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Abstract: In inventory management, storage capacity constraints complicate multi-item lot-sizing 

decisions. As the number of items increases, deciding how much of each item to order without 

exceeding capacity becomes more difficult. Dynamic programming works efficiently for a single 

item, but when capacity constraints are nearly minimal across multiple items, novel heuristics are 

required. However, previous heuristics have mainly focused on inventory bound constraints. 

Therefore, this paper introduces push and pull heuristics to solve the multi-item uncapacitated lot-

sizing problem under near-minimal capacities.. First, a dynamic programming based on network 

flow model was used to generate the initial replenishment plan for the single-item lot-sizing problem. 

Next, under storage capacity constraints, the push operation moved the selected replenishment 

quantities from the current period to subsequent periods to meet all demand requirements. Finally, 

the pull operation shifted the selected replenishment quantities from the current period into earlier 

periods, ensuring that all demand requirements were satisfied. The results of the random experiment 

showed that the proposed heuristic generated solutions whose performance compared well with the 

optimal solution. This heuristic effectively solves all randomly generated instances representing 

worst‐case conditions, ensuring robust operation under near‐minimal storage. For large-scale 

problems under near-minimal storage capacity constraints, the proposed heuristic achieved only 

small optimality gaps while requiring less running time. However, small- and medium-scale 

problems can be solved optimally by a Mixed-Integer Programming (MIP) solver with minimal 

running time.  

Keywords: multi-item; lot size; near-minimal storage capacity; replenishment plan  

 

1. Introduction 

In supply chain management, the inventory bound, or limitation storage is an im-portant 

constraint. Raw materials cannot be stored in huge volumes, although the unit price of a raw material 

unit is low. If raw materials have many different items and stock-keeping units (SKUs), it results in 

complex problems. Supply chain management decisions depend on the procurement policy of the 

organization. It comprises operating on minimum inventory cost while considering whether or not 

to use an expanded storage. An expanded storage area is a feasible solution, which operates at the 

lowest inventory cost. However, the investment cost for land lease and acquisition, including the rack 

and shelving supply, must be considered as well. In the case of not considering an expanded storage 

area, there are two feasible solutions. Firstly, when inventory is over, it must be kept in another area, 

such as the production line; notwithstanding, this result is with late disbursement, lost materials, and 

incorrect counting of the number of remaining materials. Total inventory cost is still low. Secondly, 
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keep the amount of inventory under the storage capacity, but the order frequency must grow 

evidently. As a result, the storage cost continues to be high. When the number of items or SKUs 

increase, deciding how much of each item to order without exceeding capacity becomes more 

difficult. In many process industries such as paper manufacturing, petrochemical manufacturing, 

refineries, food processing, and pharmaceutical manufacturing, storage capacity has become a 

limiting factor. 

In practice, industries such as trailer assembly processes [11], raw-material perishability in 

composites [22] must all contend with limited inventory bounds. Tight inventory bounds or near-

minimal storage capacities that slightly exceed demand require specialized heuristics. Industries 

operating under Just-In-Time assembly, such as automotive plants [26], are especially sensitive to 

these constraints. Therefore, the authors introduce a dynamic programming approach based on 

network flow to generate an initial replenishment plan for each single item and develop a new 

heuristic to manage the multi-item lot-sizing problem under near-minimal storage capacities.  

Storage capacity has been defined by researchers as comprising two distinct categories, such as: 

the number of ending inventory only, and the sum of the number for the beginning inventory and 

replenishment. Firstly, most researchers proposed the storage capacity to be based on the number of 

ending inventory only. Secondly, other researchers introduced the storage capacity to be the total of 

the number of the beginning inventory and replenishment. Thus, many researchers have defined 

inventory as the quantity of goods on hand at the end of a specific period. However, in the real world 

problem, raw material stores usually receive the replenishment at the beginning of the period and 

keep the inventory of the previous period together to be not over the storage capacity. Consequently, 

this paper suggests that the total number of inventory in each period depends on the sum of inventory 

and replenishment at the beginning of the period. There are two definitions of storage capacity: one 

based on the number of ending inventory, and the other on the sum of beginning inventory plus 

replenishment. These different definitions not only affect how inventory is calculated but also directly 

impact the formulation of inventory planning models. As a result, various algorithms have been 

developed to solve these models.  

Lot sizing problems are typically solved using exact methods such as MIP , dynamic 

programming and heuristic techniques. The earliest known MIP formulation for the lot-sizing 

problem in the U. S. petroleum refining industry was introduced by Manne [18] in 1958. In his seminal 

paper, he presented a mathematical model for the dynamic lot-sizing problem, which develop in 

production planning and inventory control. Meanwhile,Wagner and Whitin [19] introduced a 

forward algorithm based on the dynamic programming approach to search for optimal lot size 

decisions. They established the optimal lot sizes for a single item when demand, inventory holding 

charges, and setup costs change over time. For the management of procurement of materials with 

storage capacity, consider both the single item and multi-item.  

The dynamic programming approach have been implemented by various researches to solve the 

single-item dynamic lot size problem. Love [1] introduced the first dynamic programming 

formulation for the Economic Lot-Sizing Problem with Bounded Inventory (ELSB), where inventory 

levels are constrained by the lower and upper bounds. His model considers both production 

capacities and storage limitations, which are common in practical applications. It solved in O(T3) time 

considering backlogging, time-dependent inventory bounds and piecewise concave production, and 

storage costs when T is the number of periods in the planning horizon. Toczylowski [21] presented 

an efficient O(T2) algorithm for the general single-item dynamic lot-sizing problem with limited 

inventory levels and nonzero initial and safety stock levels. Loparic et al. [2] derived a dynamic 

program or the shortest path problem using regeneration intervals to solve a single-item lot-sizing 

problem with sales constraints and lower bounds on safety stocks. The limitation of this research is 

that, in practice, safety stock levels often fluctuate. Sedano-Noda et al. [12] introduced an O(T logT) 

greedy algorithm to provide optimal policies assuming reorder and linear holding costs without 

setup costs or backlogging. However, the limitation of this research is that it considers only zero setup 

costs, which is not practical. Liu and Tu [13] proposed the capacity production-planning (CPP) 
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problem where the production quantity was limited by inventory capacity and stockout. This 

problem occurs in petrochemical and glass manufacturing, crude oil refining, and food processing. 

They applied a minimum-cost flow algorithm to construct the network. By applying standard 

successive-shortest-path methods, they achieved an overall time complexity O(T3). Önal et al. [5] 

modified dynamic programming procedure that restores optimality for the general bounded‐

inventory lot- sizing problem in O(T2). However, this study did not include any computational 

experiments to validate the practical performance of the corrected method. Chu and Chu [14] 

proposed the dynamic programming approach for the inventory-bounded outsourcing and 

inventory-bounded outsourcing models. These models execute overall complexity time with O(T2 log 

T) and O(T2), respectively. The limitation of this approach is impractical for planning horizons longer 

than a few dozen periods. Hwang and Heuvel [15] presented the O(T2) algorithm based on dynamic 

programming and the Monge property for solving a dynamic lot-sizing problem with backlogging 

and inventory bounds when general production and inventory cost structures are concave. In 

addition, they introduced the O(T log T) algorithm using the points-approach and a geometric 

technique for fixed-charge cost structure as well as the O(T) algorithm using a line-segments 

approach, including a geometric technique for the fixed-charge cost structure without speculative 

motives. However,their algorithm does not provide an optimal solution for the ULS-IB problem. 

Hwang et al. [16] developed the first polynomial-time O(T⁴) dynamic-programming algorithm to 

solve the single-item deterministic Economic Lot-Sizing problem with lost sales and bounded 

inventory (ELS-LB), under the assumption that each period’s inventory capacity is fixed. A drawback 

of their DP algorithm is that it requires a long running time and a large amount of memory to 

execute.Boonphakdee and Charnsethikul [23] developed a network- flow based on the dynamic 

programming approach to solve the single-item uncapacitated lot-sizing problem. In this study, the 

authors introduce their DP algorithm to generate the initial replenishment plan. Atamtürk and 

Küçükyavuz [3] proposed a linear programming formulation that achieves tighter relaxations for the 

single-item lot-sizing problem with inventory bounds and fixed costs.. Gutiérrez et al.[20] extended 

the classical Wagner–Whitin model by time-varying storage capacities and allowing backlogging. 

They developed a dynamic programming algorithm with time complexity of O(T³), where T is the 

number of periods in the planning horizon Their algorithm applies only when both the production 

cost and the holding or stockout cost functions are concave. Guan and Liu [4] introduced two 

stochastic models for the single-item lot-sizing problem under uncertainty including inventory-

bound only and the other both inventory-bound and constant order-capacity constraints. They 

developed dynamic programming algorithms from them with the time complexity O(T2) and 

O(T2nLogT), respectivity, where T is the number of time periods and n is the number of possible order 

capacities. However, stochastic DP requires complete and precise probability distributions of 

demand for every period. Chu et al. [6] proposed a single-item dynamic lot-sizing model integrating 

backlogging, outsourcing, and limited inventory. They developed a dynamic programming 

algorithm that solves the lot-sizing problem in polynomial time with O(T³) time complexity, where T 

is the number of periods in the planning horizon. As a result, their algorithm cannot support concave 

setup or volume‐discount cost structures. Brahimi et al.[8] introduced the Two-Level dynamic Lot-

Sizing Problem with Bounded Inventory (2LLSP-BI), integrating raw-material procurement and 

finished-product production planning under finite warehouse capacity constraints. They introduced 

a new Lagrangian-relaxation heuristic which decomposes 2LLSP-BI into N single-item lot-sizing 

subproblems. Each subproblem is solved by a dynamic programming. The time per Lagrangian 

iteration is O(N⋅T2+T⋅Imax), where Imax is the number of the capacity bounds. The raw-material 

inventory has a single static bound, whereas finished-goods storage is unbounded.Finally, Di Summa 

and Wolsey [24] studied a mixed-integer program that provides a new convex-hull characterization 

for the single-item discrete lot-sizing problem with a variable upper bound on the initial stock. 

However, this formulation is in general too large to be practically useful.  

In practice, it is hard to handle only a single item in raw-material storage or on the production 

line. Consequently, managing multiple items can be quite complex. It is difficult to keep each item 
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and to balance holding costs against ordering costs. Heuristic algorithms are commonly used to solve 

the multi-item dynamic lot-sizing problem. Many researchers have been interested in creating the 

heuristic algorithm for solving the multi-item uncapacitated lot-sizing problem with inventory 

bound (MULSP-IB) due to the practical problem in the real world. This problem is like the multi-item 

capacitated lot-sizing problem (MCLSP), where the items allocate to a machine with a production 

capacity constraint. The MULSP-IB only has the limitation of on-hand inventory. Dixon and Poh [27] 

proposed the smoothing approach. They developed the push and pull operations if all weight or 

volume of inventory is maintained at more than the storage capacity. For the push operation, 

replenishment in the existing period t is moved to the consecutive period t+1. On the other hand, the 

pull operation postpones the replenishment in a backward direction from the existing period t to a 

previous period t-1 so that all the weight or volume of inventory is maintained at less than the storage 

capacity. This procedure runs in O(n⋅T). The authors apply the principle of this smoothing method 

to implement the push and pull procedures. The push procedure postpones replenishment from the 

current period to the next period, whereas the pull procedure shifts it back to the previous period. 

