Pre prints.org

Article Not peer-reviewed version

Effective Heuristics for Solving the
Multi-ltem Uncapacitated Lot-Sizing
Problem with Near-Minimal Storage
Capacities

Warut Boonphakdee , Duangrat Hirunyasiri i , Peerayuth Charnsethikul

Posted Date: 3 June 2025
doi: 10.20944/preprints202506.0178.v1

Keywords: multi-item; lot size; near-minimal storage capacity; replenishment plan

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4194282
https://sciprofiles.com/profile/4221335
https://sciprofiles.com/profile/4142871

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

A Push-Pull Heuristic for Solving the Multi-Item
Uncapacitated Lot-Sizing Problem under
Near-Minimal Storage Capacities

Warut Boonphakdee 1, Duangrat Hirunyasiri 2* and Peerayuth Charnsethikul 3

1 Department of Industrial Engineering, Faculty of Engineering at Kamphaeng Saen, Kasetsart University,
Nakhon Pathom 73140, Thailand

2 Department of Textile Science, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand

3 Department of Industrial Engineering, Faculty of Engineering at Kamphaeng Saen, Kasetsart University,
Nakhon Pathom 73140, Thailand

* Correspondence: duangrat.c@ku.th

Abstract: In inventory management, storage capacity constraints complicate multi-item lot-sizing
decisions. As the number of items increases, deciding how much of each item to order without
exceeding capacity becomes more difficult. Dynamic programming works efficiently for a single
item, but when capacity constraints are nearly minimal across multiple items, novel heuristics are
required. However, previous heuristics have mainly focused on inventory bound constraints.
Therefore, this paper introduces push and pull heuristics to solve the multi-item uncapacitated lot-
sizing problem under near-minimal capacities.. First, a dynamic programming based on network
flow model was used to generate the initial replenishment plan for the single-item lot-sizing problem.
Next, under storage capacity constraints, the push operation moved the selected replenishment
quantities from the current period to subsequent periods to meet all demand requirements. Finally,
the pull operation shifted the selected replenishment quantities from the current period into earlier
periods, ensuring that all demand requirements were satisfied. The results of the random experiment
showed that the proposed heuristic generated solutions whose performance compared well with the
optimal solution. This heuristic effectively solves all randomly generated instances representing
worst-case conditions, ensuring robust operation under near-minimal storage. For large-scale
problems under near-minimal storage capacity constraints, the proposed heuristic achieved only
small optimality gaps while requiring less running time. However, small- and medium-scale
problems can be solved optimally by a Mixed-Integer Programming (MIP) solver with minimal
running time.

Keywords: multi-item; lot size; near-minimal storage capacity; replenishment plan

1. Introduction

In supply chain management, the inventory bound, or limitation storage is an im-portant
constraint. Raw materials cannot be stored in huge volumes, although the unit price of a raw material
unit is low. If raw materials have many different items and stock-keeping units (SKUs), it results in
complex problems. Supply chain management decisions depend on the procurement policy of the
organization. It comprises operating on minimum inventory cost while considering whether or not
to use an expanded storage. An expanded storage area is a feasible solution, which operates at the
lowest inventory cost. However, the investment cost for land lease and acquisition, including the rack
and shelving supply, must be considered as well. In the case of not considering an expanded storage
area, there are two feasible solutions. Firstly, when inventory is over, it must be kept in another area,
such as the production line; notwithstanding, this result is with late disbursement, lost materials, and
incorrect counting of the number of remaining materials. Total inventory cost is still low. Secondly,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

2 of 41

keep the amount of inventory under the storage capacity, but the order frequency must grow
evidently. As a result, the storage cost continues to be high. When the number of items or SKUs
increase, deciding how much of each item to order without exceeding capacity becomes more
difficult. In many process industries such as paper manufacturing, petrochemical manufacturing,
refineries, food processing, and pharmaceutical manufacturing, storage capacity has become a
limiting factor.

In practice, industries such as trailer assembly processes [11], raw-material perishability in
composites [22] must all contend with limited inventory bounds. Tight inventory bounds or near-
minimal storage capacities that slightly exceed demand require specialized heuristics. Industries
operating under Just-In-Time assembly, such as automotive plants [26], are especially sensitive to
these constraints. Therefore, the authors introduce a dynamic programming approach based on
network flow to generate an initial replenishment plan for each single item and develop a new
heuristic to manage the multi-item lot-sizing problem under near-minimal storage capacities.

Storage capacity has been defined by researchers as comprising two distinct categories, such as:
the number of ending inventory only, and the sum of the number for the beginning inventory and
replenishment. Firstly, most researchers proposed the storage capacity to be based on the number of
ending inventory only. Secondly, other researchers introduced the storage capacity to be the total of
the number of the beginning inventory and replenishment. Thus, many researchers have defined
inventory as the quantity of goods on hand at the end of a specific period. However, in the real world
problem, raw material stores usually receive the replenishment at the beginning of the period and
keep the inventory of the previous period together to be not over the storage capacity. Consequently,
this paper suggests that the total number of inventory in each period depends on the sum of inventory
and replenishment at the beginning of the period. There are two definitions of storage capacity: one
based on the number of ending inventory, and the other on the sum of beginning inventory plus
replenishment. These different definitions not only affect how inventory is calculated but also directly
impact the formulation of inventory planning models. As a result, various algorithms have been
developed to solve these models.

Lot sizing problems are typically solved using exact methods such as MIP , dynamic
programming and heuristic techniques. The earliest known MIP formulation for the lot-sizing
problem in the U. S. petroleum refining industry was introduced by Manne [18] in 1958. In his seminal
paper, he presented a mathematical model for the dynamic lot-sizing problem, which develop in
production planning and inventory control. Meanwhile,Wagner and Whitin [19] introduced a
forward algorithm based on the dynamic programming approach to search for optimal lot size
decisions. They established the optimal lot sizes for a single item when demand, inventory holding
charges, and setup costs change over time. For the management of procurement of materials with
storage capacity, consider both the single item and multi-item.

The dynamic programming approach have been implemented by various researches to solve the
single-item dynamic lot size problem. Love [1] introduced the first dynamic programming
formulation for the Economic Lot-Sizing Problem with Bounded Inventory (ELSB), where inventory
levels are constrained by the lower and upper bounds. His model considers both production
capacities and storage limitations, which are common in practical applications. It solved in O(T?) time
considering backlogging, time-dependent inventory bounds and piecewise concave production, and
storage costs when T is the number of periods in the planning horizon. Toczylowski [21] presented
an efficient O(T?) algorithm for the general single-item dynamic lot-sizing problem with limited
inventory levels and nonzero initial and safety stock levels. Loparic et al. [2] derived a dynamic
program or the shortest path problem using regeneration intervals to solve a single-item lot-sizing
problem with sales constraints and lower bounds on safety stocks. The limitation of this research is
that, in practice, safety stock levels often fluctuate. Sedano-Noda et al. [12] introduced an O(T logT)
greedy algorithm to provide optimal policies assuming reorder and linear holding costs without
setup costs or backlogging. However, the limitation of this research is that it considers only zero setup
costs, which is not practical. Liu and Tu [13] proposed the capacity production-planning (CPP)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

3 of 41

problem where the production quantity was limited by inventory capacity and stockout. This
problem occurs in petrochemical and glass manufacturing, crude oil refining, and food processing.
They applied a minimum-cost flow algorithm to construct the network. By applying standard
successive-shortest-path methods, they achieved an overall time complexity O(T?). Onal et al. [5]
modified dynamic programming procedure that restores optimality for the general bounded-
inventory lot- sizing problem in O(T?). However, this study did not include any computational
experiments to validate the practical performance of the corrected method. Chu and Chu [14]
proposed the dynamic programming approach for the inventory-bounded outsourcing and
inventory-bounded outsourcing models. These models execute overall complexity time with O(T?log
T) and O(T?), respectively. The limitation of this approach is impractical for planning horizons longer
than a few dozen periods. Hwang and Heuvel [15] presented the O(T?) algorithm based on dynamic
programming and the Monge property for solving a dynamic lot-sizing problem with backlogging
and inventory bounds when general production and inventory cost structures are concave. In
addition, they introduced the O(T log T) algorithm using the points-approach and a geometric
technique for fixed-charge cost structure as well as the O(T) algorithm using a line-segments
approach, including a geometric technique for the fixed-charge cost structure without speculative
motives. However,their algorithm does not provide an optimal solution for the ULS-IB problem.
Hwang et al. [16] developed the first polynomial-time O(T*) dynamic-programming algorithm to
solve the single-item deterministic Economic Lot-Sizing problem with lost sales and bounded
inventory (ELS-LB), under the assumption that each period’s inventory capacity is fixed. A drawback
of their DP algorithm is that it requires a long running time and a large amount of memory to
execute.Boonphakdee and Charnsethikul [23] developed a network- flow based on the dynamic
programming approach to solve the single-item uncapacitated lot-sizing problem. In this study, the
authors introduce their DP algorithm to generate the initial replenishment plan. Atamtiirk and
Kiigiikyavuz [3] proposed a linear programming formulation that achieves tighter relaxations for the
single-item lot-sizing problem with inventory bounds and fixed costs.. Gutiérrez et al.[20] extended
the classical Wagner-Whitin model by time-varying storage capacities and allowing backlogging.
They developed a dynamic programming algorithm with time complexity of O(T3), where T is the
number of periods in the planning horizon Their algorithm applies only when both the production
cost and the holding or stockout cost functions are concave. Guan and Liu [4] introduced two
stochastic models for the single-item lot-sizing problem under uncertainty including inventory-
bound only and the other both inventory-bound and constant order-capacity constraints. They
developed dynamic programming algorithms from them with the time complexity O(T?) and
O(T*nLogT), respectivity, where T is the number of time periods and 7 is the number of possible order
capacities. However, stochastic DP requires complete and precise probability distributions of
demand for every period. Chu et al. [6] proposed a single-item dynamic lot-sizing model integrating
backlogging, outsourcing, and limited inventory. They developed a dynamic programming
algorithm that solves the lot-sizing problem in polynomial time with O(T3) time complexity, where T
is the number of periods in the planning horizon. As a result, their algorithm cannot support concave
setup or volume-discount cost structures. Brahimi et al.[8] introduced the Two-Level dynamic Lot-
Sizing Problem with Bounded Inventory (2LLSP-BI), integrating raw-material procurement and

finished-product production planning under finite warehouse capacity constraints. They introduced
a new Lagrangian-relaxation heuristic which decomposes 2LLSP-BI into N single-item lot-sizing
subproblems. Each subproblem is solved by a dynamic programming. The time per Lagrangian
iteration is O(N-T?+T Inax), where Imx is the number of the capacity bounds. The raw-material
inventory has a single static bound, whereas finished-goods storage is unbounded.Finally, Di Summa
and Wolsey [24] studied a mixed-integer program that provides a new convex-hull characterization
for the single-item discrete lot-sizing problem with a variable upper bound on the initial stock.
However, this formulation is in general too large to be practically useful.

