END PROCEDURE

References

1. Love; S.F. Bounded Production and Inventory Models with Piecewise Concave Costs. Manag. Sci. 1973, 20,

313-318.

2. Loparic, M.; Pochet,Y.; Wolsey,L.A. The Uncapacited Lot-Sizing Problem with Sales and Safety Stocks.

Math. Program. 2001, 89, 487-504.

3. Atamtürk, A.; and Küçükyavuz, A. Lot Sizing with Inventory Bounds and Fixed Costs: Polyhedral Study

and Computation. Oper. Research. 2005, 53, 711-730.

4. Guan, Y.; Liu, T. Stochastic Lot-Sizing Problem with Inventory-Bounds an Constant Order-Capacities. Eur.

J. Oper. Res. 2010, 207, 1398-1409.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 40 of 41

5. Önal,M.; Heuvel, W. V.D.; Liu,T. A Note on the Economic Lot Sizing Problem with Inventory Bounds. Eur.

J. Oper. Res. 2012, 223, 290-294.

6. Chu, C.; Chu, F.; Zhong, F.; Yang, S. A Polynomial Algorithm for a Lot-Sizing Problem with Backlogging,

Outsourcing, and Limited Inventory, Comput. Ind. Eng. 2013, 64, 200-210.

7. Akbalik, A.; Penz, B.; Rapine, C. Multi-Item Uncapacitated Lot Sizing Problem with Inventory Bounds.

Optim. Lett. 2015, 9, 143–154.

8. Brahimi1, N.; Absi, N.; Dauzère-Pérès, S.; and Kedad-Sidhoum, S. Models and Lagrangian Heuristics for a

Two-Level Lot-Sizing Problem with Bounded Inventory. OR Spectrum. 2015, 37, 983-1006.

9. Melo, R.A.; Ribeiro, C.C. Formulations and Heuristics for the Multi-Item Uncapacitated Lot-Sizing Problem

with Inventory Bounds. Int. J. Prod. Res. 2015, 55, 576-592.

10. Witt, A. A Heuristic for the Multi-Level Capacitated Lot Sizing Problem with Inventory Constraints. Int. J.

Manag. Sci. Eng. Manag. 2019, 14, 249-252.

11. Mohammadi, A,; Shegarian, E. A Mixed Integer Linear Programming Model for

the Multi-Item Uncapacitated Lot-Sizing Problem: a case study in the trailer

manufacturing industry. Int. J. Multivar. Data Anal. 2017,1, 173-199.
12. Sedeno-Noda, A.; Gutierrez, J.; Abdul-Julbar, B.; Sicilia, J. An O (T log T) Algorithm for the Dynamic Lot

Size Problem with Limited Storage and Linear Costs. Comput. Optim. Appl. 2004, 28, 311-323.

13. Liu, X.; Tu, Y. Production Planning with Limited Inventory Capacity and Allow Stockout. Int. J. Prod. Econ.

2008, 111, 180-191.

14. Chu, F.; Chu, C. Single-Item Dynamic Lot-Sizing Models with Bounded Inventory and Outsourcing”, IEEE

Trans. Syst. Man. Hum. 2008, 38, 70-77.

15. Hwang, H.-C.; Heuvel, W.V.D. Improved Algorithms for a Lot-Sizing Problem with Inventory Bounds and

Backlogging. Nav. Res. Logist. 2012, 59, 244-253.

16. Hwang, H.-C.; Heuvel, W. V. D.; Wagelmans, A. P. M. The Economic Lot- Sizing Problem with Lost Sales

and Bounded Inventory. IIE TRANS. 2013, 45, 912-924.

17. Gutiérrez, J.; Colebrook, M.; Abdul-Jalbar, B.; Sicilia, J. Effective Replenishment Policies for the Multi-Item

Dynamic Lot- Sizing Problem with Storage Capacities. Comput. Oper. Res. 2013, 40, 2844-2851.

18. Minner, S. A Comparison of Simple Heuristics for Multi-Product Dynamic Demand Lot-Sizing with

Limited Warehouse Capacity. Int. J. Prod. Econ. 2009, 118, 305–310.

19. Wagner, H.M.; Whitin, T.M. Dynamic Version of the Economic Lot Size Model. Manag. Sci. 1958, 5, 89-96.

20. Gutiérrez, J.; Sedeño-Noda, A.; Colebrook, M.; Sicilia, J. A Polynomial Algorithm for the

Production/Ordering Planning Problem with Limited Storage. Comput. Oper. Res., 2007, 34, 934–937.

21. Toczylowski, E. An O(T2) Algorithm for the Lot-Sizing Problem with Limited Inventory Levels. In

Proceedings of International Conference on Emerging Technologies and Factory Automation (ETFA) ,

Paris, France, 10-13 October 1995, pp.78-Available online:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=496709&tag=1 (accessed on 9

22. September 2024)

23. Ojeda,A. Multi-level production planning with raw-material perishability and inventory bounds. Ph.D.

(Industrial Engineering) of Concordia University , Montreal, Canada , September, 2019

Boonphakdee, W.; Charnsethikul, P. Column Generation Approach for Solving Uncapacitated Dynamic

Lot-Sizing Problems with Time-Varying Cost.Int. J. Math. Oper. Res. 2022, 23, 55-75.

24. Di Summa, M.; Wolsey, L.A. Lot-Sizing with Stock Upper Bounds and Fixed Charges. SIAM J. Discret.

Math.2010, 24, 853- 875.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

 41 of 41

25. Park, Y.B. An Integrated Approach for Production and Distribution Planning in Supply Chain

Management. Int. J. Prod. Res. 2005, 43, 1205-1224.

26. Emde, S. Sequencing Assembly Lines to Facilitate Synchronized Just-In-Time Part Supply. J. Sched.2019,

22, 607–621.

27.Dixon, P.S.; Poh, C.L. Heuristic Procedures for Multi-Item Inventory Planning with Limited Storage. IIE

TRANS. 1990, 22,112-123.

27. 28.MATLAB code for Heuristic for the multi-item lot-sizing with storage capacities available online :

https://www.math works.com/matlabcentral/fileexchange/179289-heuristic-for-the-multi-item-lot-sizinng-

with-storage-cap, MATLAB Central File Exchange. Retrieved January 18, 2025.

28. MATLAB code for Heurictic of Gutierrez et al. 2013 algorithm Available online:

https://www.mathworks.com/matlabcen tral/fileexchange/179294-heurictic-of-gutierrez-et-al-2013-

algorithm, MATLAB Central File Exchange. RetrievedJanuary 18, 2025.

29. MATLAB code for Smoothing Heuristic Multi-item Lot size with Storage cap. Available online:

https://www.mathworks.com/matlabcentral/fileexchange/181148-smoothing-heuristic-multi-item-lot-size-

with-storage-cap, MATLAB CentralFile Exchange. Retrieved May 15, 2025.

30. CPLEX solver Available online: https://documentation.aimms.com/platform/solvers/cplex.html (accessed

on 23 Dec 23, 2024)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.math/
https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