Moreover, the authors compare this heuristic’s performance against other heuristics. Park [25] 

studied the two systems together. He presented the solutions of integrated production and 

distribution planning and investigated the effectiveness of their integration in a multi-plant, multi-

retailer, multi-item, and multi-period logistic environment. Additionally, he introduced the 

optimization models and a heuristic solution for both integrated and decoupled planning. Akbalik et 

al. [7] improved the dynamic programming running in O (2nTn+1) time with a polynomial growth rate 

if the number of items (n) is fixed to solve the MULSP-IB. However, the Tn+1 factor makes the 

algorithm impractical for larger multi-item instances. Gutiérrez et al. [17] extended the smoothing 

technique of Dixon and Poh[27]. explored the multi-item dynamic lot-sizing problem with storage 

capacities or inventory bounds. The problem has been presented to bound applying the weight of 

inventory in a previous period plus the weight of replenishment in the current period. Its average 

solution is over around 5% of the solution computed by CPLEX. The authors also compare its 

performance against the proposed heuristics. Melo and Ribeiro [9] presented the multi-item 

uncapacitated lot-sizing problem with shared inventory bounds. They developed two MIP-based 

heuristics : a rounding scheme for generating the feasible solution and a relax-and-fix heuristic for 

improving the solution. These MIP-based heuristics yield only near-optimal solutions on average 

within about 2-4 % of the true optimum. Witt[10] introduced a mathematical model for the Multi-

Level Capacitated Lot-Sizing Problem with Inventory Constraints (MLCLSP-IC). His model 

integrates capacity bounds at each level of a product Bill-of-Materials and explicit work-in-process 

inventory limits. Although it is multi-level, the approach supports only a single item per level; it 

cannot accommodate product families that share capacities or complex Bills of Materials with 

alternative subassemblies. Finally, heuristics and MIP-based heuristics for solving MULSP-IB are 

further explained in Table 1 as below. 

Table 1. A systematic overview of heuristics and MIP-based approaches. 

References Model. Stor. Algo. Cap. 

Dixon and Poh[27] I&P BegInv. DP.&Heu. Limit.Inv. 

Park[25] I&P&R&V EndInv. LR.Heu.  Limit.Inv&P&R 

Akbalik et al. [7] I&P EndInv. DP. Limit.Inv. 

Gutiérrez et al. [17] I&P BegInv. DP.&Heu. Limit.Inv. 

Melo and Ribeiro [9] I&P&PT&V EndInv. LP.R.Heu.&Heu. Limit.Inv. 

Witt[10] I&P EndInv. Heu. Limit.Inv. 

Abbreviations, Model. Model formulation I&P = inventory and production constraints; I&P&R&V = 

inventory,production,retailer and vehicle ; &P&PT&V = inventory,production,production time and vehicle 

constraints constraints; Stor. Storage capacity EndInv.= ending inventory BegInv.= sum of beginning inventory 

and replenishment Algo. Algorithm DP.= Dynamic programming DP.&Heu.= Dynamic programming and 

heuristic. LR.Heu.= Lagrangian‐relaxation‐based heuristic ; LP.Heu.&Heu = Linear programming-
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relaxation-based heuristic and heuristic Heu. = Heuristic; Cap. CapacityLimit.Inv = Limited inventory 

constraint Limit.Inv&P&R= Limited inventory,plant and vehicle. 

In Table 1, the researchers considered only limited storage capacity and did not specifically 

consider on the case of tight capacity constraints. Therefore, the authors are interested in near-

minimal storage capacity constraints, which occur in the automotive assembly industry [26].  

This study proposes a new heuristic for computing the approximate replenishment plan for 

multiple items in each period under storage capacity constraints. The novelty of this study considers 

the proposed procedure, which can be executed effectively under near-minimal or worst-case storage 

capacity constraint. Storage capacity is defined as the sum of the weight (or volume) of all items 

carried over from the previous period and the weight (or volume) of all replenishments in the current 

period. The authors introduce a dynamic programming approach based on network flow [23] to 

determine the replenishment plan for each item and propose two methods for computing a multi-

item replenishment schedule under storage-capacity constraints. The proposed heuristics consist of 

a push method and a pull method. The push method postpones replenishments forward from period 

t to period t + k whenever the inventory level in period t exceeds the limited capacity, and repeats 

this until the inventory in every period does not exceed its capacity. Then the pull method refines the 

plan by moving replenishments backward from period t to earlier periods 

The second section describes the mathematical formulation of MULSP-IB. The proposed 

heuristic is effective for solving this problem by the modified push and pull operation. It improves 

comparison with the push operation by Gutiérrez et al. shown in Section 3, and this heuristic is 

examined by Gutiérrez’s example in Section 4. In Section 5, the randomly generated data has been 

implemented for solving the different problem sizes. The performance of this proposed heuristic is 

compared with the result of Gutiérrez et al.’s algorithm and the smoothing method. For the 

robustness condition, the worst-case condition is analyzed, which is the near-minimal storage 

capacity. In the sensitivity analysis, varying the storage capacities affects the total cost and inventory 

levels. Finally, conclusions are provided in Section 6. 

2. Problem Description 

2.1. Problem Statement 

The problem of MULSP-IB can be stated as this: Each demand dit must be partly or entirely 

replenished at a period t by inventory . In this study, consider that demands and inventory bounds 

are time-varying, and the total actual weight/volume of inventory is not over storage capacity. The 

problem is to find the periods and the number of raw materials delivered within these periods. The 

objective is to construct a replenished plan such that the total cost is minimized.  

2.2. Problem Assumptions  

Assumptions are provided to define certain parameters and decision variables as follows. 

Assumption 1. Storage capacity is the upper bound of stock. 

Assumption 2. A replenished item is stored first before it is used to satisfy demand. This means 

that the inventory at the beginning of a period plus the replenish-ment is the actual inventory at the 

end of the periods. 

Assumption 3. The sum of demand is not over storage capacity in all periods, and the demands 

are satisfied at the end of the period. 

Assumption 4. Number of items is independent of the quantity of demand and the number of 

procurement planning horizon. 

Assumption 5. Initial inventory in the first period and ending inventory in the last period are 

zero. 

Assumption 6. Backlogging is not allowed. 

Assumption 7. There is no consideration of lead time.  
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2.3. Decision Variables and Parameters 

Explanation of decision variables and parameters can be noted in the following. 

 Indices i the number of items indexed from 1 to N t the number of periods indexed from 1 to T 

 Parameters dit the demand of item i at period t 

 Di,t the accumulative demand of item i from period t to period T 

 fi,t the fixed ordering cost of item i at period t 

 hi,t the holding cost of item i at period t 

 pi,t the cost of procuring raw materials of item i at period t 

 Ii,t the inventory level of item i at period t 

 wi the unit weight of item i 

 Ut the storage capacity at period t 

 Decision variables xi,t the procurement quantity of item i at period t  

 Yi,t if the replenishment of item i at period t occurs, Yit is 1. Otherwise, Yit is 0. 

2.4 Mathematical Model  

 his study proposes the model by Gutiérrez et al. [17], which states the MIP formulation as 

follows: 

= =

+ + , , , , , ,
1 1

min
N T

i t i t i t i t i t i t
i t

f Y p x h I
(1) 

s.t −
− + = = =

, 1 , , ,
,               1,..., , 1,...,

i t i t i t i t
I I x d i N t T

 (2) 

−
=

+  = , 1 ,
1

( ) ,          1,...,
N

i i t i t t
i

w I x U t T
(3) 

 = =
, , ,

,                         1,..., , 1,...,
i t i t i t

x Y D i N t T
(4) 

= = =
,0 ,

0,                       1,...,
i N T

I I i N
(5) 

 =  = =
, , 0

, 0,           1,..., , 1,...,
i t i t

x I i N t T
 (6) 

 = =
,

{0,1},                            1,..., , 1,...,
i t

Y i N t T
(7) 

The objective function of MULSP-IB minimizes the sum of ordering, purchased and holding 

costs in constraint (1). Constraint (2) is the balance of the inventory equation. Each purchased unit 

and inventory unit at the beginning of the period are always kept first, before moving to 

production/customers following its demand in constraint (3). Constraint (4) link the purchased 

variables with the binary variables Yit and accumulated demand (
T

it ik
k t

D d
=

= ) of item i from periods 

t to T . Constraint (5) is the initial inventory in the first period and the ending inventory in the last 

period are zeroes. Constraint (6) defines the purchased quantity and inventory, which are not 

negative. In constraint (7), if replenishment occurs at any period, Yit is 1. Otherwise, Yit is 0.  

3. The Proposed Heuristic 

 The push and pull strategies of Dixon and Poh [27] consider that excess storage capacity has 

occurred. This is reduced by moving a replenishment quantity from the existing period t to t+1 when 

the sum of both inventory and replenishment of all items (SIRallitems) for the existing period is over the 

storage capacity, called the push operation. On the other hand, a replenishment quantity from period 

t is returned to a previous period when SIRal litems is less than the storage capacity, called the pull 

strategy. The push method focuses on reducing SIRallitems in the existing period until success only. 

Therefore, each iteration enables the reduction of SIRallitems prominently, while ordering cost will grow 

as necessary, causing total inventory cost to expand as necessary. Furthermore, Gutiérrez et al.’s he 

ristic extend the push strategy in so far that a replenishment quantity can be moved from any period 
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t to t+k, (1,..., )k T t − . For any iteration, Gutiérrez et al.’s heuristic possibly moves a replenishment 

quantity from a non-existing period to the next period, resulting inSIRallitems in the existing period not 

also reducing. However, ordering costs still expanding is unnecessary. This study also applies Dixon 

and Poh’s approach to both the push and pull strategies. For the push strategy, consider a 

replenishment item in the existing period, which has the maximum sum of inventory and the 

replenishment quantity (SIRmax). Consider an item of SIRmax condition, called iSIRmax that has an 

inventory cost of zero at period t+k, (1,..., )k T t − called on tzero. Therefore, a replenishment quantity 

is equal to its demand in the existing period, then it moves so as to add the original replenished 

quantity at period tzero. After that, the replenishment quantity of the existing item is balanced for all 

periods. It runs repeatedly until all SIRallitems are less than storage capacities. This procedure is called 

the push method. 

For the pull strategy, find the periods (tmin and tmax) with the minimum and maxi mum 

differences between SIRallitems and their storage capacities (U), called SIRallitems_Umin and SIRallitems_Umax. 