In practice, it is hard to handle only a single item in raw-material storage or on the production
line. Consequently, managing multiple items can be quite complex. It is difficult to keep each item

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

4 of 41

and to balance holding costs against ordering costs. Heuristic algorithms are commonly used to solve
the multi-item dynamic lot-sizing problem. Many researchers have been interested in creating the
heuristic algorithm for solving the multi-item uncapacitated lot-sizing problem with inventory
bound (MULSP-IB) due to the practical problem in the real world. This problem is like the multi-item
capacitated lot-sizing problem (MCLSP), where the items allocate to a machine with a production
capacity constraint. The MULSP-IB only has the limitation of on-hand inventory. Dixon and Poh [27]
proposed the smoothing approach. They developed the push and pull operations if all weight or
volume of inventory is maintained at more than the storage capacity. For the push operation,
replenishment in the existing period ¢ is moved to the consecutive period t+1. On the other hand, the
pull operation postpones the replenishment in a backward direction from the existing period ¢ to a
previous period -1 so that all the weight or volume of inventory is maintained at less than the storage
capacity. This procedure runs in O(n T). The authors apply the principle of this smoothing method
to implement the push and pull procedures. The push procedure postpones replenishment from the
current period to the next period, whereas the pull procedure shifts it back to the previous period.
Moreover, the authors compare this heuristic’s performance against other heuristics. Park [25]
studied the two systems together. He presented the solutions of integrated production and
distribution planning and investigated the effectiveness of their integration in a multi-plant, multi-
retailer, multi-item, and multi-period logistic environment. Additionally, he introduced the
optimization models and a heuristic solution for both integrated and decoupled planning. Akbalik et
al. [7] improved the dynamic programming running in O (2"1"1) time with a polynomial growth rate
if the number of items (n) is fixed to solve the MULSP-IB. However, the T*! factor makes the
algorithm impractical for larger multi-item instances. Gutiérrez et al. [17] extended the smoothing
technique of Dixon and Poh[27]. explored the multi-item dynamic lot-sizing problem with storage
capacities or inventory bounds. The problem has been presented to bound applying the weight of
inventory in a previous period plus the weight of replenishment in the current period. Its average
solution is over around 5% of the solution computed by CPLEX. The authors also compare its
performance against the proposed heuristics. Melo and Ribeiro [9] presented the multi-item
uncapacitated lot-sizing problem with shared inventory bounds. They developed two MIP-based
heuristics : a rounding scheme for generating the feasible solution and a relax-and-fix heuristic for
improving the solution. These MIP-based heuristics yield only near-optimal solutions on average
within about 2-4 % of the true optimum. Witt[10] introduced a mathematical model for the Multi-
Level Capacitated Lot-Sizing Problem with Inventory Constraints (MLCLSP-IC). His model
integrates capacity bounds at each level of a product Bill-of-Materials and explicit work-in-process
inventory limits. Although it is multi-level, the approach supports only a single item per level; it
cannot accommodate product families that share capacities or complex Bills of Materials with
alternative subassemblies. Finally, heuristics and MIP-based heuristics for solving MULSP-IB are
further explained in Table 1 as below.

Table 1. A systematic overview of heuristics and MIP-based approaches.

References Model. Stor. Algo. Cap.

Dixon and Poh[27] 1&P Beglnv. DP.&Heu. Limit.Inv.
Park[25] [&P&R&V EndInv. LR.Heu. Limit.Inv&P&R
Akbalik et al. [7] 1&P EndInv. DP. Limit.Inv.
Gutiérrez et al. [17] 1&P Beglnv. DP.&Heu. Limit.Inv.

Melo and Ribeiro [9] [&P&PT&V EndInv. LP.R.Heu.&Heu. Limit.Inv.
Witt[10] 1&P EndInv. Heu. Limit.Inv.

Abbreviations, Model. Model formulation I&P = inventory and production constraints; I&P&R&V =
inventory,production,retailer and vehicle ; &P&PT&V = inventory,production,production time and vehicle
constraints constraints; Stor. Storage capacity EndInv.= ending inventory BegInv.= sum of beginning inventory
and replenishment Algo. Algorithm DP.= Dynamic programming DP.&Heu.= Dynamic programming and
heuristic. LR.Heu.= Lagrangian-relaxation-based heuristic ; LP.Heu.&Heu = Linear programming-

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

5 of 41

relaxation-based heuristic and heuristic Heu. = Heuristic; Cap. CapacityLimit.Inv = Limited inventory
constraint Limit.Inv&P&R= Limited inventory,plant and vehicle.

In Table 1, the researchers considered only limited storage capacity and did not specifically
consider on the case of tight capacity constraints. Therefore, the authors are interested in near-
minimal storage capacity constraints, which occur in the automotive assembly industry [26].

This study proposes a new heuristic for computing the approximate replenishment plan for
multiple items in each period under storage capacity constraints. The novelty of this study considers
the proposed procedure, which can be executed effectively under near-minimal or worst-case storage
capacity constraint. Storage capacity is defined as the sum of the weight (or volume) of all items
carried over from the previous period and the weight (or volume) of all replenishments in the current
period. The authors introduce a dynamic programming approach based on network flow [23] to
determine the replenishment plan for each item and propose two methods for computing a multi-
item replenishment schedule under storage-capacity constraints. The proposed heuristics consist of
a push method and a pull method. The push method postpones replenishments forward from period
t to period t + k whenever the inventory level in period t exceeds the limited capacity, and repeats
this until the inventory in every period does not exceed its capacity. Then the pull method refines the
plan by moving replenishments backward from period ¢ to earlier periods

The second section describes the mathematical formulation of MULSP-IB. The proposed
heuristic is effective for solving this problem by the modified push and pull operation. It improves
comparison with the push operation by Gutiérrez et al. shown in Section 3, and this heuristic is
examined by Gutiérrez’s example in Section 4. In Section 5, the randomly generated data has been
implemented for solving the different problem sizes. The performance of this proposed heuristic is
compared with the result of Gutiérrez et al’s algorithm and the smoothing method. For the
robustness condition, the worst-case condition is analyzed, which is the near-minimal storage
capacity. In the sensitivity analysis, varying the storage capacities affects the total cost and inventory
levels. Finally, conclusions are provided in Section 6.

2. Problem Description

2.1. Problem Statement

The problem of MULSP-IB can be stated as this: Each demand di: must be partly or entirely
replenished at a period ¢ by inventory . In this study, consider that demands and inventory bounds
are time-varying, and the total actual weight/volume of inventory is not over storage capacity. The
problem is to find the periods and the number of raw materials delivered within these periods. The
objective is to construct a replenished plan such that the total cost is minimized.

2.2. Problem Assumptions

Assumptions are provided to define certain parameters and decision variables as follows.

Assumption 1. Storage capacity is the upper bound of stock.

Assumption 2. A replenished item is stored first before it is used to satisfy demand. This means
that the inventory at the beginning of a period plus the replenish-ment is the actual inventory at the
end of the periods.

Assumption 3. The sum of demand is not over storage capacity in all periods, and the demands
are satisfied at the end of the period.

Assumption 4. Number of items is independent of the quantity of demand and the number of
procurement planning horizon.

Assumption 5. Initial inventory in the first period and ending inventory in the last period are
zero.

Assumption 6. Backlogging is not allowed.

Assumption 7. There is no consideration of lead time.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

6 of 41

2.3. Decision Variables and Parameters

Explanation of decision variables and parameters can be noted in the following.
Indices i the number of items indexed from 1 to N ¢ the number of periods indexed from 1to T
Parameters dit the demand of item i at period ¢
Di: the accumulative demand of item i from period ¢ to period T
firthe fixed ordering cost of item i at period f
hitthe holding cost of item 7 at period ¢
pitthe cost of procuring raw materials of item i at period ¢
Iit the inventory level of item i at period t
wi the unit weight of item i
U: the storage capacity at period ¢
Decision variables xi: the procurement quantity of item i at period ¢
Yi¢if the replenishment of item i at period f occurs, Yir is 1. Otherwise, Yi is 0.

2.4 Mathematical Model
his study proposes the model by Gutiérrez et al. [17], which states the MIP formulation as
follows:
N T
mlnzz.fi,tyi,t +pi,txi,t +hi,t1i,t
i=1 t=1 (1)
ot L,,-I, +x,=4d, i=1,.,N,t=1,..T %)

N
dwl, +x,)<U, t=1,.,T
i=1

3)
x,<Y,D,, i=1.,Nt=1.T
I, =1, =0, i=1.N g
5,0, €0,=000, izl Nt=1.T o
Y, €{0,1), i=1.Nt=1..T

The objective function of MULSP-IB minimizes the sum of ordering, purchased and holding
costs in constraint (1). Constraint (2) is the balance of the inventory equation. Each purchased unit
and inventory unit at the beginning of the period are always kept first, before moving to
production/customers following its demand in constraint (3). Constraint (4) link the purchased

T
variables with the binary variables Yi and accumulated demand (D, = Y d,) of item i from periods
k=t

t to T . Constraint (5) is the initial inventory in the first period and the ending inventory in the last
period are zeroes. Constraint (6) defines the purchased quantity and inventory, which are not
negative. In constraint (7), if replenishment occurs at any period, Yi is 1. Otherwise, Yi is 0.

3. The Proposed Heuristic

The push and pull strategies of Dixon and Poh [27] consider that excess storage capacity has
occurred. This is reduced by moving a replenishment quantity from the existing period ¢ to t++1 when
the sum of both inventory and replenishment of all items (SIRauitens) for the existing period is over the
storage capacity, called the push operation. On the other hand, a replenishment quantity from period
t is returned to a previous period when SIRa iitens is less than the storage capacity, called the pull
strategy. The push method focuses on reducing SIRaitns in the existing period until success only.
Therefore, each iteration enables the reduction of SIRuiiiens prominently, while ordering cost will grow
as necessary, causing total inventory cost to expand as necessary. Furthermore, Gutiérrez et al.’s he
ristic extend the push strategy in so far that a replenishment quantity can be moved from any period

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

7 of 41

t to t+k, k€ (1,..,T—1). For any iteration, Gutiérrez et al.’s heuristic possibly moves a replenishment

quantity from a non-existing period to the next period, resulting inSIRauitns in the existing period not
also reducing. However, ordering costs still expanding is unnecessary. This study also applies Dixon
and Poh’s approach to both the push and pull strategies. For the push strategy, consider a
replenishment item in the existing period, which has the maximum sum of inventory and the
replenishment quantity (SIRmx). Consider an item of SIRmar condition, called iSIRmx that has an

inventory cost of zero at period t+k, ke(1,..,T~t)called on tn. Therefore, a replenishment quantity

is equal to its demand in the existing period, then it moves so as to add the original replenished
quantity at period tzer. After that, the replenishment quantity of the existing item is balanced for all
periods. It runs repeatedly until all SIRaiitens are less than storage capacities. This procedure is called
the push method.
For the pull strategy, find the periods (fmn and twsx) with the minimum and maxi mum
differences between SIRaiitens and their storage capacities (U), called SIRatitems_Umin and SIRaitems_Umax.
If the index of period tuin is higher than the index of period tma, consider a SIRmin item called iSIRmin
for period tmin. Return the replenished quantity, which is the demand of iSIRmin of period tmin, to add
the original replenished quantity of the same item at period tma. Then, calculate all SIRaiitens again. If
a new SIRaiitens for period tmax is still greater than storage capacity at that period, find a new item with
SIRmax called iSIRmax. Next, determine the period fzero on iSIRmax and calculate the round-up of the new
SIRanitems_U for period tmsr divided by its weight, called SIRaitems_Urounaup. Move the replenished
quantity, SIRaitems_Uroundup for period tmax, to period tr. Finally, balance the replenished plan again.
This procedure is called the pull method. It can effectively improve the solution generated by the
push method. Next, determine the period fzr on iSIRmx and calculate the round-up of the new
SIRaiitems_U for period tms divided by its weight, called SIRaitems_Urounaup. Move the replenished
quantity, SIRatitems_Uroundup for period tmax, to period tzr. Finally, balance the replenished plan again.
This procedure is called the pull method. It can effectively improve the solution generated by the
push method. This study proposes a new procedure for solving MULSP-IB. It has a property
suggesting that the sum of both the inventory and the replenished quantity for all items
(SIRanitems) agree with less storage capacity, satisfying all demands for the existing period
or equal storage capacity for that period. This property is presented to clarify the logical
flow of arguments as follows:

Theorem 1. If t is a period such that x,,>0 for some items i satisfying I,, , +x,,=D,, —D

it+k 7

ke(,..,T=H), then (1, +x,)<U, .

N
Proof of Theorem 1. For a contradiction method, the assumption is Z(Ii,t_] +x,,)zU, .
i=1

Givenl,, , +x,,=D,, —D,, .Ttimplies that the total inventory is sufficient to satisfy or

1

exceed the storage limitation. However, some x,, >0and I, , +x,, =D, —D. , areused

to satisfy the demands such that no additional replenishments can exceed the storage
limitation. Therefore, there is no additional inventory available to satisfy or exceed the
limitation.