If the index of period tmin is higher than the index of period tmax, consider a SIRmin item called iSIRmin 

for period tmin. Return the replenished quantity, which is the demand of iSIRmin of period tmin, to add 

the original replenished quantity of the same item at period tmax. Then, calculate all SIRallitems again. If 

a new SIRallitems for period tmax is still greater than storage capacity at that period, find a new item with 

SIRmax called iSIRmax. Next, determine the period tzero on iSIRmax and calculate the round-up of the new 

SIRallitems_U for period tmax divided by its weight, called SIRallitems_Uroundup. Move the replenished 

quantity, SIRallitems_Uroundup for period tmax, to period tzero. Finally, balance the replenished plan again. 

This procedure is called the pull method. It can effectively improve the solution generated by the 

push method. Next, determine the period tzero on iSIRmax and calculate the round-up of the new 

SIRallitems_U for period tmax divided by its weight, called SIRallitems_Uroundup. Move the replenished 

quantity, SIRallitems_Uroundup for period tmax, to period tzero. Finally, balance the replenished plan again. 

This procedure is called the pull method. It can effectively improve the solution generated by the 

push method. This study proposes a new procedure for solving MULSP-IB. It has a property 

suggesting that the sum of both the inventory and the replenished quantity for all items  

 (SIRallitems) agree with less storage capacity, satisfying all demands for the existing period  

 or equal storage capacity for that period. This property is presented to clarify the logical  

 flow of arguments as follows: 

Theorem 1. If t is a period such that ,
0

i t
x   for some items i satisfying , 1 , , ,i t i t i t i t k

I x D D
− +
+ = − ,

(1,..., )k T t − , then , 1 ,
1

( )
N

i t i t t
i

I x U
−

=

+  . 

Proof of Theorem 1. For a contradiction method, the assumption is , 1 ,
1

( )
N

i t i t t
i

I x U
−

=

+  .  

 Given , 1 , , ,i t i t i t i k
I x D D

−
+ = − . It implies that the total inventory is sufficient to satisfy or  

 exceed the storage limitation. However, some ,
0

i t
x  and , 1 , , ,i t i t i t i t k

I x D D
− +
+ = − are used  

 to satisfy the demands such that no additional replenishments can exceed the storage 

 limitation. Therefore, there is no additional inventory available to satisfy or exceed the  

 limitation. 

Theorem 2. If t is a period such that ,
0

i t
x  for some items i satisfying , 1 , , ,i t i t i t i t k

I x D D
− +
+  − ,  

 
(1,..., )k T t −

, then , 1 ,
1

( )
N

i t i t t
i

I x U
−

=

+ = . 

Proof of Theorem 2. For a contradiction method, let us study a replenishment ( ,
0

i t
x  ) that there is 

an item i, for which the assumption is , 1 ,
1

( )
N

i t i t t
i

I x U
−

=

+  . In the case of , 1 ,
1

( )
N

i t i t t
i

I x U
−

=

+  , given

, 1 , , ,i t i t i t i t k
I x D D

− +
+  − , the inventory level and extended replenishments ( , 1 ,i t i t

I x
−
+ ) are not sufficient 
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to satisfy the sum of the consecutive demand ( , ,i t i t k
D D

+
− ). Further, in the case of , 1 ,

1

( )
N

i t i t t
i

I x U
−

=

+ 

, there is additional inventory to be over the storage capacity. However, the given condition 

, 1 , , ,i t i t i t i k
I x D D

−
+  −  does not satisfy the demand. Therefore, the sum of inventory and replenished 

quantity cannot exceed the storage capacity. To satisfy demand, the sum of the inventory and 

replenished quantity of all items in each period must either be less than or equal to the storage 

capacity explained by Theorems 1 and 2, respectively.  

3.1. The Push Method 

The objective of this method is to seek the approximate solution of MULSP-IB. The procedure 

for this method can be explained by the pseudo-algorithms as follows: 

1: procedure InitialSolution(N, T, U, d, h, f) 

2: Input: 

3:N← number of items 

4:T← number of periods 

5:U[1..T] ← inventory bounds per period (network-flow based) 

6:d[1..N][1..T] ← demand of item i in period t 

7:h[1..N][1..T] ← holding cost of item i in period t 

8:f[1..N][1..T] ← ordering cost of item i in period t 

9: Output: 

10:x[1..N][1..T]← initial replenishment plan 

11: for i ← 1 to N do 

12:x[i][1..T] ← NetworkFlowDP(i, U, d[i], h[i], f[i]) 

13: end for 

14: return x 

15: end procedure 

16: procedure PushAlgorithm(N, T, U, d, h, f, x) 

17: Input: 

18:N← number of items 

19:T← number of periods 

20:U[1..T] ← storage capacity per period 

21:d[1..N][1..T] ← demand of item i in period t 

22:x[1..N][1..T] ← initial replenishment plan 

23: Output: 

24:x[1..N][1..T], TotalCost 

25: for t ← 1 to T do 

26:// Compute SIR for each item at period t 

27:for i ← 1 to N do 

28: if t == 1 then 

29: inv[i] ← x[i][1] - d[i][1] 

30: else 

31: inv[i] ← inv_prev[i] + x[i][t] - d[i][t] 

32: end if 

33: tailDemand ← 0 

34: for k ← t to T do 

35: tailDemand ← tailDemand + d[i][k]  

36: end for 

37: SIR[i] ← inv[i] + tailDemand 

38: inv_prev[i] ← inv[i] 

39:end for 

40:SIRall ← Σ_{i=1..N} SIR[i] 
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41:slack ← SIRall - U[t] 

42:while slack > 0 do 

43: iMax ← argmax_{i=1..N} SIR[i] 

44: Δ ← d[iMax][t] 

45: x[iMax][t] ← x[iMax][t] - Δ 

46: if t < T then  

47: x[iMax][t+1] ← x[iMax][t+1] + Δ  

48: end if 

49: // Recompute inventory and SIR 

50: SIRall ← 0 

51: for i ← 1 to N do 

52: if t == 1 then 

53:inv[i] ← x[i][1] - d[i][1] 

54: else 

55:inv[i] ← inv_prev[i] + x[i][t] - d[i][t] 

56: end if 

57: tailDemand ← 0 

58: for k ← t to T do  

59: tailDemand ← tailDemand + d[i][k]  

60:end for 

61: SIR[i] ← inv[i] + tailDemand 

62: inv_prev[i] ← inv[i] 

63: SIRall ← SIRall + SIR[i] 

64: end for 

65: slack ← SIRall - U[t] 

66:end while 

67: end for 

68: // Calculate total cost 

69: TotalCost ← 0 

70: for i ← 1 to N do 

71:for t ← 1 to T do 

72: if x[i][t] > 0 then 

73: TotalCost ← TotalCost + f[i][t]  

74: end if 

75: TotalCost ← TotalCost + inv_prev[i] * h[i][t] 

76:end for 

77: end for 

78: return x, TotalCost 

79: end procedure 

In line no. 16, pseudo code of dynamic programming based on network flow can be shown in 

Appendix A.1. The logical sequence including selection rules of the push method can be explained 

in Figure 1.  
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In Fig. 1, the algorithm stops computing if the difference (diff) between the sum of  

 previous inventory plus replenishment quantity (SIRalitem) and the storage capacity (U) for  

 each period is less than or equal to zero. This selection rule determines whether to perform  

 the next step of the algorithm. From the pseudo code, dynamic programming  

 based on network flow algorithm has time complexity 
2

max
( )O NTD  that depends on  

 Dmax, the largest demand value across all items i and all time periods t. Therefore, large  

 demand values significantly influence the running time when solving large-scale prob 

 lems. The push algorithm has time complexity  ( )O N T W  where W is number of it- 

 erations of the while loop per period. If the total inventory exceeds the storage capacity  

 by a large amount, many iterations (W) will be needed to reduce the overcapacity ;other 

 wise, iteration stops. Therefore, in large-scale problems, inventory overcapacity is likely,  

 causing the proposed algorithm to have a high running time.  

 The replenishment plan generated by the push method can be improved to re 

 duce the total cost using the pull method, which will be discussed in the next section. 

3.2. The Pull Method 

 The objective of this method is to improve the replenishment plan, which is com 

 puted by the push method. Some replenishments may be returned from the existing pe 

 riod to the previous period so that the sum of inventory and replenished quantity of all  

 items for the previous period is added to equal its storage capacity. The procedure for the  

 pull method shows the pseudocode of algorithms as follows 

 1: PROCEDURE Pull method 

 2: INPUT: 

 3: X [i, t]← initial replenished quantity for item i in period t  

 computed by the push method  

 4: demand[i, t]← demand of item i in period t  

 5: SIR[i, t] ← the sum of previous inventory and replenished  

 quantity of item i in period t  

 6: U← storage capacity for period t  

 7: w[i, t] ←weight (or size) of item i in period t  

 8: T←total number of periods  

 9: OUTPUT: 

 10: replenishment plan[i, t] ←adjusted replenished quantities  

 11: inventoryCost ←updated total inventory cost  

 12: // Compute initial aggregate SIR per period 

 13: FOR t ← 1 TO T DO 

 14:SIRallitems[t] ← Σᵢ SIR[i, t] 

 15:SIRallitems_SC[t] ← Σᵢ (SIR[i, t] · w[i, t]) 

 16: END FOR 

 17: // Find periods with min/max aggregate SC usage 

 18: Tmin ← arg minₜ SIRallitems_SC[t] 

 19: Tmax ← arg maxₜ SIRallitems_SC[t] 

 20: // Loop until the lightest-loaded period index is not after the heaviest 

 21: IF Tmax< Tmin DO  

 22:// 1) Move the smallest-rate demand from Tmin to Tmax 

 23:i_min ← arg minᵢ SIR[i, Tmin] 

 24:qty ← demand[i_min, Tmin] 

 25:X[i_min, Tmax] ← X[i_min, Tmin] + qty 

 26:X[i_min, Tmin] ← X[i_min, Tmin] - qty 

 27:// 2) Rebalance and update all metrics 
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 28:CALL UpdateMetrics() 

 29:// 3) If Tmax still exceeds capacity, boost its replenishment 

 30:IF SIRallitems_SC[Tmax] > U THEN 

 31: i_max ← arg maxᵢ SIR[i, Tmax] 

 32: adjustment ← ⌈SIRallitems_SC[Tmax] / w[i_max, Tmax]⌉ 

 33: X[i_max, Tmax] ← X[i_max, Tmax] + adjustment 

 34: CALL UpdateMetrics() 

 35:END IF 

 36:// 4) Recompute Tmin and Tmax for next iteration 

 37:Tmin ← arg minₜ SIRallitems_U[t] 

 38:Tmax ← arg maxₜ SIRallitems_U[t] 

 39: END IF 

 40: RETURN (X, inventoryCost) 

 41: END PROCEDURE 

 42: // Subroutine to recalculate inventory levels, SIR, aggregate metrics, and cost 

 43: PROCEDURE UpdateMetrics 

 44: FOR t ← 1 TO T DO 

 45:FOR each item i DO 

 46: // Recompute SIR[i, t] based on new replenishment qty and demand 

 47: SIR[i, t] ← ComputeSIR(X[i, t], demand[i, t]) 

 48:END FOR 

 49:SIRallitems[t] ← Σᵢ SIR[i, t] 

 50:SIRallitems_U[t] ← Σᵢ (SIR[i, t] · w[i, t]) 

 51: END FOR 

 52: inventoryCost ← ComputeTotalCost(X, demand, holdingCosts, order 

 ingCosts) 

 53: END PROCEDURE 
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In Fig. 2, the algorithm proceeds to compute an improved solution if the index of the  

 period with the minimum diff (Tmin) is greater than the index of the period with the max 

 imum diff (Tmax). This selection rule determines whether to perform the next step of the  

 algorithm. The push algorithm has time complexity O(N2T2) when L N T , where L is  

 the number of loop. The total running time depends on how many iterations L the algo 

 rithm performs to balance the load between periods. If L grows large (close to N·T in the  

 worst case), running time can grow quadratically. To explain the heuristic algorithm, the  

 authors use a numerical example to demonstrate it in the next section. 

4. A Numerical Example 

 This study presents the simple example by Gutiérrez et al. [17] to explain the procedure for 

both proposed methods. Data from this example is shown in Table 2. 

Table 2. A simple example by Gutiérrez et al. [17]. 

Periods t 1 2 3 4 5 

Ut 756 673 633 758 608 

Item 1,w1=1      

 d1,t 115 114 96 106 136 

D1,t 567 452 338 242 136 

f1,t 595 100 969 240 945 

p1,t 4 7 9 10 4 

h1,t 1 1 1 1 1 

Item 2,w1=4      

 d2,,t 87 52 111 142 118 

D2,t 510 423 371 260 118 

f2,t 255 696 125 637 249 

p2,t 3 3 0 8 4 

h2,t 1 1 1 1 1 

4.1. The Initial Solution 

The optimal replenished plan for each item, which is independent, can be solved by the network 

flow based on a dynamic programming approach [22]. Thus, the optimal replenished plan is the 

initial solution for this example, as shown in Table 3. 

Table 3. Initial solution for each item. 

Periods t Item 1 2 3 4 5 

Replenished plan  

1 

567 0 0 0 0 

 

2 

139 0 371 0 0 

Inventory  

1 

452 338 242 136 0 

 

2 

52 0 260 118 0 
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Inventory cost  

1 

4x567+1x452+595 

=3,315 

338 242 136 0 

 

2 

3x139+1x52+255 

=724 

0 385 118 0 

Sum of inventory and replenishment (SIR)  

1 

567x1=567 452 338 242 1

3

6 

 

2 

139x4=556 208 1,484 1,040 4

7

2 

SIRallitems 1,123 660 1,822 1,282 6

0

8 

SC 756 673 633 758 6

0

8 

SIRallitems_U +367 -13 1,189 524 0 

4.2. Solution of the Push Method 

 From Table 3, SIRallitems values of periods 1, 3, and 4 are positive and their SIRallitems  

values are certainly excess. Next, the replenished quantity for period one is moved as  

follows.  

Period 1 

Iteration 1  

1. Select item 1, which has the maximum SIR (SIRmax) of 567, and find period tzero = 5 on item 1, 

which has an inventory cost of zero.  

2. Insert the replenished quantity, which equals the demand of item 1 for period tzero =  

3.  136 units, on a replenished plan on item 1 for period tzero. For balance demand, de  

4.  crease the replenishment of item 1 for period 1 to 567-136 =431 units. 

5. Balance a replenished plan and update inventory, SIR,SIRallitems, SIRallitems_U, and total inventory 

cost (see Table 4). 

6. SIRallitems_U for period 1 is reduced to 987-756 = +231. Afterward, go to steps 1-4. 

Iteration 2  

1. Select item 2, which has SIRmax of 556, and find period tzero = 2 on item 2, which has an inventory 

cost of zero.  

2. Insert the replenished quantity, which equals the demand of item 2 for period tzero = 52 units, on 

a replenished plan on item 2 for period tzero. For balance demand,  

3. decrease the replenishment of item 2 for period 1 to 139-52 =87 units. 

4. Balance a replenished plan and update inventory, SIR, SIRallitems, SIRallitems_U, and  

5. total inventory cost (see Table 5). 

6. SIRallitems_U for period 2 is still reduced to 779-756 = +23. Then, go to steps 1- 4. 

Iteration 3  

1. Select item 1, which has SIRmax of 431, and find period tzero = 4 on item 1, which has an inventory 

cost of zero. 
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2. Insert the replenished quantity, which equals the demand of item 2 for period tzero= 106 units, on 

a replenished plan on item 1 for period tzero. For balance demand, decrease the replenishment of 

item 1 for period 1 to 431-106 = 325 units. 

3. Balance a replenished plan and update inventory, SIR,SIRallitems, SIRallitems_U, and total  

4. inventory cost (see Table 6). 

5.  SIRallitems_U for period 1 is reduced to 673-756 = -83. Stop the iteration and select period 3, which 

has the SIRallitems_U value of +947. Proceed to steps 1-4 for period 3. 

Period 3 

Iteration 1 

1. Select item 2, which has SIRmax of 1,484, and find period tzero = 5 on item 2, which has  

2. an inventory cost of zero.  

3. Insert the replenished quantity, which equals the demand of item 2 for period tzero=118 units, on 

a replenished plan on item 2 at period tzero. For balance demand, decrease the replenishment of 

item 2 for period 3 to 371-118 = 253 units. 

4. Balance a replenished plan and update inventory, SIR,SIRallitems, SIRallitems_U,  

5. and total inventory cost (see Table 7). 

6.  SIRallitems_U for period 3 is still reduced to 1,108-633 = +475. Afterward, go to steps 1- 4. 

Iteration 2 

1. Select item 2, which has SIRmax of 348, and find period tzero = 4 on item 2,  

2. which has an inventory cost of zero.  

3. Insert the replenishment, which equals the demand of item 2 at period tzero =  

4. 142 units on a replenished plan on item 2 at period tzero. For balance demand, decrease the 

replenishment of item 2 at period 3 to 253-142 = 111 units. 

5. Balance a replenished plan and update inventory, SIR,SIRallitems, SIRallitems_U,  

6. and total inventory cost (see Table 8). 

7. SIRallitems_U for period 3 is reduced to 540-633= = -93. Stop the loop at  

8. period 3. Then, find the next SIRallitems_U to be positive. However, all SIRallitems_U values are 

negative and zero (-83, -255, -93, -84, 0). Thereafter, stop all iterations of the push method.  

Table 4. Execution flow of iteration 1 for period 1 using the push method. 

Periods t Item  1  2  3  4  5 

Replenished plan  1 567-136=431 0 0 0 136 

 2 139 0 371 0 0 

Ending  

inventory 

 1 316 202 106 0 0 

 2 52 0 260 118 0 

Inventory cost  1 4x431+1x316+595 

=2,635 

202 106 0 1,489 

 2 724 0 385 118 0 

Sum of  

inventory and  

replenishment (SIR) 

 1 1x431=431 316 202 106 136 

2 556 208 1,484 1,040 472 

SIRallitems  987 524 1,686 1,146 608 

SC  756 673 633 758 608 

SIRallitems_U  +231 -

149 

+1,053 +388 0 

Table 5. Execution flow of iteration 2 for period 1 using the push method. 
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Periods t Item 1 2 3 4 5 

Replenished plan 1 431 0 0 0 136 

2 
139-52 

=87 
52 371 0 0 

Ending  

inventory 

1 316 202 106 0 0 

2 0 0 260 118 0 

Inventory cost 1 2,635 202 106 0 1,489 

2 
3x87+255 

=516 

3x52+696 

=852 

3x371+1x260+125 

=385 
118 0 

Sum of  

inventory and  

replenishment (SIR) 

1 431 316 202 106 136 

2 4x87=348 4x87=208 1,484 1,040 472 

SIRallitems  779 524 1,686 1,146 608 

SC  756 673 633 758 608 

SIRallitems_U  +23 -149 +1,053 +388 0 

Table 6. Execution flow of iteration 3 for period 1 using the push method.  

Periods t Item 1 2 3 4 5 

Replenished plan 1 431-106=325 0 0 106 136 

2 87 52 371 0 0 

Ending inventory 1 210 96 0 0 0 

2 0 0 260 118 0 

Inventory cost 1 4x325+1x210+595 

=2,105 

96 0 1,300 1,489 

2 516 852 385 118 0 

Sum of 

inventory and replenishment (SIR) 

1 325 210 96 106 136 

2 348 208 1,484 1,040 472 

SIRallitems  673 418 1,580 1,146 608 

SC  756 673 633 758 608 

SIRallitems_U  -83 -

255 

+947 +388 0 

Table 7. Execution flow of iteration 1 for period 3 using the push method. 

Periods t Item 1 2 3 4 5 

Replenished plan 1 325 0 0 106 136 

2 87 52 371-118=253 0 118 

Ending inventory 1 210 96 0 1,300 1,489 

2 0 0 142 0 0 

Inventory cost 1 2,105 96 0 1,300 1,489 

2 516 852 1x142+125=267 0 721 

Sum of 

inventory and replenishment (SIR) 

1 325 210 96 106 136 

2 348 208 4x253=1,012 568 472 

SIRallitems  673 418 1,108 674 608 

SC  756 673 633 758 608 
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SIRallitems_U  -83 -

255 

+475 -84 0 

Table 8. Execution flow of iteration 2 for period 3 using the push method. 

Periods t Item 1 2 3 4 5 

Replenished plan  1 325 0 0 106 136 

 2 87 52 253-142=111 142 118 

Ending  

inventory 

 1 210 96 0 0 0 

 2 0 0 0 0 0 

Inventory cost  1 2,105 96 0 1,300 1,489 

 2 516 852 125 8x142+637 

 = 1,773 

721 

Sum of  

inventory and 

replenishment 

(SIR) 

 1 325 210 96 106 136 

2 348 208 4x111=444 568 472 

SIRallitems 673 418 540 674 608 

SC 756 673 633 758 608 

SIRallitems_U -83 -255 -93 -84 0 

From Table 8, the push method can generate a total inventory cost equal to 8,977. However, the 

GAMS/CPLEX solver can execute this problem with an optimal solution of 8,521. The gap between 

these solutions is 
8,977 8,521

x100%
8,521

 − 
 
 

= 5.35%. This gap is still high. Therefore, this study proposes 

the pull method to improve the solution. 

4.3. Solution of the Pull Method 

From Table 8, all SIRallitems_U are negative or zero. Therefore, the pull method can generate an 

improved replenished plan. The procedure for this method can beexplained as follows. 

1. Search the SIRallitems_Umin and SIRallitems_SCmax to be -255 and -83 for periods 2 and 1 from Table 8. 

So,the index of both periods is tmin=2 and tmax=1. So, tmin is more than tmax. 

2. Find the SIRmin for period tmin to be 208 on item 2 from Table 8. Return the replenishment of item 

2 at period 2 to add the original replenished quantity on item 2 for period tmax=1. Thus, the new 

amount replenished quantity of item 2 for period 1 is 87+52 = 139 units. For balance demand, the 

replenished quantity of item 2 for period tmin is reduced to zero (see Table 9). 