Theorem 2. If t is a period such that x,, >0 for some items i satisfying I, +x,,#D, =D, .,

_ N
KW= o S0, 42,10, .

Proof of Theorem 2. For a contradiction method, let us study a replenishment (x;, >0) that there is

N N
an item i, for which the assumption is D_(I,, , +x,,) #U, . In the case of D (I, , +x,,)<U, , given
i=1 i=1

L, +x,#D,, -D,,,, theinventory level and extended replenishments (I, , +x;) are not sufficient

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

8 of 41

N
to satisfy the sum of the consecutive demand (D,, - D, ,). Further, in the case of >, +x,)>U,
i=1

, there is additional inventory to be over the storage capacity. However, the given condition

I, +x,#D,,—D,, doesnot satisfy the demand. Therefore, the sum of inventory and replenished

quantity cannot exceed the storage capacity. To satisfy demand, the sum of the inventory and
replenished quantity of all items in each period must either be less than or equal to the storage
capacity explained by Theorems 1 and 2, respectively.

3.1. The Push Method

The objective of this method is to seek the approximate solution of MULSP-IB. The procedure
for this method can be explained by the pseudo-algorithms as follows:

1: procedure InitialSolution(N, T, U, d, h, f)

2: Input:

3:N«— number of items

4:T+ number of periods

5:U[1..T] «— inventory bounds per period (network-flow based)

6:d[1..N][1..T] « demand of item i in period t

7:h[1..N][1..T] < holding cost of item i in period t

8:f[1..N][1..T] « ordering cost of item i in period t

9: Output:

10:x[1..N][1..T]« initial replenishment plan

11: fori« 1toNdo

12:x[i][1..T] «— NetworkFlowDP(i, U, d[i], hl[i], f[i])

13: end for

14: return x

15: end procedure

16: procedure PushAlgorithm(N, T, U, d, h, f, x)

17: Input:

18:N+«— number of items

19:T« number of periods

20:U[1..T] « storage capacity per period

21:d[1..N][1..T] < demand of item i in period t

22:x[1..N][1..T] « initial replenishment plan

23: Output:

24:x[1..N][1..T], TotalCost

25:fort <« 1to T do

26:// Compute SIR for each item at period t

27:fori<«1to N do

28: if t==1 then

29: inv[i] « x[i][1] - d[i][1]

30: else

31: inv[i] « inv_prev][i] + x[i][t] - d[i][t]

32: end if

33: tailDemand « 0

34:fork — tto T do

35: tailDemand « tailDemand + d[i][k]

36: end for

37: SIR[i] «— inv][i] + tailDemand

38: inv_prevl[i] « inv][i]

39:end for

40:SIRall « X _{i=1..N} SIR[i]

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

9 of 41

41:slack « SIRall - U[t]

42:while slack >0 do

43: iMax « argmax_{i=1..N} SIR[i]

44: A — d[iMax][t]

45: x[iMax][t] « x[iMax][t] - A

46: if t < T then

47: x[iMax][t+1] < x[iMax][t+1] + A

48: end if

49: // Recompute inventory and SIR

50: SIRall < 0

51: fori« 1toN do

52:if t==1 then

53:inv[i] « x[i][1] - d[i][1]

54: else

55:inv[i] « inv_prev[i] + x[i][t] - d[i][t]

56: end if

57: tailDemand « 0

58: fork — tto T do

59: tailDemand <« tailDemand + d[i][k]

60:end for

61: SIR[i] « inv[i] + tailDemand

62: inv_prevl[i] « inv[i]

63: SIRall « SIRall + SIR[i]

64: end for

65: slack « SIRall - U[t]

66:end while

67: end for

68: // Calculate total cost

69: TotalCost < 0

70: fori— 1to N do

7l:fort«—1to T do

72: if x[i][t] > O then

73: TotalCost « TotalCost + f[i][t]

74: end if

75: TotalCost «— TotalCost + inv_prevl[i] * h[i][t]

76:end for

77: end for

78: return x, TotalCost

79: end procedure

In line no. 16, pseudo code of dynamic programming based on network flow can be shown in
Appendix A.1. The logical sequence including selection rules of the push method can be explained
in Figure 1.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

10 of 41

Input.N,T,d,f,h,U Dynamic programming
X=Replenishmentplan based on network flow

v

For t=1:T-1

!

A\ 4

Compute

- inventory

- SIR = the sum of previous
inventory+X

- SIRjjitem = Combine the
sum of previous
inventory+X

- Diff = SIRallitem - U

No

Yes

Search for the maximum of SIR

!

index i =imax on the maximum of SIR

|

Search for the X that is zero on
index i=imax ,index t = tmax

A\ 4

Move dimax,t to Ximax,tmax
So, Ximax,tmax :dimax,l

Ximax,t = Ximax,t _dimax,t

A

Compute

- Inventory
- SIR

- SIl—{allitem
- Diff

| Compute total cost |

v

Approximate
replenishment plan

Figure 1. Flow chart of the push method.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

11 of 41

In Fig. 1, the algorithm stops computing if the difference (diff) between the sum of
previous inventory plus replenishment quantity (SIRaiitem) and the storage capacity (U) for
each period is less than or equal to zero. This selection rule determines whether to perform

the next step of the algorithm. From the pseudo code, dynamic programming

2
max

based on network flow algorithm has time complexity O(NTD:) that depends on

Dimax, the largest demand value across all items i and all time periods t. Therefore, large
demand values significantly influence the running time when solving large-scale prob
lems. The push algorithm has time complexity O(N-T-W) where W is number of it-
erations of the while loop per period. If the total inventory exceeds the storage capacity
by a large amount, many iterations (W) will be needed to reduce the overcapacity ;other
wise, iteration stops. Therefore, in large-scale problems, inventory overcapacity is likely,
causing the proposed algorithm to have a high running time.

The replenishment plan generated by the push method can be improved to re

duce the total cost using the pull method, which will be discussed in the next section.

3.2. The Pull Method

The objective of this method is to improve the replenishment plan, which is com
puted by the push method. Some replenishments may be returned from the existing pe
riod to the previous period so that the sum of inventory and replenished quantity of all
items for the previous period is added to equal its storage capacity. The procedure for the
pull method shows the pseudocode of algorithms as follows

1: PROCEDURE Pull method

2: INPUT:

3: X [i, t]« initial replenished quantity for item i in period t

computed by the push method

4: demand][i, t]«— demand of item i in period t

5: SIR[i, t] «— the sum of previous inventory and replenished

quantity of item i in period t

6: U« storage capacity for period t

7: w[i, t] «—weight (or size) of item i in period t

8: T«—total number of periods

9: OUTPUT:

10: replenishment planli, t] «—adjusted replenished quantities

11: inventoryCost <—updated total inventory cost

12: // Compute initial aggregate SIR per period

13: FORt «+— 1 TO T DO

14:SIRallitems|[t] < X; SIR([j, t]

15:SIRallitems_SCJ[t] « X (SIR[j, t] - w[i, t])

16: END FOR

17: // Find periods with min/max aggregate SC usage

18: Tmin <« arg min, SIRallitems_SC[t]

19: Tmax « arg max, SIRallitems_SC[t]

20: // Loop until the lightest-loaded period index is not after the heaviest

21: IF Tmax< Tmin DO

22:// 1) Move the smallest-rate demand from Tmin to Tmax

23:i_min « arg min; SIR[i, Tmin]

24:qty < demand[i_min, Tmin]

25:X[i_min, Tmax] «<— X[i_min, Tmin] + qty

26:X[i_min, Tmin] « X[i_min, Tmin] - qty

27:// 2) Rebalance and update all metrics

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

12 of 41

28:CALL UpdateMetrics()

29:// 3) If Tmax still exceeds capacity, boost its replenishment

30:IF SIRallitems_SC[Tmax] > U THEN

31:i_max « arg max; SIR[i, Tmax]

32: adjustment « [SIRallitems_SC[Tmax] / w[i_max, Tmax]]

33: X[i_max, Tmax] « X[i_max, Tmax] + adjustment

34: CALL UpdateMetrics()

35:END IF

36:// 4) Recompute Tmin and Tmax for next iteration

37:Tmin « arg min, SIRallitems_U[t]

38:Tmax « arg max, SIRallitems_UJt]

39: END IF

40: RETURN (X, inventoryCost)

41: END PROCEDURE

42: // Subroutine to recalculate inventory levels, SIR, aggregate metrics, and cost
43: PROCEDURE UpdateMetrics

44: FORt < 1 TO T DO

45:FOR each item i DO

46: // Recompute SIR[j, t] based on new replenishment qty and demand
47: SIR[i, t] «— ComputeSIR(X[j, t], demand([i, t])

48:END FOR

49:SIRallitems[t] « Z; SIR([j, t]

50:SIRallitems_U[t] « X; (SIR[i, t] - w[i, t])

51: END FOR

52: inventoryCost «— ComputeTotalCost(X, demand, holdingCosts, order
ingCosts)

53: END PROCEDURE

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025

d0i:10.20944/preprints202506.0178.v1

13 of 41

N, T,X,w,d,SIR,U,diff

:

Search for the period
with the min/max diff[t]

I

Tmin = the period with the minimum diff[t]
Tmax == the period with the maximum diff[t]

No

Yes

| Search for the minimum SIR of period Tmax |

!

| imin=index i of the minimum of SIR I

Reurn Ximin,tmin to Ximin,tmdx

50, Ximin,tmax =Ximin,tmax+Ximin,tmin

Ximax,tmin =0
Compute
- Inventory
- SIR
- SIRunitems
- Diff of Tmin/max= SIR, jjitemsof Tmin/max - U

J

If diff of Tmax> 0

| Search for the maximum of SIR |

| index i =imax on the maximum of SIR I

!

Search for the X that is zero on
index i=imax ,index t = Tmax

!

q =round(SCimin ~Utmin)/ Wemin

Move q to Ximax,tmax
S0, Ximax,tmax = q

Ximax,tmin = Ximax,tmin =

1

Compute

- Inventory

- SIR

- SIRaitems

- Diff of Tmin/max

!

‘I Compute total cost I<——

Approximate
replenishment plan

Figure 2. Flow chart of the pull method.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

14 of 41

In Fig. 2, the algorithm proceeds to compute an improved solution if the index of the
period with the minimum diff (Tmin) is greater than the index of the period with the max
imum diff (Tmax). This selection rule determines whether to perform the next step of the
algorithm. The push algorithm has time complexity O(N?T?) when L <N-T, where L is
the number of loop. The total running time depends on how many iterations L the algo
rithm performs to balance the load between periods. If L grows large (close to N-T in the
worst case), running time can grow quadratically. To explain the heuristic algorithm, the
authors use a numerical example to demonstrate it in the next section.

4. A Numerical Example

This study presents the simple example by Gutiérrez et al. [17] to explain the procedure for
both proposed methods. Data from this example is shown in Table 2.

Table 2. A simple example by Gutiérrez et al. [17].

Periods t 1 2 3 4 5
U: 756 673 633 758 608
Item 1,u1=1

dit 115 114 96 106 136
Di 567 452 338 242 136
St 595 100 969 240 945
pLt 4 7 9 10 4
ha 1 1 1 1 1
Item 2,w1=4

da,t 87 52 111 142 118
Doyt 510 423 371 260 118
S 255 696 125 637 249
P2t 3 3 0 8 4
ha 1 1 1 1 1

4.1. The Initial Solution

The optimal replenished plan for each item, which is independent, can be solved by the network
flow based on a dynamic programming approach [22]. Thus, the optimal replenished plan is the
initial solution for this example, as shown in Table 3.

Table 3. Initial solution for each item.