3. Recalculate SIR,SIRallitems, SIRallitems_U, and total inventory cost (see Table 9). 

4. SIRallitems_U of item 2 for period 1 (= +125) is still a positive number. Thus, search  

 the item with SIRmax (= 325) excluding item 2 at period 1, to be 1. 

5. For reducing SIRallitems_U to zero at period 1, the SIRallitems_U is divided by the  

 weight of item 1 for period 1 (+125 / 1=125) on item 1 at period tmin =2 to be 0+125 = 125 units 

(see Table 9). For balance demand, reduce the replenishment of item 1 in the previous period (t=1) to 

be = 325-125 = 200 units. 

6. Recalculate SIR,SIRallitems, SIRallitems_U, and total inventory cost (see Table 10). 

7. SIRallitems_U of period 1 is zero and SIRallitems_U of period 2 (tmin) is still -255 

 (see Table 10), which is the same as Table 9.  

8. Find the SIRallitems_Umin and SIRallitems_Umax to be -255 and -84 in periods 2 and 3 from  

 Table 10. The index of both periods is tmin=2 and tmax=3. So, tmin is less than tmax. Then,  
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 stop the iteration. 

Table 9. Execution flow in steps 1 to 4 using the pull method. 

Periods t Item 1 2 3 4 5 

Replenished  

plan 

1 325 0 0 106 136 

2 
87+52 

=139 

52-

52 

=0 

111 142 118 

Ending  

inventory 

1 210 96 0 0 0 

2 52 0 0 0 0 

Inventory cost 1 2,105 96 0 1,300 1,489 

2 
3x139+1x52+255 

= 724 
0 125 1,773 721 

Sum of 

inventory and 

replenishment 

(SIR) 

1 
1x325 

=325 
210 96 106 136 

2 
4x139 

=556 
208 444 568 472 

SIRallitems  881 418 540 674 608 

SC  756 673 633 758 608 

SIRallitems_U  +125 -

255 

-93 -84 0 

Table 10. Execution flow in steps 1 to 4 using the pull method.  

Periods t Item 1 2 3 4 5 

Replenished  

plan 
1 

325-125 

=200 
0+125=125 0 106 136 

2 139 0 111 142 118 

Ending  

inventory 

1 85 96 0 0 0 

2 52 0 0 0 0 

Inventory cost 
1 

4x200+1x85+595 

=1,480 
1,071 0 1,300 1,489 

2 724 0 125 1,773 721 

Sum of  

inventory and  

replenishment (SIR) 

1 
1x200 

=200 
210 96 106 136 

2 556 208 444 568 472 

SIRallitems  756 418 540 674 608 

SC  756 673 633 758 608 

SIRallitems_U  0 -255 -93 -84 0 

Therefore, the inventory cost is effectively improved to 8,683. The GAMS/CPLEX  

solver can calculate the optimal solution of 8,521 units. Both the proposed heuristic 

and Gutiérrez et al. [17] can also calculate the approximate solution the same as 8,683 

and the smoothing method of Nixon and Poh [27] can run about 9,494 (see Table11). Its  
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replenished plan is shown in Table 11. 

Table 11. Replenished plan solved by Gutiérrez et al. [17] and smoothing method [27]. 

 Gutiérrez et al. [17] 
Inventory 

cost 

 Period 1 2 3 4 5  

 Item 1 200 125 0 106 136 5,340 

2 139 0 111 142 118 3,343 

Total inventory cost 8,683 

Nixon and Poh [27] Inventory 

cost 

 Period 1 2 3 4 5  

 Item 1 115 210 0 106 136 5,510 

2 87 52 111 142 118 3,987 

Total inventory cost 9,497 

From Tables 10 and 11, the gaps between the proposed heuristic, Gutiérrez et al.  

[17], the smoothing method [27], and GAMS/CPLEX are 1.9 %, 1.9 %, and 11.45 %, re 

spectively. Both the proposed heuristic and Gutiérrez et al. [17] execute approximately  

five replenishment orders, whereas the smoothing method executes about six. Conse 

quently, the smoothing method incurs a higher total inventory cost than the other ap 

proaches due to the increased ordering cost. For further testing, Minner[18] recom 

 mended generating test instances as follows: products varied between 3 and 10 and peri 

 ods varied between 4 and 18, demands are drawn from a uniform (or normal) distribution  

 over a specified range (e.g.\ U[0,100], setup costs  are drawn similarly (e.g.\ U[50,150],  

 unit production costs are drawn from U[1,10], holding costs are held constant h =1,  

 weights are drawn from U[1,N], and warehouse capacity bounds are taken as  

 
+

= =

 
= = +  

 
 , , 1

1 1

, ( )
N N

i i t t i i t
n n

A w d U A B w D  a fixed fraction B =10%. In the format for the stor 

 age capacity, parameter A is the sum of the demand onall items at period t with the  

 lower bound (B=1%). Authors generate the example data following Minner [18] proce 

 dure as shown in Table 12. 

Table 12. A simple example by formatted data of Minner [18]. 

Periods t 1 2 3 4 5 6 

Ut 1161 529 768 973 721 806 

Item 1,w1=2  

 d1,t 44 47 64 67 67 9 

f1 96 

p1 6 

h1 1 

Item 2,w2=5  

 d2,,t 83 21 36 87 70 88 

f2 74 

p2 10 
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h2 1 

Item 3,w1=4  

 d,3,t 88 12 58 65 39 87 

f3 67 

p3 9 

h3 1 

A instance of Minner [18] was computed by heuristics and the resulting solutions are  

 presented in Table 13.  

Table 13. Total cost and gap solution obtained by the proposed heuristic, Gutiérrez et al. [17] and smoothing 

[27]. 

Heuristics/MIP solver GAMS/ 

CPLEX 

Push and Pull Gutiérrez et al. 

[17] 

Smoothing 

[27] 

Total cost 9,928 9,928 10,054 10,030 

% Gap solution - 0 1.27 1.02 

No. of additional 

orders 

- 3 4 4 

In Table 13, the push-and-pull heuristic achieves an optimality gap of approximately  

 0 %, outperforming Gutiérrez et al. [17], which has a gap of 1.27 %, and the smoothing method  

 [27], with a gap of 1.02 %. The proposed heuristic places about three replenishment orders,  

 whereas both Gutiérrez et al. [17] and the smoothing method place around four. Conse 

 quently, the push-and-pull heuristic’s performance is further validated in Section 5 on a set  

 of randomly generated problem instances. 

  

5. Computational Result  

For confidence in using heuristics, this study compares the solutions for the  

 proposed heuristic, algorithm by Gutiérrez et al., and GAMS/CPLEX solver. The set of  

 randomly generated problems is identical to the cost framework of Minner [18]. Each  

 problem runs on formatting parameters, as shown in Table 14. 

Table 14. Formatting parameters. 

Number of periods, T  6 12 24 

Number of items, N 

 

10,20,40,60,80,…,160 10,20,30,…,80 10,20,…,160 

Number of instances 10 10 5 

Weight distribution, iw  Uniform, ~ [1,10]
i

w  

Demand distribution, ,i td   Uniform, ,
~ [30,150]

i t
d  

Ordering cost distribution, ,i tf  Uniform, ,
~ [100,150]

i t
f  
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Inventory bounds, Ut 
 

+
= =

 
= = +  

 
 , , 1

1 1

, ( )
N N

i i t t i i t
n n

A w d U A B w D , 

B = {1%,5%,10%, 20%} 

C o s t  o f  p r o c u r i n g  r a w  m a t e r i a l s ,  p i , t  =  z e r o  a n d  h o l d i n g  c o s t ,  h i , t  =  1  

  

 The parameter B is the additional capacity generated from the accumulative demand  

of period t+1 with the upper bound. If the upper bound is high, such as B = 20%, the  

problem can be solved more easily. Otherwise, it is more difficult to address.  

This study implements MATLAB 2024 A software to solve the network flow  

 algorithm based on dynamic programming for the initial solution, the proposed  

 algorithm [28], and Gutiérrez et al.’s algorithm [29].The solution for the MIP model is  

generated by GAMS 46.3.0 licensed for continuous and discrete problems. An HP  

Pavilion X360 Notebook running Windows 10 with an Intel Core i7 64-bit processor at  

1.99 GHz and 24 GB of RAM was used to execute both the heuristics and MIP formula 

tion. MATLAB software uses general-purpose programming that is more flexible and al 

lows users to apply specified code. For generating the optimization solution, the  

GAMS/CPLEX solver is concentrated on optimization, which is less flexible but powerful  

for LP, MIP, and NLP problems [31].  

 The solution for the GAMS/CPLEX solver compares all the results of the experi 

ment. It can be explained with the solution gap equation below. 

 

 

Solution of heuristic-Solution of GAMS/CPLEX
Solution gap (%) = x 100

Solution of GAMS/CPLEX

 
 
   

5.1. Experiment Results 

This study divides the category for the random example into three sub-categories: A small-scale 

problem based on the number of periods N =6, a medium-scale problem based on the number of 

periods N=12, and a large-scale problem based on the number of periods N=24. This experiment 

shows their solution gaps and computation times varying the parameter B in Tables 15-18, as follows 

Table 15. Computation times and solution gaps with near-minimal storage capacity using parameter B = 1%. 

NxT 

Avg. 

Push & 

pull  

heuristi

c time 

(s.) 

Avg.  

Gutiérr

ez’s 

heuristi

c time 

(s.) 

Avg. 

GAM

S/CPL

EX 

time 

(s.) 

Min. gap (%) Max. gap (%) Avg. gap 

(%) 

Push 

& 

pull 

heuri

stic 

Gutiérr

ez ’s 

heuristi

c 

Pull 

& 

push 

heuri

stic 

Gutiérr

ez ’s 

heuristi

c 

Pull 

& 

push 

heuri

stic 

G

ut

ié

rr

ez 

’s 

he

ur

ist

ic 

10x6 
6.26 6.24 0.49 0.00 0.21 2.77 3.78 0.57 

1.

89 
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20x6 6 
11.45 11.16 0.88 0.38 1.03 5.29 8.30 

1.

04 

40x6 
21.90 21.24 2.56 0.28 2.87 0.88 5.02 0.72 

3.

48 

60x6 
32.48 30.99 5.31 0.44 2.24 1.05 4.53 0.82 

3.

57 

80x6 
44.25 41.81 7.27 0.67 2.65 1.13 4.47 0.91 

3.

44 

100x6 
56.24 51.91 11.92 0.47 3.14 1.17 4.99 0.92 

3.

82 

120x6 
69.42 60.82 12.28 0.55 2.90 1.15 4.60 0.89 

3.

64 

140x6 
84.99 71.33 15.84 0.52 3.03 1.76 5.05 0.94 

4.

07 

160x6 
100.72 81.98 57.13 0.04 2.98 8.51 11.90 2.08 

5.

09 

 36.73 34.53 6.26     
1.16 

3.