Periods t Item 1 2 3 4 5
Replenished plan 567 0 0 0 0
1
139 0 371 0 0
2
Inventory 452 338 242 136 0
1
52 0 260 118 0
2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

15 of 41

Inventory cost 4x567+1x452+595 338 242 136 0
1 =3,315

3x139+1x52+255 0 385 118 0
2 =724

Sum of inventory and replenishment (SIR) 567x1=567 452 338 242 1

1 3

6

139x4=556 208 1,484 1,040 4

2 7

2

SIRatiitems 1,123 660 1,822 1,282 6

0

8

sC 756 673 633 758 6

0

8

SIRattitems_U +367 -13 1,189 524 0

4.2. Solution of the Push Method

From Table 3, SIRaitens values of periods 1, 3, and 4 are positive and their SIRaiitems
values are certainly excess. Next, the replenished quantity for period one is moved as
follows.

Period 1
Iteration 1

1. Select item 1, which has the maximum SIR (SIRmax) of 567, and find period tzro = 5 on item 1,
which has an inventory cost of zero.
Insert the replenished quantity, which equals the demand of item 1 for period tzero =

136 units, on a replenished plan on item 1 for period tzero. For balance demand, de

crease the replenishment of item 1 for period 1 to 567-136 =431 units.

S

Balance a replenished plan and update inventory, SIR,SIRaitems, SIRanitems_U, and total inventory
cost (see Table 4).
6. SIRaitems_U for period 1 is reduced to 987-756 = +231. Afterward, go to steps 1-4.

Iteration 2

1. Select item 2, which has SIRmax of 556, and find period tzero = 2 on item 2, which has an inventory
cost of zero.

2. Insert the replenished quantity, which equals the demand of item 2 for period tzero = 52 units, on

a replenished plan on item 2 for period tzero. For balance demand,

decrease the replenishment of item 2 for period 1 to 139-52 =87 units.

Balance a replenished plan and update inventory, SIR, SIRaitens, SIRaiitems_U, and

total inventory cost (see Table 5).

SIRanitens_U for period 2 is still reduced to 779-756 = +23. Then, go to steps 1- 4.

o U W

Iteration 3

1. Select item 1, which has SIRmaxof 431, and find period fzero = 4 on item 1, which has an inventory
cost of zero.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

16 of 41

2. Insert the replenished quantity, which equals the demand of item 2 for period tzere= 106 units, on
a replenished plan on item 1 for period tzero. For balance demand, decrease the replenishment of
item 1 for period 1 to 431-106 = 325 units.

3. Balance a replenished plan and update inventory, SIR, SIRatitens, SIRatitens_U, and total

4. inventory cost (see Table 6).

5. SIRanitens_U for period 1 is reduced to 673-756 = -83. Stop the iteration and select period 3, which
has the SIRanitens_U value of +947. Proceed to steps 1-4 for period 3.

Period 3
Iteration 1

1. Select item 2, which has SIRmaxof 1,484, and find period tzero = 5 on item 2, which has

2. aninventory cost of zero.

3. Insert the replenished quantity, which equals the demand of item 2 for period tzero=118 units, on
a replenished plan on item 2 at period tzero. For balance demand, decrease the replenishment of
item 2 for period 3 to 371-118 = 253 units.

4. Balance a replenished plan and update inventory, SIR, SIRaitems, SIRattitems_U,

5. and total inventory cost (see Table 7).

6 SIRanitems_U for period 3 is still reduced to 1,108-633 = +475. Afterward, go to steps 1- 4.
Iteration 2

1. Select item 2, which has SIRmaxof 348, and find period tzero = 4 on item 2,

2. which has an inventory cost of zero.

3. Insert the replenishment, which equals the demand of item 2 at period fzero =

4. 142 units on a replenished plan on item 2 at period tzr. For balance demand, decrease the
replenishment of item 2 at period 3 to 253-142 = 111 units.

5. Balance a replenished plan and update inventory, SIR, SIRaitems, SIRattitems_U,

6. and total inventory cost (see Table 8).

7. SIRaiitems_U for period 3 is reduced to 540-633= = -93. Stop the loop at

8. period 3. Then, find the next SIRaitns_U to be positive. However, all SIRaitens_U values are

negative and zero (-83, -255, -93, -84, 0). Thereafter, stop all iterations of the push method.

Table 4. Execution flow of iteration 1 for period 1 using the push method.

Periods £ Item 1 2 3 4 5
Replenished plan 1 567-136=431 0 0 0 136

2 139 0 371 0 0
Ending 1 316 202 106 0 0
inventory 2 52 0 260 118 0
Inventory cost 1 4x431+1x316+595 202 106 0 1,489

=2,635
724 0 385 118 0
Sum of 1 1x431=431 316 202 106 136
inventory and
replenishment (SIR) 2 556 208 1,484 1,040 472
SIRatitems 987 524 1,686 1,146 608
sC 756 673 633 758 608
SIRatitems_U +231 - +1,053 +388 0
149

Table 5. Execution flow of iteration 2 for period 1 using the push method.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025

d0i:10.20944/preprints202506.0178.v1

17 of 41
Periods ¢ Item 1 2 4 5
Replenished plan 1 431 0 0 0 136
139-52
2 52 371 0 0
=87
Ending 1 316 202 106 0 0
inventory 2 0 0 260 118 0
Inventory cost 2,635 202 106 0 1,489
3x87+255 3x52+696 3x371+1x260+125
2 118 0
=516 =852 =385
Sum of 1 431 316 202 106 136
inventory and
2 4x87=348 4x87=208 1,484 1,040 472
replenishment (SIR)
SIRattitems 779 524 1,686 1,146 608
SC 756 673 633 758 608
SIRattitems_U +23 -149 +1,053 +388 0
Table 6. Execution flow of iteration 3 for period 1 using the push method.
Periods ¢ Item 1 2 3 4 5
Replenished plan 1 431-106=325 0 0 106 136
2 87 52 371 0 0
Ending inventory 1 210 96 0 0 0
2 0 0 260 118 0
Inventory cost 1 4x325+1x210+595 96 0 1,300 1,489
=2,105
2 516 852 385 118 0
Sum of 1 325 210 96 106 136
inventory and replenishment (SIR) 2 348 208 1,484 1,040 472
SIRattitems 673 418 1,580 1,146 608
SC 756 673 633 758 608
SIRatiitems_ U -83 - +947 +388 0
255
Table 7. Execution flow of iteration 1 for period 3 using the push method.
Periods ¢ Item 1 2 3 4 5
Replenished plan 1 325 0 0 106 136
2 87 52 371-118=253 0 118
Ending inventory 1 210 96 0 1,300 1,489
2 0 0 142 0 0
Inventory cost 1 2,105 96 0 1,300 1,489
2 516 852 1x142+125=267 0 721
Sum of 1 325 210 96 106 136
inventory and replenishment (SIR) 2 348 208 4x253=1,012 568 472
SIRatiitems 673 418 1,108 674 608
SC 756 673 633 758 608

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

18 of 41

SIRatitems_U -83 - +475 -84 0

Table 8. Execution flow of iteration 2 for period 3 using the push method.

Periods t Item 1 2 3 4 5

Replenished plan 1 325 0 0 106 136
2 87 52 253-142=111 142 118

Ending 1 210 96 0 0 0

inventory 2 0 0 0 0 0

Inventory cost 1 2,105 96 0 1,300 1,489
2 516 852 125 8x142+637 721

=1,773

Sum of 1 325 210 96 106 136

inventory and 2 348 208 4x111=444 568 472

replenishment

(SIR)

SIRatiitems 673 418 540 674 608

SC 756 673 633 758 608

SIRaiitems_U -83 -255 -93 -84 0

From Table 8, the push method can generate a total inventory cost equal to 8,977. However, the
GAMS/CPLEX solver can execute this problem with an optimal solution of 8,521. The gap between
8,977 -8,521

8,521

the pull method to improve the solution.

these solutions is [}xlOO% =5.35%. This gap is still high. Therefore, this study proposes

4.3. Solution of the Pull Method

From Table 8, all SIRauitens_U are negative or zero. Therefore, the pull method can generate an
improved replenished plan. The procedure for this method can beexplained as follows.

1. Search the SIRauitems_Umin and SIRatitems_SCumax to be -255 and -83 for periods 2 and 1 from Table 8.
So,the index of both periods is tmin=2 and tmw=1. So, tminis more than fimax.

2. Find the SIRwmi for period tuin to be 208 on item 2 from Table 8. Return the replenishment of item
2 at period 2 to add the original replenished quantity on item 2 for period tmz=1. Thus, the new
amount replenished quantity of item 2 for period 1 is 87+52 = 139 units. For balance demand, the
replenished quantity of item 2 for period fmin is reduced to zero (see Table 9).

3. Recalculate SIR, SIRaitems, SIRanitems_LI, and total inventory cost (see Table 9).
4. SIRanitems_U of item 2 for period 1 (= +125) is still a positive number. Thus, search
the item with SIRma (= 325) excluding item 2 at period 1, to be 1.
5. For reducing SIRauitens_U to zero at period 1, the SIRaiitens_U is divided by the
weight of item 1 for period 1 (+125 / 1=125) on item 1 at period tmin =2 to be 0+125 = 125 units
(see Table 9). For balance demand, reduce the replenishment of item 1 in the previous period (t=1) to
be = 325-125 = 200 units.
6. Recalculate SIR, SIRatitens, SIRaiitems_U, and total inventory cost (see Table 10).
7. SIRanitems_U of period 1 is zero and SIRauitems_U of period 2 (tmin) is still -255
(see Table 10), which is the same as Table 9.
8. Find the SIRaitems_Umin and SIRaiiitems_Umax to be -255 and -84 in periods 2 and 3 from
Table 10. The index of both periods is twin=2 and twe=3. So, tminis less than tm. Then,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

19 of 41
stop the iteration.
Table 9. Execution flow in steps 1 to 4 using the pull method.
Periods t Item 1 2 3 4 5
Replenished 1 325 0 0 106 136
plan 52-
87+52
2 52 111 142 118
=139
=0
Ending 1 210 % 0 0 0
inventory 2 52 0 0 0 0
Inventory cost 1 2,105 96 0 1,300 1,489
3x139+1x52+255
2 0 125 1,773 721
=724
Sum of 1x325
1 210 96 106 136
inventory and =325
replenishment 4x139
2 208 444 568 472
(SIR) =556
SIRaitems 881 418 540 674 608
sC 756 673 633 758 608
SIRatitems_U +125 - 93 -84 0
255
Table 10. Execution flow in steps 1 to 4 using the pull method.
Periods ¢ Item 1 2 3 4 5
Replenished 325-125
1 0+125=125 0 106 136
plan =200
2 139 0 111 142 118
Ending 1 85 96 0 0 0
inventory 2 52 0 0 0 0
Inventory cost 4x200+1x85+595
1 1,071 0 1,300 1,489
=1,480
2 724 0 125 1,773 721
Sum of 1x200
. 1 210 9% 106 136
inventory and =200
replenishment (SIR) 2 556 208 444 568 472
SIRaitems 756 418 540 674 608
SC 756 673 633 758 608
SIRanitems_U 0 -255 -93 -84 0

Therefore, the inventory cost is effectively improved to 8,683. The GAMS/CPLEX
solver can calculate the optimal solution of 8,521 units. Both the proposed heuristic
and Gutiérrez et al. [17] can also calculate the approximate solution the same as 8,683
and the smoothing method of Nixon and Poh [27] can run about 9,494 (see Tablel1). Its

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

20 of 41
replenished plan is shown in Table 11.
Table 11. Replenished plan solved by Gutiérrez et al. [17] and smoothing method [27].
. Inventory
Gutiérrez et al. [17]
cost
Period 1 2 3 4 5
Item 1 200 125 0 106 136 5,340
2 139 0 111 142 118 3,343
Total inventory cost 8,683
Nixon and Poh [27] Inventory
cost
Period 1 2 3 4 5
Ttem 1 115 210 0 106 136 5,510
2 87 52 111 142 118 3,987
Total inventory cost 9,497

From Tables 10 and 11, the gaps between the proposed heuristic, Gutiérrez et al.
[17], the smoothing method [27], and GAMS/CPLEX are 1.9 %, 1.9 %, and 11.45 %, re
spectively. Both the proposed heuristic and Gutiérrez et al. [17] execute approximately
five replenishment orders, whereas the smoothing method executes about six. Conse
quently, the smoothing method incurs a higher total inventory cost than the other ap
proaches due to the increased ordering cost. For further testing, Minner[18] recom
mended generating test instances as follows: products varied between 3 and 10 and peri
ods varied between 4 and 18, demands are drawn from a uniform (or normal) distribution
over a specified range (e.g.\ U[0,100], setup costs are drawn similarly (e.g.\ U[50,150],
unit production costs are drawn from U[1,10], holding costs are held constant & =1,
weights are drawn from U[1,N], and warehouse capacity bounds are taken as
A= iwidu , U, = [A +B ~(i wiDi,M)} a fixed fraction B =10%. In the format for the stor
n=1 n=1
age capacity, parameter A is the sum of the demand onall items at period t with the
lower bound (B=1%). Authors generate the example data following Minner [18] proce
dure as shown in Table 12.

Table 12. A simple example by formatted data of Minner [18].

Periods t 1 2 3 4 5 6
U: 1161 529 768 973 721 806
Item 1,uw1=2

dut 44 47 64 67 67 9
fi 96

p1 6

mn

Item 2,w2=5

dz,t 83 21 36 87 70 88
f 74

p2 10

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

21 of 41

h2 1
Item 3,w1=4
dst 88 12 58 65 39 87
f 67
p3 9
hs 1

A instance of Minner [18] was computed by heuristics and the resulting solutions are
presented in Table 13.

Table 13. Total cost and gap solution obtained by the proposed heuristic, Gutiérrez et al. [17] and smoothing

[27].
Heuristics/MIP solver GAMS/ Push and Pull ~ Gutiérrez et al. Smoothing
CPLEX [17] [27]
Total cost 9,928 9,928 10,054 10,030
% Gap solution - 0 1.27 1.02
No. of additional - 3 4 4
orders

In Table 13, the push-and-pull heuristic achieves an optimality gap of approximately
0 %, outperforming Gutiérrez et al. [17], which has a gap of 1.27 %, and the smoothing method
[27], with a gap of 1.02 %. The proposed heuristic places about three replenishment orders,
whereas both Gutiérrez et al. [17] and the smoothing method place around four. Conse
quently, the push-and-pull heuristic’s performance is further validated in Section 5 on a set
of randomly generated problem instances.

5. Computational Result

For confidence in using heuristics, this study compares the solutions for the
proposed heuristic, algorithm by Gutiérrez et al., and GAMS/CPLEX solver. The set of
randomly generated problems is identical to the cost framework of Minner [18]. Each
problem runs on formatting parameters, as shown in Table 14.

Table 14. Formatting parameters.

Number of periods, T 6 12 24
Number of items, N 10,20,40,60,80,...,160 10,20,30,...,80 10,20,...,160
Number of instances 10 10 5
Weight distribution, W, Uniform, w, ~[1,10]

Demand distribution, d i

Uniform, di,t ~[30,150]

Ordering cost distribution, fl , Uniform, f,, ~[100,150]

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

22 of 41
N N
Inventory bounds, Ut A Zwidi,r’ u = [A LB (ZwiDi/t+l):|’
n=1 n=1
B = {1%,5%,10%, 20%}
Cost of procuring raw materials, pi,+ = zero and holding cost, hi+ = 1

The parameter B is the additional capacity generated from the accumulative demand
of period t+1 with the upper bound. If the upper bound is high, such as B = 20%, the
problem can be solved more easily. Otherwise, it is more difficult to address.

This study implements MATLAB 2024 A software to solve the network flow

algorithm based on dynamic programming for the initial solution, the proposed

algorithm [28], and Gutiérrez et al.’s algorithm [29].The solution for the MIP model is
generated by GAMS 46.3.0 licensed for continuous and discrete problems. An HP
Pavilion X360 Notebook running Windows 10 with an Intel Core i7 64-bit processor at
1.99 GHz and 24 GB of RAM was used to execute both the heuristics and MIP formula
tion. MATLAB software uses general-purpose programming that is more flexible and al
lows users to apply specified code. For generating the optimization solution, the
GAMS/CPLEX solver is concentrated on optimization, which is less flexible but powerful
for LP, MIP, and NLP problems [31].

The solution for the GAMS/CPLEX solver compares all the results of the experi
ment. It can be explained with the solution gap equation below.

Solution of heuristic-Solution of GAMS/CPLEX
Solution of GAMS/CPLEX

Solution gap (%) = [}x 100

5.1. Experiment Results

This study divides the category for the random example into three sub-categories: A small-scale
problem based on the number of periods N =6, a medium-scale problem based on the number of
periods N=12, and a large-scale problem based on the number of periods N=24. This experiment
shows their solution gaps and computation times varying the parameter B in Tables 15-18, as follows

Table 15. Computation times and solution gaps with near-minimal storage capacity using parameter B = 1%.

Min. gap (%) Max. gap (%) Avg. gap

(%)
Push Gutiérr Pull Gutiérr Pull G
Avg. Avg. Avg. & ez 's & ez 's & ut
Push & Gutiérr GAM pull heuristi push heuristi push ié
NoT pull ez’s S/CPL heuri ¢ heuri ¢ heuri rr
heuristi heuristi EX stic stic stic ez
¢ time c¢ time time ’s
(s.) (s.) (s) he
ur
ist
ic
10x6 -
6.26 6.24 0.49 0.00 0.21 2.77 3.78 0.57 89

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

23 of 41
1.
20x6 6
11.45 11.16 0.88 0.38 1.03 5.29 8.30 04
3.
40x6
21.90 21.24 2.56 0.28 2.87 0.88 5.02 0.72 48
3.
60x6
32.48 30.99 5.31 0.44 2.24 1.05 4.53 0.82 57
3.
80x6
44.25 41.81 7.27 0.67 2.65 1.13 4.47 091 44
3.
100x6
56.24 51.91 11.92 0.47 3.14 1.17 4.99 092 82
3.
120x6
69.42 60.82 12.28 0.55 2.90 1.15 4.60 0.89 64
4.
140x6
84.99 71.33 15.84 0.52 3.03 1.76 5.05 094 07
5.
160x6
100.72 81.98 57.13 0.04 2.98 8.51 11.90 2.08 09
3.
36.73 34.53 6.26
1.16 99
5.
10x12
61.85 64.78 0.85 0.22 2.54 1.32 7.27 0.79 36
4.
20x12
131.74 140.63 3.67 0.73 2.44 1.68 7.31 1.23 53
5.
30x12
204.64 216.34 8.57 1.24 4.21 1.93 7.17 151 66
5.
40x12
260.38 273.55 39.66 1.08 4.14 1.89 7.85 142 54
5.
50x12
328.35 321.77 74.41 1.15 4.89 1.77 6.64 139 71
5.
60x12
409.28 458.70 102.65 1.18 4.98 1.90 6.16 1.39 65
5.
70x12
495.31 679.99 380.50 0.23 4.97 1.46 6.77 1.24 61
5.
80x12
520.24 537.58 2388.1 1.21 4.22 1.48 6.56 1.30 67
5.
271.5 370.23 333.20
1.33 57
6.
10x24 89
3,037.37 3,429.14 2.31 0.95 6.04" 1.58 7.73" 1.27 ”
7.
20x24 16
6,507.96 5,765.73 59.68 1.58 7.16 2.20 7.16 1.83 *

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025

d0i:10.20944/preprints202506.0178.v1

24 of 41
7.
30x24 3,549. 42
7,303.46 8,694.35 2 1.11 7.42 2.21 7.42 1.84 '
7.
40x24 12,903.5 13,484.4 57,788 49
5 0 2 0.91 7.49" 2.07 7.49" 1.54 i
7.
5994.42 5,357.88 12,280 1.66 30

“"One and two instances 10x6-160x6 small-scale problem, 10x12-80x12 medium-scale problem and 10x24-40x24

large-scale problem.

Table 16. Computation times and solution gaps when parameter B = 5%.

Avg. Avg. Avg. Min. gap (%) Max. gap (%) Avg. gap (%)
Push & Gutiérre GAMS Push Gutiérre Pull & Gutiérre Pull & Gutiérre
NxT pull z's /CPLE & pull z ‘s push z ‘s push z ’s
heuristic heuristic X time heuris heuristic heuris heuristic heuris heuristic

time (s.) time(s.) (s.) tic tic tic

10x6 5.65 5.67 0.56 0.00 0.77 3.33 6.54 1.39 3.96
20x6 9.77 10.36 1.04 0.89 1.66 2.35 9.30 1.59 5.33
40x6 21.41 23.14 5.91 1.23 3.27 2.23 8.20 1.72 6.46
60x6 29 31.99 10.34 1.00 5.13 2.32 9.23 1.73 7.31
80x6 35.13 36.28 27.42 1.00 3.98 2.59 8.53 1.76 6.88
100x6 44.65 46.03 33.74 0.92 5.84 1.80 8.29 1.60 6.83
120x6 53.20 54.55 29.79 1.48 5.53 211 7.68 1.58 6.71
140x6 63.23 64.96 57.33 0.92 4.89 1.85 6.95 1.53 6.23
160x6 72.58 76.85 33.79 0.98 5.48 2.88 8.21 1.70 6.29
29.11 3033 1843 1.64 6.56
10x12 71.52 62.86 0.89 0.62 0.96 2.49 12.53 1.47 7.01
20x12 142.7 132.49 2.33 0.73 2.18 1.62 7.89 1.21 4.69
30x12 189.3 213.94 3.90 0.65 1.50 1.35 7.76 1.02 491
40x12 254.2 256.25 7.00 0.63 2.90 1.23 6.24 0.93 4.38
50x12 319.9 339.75 14.92 0.64 0.13 1.01 5.38 0.88 3.96
60x12 417.6 42297 18.73 0.66 291 1.27 5.62 0.93 4.30
70x12 498.1 526.02 36.40 0.69 2.99 1.18 5.36 0.87 3.94
80x12 523.7 519.15 24.03 0.67 211 1.15 6.65 0.82 4.01
272.22 368.08 12.03 0.92 4.43
10x24 1,398.7 1,578.05 0.45 0.14 1.68 1.68 5.01 0.94 3.19
20x24 6,592.9 7,140.05 6.22 0.31 1.62 0.79 3.08 0.59 2.48
30x24 9,608.8 9,364.59 47.16 0.24 1.06 0.80 2.46 0.58 1.95
40x24 12,824.7 13,504.5 61.94 0.22 191 0.58 3.07 0.40 2.60
8,117.58 8,465.86 5.98 0.55 241

10x6-160x6 small-scale problem, 10x12-80x12 medium-scale problem and 10x24-40x24 large-scale problem .