99 

10x12 
61.85 64.78 0.85 0.22 2.54 1.32 7.27 0.79 

5.

36 

20x12 
131.74 140.63 3.67 0.73 2.44 1.68 7.31 1.23 

4.

53 

30x12 
204.64 216.34 8.57 1.24 4.21 1.93 7.17 1.51 

5.

66 

40x12 
260.38 273.55 39.66 1.08 4.14 1.89 7.85 1.42 

5.

54 

50x12 
328.35 321.77 74.41 1.15 4.89 1.77 6.64 1.39 

5.

71 

60x12 
409.28 458.70 102.65 1.18 4.98 1.90 6.16 1.39 

5.

65 

70x12 
495.31 679.99 380.50 0.23 4.97 1.46 6.77 1.24 

5.

61 

80x12 
520.24 537.58 2388.1 1.21 4.22 1.48 6.56 1.30 

5.

67 

 271.5 370.23 333.20     
1.33 

5.

57 

10x24 

3,037.37 3,429.14 2.31 0.95 6.04** 1.58 7.73** 1.27 

6.

89

** 

20x24 

6,507.96 5,765.73 59.68 1.58 7.16* 2.20 7.16* 1.83 

7.

16

* 
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30x24 

7,303.46 8,694.35 

3,549.

2 1.11 7.42* 2.21 7.42 1.84 

7.

42

* 

40x24 12,903.5

5 

13,484.4

0 

57,788

.2 0.91 7.49* 2.07 7.49* 1.54 

7.

49

* 

 
5,994.42 5,357.88 12,280 

    
1.66 

7.

30 

 *,** One and two instances 10x6-160x6 small-scale problem, 10x12-80x12 medium-scale problem and 10x24-40x24 

large-scale problem. 

Table 16. Computation times and solution gaps when parameter B = 5%.  

NxT 

Avg. 

Push & 

pull  

heuristic 

time (s.) 

Avg.  

Gutiérre

z’s 

heuristic 

time (s.) 

Avg. 

GAMS

/CPLE

X time 

(s.) 

Min. gap (%) Max. gap (%) Avg. gap (%) 

Push 

& pull 

heuris

tic 

Gutiérre

z ’s 

heuristic 

Pull & 

push 

heuris

tic 

Gutiérre

z ’s 

heuristic 

Pull & 

push 

heuris

tic 

Gutiérre

z ’s 

heuristic 

10x6 5.65 5.67 0.56 0.00 0.77 3.33 6.54 1.39 3.96 

20x6 9.77 10.36 1.04 0.89 1.66 2.35 9.30 1.59 5.33 

40x6 21.41 23.14 5.91 1.23 3.27 2.23 8.20 1.72 6.46 

60x6 29 31.99 10.34 1.00 5.13 2.32 9.23 1.73 7.31 

80x6 35.13 36.28 27.42 1.00 3.98 2.59 8.53 1.76 6.88 

100x6 44.65 46.03 33.74 0.92 5.84 1.80 8.29 1.60 6.83 

120x6 53.20 54.55 29.79 1.48 5.53 2.11 7.68 1.58 6.71 

140x6 63.23 64.96 57.33 0.92 4.89 1.85 6.95 1.53 6.23 

160x6 72.58 76.85 33.79 0.98 5.48 2.88 8.21 1.70 6.29 

 29.11 30.33 18.43     1.64 6.56 

10x12 71.52 62.86 0.89 0.62 0.96 2.49 12.53 1.47 7.01 

20x12 142.7 132.49 2.33 0.73 2.18 1.62 7.89 1.21 4.69 

30x12 189.3 213.94 3.90 0.65 1.50 1.35 7.76 1.02 4.91 

40x12 254.2 256.25 7.00 0.63 2.90 1.23 6.24 0.93 4.38 

50x12 319.9 339.75 14.92 0.64 0.13 1.01 5.38 0.88 3.96 

60x12 417.6 422.97 18.73 0.66 2.91 1.27 5.62 0.93 4.30 

70x12 498.1 526.02 36.40 0.69 2.99 1.18 5.36 0.87 3.94 

80x12 523.7 519.15 24.03 0.67 2.11 1.15 6.65 0.82 4.01 

 272.22 368.08 12.03     0.92 4.43 

10x24 1,398.7 1,578.05 0.45 0.14 1.68 1.68 5.01 0.94 3.19 

20x24 6,592.9 7,140.05 6.22 0.31 1.62 0.79 3.08 0.59 2.48 

30x24 9,608.8 9,364.59 47.16 0.24 1.06 0.80 2.46 0.58 1.95 

40x24 12,824.7 13,504.5 61.94 0.22 1.91 0.58 3.07 0.40 2.60 

 8,117.58 8,465.86 5.98     0.55 2.41 

10x6-160x6 small-scale problem, 10x12-80x12 medium-scale problem and 10x24-40x24 large-scale problem . 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 June 2025 doi:10.20944/preprints202506.0178.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/


 25 of 41 

 

Table 17. Computation times and solution gaps when parameter B = 10%. 

NxT 

Avg. 

Push & 

pull  

heuristi

c time 

(s.) 

Avg.  

Gutiérr

ez’s 

heuristi

c time 

(s.) 

Avg. 

GAM

S/CPL

EX 

time 

(s.) 

Min. gap (%) Max. gap (%) Avg. gap (%) 

Push 

& pull 

heuris

tic 

Gutiérre

z ’s 

heuristic 

Pull & 

push 

heuris

tic 

Gutiérre

z ’s 

heuristic 

Pull & 

push 

heuris

tic 

Gutiérre

z ’s 

heuristic 

10x6 5.83 5.64 0.31 0.00 0.02 1.71 12.28 0.84 4.93 

20x6 10.10 10.19 0.42 0.44 0.73 1.62 13.44 1.11 5.00 

40x6 20.40 22.22 2.35 0.51 2.29 2.16 6.55 1.12 4.66 

60x6 29.51 28.04 2.04 0.54 2.12 1.88 7.13 1.10 3.97 

80x6 35.23 36.34 4.82 0.50 2.55 1.55 5.87 1.01 4.30 

100x

6 
44.68 45.50 7.19 0.48 2.00 1.28 6.22 0.87 4.06 

120x

6 
54.61 54.74 11.24 0.63 2.19 4.05 5.38 1.12 4.06 

140x

6 
62.91 63.74 7.35 0.58 2.65 1.06 5.10 0.80 3.40 

160x

6 
73.68 73.68 7.30 0.56 2.45 2.04 5.25 0.96 3.63 

 29.25 29.6 3.97     0.93 3.92 

10x1

2 
66.41 62.41 0.45 0.04 0.31 1.74 4.26 0.74 1.74 

20x1

2 
141.27 132.11 0.69 0.25 0.25 0.86 4.26 0.57 1.58 

30x1

2 
187.59 210.50 1.25 0.39 1.17 1.11 3.27 0.59 1.86 

40x1

2 
264.08 256.14 2.23 0.36 0.45 0.74 2.32 0.48 1.42 

50x1

2 
325.22 317.78 2.91 0.26 1.02 0.64 2.92 0.46 1.67 

60x1

2 
414.79 408.41 3.13 0.28 0.20 0.63 3.22 0.47 2.01 

70x1

2 
496.28 495.38 5.75 0.31 1.43 0.77 2.73 0.48 1.98 

80x1

2 
517.69 524.16 6.43 0.32 1.41 0.61 2.33 0.45 1.85 

 272.6 358.76 2.58     0.49 1.81 

10x2

4 
3,177.71 3,508.17 0.53 1.60 1.08 2.52 2.65 0.56 1.74 

20x2

4 
6,924.87 7,841.10 1.72 0.98 0.88 1.90 1.74 0.45 1.15 
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30x2

4 
9,188.50 9,681.13 2.38 0.14 0.28 0.45 1.82 0.31 1.10 

40x2

4 

13,527.0

6 

13,764.7

0 
3.32 0.16 1.03 0.65 1.78 0.34 1.24 

 8,278.51 8,773.25 2.14     0.38 1.23 

10x6-160x6 small-sclae problem, 10x12-80x12 medium-scale problem and 10x24-40x24 large-scale problem. 

Table 18. Computation times and solution gaps when parameter B = 20 %. 

NxT 

Avg. 

Push & 

pull  

heuristi

c time 

(s.) 

Avg.  

Gutiérr

ez’s 

heuristi

c time 

(s.) 

Avg. 

GAM

S/CPL

EX 

time 

(s.) 

Min. gap (%) Max. gap (%) Avg. gap (%) 

Push 

& pull 

heuris

tic 

Gutiérre

z ’s 

heuristic 

Pull & 

push 

heuris

tic 

Gutiérre

z ’s 

heuristic 

Pull & 

push 

heuris

tic 

Gutiérre

z ’s 

heuristic 

10x6 5.85 5.71 0.29 0.00 0.65 2.50 4.83 0.83 2.48 

20x6 10.02 10.25 0.34 0.09 0.14 1.51 2.18 0.68 1.18 

40x6 22.22 22.94 1.74 0.26 1.07 1.29 2.40 0.57 1.76 

60x6 29.54 29.66 0.87 0.20 1.21 1.14 2.34 0.60 1.75 

80x6 35.24 35.71 0.90 0.44 1.18 1.03 2.17 0.62 1.71 

100x

6 
45.18 45.34 2.02 0.31 1.14 0.84 2.07 0.61 1.71 

120x

6 
53.90 55.09 1.87 0.36 1.53 0.89 1.53 0.65 1.72 

140x

6 
62.99 64.38 1.66 0.47 1.67 0.92 2.75 0.67 1.97 

160x

6 
73.13 74.91 1.81 0.35 1.53 1.66 2.82 0.76 1.87 

 37.56 38.22 1.28     0.66 1.79 

10x1

2 
36.14 32.01 0.28 0.00 0.00 1.07 2.34 0.39 0.65 

20x1

2 
71.55 62.07 0.45 0.00 0.00 0.88 1.65 0.34 0.91 

30x1

2 
185.60 205.13 0.52 0.12 0.25 0.76 1.42 0.37 0.87 

40x1

2 
264.97 258.89 0.70 0.17 0.60 0.49 1.24 0.36 0.92 

50x1

2 
330.85 322.59 1.20 0.19 0.61 0.53 2.38 0.35 1.03 

60x1

2 
491.05 501.27 3.97 0.20 0.61 0.47 1.30 0.33 0.94 

70x1

2 
491.05 501.27 3.97 0.20 0.61 0.47 1.30 0.33 0.94 
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80x1

2 
515.24 541.88 2.10 0.25 0.59 0.44 1.16 0.34 0.84 

 264.63 358.40 1.61     0.36 0.87 

10x2

4 
3,018.94 3,196.81 0.63 0.82 0.08 1.64 1.07 0.34 0.60 

20x2

4 
7,084.67 6,422.94 1.14 0.17 0.16 2.41 0.73 0.28 0.47 

30x2

4 
9,889.41 9,612.80 1.40 0.15 0.38 0.61 0.75 0.31 0.57 

40x2

4 

13,706.4

9 

12,863.7

7 
1.78 0.13 0.41 0.31 0.73 0.20 0.56 

 8,506.37 8,101.12 2.12     0.27 0.55 

10x6-160x6 small-scale problem, 10x12-80x12 medium-scale problem and 10x24-40x24 large-scale problem. 