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

25 of 41
Table 17. Computation times and solution gaps when parameter B = 10%.
Avg. Avg. Avg. Min. gap (%) Max. gap (%) Avg. gap (%)
Push & Gutiérr GAM Push Gutiérre Pull & Gutiérre Pull & Gutiérre
NoT pull ez’s S/ICPL & pull z ’s push z ’s push z ’s
X
heuristi heuristi EX heuris heuristic heuris heuristic heuris heuristic
¢ time ¢ time time tic tic tic
(s.) (s.) (s.)
10x6 5.83 5.64 0.31 0.00 0.02 1.71 12.28 0.84 493
20x6 10.10 10.19 0.42 0.44 0.73 1.62 13.44 1.11 5.00
40x6 20.40 22.22 2.35 0.51 2.29 2.16 6.55 1.12 4.66
60x6 29.51 28.04 2.04 0.54 2.12 1.88 7.13 1.10 3.97
80x6 35.23 36.34 4.82 0.50 2.55 1.55 5.87 1.01 4.30
100x
6 44.68 45.50 7.19 0.48 2.00 1.28 6.22 0.87 4.06
120x
. 54.61 54.74 11.24 0.63 2.19 4.05 5.38 1.12 4.06
140x
6 62.91 63.74 7.35 0.58 2.65 1.06 5.10 0.80 3.40
160x
6 73.68 73.68 7.30 0.56 2.45 2.04 5.25 0.96 3.63
29.25 29.6 3.97 0.93 3.92
10x1
5 66.41 62.41 0.45 0.04 0.31 1.74 4.26 0.74 1.74
20x1
) 141.27 132.11 0.69 0.25 0.25 0.86 4.26 0.57 1.58
30x1
) 187.59 210.50 1.25 0.39 1.17 1.11 3.27 0.59 1.86
40x1
5 264.08 256.14 2.23 0.36 0.45 0.74 2.32 0.48 1.42
50x1
) 325.22 317.78 291 0.26 1.02 0.64 2.92 0.46 1.67
60x1
) 414.79 408.41 3.13 0.28 0.20 0.63 3.22 0.47 2.01
70x1
5 496.28 495.38 5.75 0.31 1.43 0.77 2.73 0.48 1.98
80x1
) 517.69 524.16 6.43 0.32 1.41 0.61 2.33 0.45 1.85
272.6 358.76 2.58 0.49 1.81
10x2
3,177.71 3,508.17 0.53 1.60 1.08 2.52 2.65 0.56 1.74
6,924.87 7,841.10 1.72 0.98 0.88 1.90 1.74 0.45 1.15

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

26 of 41
9,188.50 9,681.13 2.38 0.14 0.28 0.45 1.82 0.31 1.10

40x2 13,527.0 13,764.7
3.32 0.16 1.03 0.65 1.78 0.34 1.24

4 6 0
8,278.51 8,773.25 2.14 0.38 1.23

10x6-160x6 small-sclae problem, 10x12-80x12 medium-scale problem and 10x24-40x24 large-scale problem.

Table 18. Computation times and solution gaps when parameter B =20 %.

Avg. Avg. Avg. Min. gap (%) Max. gap (%) Avg. gap (%)
Push & Gutiérr GAM Push Gutiérre Pull & Gutiérre Pull & Gutiérre
NoT pull ez’s S/CPL & pull z ’s push z ’s push z ’s
X
heuristi heuristi EX heuris heuristic heuris heuristic heuris heuristic
¢ time ¢ time time tic tic tic
(s.) (s.) (s.)
10x6 5.85 5.71 0.29 0.00 0.65 2.50 4.83 0.83 2.48
20x6 10.02 10.25 0.34 0.09 0.14 1.51 2.18 0.68 1.18
40x6 22.22 22.94 1.74 0.26 1.07 1.29 2.40 0.57 1.76
60x6 29.54 29.66 0.87 0.20 1.21 1.14 2.34 0.60 1.75
80x6 35.24 35.71 0.90 0.44 1.18 1.03 2.17 0.62 1.71
100x
. 45.18 45.34 2.02 0.31 1.14 0.84 2.07 0.61 1.71
120x
6 53.90 55.09 1.87 0.36 1.53 0.89 1.53 0.65 1.72
140x
6 62.99 64.38 1.66 0.47 1.67 0.92 2.75 0.67 1.97
160x
. 73.13 74.91 1.81 0.35 1.53 1.66 2.82 0.76 1.87
37.56 38.22 1.28 0.66 1.79
10x1
5 36.14 32.01 0.28 0.00 0.00 1.07 2.34 0.39 0.65
20x1
) 71.55 62.07 0.45 0.00 0.00 0.88 1.65 0.34 0.91
30x1
5 185.60 205.13 0.52 0.12 0.25 0.76 1.42 0.37 0.87
40x1
5 264.97 258.89 0.70 0.17 0.60 0.49 1.24 0.36 0.92
50x1
) 330.85 322.59 1.20 0.19 0.61 0.53 2.38 0.35 1.03
60x1
5 491.05 501.27 3.97 0.20 0.61 0.47 1.30 0.33 0.94
70x1
5 491.05 501.27 3.97 0.20 0.61 0.47 1.30 0.33 0.94

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

27 of 41
80x1
515.24 541.88 2.10 0.25 0.59 0.44 1.16 0.34 0.84
264.63 358.40 1.61 0.36 0.87
10x2
4 3,01894 3,196.81 0.63 0.82 0.08 1.64 1.07 0.34 0.60
20x2
4 7,084.67 6,422.94 1.14 0.17 0.16 2.41 0.73 0.28 0.47
30x2
. 9,889.41 9,612.80 1.40 0.15 0.38 0.61 0.75 0.31 0.57
40x2 13,7064 12,863.7
1.78 0.13 0.41 0.31 0.73 0.20 0.56
4 9 7
8,506.37 8,101.12 2.12 0.27 0.55

10x6-160x6 small-scale problem, 10x12-80x12 medium-scale problem and 10x24-40x24 large-scale problem.

% Solutiongap
8
6
5 A3
3.92
4
313
. 166 163093 1.81 1.80
2 1 049 136 1 23 087
. 09 0.66 ™
1 I I I I Io 55 038 027 I 055
B=1% B=5% B=10% B=20% B=1% B=5% B=10% B=20%
Push&Pull heuristic Gutierrez's heuristic

B Small-scale problem M Medium-scale problem W Large-scale problem

Figure 3. Average solution gap of both heuristics under storage capacities when parameter B=1,5,10 and 20%.

5.1. Solution Gap

In Figure 3, the average solution gaps for the push and pull algorithm on large-scale
problem are 0.55%,0.38%, and 0.20% for parameter B = 5%, 10% and 20%, respectively.
Gutiérrez et al.’s heuristic generates solution gaps of about 2.41%, 1.23% and 0.55 %.
When comparing the solution gaps, the proposed heuristic performs better than Gutiér
rez et al.’s heuristic. The performance of the solution gap depends on the value of pa
rameter B. If parameter B increases, the solution gap is lower . The proposed algorithm
can determine the number of replenished quantities to move relaxed while satisfying all
demands with a high parameter B. Gutiérrez et al.’s heuristic sometimes moves the

replenished quantity from any period to period t+k, when &k ({1,2,..., T -t} .Ordering

cost must be paid more frequently when inserting the replenished quantity for

period t+k in more time, causing total inventory cost to grow. Unfortunately, the

amount of SIRauiten _U for period ¢ does not also decline. While the push and

pull heuristic moves each replenished quantity from period f to a consecutive

period only with zero inventory cost, it can certainly reduce the replenished

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

28 of 41

quantity for period t so that the amount of SIRaiens _U reduces.

5.2. Worst Cases Analysis

For the robust condition of the push & pull heuristic, this study introduces
the near-minimal storage capacity. The performance of a heuristic depends on the value
of the storage capacity. Suppose each storage capacity is likely near the sum of demand
for each period, called near-minimal storage capacity. Moving the partial or whole re
plenished quantities to the next period is difficult.

In Table 15, it is difficult for Gutiérrez et al.’s heuristic to execute any random
instances with near-minimal storage capacities. It can calculate only one and two from
five and ten instances, such as 20x24, 30x24, and 40x24 problems (NxT). Other solutions
cannot satisfy the demand. Meanwhile, the push and pull heuristic can calculate all
random instances with these storage capacities. Its solution gap performs well on the
small-and medium-scale problem, at about 1.15% and 1.33%, the same as the other in
stances with high storage capacities (parameter B =5-20%).

At the same time, Gutiérrez et al.’s heuristic gap solution is about 3.99% and 5.57%.
Therefore, the push and pull heuristic enables computing the replenished plan signifi
cantly better with near-minimal storage capacities.

For large-scale problems (T=24), MATLAB cannot run on the extension of the

number of periods due to being out-of-memory. When increasing the number of periods,
its memory usage exceeds 76 GB. The limitation of the system memory space (RAM and
swap file) used by MATLAB for this computer is about 76 GB.

To strengthen empirical benchmarking and provide better justification, compare the
proposed heuristics with additional baseline methods, including the smoothing heuristic
[27] , implemented using the state-of-the-art code [31]. The authors compare their solu
tion gap performance, which is shown in Table 19.

Table 19. Gap performance of the proposed, Gutiérrez et al., and smoothing heuristics under storage capacities
with parameter B = 1%, 5%, 10%, and 20%.

The push and pull heuristic

Problem 10X6 small- 10X12 10X24
Parameter B size scale medium- large-scale
problem scale problem
problem
Avg. 0.57 0.79 1.27
1%
Max. 0.73 1.32 1.58
Avg. 1.39 1.47 0.94
5%
Max. 2.62 2.49 1.27
Avg. 0.85 0.74 0.56
10%
Max. 1.81 1.74 1.2
Avg. 1.84 0.34 0.34
20%
Max. 2.5 0.88 1.64
Gutiérrez et al.’s heuristic
Avg. 1.89 5.36 6.89
1%
Max. 3.51 7.27 7.73
Avg. 3.96 7 0.94
5%
Max. 6.54 11.84 1.04

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

29 of 41

Avg. 492 1.74 1.74
10%

Max. 12.28 4.26 2.65

Avg. 248 0.65 0.6
20%

Max. 4.83 2.34 1.07

Smoothing heuristic [27]

Avg. 1.89 4.24 5.97
1%

Max. 3.4 6.24 6.79

Avg. 3.96 4.68 23
5%

Max. 6.54 7.53 2.46

Avg. 413 2.04 2.8
10%

Max. 9.83 3.51 8.46

Avg. 1.7 0.73 0.77
20%

Max. 3.35 1.53 1.35

In Table 19, the proposed heuristic shows good average gap performance on large-

scale problems, such as the 10x24 case, with gaps of about 1.27% and 0.34% under storage
capacities B = 1% and 20%, respectively. In comparison, Gutiérrez et al.’s heuristic has
gaps of approximately 6.89% and 1.07%, while the smoothing heuristic has gaps of about
5.97% and 1.35%, respectively. As a result, the gap performances of Gutiérrez et al.’s and
the smoothing heuristics differ by only a small amount. Therefore, the proposed heuristic
is able to compute an approximate replenishment plan that is better than the previous
heuristics.

5.3. Computation Time

This study implements the codes based on the state-of-the-art methods for both heu
ristics. Both the push & pull heuristic and the heuristic by Gutiérrez et al. have the same
time complexity, denoted as O(W - N -T?) . Therefore, the running times of the two

heuristics are nearly the same.The time complexity for the network flow based on dy

namic programming algorithm [22] has O(NTD?) for generating the initial solu

max
tion. The computation time of both heuristics combines the running time for the net
work flow based on dynamic programming for the initial solution with the running

time of each heuristic. The worst-case complexity of the GAMS/CPLEX solver has
O(2™"), which is an exponential growth rate. However, this solver enhances perfor

mance with the branch-cut and benders decomposition algorithm for reducing the run
ning time efficiency in large-scale problems [28] when compared with MATLAB soft
ware. For computation time, this study focuses on small-to-medium and large-scale
problems with near-minimal storage capacity. Therefore, the data in Figure 4 include
both small-to-medium and large-scale problems (see Table 15) with storage capacities
parameter B=1-20%. Both the heuristics and MIP solver generate solutions under stor
age capacities. The computation time for these conditions is shown in Figures 4-7, as
follows:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

30 of 41

Running time (second)
14000

12,280
12000

10000

8000

5,994.42
6000 5,357.88

4000
2000
s 715 3153 708 626 3332
0 | ____ Im [

Push&pull heuristic ~ Gutierrez et al's heuristic GAMS/CPLEX Solver

B Small-scale problem M Medium-scale problem W Large-scale problem

Figure 4. Average computation time with near-minimal storage capacity (B=1%) using a) push and pull heuristic
b) Gutiérrez et al.’s heuristic, , and ¢) GAMS/CPLEX solver.

Running time (second)

9000 8,465.86
8,117.58

8000
7000
6000
5000
4000
3000

2000

1000 272 368.08
0 — 30.33
Push&pull heuristic =~ Gutierrez et al's heuristic = GAMS/CPLEX Solver

B Small-scale problem B Medium-scale problem M Large-scale problem

18.43 12.03 5.98

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

31 of 41

Figure 5. Average computation time with near-minimal storage capacity (B=5%) using a) push and pull heuristic
b) Gutiérrez et al.’s heuristic, , and ¢) GAMS/CPLEX solver.

Running time (second)
10000

9000 8,773.25

8,278.51

8000

7000

6000

5000

4000

3000

2000

1 29.25 272 6 29. 63;8 76 397 258 2.14
0

Push&pull heuristic = Gutierrez et al's heuristic GAMS/CPLEX Solver
B Small- scale problem M Medium-scale problem M Large-scale problem

Figure 6. Average computation time with near-minimal storage capacity (B=10%) using a) push and pull
heuristic b) Gutiérrez et al.’s heuristic, , and ¢c) GAMS/CPLEX solver.

Running time (second)

9000 8,506.37
8,101.12

8000
7000
6000
5000
4000
3000
2000
wﬁ me %M 1.28 1.61 2.12

Push&pull heuristic Gutierrez et al's heuristic GAMS/CPLEX Solver

B Small-scale problem M Medium-scale problem M Large-scale problem

Figure 7. Average computation time with near-minimal storage capacity (B=20%) using a) push and pull
heuristic b) Gutiérrez et al.’s heuristic, and ¢) GAMS/CPLEX solver.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

32 of 41

In Figure 4, the computation time generated by the GAMS/CPLEX solver increases
exponentially for the large-scale problem under near-minimal storage capacities (B =
1%). In general, the CPLEX solver must execute effectively with a branch-and-cut al
gorithm and special heuristic. However, the running time for solving a large-scale
problem includes poor performance with near-minimal storage capacities. The MIP
solver must determine lot size with high running time to generate an optimal solution.
This is a limitation of the MIP solver. In contrast, the computation time for both heu
ristics, which generate approximate solutions for large-scale problems, performs well
compared to the MIP solver. Nevertheless, the computation time of the MIP solver on
small- to medium-scale and large-scale problems performs well compared to both heu
ristics when the storage capacities have higher B values (see Figures 5-7). The running
times for both heuristics are nearly the same due to their similar time complexity.

Therefore, considering the storage capacity constraints, both heuristics perform
well under near-minimal capacity for large-scale problems, whereas the MIP solver
computes efficiently with shorter running times for small- and medium-scale prob
lems. For high storage capacity constraints (B = 5-20%), the MIP solver performs well
with shorter running times across all problem scales.

5.4. Sensitivity Analysis

Authors present a sensitivity analysis on the varied parameter B to show its impact
on the cost performance of the proposed heuristics, order frequency, and inventory lev
els. The results of this analysis are shown in Figures 8 to 10 below.

Unit: Currency

30,000 27987.00
26070.60 25722.60 25530.00
25,000
20,000
14405.90
15,000 13372.60 1304160 1288040

10000 737860

6995.40 6718.70 6593.10
5,000 I I I I
0
1% 5% 10% 20%
Parameter B

Figure 8. Total cost vs. storage capacity parameter B (1%—20%) for different problem Scales.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

33 of 41

Inventory level
9000

8000
7000 0628
6000

5000

4000 3070

2000 o7 I I
770
1000
153

1% 5% 10% 20%
Parameter B
B 10x6 Small-scale problem M10x12 Medium-scale problem W10x24 Large-scale problem

7825
7115

3680
3274

1593

1239

Figure 9. Inventory level vs. storage capacity parameter B (1%-20%) for different problem scales

Order frequency
70

60

5 17
12 1
6 7
B . m om I
1% 5% 10% 20%
Parameter B

B 10x6 Small-scale problem W 10x12 Medium-scale problem W 10x24 Large-scale problem

Figure 10. Order frequency vs. storage capacity parameter B (1%-20%) for different problem scales.

In Figure 8, the total cost for each problem size is high when the storage capacity

is near minimal, and it decreases as the storage capacity increases. Under the near-min

imal storage capacity constraint, the inventory level for each problem size is low due

to the limited storage space (see Figure 9). This results in more frequent orders with

smaller replenishment quantities to meet all demand. The higher order frequency
causes an increase in the total cost (see Figure 10).

Under high storage capacity constraints, the total cost for each problem size is

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

34 of 41

low, but the inventory level is higher due to the increased storage space. The order
frequency is also lower in order to reduce the total cost.

In summary, tight storage space leads to higher total costs due to increased or
der frequency. On the other hand, larger storage capacity results in lower total costs
but requires higher investment to expand the storage space.

5.5. Statistical Validation of Heuristic Stability and Reliability

For validation of heuristic stability and reliability, the authors evaluate the total cost
and running time of the proposed heuristic using statistical parameters such as average,
standard deviation, minimum and maximum values, and confidence intervals, as shown
in Table 20.

Table 20. Statistics parameters of total cost computed by the push and pull methods under near-minimal storage
capacities (B=1%).

Problem Average Standard Lower Upper Min. total Max. total
(currency) deviation confidence confidence cost cost
interval®@ interval @
10x6 7378.6 158.1 6904.4 7852.7 7114 7640
20x6 14570 261.2 13786.2 15353.79 14200 15081
40x6 29012.2 340.2 27991.6 30032.8 28409 29498
60x6 43445 400.0 422449 44645.1 42930 43941
80x6 58025.2 544.1 56393.1 59657.3 57059 58883
100x6 72482.8 565.9 70784.9 74180.6 71498 73354
120x6 86833 607.5 85010.5 88655.5 85551 87392
140x6 101220.8 645.9 99282.9 103158.7 99805 101875
160x6 115562.2 710.6 113430.5 117693.9 114175 116367
10x12 14405.9 184.0 13853.8 14957.9 14160 14742
20x12 28599.9 232.3 27902.9 29296.9 28134 28871
30x12 42776.4 329.6 41787.7 43765.1 42106 43239
40x12 56862.5 365.5 55765.9 57959.1 56166 57551
50x12 70941.3 335.1 69936.1 71946.5 70393 71384
60x12 85055.2 584.1 83302.9 86807.5 83928 85927
70x12 99057.1 546.9 97416.1 100698.1 97851 99605
80x12 113184.8 514.6 111641.1 114728.5 112018 114040
10x24 27987 335.1 26981.6 28992.4 27722 28410
20x24 55547.6 460.6 54165.7 56929.5 54820 56051
30x24 82909 476.8 81478.7 84339.3 82590 83730
40x24 110034.8 762.3 107748.0 112321.6 108971 111105

@ Lower and upper confidence interval =X + 35 with 99.7% confidence interval, s = standard deviation.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

35 of 41

Table 21. Statistics parameters of running time computed by the push and pull methods under near-minimal

storage capacities (B=1%).

Problem Average Standard Lower Upper Min. total Max. total
(second) deviation confidence confidence cost cost
interval@ interval®@
10x6 6.25 0.54 4.63 7.88 5.79 7.59
20x6 11.45 0.31 10.53 12.38 11.04 12.02
40x6 21.90 0.37 20.78 23.04 21.37 22.54
60x6 32.48 0.46 31.09 33.87 31.75 33.17
80x6 44.25 0.93 41.45 47.05 43.04 45.86
100x6 56.24 0.94 53.43 59.05 55.02 57.71
120x6 69.42 1.26 65.65 73.18 67.90 71.21
140x6 84.98 2.49 77.52 92.46 82.41 91.25
160x6 100.72 1.46 96.35 105.09 98.57 103.74
10x12 61.85 5.27 46.03 77.68 55.48 71.94
20x12 131.74 4.84 117.23 146.26 126.34 141.33
30x12 204.63 16.03 156.53 252.74 182.15 236.27
40x12 260.38 23.67 189.36 331.41 229.37 311.10
50x12 328.35 34.155 225.89 430.82 279.38 402.51
60x12 409.28 40.99 286.31 532.24 351.43 492.47
70x12 495.31 40.97 372.41 618.22 443.17 585.65
80x12 520.24 26.18 441.69 598.79 478.54 566.50
10x24 3257.11 608.49 1431.63 5082.59 2647.19 4108.03
20x24 6507.96 340.99 5485 7530.92 6159.20 6964.99
30x24 9103.45 416.01 7855.43 10351.48 8471.77 9610.50
40x24 14628.15 1370.03 10518.05 18738.25 11694.79 14786.62

@Lower and upper confidence interval =X 35 with 99.7% confidence interval , s = standard deviation.

Tables 20 and 21, all total cost and running time values fall within the lower and upper
bounds of the 99.7% confidence intervals around the average values. It indicates that the
heuristic's performance is reliable, and low variability is a direct measure of its stability.

6. Conclusions

This study proposes a novel push-pull heuristic for solving the multi-item un-
capacitated lot-sizing problem under near-minimal storage capacities. When capacity
constraints are nearly minimal across multiple items, novel heuristics are required. Pior
heuristics did not directly consider the tight storage capacity constraints. The just-in-
time operation in the assembly automobile industry is difficult to share the storage ca
pacity on the multi-item parts. The proposed heuristic can be applied to manage tight
storage capacity while keeping multiple items. To compute the initial replenishment plan,
authors implement a dynamic programming based on network flow to generate a single-
item lot size plan for all periods under unlimited storage capacity of each period. The
push procedure identifies iteratively the maximal sum of beginning inventory plus the
replenishment quantity which moves to the next period without violating the near -min
imal storage capacity. Each iteration will increase inventory cost with the ordering

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

36 of 41

cost .The push and pull procedure requires fewer iterations during computation. In
comparison, Gutiérrez et al.’s heuristic selects successive periods, resulting in more iter
ations and increased ordering costs to meet the near-minimal capacity constraints.The
result of computation shows that the proposed heuristic performs well on the gap solu
tion under near-minimal storage capacities. The running time of the proposed heuristic
performs well on large-scale problem, whereas GAMS/CPLEX solver run with minimal
run time on small-and medium-scale problem. However, in the sensitivity analysis, a
near-minimal storage capacity constraint results in high inventory costs due to the in
creased frequency of orders.

Future research could expand this proposed heuristic for applying this proposed
heuristic then evaluating in a assembly automobile plant to improve the practical ap
plicability and credibility. Another extension, it could run with the stochastic demand or
lead time constraints to make it applicable across a wider range of academic settings.

Author Contributions: Conceptualization, W.B. and D.H. and P.C.; methodology, W.B. and D.H.; software,
W.B.; validation, W.B. and D.H.; formal analysis, W.B. and D.H.; investigation, W.B. and D.H.; resources, D.H.;
data curation, W.B. and D.H.; writing —original draft preparation, W.B. and D.H. ; writing —review and editing,
W.B.,D.H. and P.C,; visualization, W.B. and D.H.; supervision, P.C.; projectadministration, W.B. and D.H;

funding acquisition, W.B. and D.H. All authors have readand agreed to the published version of the manuscript
Funding: This study received no external funding.

Data Availability Statement: The data presented in this study are available and can request to the corresponding
author.

Acknowledgments: The authors would like to express our sincere appreciations to all constructive comments
and recommendations from reviewers leading to theimproved final version of this manuscript. This study was

supported by the Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Thailand.