 

Figure 3. Average solution gap of both heuristics under storage capacities when parameter B=1,5,10 and 20%. 

5.1. Solution Gap  

In Figure 3, the average solution gaps for the push and pull algorithm on large-scale  

 problem are 0.55%,0.38%, and 0.20% for parameter B = 5%, 10% and 20%, respectively.  

 Gutiérrez et al.’s heuristic generates solution gaps of about 2.41%, 1.23% and 0.55 %.  

 When comparing the solution gaps, the proposed heuristic performs better than Gutiér 

 rez et al.’s heuristic. The performance of the solution gap depends on the value of pa 

 rameter B. If parameter B increases, the solution gap is lower . The proposed algorithm  

 can determine the number of replenished quantities to move relaxed while satisfying all  

 demands with a high parameter B. Gutiérrez et al.’s heuristic sometimes moves the  

replenished quantity from any period to period t+k, when {1,2,..., }k T t − .Ordering  

cost must be paid more frequently when inserting the replenished quantity for  

period t+k in more time, causing total inventory cost to grow. Unfortunately, the  

amount of SIRallitem _U for period t does not also decline. While the push and  

pull heuristic moves each replenished quantity from period t to a consecutive  

period only with zero inventory cost, it can certainly reduce the replenished  
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quantity for period t so that the amount of SIRallitems _U reduces.  

5.2. Worst Cases Analysis 

 For the robust condition of the push & pull heuristic, this study introduces  

the near-minimal storage capacity. The performance of a heuristic depends on the value  

of the storage capacity. Suppose each storage capacity is likely near the sum of demand  

for each period, called near-minimal storage capacity. Moving the partial or whole re 

plenished quantities to the next period is difficult.  

 In Table 15, it is difficult for Gutiérrez et al.’s heuristic to execute any random  

instances with near-minimal storage capacities. It can calculate only one and two from  

five and ten instances, such as 20x24, 30x24, and 40x24 problems (NxT). Other solutions  

cannot satisfy the demand. Meanwhile, the push and pull heuristic can calculate all  

random instances with these storage capacities. Its solution gap performs well on the  

small-and medium-scale problem, at about 1.15% and 1.33%, the same as the other in 

stances with high storage capacities (parameter B =5-20%).  

At the same time, Gutiérrez et al.’s heuristic gap solution is about 3.99% and 5.57%.  

Therefore, the push and pull heuristic enables computing the replenished plan signifi 

cantly better with near-minimal storage capacities. 

For large-scale problems (T=24), MATLAB cannot run on the extension of the  

number of periods due to being out-of-memory. When increasing the number of periods,  

its memory usage exceeds 76 GB. The limitation of the system memory space (RAM and  

swap file) used by MATLAB for this computer is about 76 GB.  

To strengthen empirical benchmarking and provide better justification, compare the  

proposed heuristics with additional baseline methods, including the smoothing heuristic  

[27] , implemented using the state-of-the-art code [31]. The authors compare their solu 

tion gap performance, which is shown in Table 19. 

Table 19. Gap performance of the proposed, Gutiérrez et al., and smoothing heuristics under storage capacities 

with parameter B = 1%, 5%, 10%, and 20%. 

Parameter B 

The push and pull heuristic 

Problem 

size 

10X6 small-

scale 

problem 

10X12 

medium- 

scale 

problem 

10X24 

large-scale 

problem 

1% 
Avg. 0.57 0.79 1.27 

Max. 0.73 1.32 1.58 

5% 
Avg. 1.39 1.47 0.94 

Max. 2.62 2.49 1.27 

10% 
Avg. 0.85 0.74 0.56 

Max. 1.81 1.74 1.2 

20% 
Avg. 1.84 0.34 0.34 

Max. 2.5 0.88 1.64 

 Gutiérrez et al.’s heuristic 

1% 
Avg. 1.89 5.36 6.89 

Max. 3.51 7.27 7.73 

5% 
Avg. 3.96 7 0.94 

Max. 6.54 11.84 1.04 
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10% 
Avg. 4.92 1.74 1.74 

Max. 12.28 4.26 2.65 

20% 
Avg. 2.48 0.65 0.6 

Max. 4.83 2.34 1.07 

 Smoothing heuristic [27] 

1% 
Avg. 1.89 4.24 5.97 

Max. 3.4 6.24 6.79 

5% 
Avg. 3.96 4.68 2.3 

Max. 6.54 7.53 2.46 

10% 
Avg. 4.13 2.04 2.8 

Max. 9.83 3.51 8.46 

20% 
Avg. 1.7 0.73 0.77 

Max. 3.35 1.53 1.35 

In Table 19, the proposed heuristic shows good average gap performance on large- 

scale problems, such as the 10x24 case, with gaps of about 1.27% and 0.34% under storage  

capacities B = 1% and 20%, respectively. In comparison, Gutiérrez et al.’s heuristic has  

gaps of approximately 6.89% and 1.07%, while the smoothing heuristic has gaps of about  

5.97% and 1.35%, respectively. As a result, the gap performances of Gutiérrez et al.’s and  

the smoothing heuristics differ by only a small amount. Therefore, the proposed heuristic  

is able to compute an approximate replenishment plan that is better than the previous  

heuristics.  

5.3. Computation Time 

 This study implements the codes based on the state-of-the-art methods for both heu 

ristics. Both the push & pull heuristic and the heuristic by Gutiérrez et al. have the same  

time complexity, denoted as 2( )O W N T  . Therefore, the running times of the two  

heuristics are nearly the same.The time complexity for the network flow based on dy 

namic programming algorithm [22] has 
2

max
( )O NTD  for generating the initial solu 

tion. The computation time of both heuristics combines the running time for the net  

work flow based on dynamic programming for the initial solution with the running  

 time of each heuristic. The worst-case complexity of the GAMS/CPLEX solver has 

 x(2 )N TO , which is an exponential growth rate. However, this solver enhances perfor 

mance with the branch-cut and benders decomposition algorithm for reducing the run 

ning time efficiency in large-scale problems [28] when compared with MATLAB soft 

ware. For computation time, this study focuses on small-to-medium and large-scale  

problems with near-minimal storage capacity. Therefore, the data in Figure 4 include  

both small-to-medium and large-scale problems (see Table 15) with storage capacities  

parameter B=1-20%. Both the heuristics and MIP solver generate solutions under stor 

age capacities. The computation time for these conditions is shown in Figures 4-7, as  

follows: 
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Figure 4. Average computation time with near-minimal storage capacity (B=1%) using a) push and pull heuristic 

b) Gutiérrez et al.’s heuristic, , and c) GAMS/CPLEX solver. 
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Figure 5. Average computation time with near-minimal storage capacity (B=5%) using a) push and pull heuristic 

b) Gutiérrez et al.’s heuristic, , and c) GAMS/CPLEX solver. 

 

Figure 6. Average computation time with near-minimal storage capacity (B=10%) using a) push and pull 

heuristic b) Gutiérrez et al.’s heuristic, , and c) GAMS/CPLEX solver. 

 

Figure 7. Average computation time with near-minimal storage capacity (B=20%) using a) push and pull 

heuristic b) Gutiérrez et al.’s heuristic, and c) GAMS/CPLEX solver. 
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 In Figure 4, the computation time generated by the GAMS/CPLEX solver increases  

 exponentially for the large-scale problem under near-minimal storage capacities (B =  

 1%). In general, the CPLEX solver must execute effectively with a branch-and-cut al 

 gorithm and special heuristic. However, the running time for solving a large-scale  

 problem includes poor performance with near-minimal storage capacities. The MIP  

 solver must determine lot size with high running time to generate an optimal solution.  

 This is a limitation of the MIP solver. In contrast, the computation time for both heu 

 ristics, which generate approximate solutions for large-scale problems, performs well  

 compared to the MIP solver. Nevertheless, the computation time of the MIP solver on  

 small- to medium-scale and large-scale problems performs well compared to both heu 

 ristics when the storage capacities have higher B values (see Figures 5–7). The running  

 times for both heuristics are nearly the same due to their similar time complexity. 

   Therefore, considering the storage capacity constraints, both heuristics perform  

 well under near-minimal capacity for large-scale problems, whereas the MIP solver  

 computes efficiently with shorter running times for small- and medium-scale prob 

 lems. For high storage capacity constraints (B = 5–20%), the MIP solver performs well  

 with shorter running times across all problem scales.  

5.4. Sensitivity Analysis  

 Authors present a sensitivity analysis on the varied parameter B to show its impact  

on the cost performance of the proposed heuristics, order frequency, and inventory lev 

els. The results of this analysis are shown in Figures 8 to 10 below.  

  

Figure 8. Total cost vs. storage capacity parameter B (1%–20%) for different problem Scales. 
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Figure 9. Inventory level vs. storage capacity parameter B (1%–20%) for different problem scales 

 

Figure 10. Order frequency vs. storage capacity parameter B (1%–20%) for different problem scales. 

 In Figure 8, the total cost for each problem size is high when the storage capacity  

 is near minimal, and it decreases as the storage capacity increases. Under the near-min 

 imal storage capacity constraint, the inventory level for each problem size is low due  

 to the limited storage space (see Figure 9). This results in more frequent orders with  

 smaller replenishment quantities to meet all demand. The higher order frequency  

causes an increase in the total cost (see Figure 10).  

 Under high storage capacity constraints, the total cost for each problem size is  
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low, but the inventory level is higher due to the increased storage space. The order  

frequency is also lower in order to reduce the total cost. 

 In summary, tight storage space leads to higher total costs due to increased or 

der frequency. On the other hand, larger storage capacity results in lower total costs  

but requires higher investment to expand the storage space. 

5.5. Statistical Validation of Heuristic Stability and Reliability 

For validation of heuristic stability and reliability, the authors evaluate the total cost  

 and running time of the proposed heuristic using statistical parameters such as average,  

 standard deviation, minimum and maximum values, and confidence intervals, as shown  

 in Table 20. 

Table 20. Statistics parameters of total cost computed by the push and pull methods under near-minimal storage 

capacities (B=1%). 

(a) Lower and upper confidence interval 3x s=   with 99.7% confidence interval, s = standard deviation. 

  

Problem Average 

(currency) 

Standard 

deviation 

Lower 

confidence 

interval(a) 

Upper 

confidence 

interval(a) 

Min. total 

cost 

Max. total 

cost 

 10x6 7378.6 158.1 6904.4 7852.7 7114 7640 

20x6 14570 261.2 13786.2 15353.79 14200 15081 

40x6 29012.2 340.2 27991.6 30032.8 28409 29498 

60x6 43445 400.0 42244.9 44645.1 42930 43941 

80x6 58025.2 544.1 56393.1 59657.3 57059 58883 

100x6 72482.8 565.9 70784.9 74180.6 71498 73354 

120x6 86833 607.5 85010.5 88655.5 85551 87392 

140x6 101220.8 645.9 99282.9 103158.7 99805 101875 

160x6 115562.2 710.6 113430.5 117693.9 114175 116367 

 10x12  14405.9 184.0 13853.8 14957.9 14160 14742 

20x12 28599.9 232.3 27902.9 29296.9 28134 28871 

30x12 42776.4 329.6 41787.7 43765.1 42106 43239 

40x12 56862.5 365.5 55765.9 57959.1 56166 57551 

50x12 70941.3 335.1 69936.1 71946.5 70393 71384 

60x12 85055.2 584.1 83302.9 86807.5 83928 85927 

70x12 99057.1 546.9 97416.1 100698.1 97851 99605 

80x12 113184.8 514.6 111641.1 114728.5 112018 114040 

10x24 27987 335.1 26981.6 28992.4 27722 28410 

20x24 55547.6 460.6 54165.7 56929.5 54820 56051 

30x24 82909 476.8 81478.7 84339.3 82590 83730 

40x24 110034.8 762.3 107748.0 112321.6 108971 111105 
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Table 21. Statistics parameters of running time computed by the push and pull methods under near-minimal 

storage capacities (B=1%). 

(a)Lower and upper confidence interval 3x s=   with 99.7% confidence interval , s = standard deviation. 

Tables 20 and 21, all total cost and running time values fall within the lower and upper  

 bounds of the 99.7% confidence intervals around the average values. It indicates that the  

 heuristic's performance is reliable, and low variability is a direct measure of its stability. 

6. Conclusions 

This study proposes a novel push-pull heuristic for solving the multi-item un- 

capacitated lot-sizing problem under near-minimal storage capacities. When capacity  

constraints are nearly minimal across multiple items, novel heuristics are required. Pior  

heuristics did not directly consider the tight storage capacity constraints. The just-in- 

time operation in the assembly automobile industry is difficult to share the storage ca 

pacity on the multi-item parts. The proposed heuristic can be applied to manage tight  

storage capacity while keeping multiple items. To compute the initial replenishment plan,  

authors implement a dynamic programming based on network flow to generate a single- 

item lot size plan for all periods under unlimited storage capacity of each period. The  

push procedure identifies iteratively the maximal sum of beginning inventory plus the  

replenishment quantity which moves to the next period without violating the near -min 

imal storage capacity. Each iteration will increase inventory cost with the ordering  

Problem Average  

(second) 

Standard  

deviation 

Lower 

confidence 

interval(a) 

Upper 

confidence 

interval(a) 

Min. total 

cost 

Max. total 

cost 

 10x6 6.25 0.54 4.63 7.88 5.79 7.59 

20x6 11.45 0.31 10.53 12.38 11.04 12.02 

40x6 21.90 0.37 20.78 23.04 21.37 22.54 

60x6 32.48 0.46 31.09 33.87 31.75 33.17 

80x6 44.25 0.93 41.45 47.05 43.04 45.86 

100x6 56.24 0.94 53.43 59.05 55.02 57.71 

120x6 69.42 1.26 65.65 73.18 67.90 71.21 

140x6 84.98 2.49 77.52 92.46 82.41 91.25 

160x6 100.72 1.46 96.35 105.09 98.57 103.74 

 10x12  61.85 5.27 46.03 77.68 55.48 71.94 

20x12 131.74 4.84 117.23 146.26 126.34 141.33 

30x12 204.63 16.03 156.53 252.74 182.15 236.27 

40x12 260.38 23.67 189.36 331.41 229.37 311.10 

50x12 328.35 34.155 225.89 430.82 279.38 402.51 

60x12 409.28 40.99 286.31 532.24 351.43 492.47 

70x12 495.31 40.97 372.41 618.22 443.17 585.65 

80x12 520.24 26.18 441.69 598.79 478.54 566.50 

10x24 3257.11 608.49 1431.63 5082.59 2647.19 4108.03 

20x24 6507.96 340.99 5485 7530.92 6159.20 6964.99 

30x24 9103.45 416.01 7855.43 10351.48 8471.77 9610.50 

40x24 14628.15 1370.03 10518.05 18738.25 11694.79 14786.62 
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cost .The push and pull procedure requires fewer iterations during computation. In  

comparison, Gutiérrez et al.’s heuristic selects successive periods, resulting in more iter 

ations and increased ordering costs to meet the near-minimal capacity constraints.The  

result of computation shows that the proposed heuristic performs well on the gap solu 

tion under near-minimal storage capacities. The running time of the proposed heuristic  

performs well on large-scale problem, whereas GAMS/CPLEX solver run with minimal  

run time on small-and medium-scale problem. However, in the sensitivity analysis, a  

near-minimal storage capacity constraint results in high inventory costs due to the in 

creased frequency of orders. 

Future research could expand this proposed heuristic for applying this proposed  

heuristic then evaluating in a assembly automobile plant to improve the practical ap 

plicability and credibility. Another extension, it could run with the stochastic demand or  

lead time constraints to make it applicable across a wider range of academic settings.  
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Appendix A 

Appendix A.1 

 Pseudo code of dynamic programming based on network flow 

 1: PROCEDURE MultiItemLotSizing 

 2: // d[N][T] ← demand matrix (rows: items, cols: periods) 

 3: // order[N][T] ← fixed ordering cost matrix 

 4: // weight[N]← per-item weight (for capacity constraint) 

 5: // pc[N][T]← per-unit production cost matrix 

 6: // h← unit holding cost 

 7: // Output: 

 8: // sol[N][T]← lot‐sizes for each item and each period 

 9: // invencost[N] ← total inventory cost per item 

10: CONST M ← 10^10// “infinite” penalty 

11: CONST extra ← 1// cost offset for indexing 

12: 

13: FOR g ← 1 TO N DO// for each item 

14:// 2. Compute sumdemand and cumdemand 

15:FOR k ← 1 TO T DO 

16: sumdemand[g][k] ← Σ_{i=1..T} d[g][i] 
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17:END FOR 

18:cumdemand[g][1] ← sumdemand[g][1] 

19:FOR k ← 2 TO T DO 

20: cumdemand[g][k] ← cumdemand[g][k−1] + sumdemand[g][k] 

21:END FOR 

22: 

23:// 3. Build DP network of size S = T + Σ_k sumdemand[g][k] + 1 

24:S ← T + Σ_{k=1..T} sumdemand[g][k] + 1 

25:ALLOCATE dcost[1..S][1..S] 

26: 

27:// 4. Fill dcost for “period 0” (building initial inventory) 

28:FOR inv ← 0 TO sumdemand[g][1] DO 

29: lot ← inv − 0 + 0 

30: IF lot > 0 THEN 

31: y ← 1 

32: ELSE 

33: y ← 0 

34: END IF 

35: dcost[1][inv+1] ← inv*h + lot*pc[g][1] + y*order[g][1] + extra 

36:END FOR 

37: 

38:// 5. Fill dcost for periods 1..T−1 

39:node_i ← 1 

40:FOR p ← 1 TO T−1 DO 

41: prev_node_i ← node_i 

42: FOR inv_prev ← 0 TO sumdemand[g][p] DO 

43: node_i ← prev_node_i + inv_prev 

44: FOR inv_curr ← 0 TO sumdemand[g][p+1] DO 

45:lot ← inv_curr − inv_prev + d[g][p] 

46:IF lot > 0 THEN 

47:y ← 1 

48:ELSE 

49:y ← 0 

50:END IF 

51:// compute holding penalty 

52:IF lot == 0 AND inv_prev − inv_curr == d[g][p] THEN 

53:hold ← inv_curr * h 

54:ELSE IF lot > 0 AND inv_prev − inv_curr + lot == d[g][p] THEN 

55:hold ← inv_curr * h 

56:ELSE 

57:hold ← M 

58:END IF 
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59:// assemble cost 

60:IF hold == M THEN 

61:cost ← M 

62:ELSE 

63:cost ← hold + lot*pc[g][p] + y*order[g][p] 

64:END IF 

65:dcost[node_i][node_i + sumdemand[g][p+1] + 1] ← cost + extra 

66: END FOR 

67: END FOR 

68: node_i ← node_i + sumdemand[g][p+1] + 1 

69:END FOR 

70: 

71:// 6. Fill dcost for final period T 

72:FOR inv_prev ← 0 TO sumdemand[g][T] DO 

73: node_i ← node_i + inv_prev 

74: lot ← 0 − inv_prev + d[g][T] // end inventory is forced to 0 

75: IF lot > 0 THEN 

76: y ← 1 

77: ELSE 

78: y ← 0 

79: END IF 

80: IF lot == 0 AND inv_prev − 0 == d[g][T] THEN 

81: hold ← 0 * h 

82: ELSE IF lot > 0 AND inv_prev − 0 + lot == d[g][T] THEN 

83: hold ← 0 * h 

84: ELSE 

85: hold ← M 

 86: END IF 

 87: IF hold == M THEN 

 88: cost ← M 

 89: ELSE 

 90: cost ← hold + lot*pc[g][T] + y*order[g][T] 

 91: END IF 

 92: dcost[node_i][S] ← cost + extra 

 93:END FOR 

 94: 

 95:// 7. Solve DP by backward recursion 

 96:ALLOCATE fn[1..S+1] ← 0 

 97:ALLOCATE fnmat[1..S][1..S] 

 98:// 7.1 Initialize last column 

 99:FOR i ← 1 TO S DO 

 100:fnmat[i][S] ← dcost[i][S] 
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 101: END FOR 

 102: fn[S] ← MIN_{i=1..S} fnmat[S][i] 

 103: // 7.2 Recurrence 

 104: FOR i ← S−1 DOWNTO 1 DO 

 105:FOR j ← i TO S DO 

 106: IF dcost[i][j] > 0 THEN 

 107: fnmat[i][j] ← dcost[i][j] + fn[j+1] 

 108: END IF 

 109:END FOR 

 110:fn[i] ← MIN_{j=i..S} fnmat[i][j] 

 111: END FOR 

 112: 

 113: // 8. Trace optimal path 

 114: INITIALIZE optimalsol[0..T+1][1..5] ← 0 

 115: current_node ← 1 

 116: FOR period ← 0 TO T DO 

 117:// find next node j where fn[current_node] == fnmat[current_node][j] 

 118:SELECT smallest j ≥ current_node such that fn[current_node] == fnmat[current_node][j] 

 119:lot ← corresponding lot‐size on arc (current_node→j) 

 120:inv ← previous_inv − demand + lot 

 121:optimalsol[period+1] ← (prev_inv, lot, demand, inv, arc_cost − extra) 

 122:current_node ← j + 1 

 123: END FOR 

 124: 

 125: // 9. Record item‐level solution 

 126: FOR p ← 1 TO T DO 

 127:sol[g][p] ← max(0, optimalsol[p+1].lot) 

 128: END FOR 

 129: invencost[g] ← fn[1] − extra 

 130: END FOR 

 131: 

 132: END PROCEDURE 
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