Conflicts of Interest: The authors declare no conflicts of interest.
Appendix A

Appendix A.1
Pseudo code of dynamic programming based on network flow
1: PROCEDURE MultiltemLotSizing
2: // d[N][T] « demand matrix (rows: items, cols: periods)
3: // order[N][T] « fixed ordering cost matrix
4: /| weight[N]« per-item weight (for capacity constraint)
5: // pc[N][T]« per-unit production cost matrix
6: // he— unit holding cost
7: // Output:
8: // sol[N][T]« lot-sizes for each item and each period
9: // invencost[N] « total inventory cost per item
10: CONST M « 10*10// “infinite” penalty
11: CONST extra < 1// cost offset for indexing
12:
13: FOR g «<— 1 TO N DOY// for each item
14:// 2. Compute sumdemand and cumdemand
15:FOR k «— 1 TO T DO
16: sumdemand|[g][k] « Z_{i=1..T} d[g][i]

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

37 of 41

17:END FOR

18:cumdemand]g][1] < sumdemand[g][1]

19:FOR k « 2 TO T DO

20: cumdemand[g][k] <+ cumdemand[g][k-1] + sumdemand[g][k]
21:END FOR

22:

23:// 3. Build DP network of size S=T + X_k sumdemand|g][k] + 1
24:S «— T+ X_{k=1..T} sumdemand[g][k] + 1
25:ALLOCATE dcost[1..S][1..S]

26:

27:// 4. Fill dcost for “period 0” (building initial inventory)
28:FOR inv « 0 TO sumdemand[g][1] DO

29:lot «—inv-0+0

30: IF lot > 0 THEN

3l:y <1

32: ELSE

33:y 0

34: END IF

35: dcost[1][inv+1] « inv*h + lot*pc[g][1] + y*order[g][1] + extra
36:END FOR

37:

38:// 5. Fill dcost for periods 1..T-1

39:node_ i« 1

40:FOR p < 1 TO T-1 DO

41: prev_node_i < node_i

42: FOR inv_prev « 0 TO sumdemand[g][p] DO

43: node_i « prev_node_i + inv_prev

44: FOR inv_curr « 0 TO sumdemand|[g][p+1] DO

45:lot « inv_curr - inv_prev + d[g][p]

46:IF lot > 0 THEN

47:y 1

48:ELSE

49:y <0

50:END IF

51:// compute holding penalty

52:JF lot == 0 AND inv_prev - inv_curr == d[g][p] THEN
53:hold « inv_curr * h

54:ELSE IF lot > 0 AND inv_prev - inv_curr + lot == d[g][p] THEN
55:hold « inv_curr * h

56:ELSE

57:hold «— M

58:END IF

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

38 of 41

59:// assemble cost
60:IF hold == M THEN
61:cost — M
62:ELSE
63:cost «— hold + lot*pc[g][p] + y*order[g][p]
64:END IF
65:dcost[node_i][node_i + sumdemand[g][p+1] + 1] < cost + extra
66: END FOR
67: END FOR
68: node_i < node_i + sumdemand|[g][p+1] + 1
69:END FOR
70:
71:// 6. Fill dcost for final period T
72:FOR inv_prev « 0 TO sumdemand[g][T] DO
73:node_i «—node_i + inv_prev
74: 1ot « 0 - inv_prev + d[g][T] // end inventory is forced to 0
75: IF lot > 0 THEN
761y 1
77: ELSE
78:y 0
79: END IF
80: IF lot =0 AND inv_prev - 0 = d[g][T] THEN
81:hold < 0*h
82: ELSE IF lot > 0 AND inv_prev — 0 + lot == d[g][T] THEN
83:hold < 0*h
84: ELSE
85: hold — M
86: END IF
87: IF hold =M THEN
88: cost «— M
89: ELSE
90: cost « hold + lot*pc[g][T] + y*order[g][T]
91: END IF
92: dcost[node_i][S] « cost + extra
93:END FOR
94:
95:// 7. Solve DP by backward recursion
96:ALLOCATE fn[1..5+1] <0
97:ALLOCATE fnmat[1..S][1..5]
98:// 7.1 Initialize last column
99:FOR i+« 1 TO SDO
100:fnmat[i][S] < dcost[i][S]

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

39 of 41

101: END FOR

102: fn[S] <« MIN_{i=1..S} fnmat[S][i]

103: // 7.2 Recurrence

104: FOR i « S-1 DOWNTO 1 DO

105:FOR j «—i TO S DO

106: IF dcost[i][j] > 0 THEN

107: fnmat[i][j] < dcost[i][j] + fn[j+1]

108: END IF

109:END FOR

110:fn[i] «— MIN_{j=i..S} fnmat[i][j]

111: END FOR

112:

113: // 8. Trace optimal path

114: INITIALIZE optimalsol[0..T+1][1..5] «<— 0

115: current_node « 1

116: FOR period < 0 TO T DO

117:// find next node j where fn[current_node] == fnmat[current_node](j]
118:SELECT smallest j > current_node such that fn[current_node] == fnmat[current_node][j]
119:lot «— corresponding lot-size on arc (current_node—j)
120:inv « previous_inv — demand + lot
121:optimalsol[period+1] «<— (prev_inv, lot, demand, inv, arc_cost — extra)
122:current_node «j+1

123: END FOR

124:

125:// 9. Record item-level solution

126: FOR p +— 1 TO T DO

127:sol[g][p] < max(0, optimalsol[p+1].lot)

128: END FOR

129: invencost[g] « fn[1] - extra

130: END FOR

131:

132: END PROCEDURE

References

1. Love; S.F. Bounded Production and Inventory Models with Piecewise Concave Costs. Manag. Sci. 1973, 20,
313-318.

2. Loparic, M.; Pochet,Y.; Wolsey,L.A. The Uncapacited Lot-Sizing Problem with Sales and Safety Stocks.
Math. Program. 2001, 89, 487-504.

3. Atamtiirk, A.; and Kiiciikyavuz, A. Lot Sizing with Inventory Bounds and Fixed Costs: Polyhedral Study
and Computation. Oper. Research. 2005, 53, 711-730.

4. Guan, Y; Liu, T. Stochastic Lot-Sizing Problem with Inventory-Bounds an Constant Order-Capacities. Eur.

J. Oper. Res. 2010, 207, 1398-1409.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

40 of 41

5. OnalM.; Heuvel, W. V.D.; Liu,T. A Note on the Economic Lot Sizing Problem with Inventory Bounds. Eur.
J. Oper. Res. 2012, 223, 290-294.

6. Chu, C,; Chuy, F,; Zhong, F.; Yang, S. A Polynomial Algorithm for a Lot-Sizing Problem with Backlogging,
Outsourcing, and Limited Inventory, Comput. Ind. Eng. 2013, 64, 200-210.

7. Akbalik, A; Penz, B.; Rapine, C. Multi-Item Uncapacitated Lot Sizing Problem with Inventory Bounds.
Optim. Lett. 2015, 9, 143-154.

8. Brahimil, N.; Absi, N.; Dauzere-Péres, S.; and Kedad-Sidhoum, S. Models and Lagrangian Heuristics for a
Two-Level Lot-Sizing Problem with Bounded Inventory. OR Spectrum. 2015, 37, 983-1006.

9. Melo, R.A; Ribeiro, C.C. Formulations and Heuristics for the Multi-Item Uncapacitated Lot-Sizing Problem
with Inventory Bounds. Int. J. Prod. Res. 2015, 55, 576-592.

10. Witt, A. A Heuristic for the Multi-Level Capacitated Lot Sizing Problem with Inventory Constraints. Int. J.
Manag. Sci. Eng. Manag. 2019, 14, 249-252.

11. Mohammadi, A,; Shegarian, E. A Mixed Integer Linear Programming Model for
the Multi-Item Uncapacitated Lot-Sizing Problem: a case study in the trailer
manufacturing industry. Int. J. Multivar. Data Anal. 2017,1, 173-199.

12. Sedeno-Noda, A.; Gutierrez, J.; Abdul-Julbar, B.; Sicilia, J. An O (T log T) Algorithm for the Dynamic Lot
Size Problem with Limited Storage and Linear Costs. Comput. Optim. Appl. 2004, 28, 311-323.

13. Liu, X;; Tu, Y. Production Planning with Limited Inventory Capacity and Allow Stockout. Int. J. Prod. Econ.
2008, 111, 180-191.

14. Chu, F.; Chuy, C. Single-Item Dynamic Lot-Sizing Models with Bounded Inventory and Outsourcing”, IEEE
Trans. Syst. Man. Hum. 2008, 38, 70-77.

15. Hwang, H.-C.; Heuvel, W.V.D. Improved Algorithms for a Lot-Sizing Problem with Inventory Bounds and
Backlogging. Nav. Res. Logist. 2012, 59, 244-253.

16. Hwang, H.-C; Heuvel, W. V. D.; Wagelmans, A. P. M. The Economic Lot- Sizing Problem with Lost Sales
and Bounded Inventory. IIE TRANS. 2013, 45, 912-924.

17. Gutiérrez,].; Colebrook, M.; Abdul-Jalbar, B.; Sicilia,]. Effective Replenishment Policies for the Multi-Item
Dynamic Lot- Sizing Problem with Storage Capacities. Comput. Oper. Res. 2013, 40, 2844-2851.

18. Minner, S. A Comparison of Simple Heuristics for Multi-Product Dynamic Demand Lot-Sizing with
Limited Warehouse Capacity. Int. J. Prod. Econ. 2009, 118, 305-310.

19. Wagner, HM.; Whitin, T.M. Dynamic Version of the Economic Lot Size Model. Manag. Sci. 1958, 5, 89-96.
20. Gutiérrez, J.; Sedeno-Noda, A. Colebrook, M.; Sicilia, J. A Polynomial Algorithm for the
Production/Ordering Planning Problem with Limited Storage. Comput. Oper. Res., 2007, 34, 934-937.

21. Toczylowski, E. An O(T?) Algorithm for the Lot-Sizing Problem with Limited Inventory Levels. In
Proceedings of International Conference on Emerging Technologies and Factory Automation (ETFA) ,
Paris, France, 10-13 October 1995, pp.78-Available online:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=496709&tag=1 (accessed on 9

22. September 2024)

23. Ojeda,A. Multi-level production planning with raw-material perishability and inventory bounds. Ph.D.
(Industrial Engineering) of Concordia University , Montreal, Canada , September, 2019
Boonphakdee, W.; Charnsethikul, P. Column Generation Approach for Solving Uncapacitated Dynamic
Lot-Sizing Problems with Time-Varying Cost.Int. J. Math. Oper. Res. 2022, 23, 55-75.

24. Di Summa, M.; Wolsey, L.A. Lot-Sizing with Stock Upper Bounds and Fixed Charges. SIAM]. Discret.
Math.2010, 24, 853- 875.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0178.v1

41 of 41

25. Park, Y.B. An Integrated Approach for Production and Distribution Planning in Supply Chain
Management. Int. J. Prod. Res. 2005, 43, 1205-1224.

26. Emde, S. Sequencing Assembly Lines to Facilitate Synchronized Just-In-Time Part Supply. J. Sched.2019,
22, 607-621.
27.Dixon, P.S.; Poh, C.L. Heuristic Procedures for Multi-Item Inventory Planning with Limited Storage. IIE
TRANS. 1990, 22,112-123.

27. 28.MATLAB code for Heuristic for the multi-item lot-sizing with storage capacities available online :
https://www.math works.com/matlabcentral/fileexchange/179289-heuristic-for-the-multi-item-lot-sizinng-
with-storage-cap, MATLAB Central File Exchange. Retrieved January 18, 2025.

28. MATLAB code for Heurictic of Gutierrez et al. 2013 algorithm Available online:
https://www.mathworks.com/matlabcen tral/fileexchange/179294-heurictic-of-gutierrez-et-al-2013-
algorithm, MATLAB Central File Exchange. RetrievedJanuary 18, 2025.

29. MATLAB code for Smoothing Heuristic Multi-item Lot size with Storage cap. Available online:
https://www.mathworks.com/matlabcentral/fileexchange/181148-smoothing-heuristic-multi-item-lot-size-
with-storage-cap, MATLAB CentralFile Exchange. Retrieved May 15, 2025.

30. CPLEX solver Available online: https://documentation.aimms.com/platform/solvers/cplex. html (accessed

on 23 Dec 23, 2024)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.math/
https://doi.org/10.20944/preprints202506.0178.v1
http://creativecommons.org/licenses/by/4.0/

