

Article

Not peer-reviewed version

Effective Heuristics for Solving the Multi-Item Uncapacitated Lot-Sizing Problem with Near-Minimal Storage Capacities

[Warut Boonphakdee](#) , [Duangrat Hirunyasiri](#) * , [Peerayuth Charnsethikul](#)

Posted Date: 3 June 2025

doi: [10.20944/preprints202506.0178.v1](https://doi.org/10.20944/preprints202506.0178.v1)

Keywords: multi-item; lot size; near-minimal storage capacity; replenishment plan

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

A Push–Pull Heuristic for Solving the Multi-Item Uncapacitated Lot-Sizing Problem under Near-Minimal Storage Capacities

Warut Boonphakdee ¹, Duangrat Hirunyasiri ^{2,*} and Peerayuth Charnsethikul ³

¹ Department of Industrial Engineering, Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand

² Department of Textile Science, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand

³ Department of Industrial Engineering, Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand

* Correspondence: duangrat.c@ku.th

Abstract: In inventory management, storage capacity constraints complicate multi-item lot-sizing decisions. As the number of items increases, deciding how much of each item to order without exceeding capacity becomes more difficult. Dynamic programming works efficiently for a single item, but when capacity constraints are nearly minimal across multiple items, novel heuristics are required. However, previous heuristics have mainly focused on inventory bound constraints. Therefore, this paper introduces push and pull heuristics to solve the multi-item uncapacitated lot-sizing problem under near-minimal capacities. First, a dynamic programming based on network flow model was used to generate the initial replenishment plan for the single-item lot-sizing problem. Next, under storage capacity constraints, the push operation moved the selected replenishment quantities from the current period to subsequent periods to meet all demand requirements. Finally, the pull operation shifted the selected replenishment quantities from the current period into earlier periods, ensuring that all demand requirements were satisfied. The results of the random experiment showed that the proposed heuristic generated solutions whose performance compared well with the optimal solution. This heuristic effectively solves all randomly generated instances representing worst-case conditions, ensuring robust operation under near-minimal storage. For large-scale problems under near-minimal storage capacity constraints, the proposed heuristic achieved only small optimality gaps while requiring less running time. However, small- and medium-scale problems can be solved optimally by a Mixed-Integer Programming (MIP) solver with minimal running time.

Keywords: multi-item; lot size; near-minimal storage capacity; replenishment plan

1. Introduction

In supply chain management, the inventory bound, or limitation storage is an important constraint. Raw materials cannot be stored in huge volumes, although the unit price of a raw material unit is low. If raw materials have many different items and stock-keeping units (SKUs), it results in complex problems. Supply chain management decisions depend on the procurement policy of the organization. It comprises operating on minimum inventory cost while considering whether or not to use an expanded storage. An expanded storage area is a feasible solution, which operates at the lowest inventory cost. However, the investment cost for land lease and acquisition, including the rack and shelving supply, must be considered as well. In the case of not considering an expanded storage area, there are two feasible solutions. Firstly, when inventory is over, it must be kept in another area, such as the production line; notwithstanding, this result is with late disbursement, lost materials, and incorrect counting of the number of remaining materials. Total inventory cost is still low. Secondly,

keep the amount of inventory under the storage capacity, but the order frequency must grow evidently. As a result, the storage cost continues to be high. When the number of items or SKUs increase, deciding how much of each item to order without exceeding capacity becomes more difficult. In many process industries such as paper manufacturing, petrochemical manufacturing, refineries, food processing, and pharmaceutical manufacturing, storage capacity has become a limiting factor.

In practice, industries such as trailer assembly processes [11], raw-material perishability in composites [22] must all contend with limited inventory bounds. Tight inventory bounds or near-minimal storage capacities that slightly exceed demand require specialized heuristics. Industries operating under Just-In-Time assembly, such as automotive plants [26], are especially sensitive to these constraints. Therefore, the authors introduce a dynamic programming approach based on network flow to generate an initial replenishment plan for each single item and develop a new heuristic to manage the multi-item lot-sizing problem under near-minimal storage capacities.

Storage capacity has been defined by researchers as comprising two distinct categories, such as: the number of ending inventory only, and the sum of the number for the beginning inventory and replenishment. Firstly, most researchers proposed the storage capacity to be based on the number of ending inventory only. Secondly, other researchers introduced the storage capacity to be the total of the number of the beginning inventory and replenishment. Thus, many researchers have defined inventory as the quantity of goods on hand at the end of a specific period. However, in the real world problem, raw material stores usually receive the replenishment at the beginning of the period and keep the inventory of the previous period together to be not over the storage capacity. Consequently, this paper suggests that the total number of inventory in each period depends on the sum of inventory and replenishment at the beginning of the period. There are two definitions of storage capacity: one based on the number of ending inventory, and the other on the sum of beginning inventory plus replenishment. These different definitions not only affect how inventory is calculated but also directly impact the formulation of inventory planning models. As a result, various algorithms have been developed to solve these models.

Lot sizing problems are typically solved using exact methods such as MIP, dynamic programming and heuristic techniques. The earliest known MIP formulation for the lot-sizing problem in the U.S. petroleum refining industry was introduced by Manne [18] in 1958. In his seminal paper, he presented a mathematical model for the dynamic lot-sizing problem, which developed in production planning and inventory control. Meanwhile, Wagner and Whitin [19] introduced a forward algorithm based on the dynamic programming approach to search for optimal lot size decisions. They established the optimal lot sizes for a single item when demand, inventory holding charges, and setup costs change over time. For the management of procurement of materials with storage capacity, consider both the single item and multi-item.

The dynamic programming approach has been implemented by various researchers to solve the single-item dynamic lot size problem. Love [1] introduced the first **dynamic programming formulation for** the Economic Lot-Sizing Problem with Bounded Inventory (ELSB), where inventory levels are constrained by the lower and upper bounds. His model considers both production capacities and storage limitations, which are common in practical applications. It solved in $O(T^3)$ time considering backlogging, time-dependent inventory bounds and piecewise concave production, and storage costs when T is the number of periods in the planning horizon. Toczyłowski [21] presented an efficient $O(T^2)$ algorithm for the general single-item dynamic lot-sizing problem with limited inventory levels and nonzero initial and safety stock levels. Loparic et al. [2] derived a dynamic program or the shortest path problem using regeneration intervals to solve a single-item lot-sizing problem with sales constraints and lower bounds on safety stocks. The limitation of this research is that, in practice, safety stock levels often fluctuate. Sedano-Noda et al. [12] introduced an $O(T \log T)$ greedy algorithm to provide optimal policies assuming reorder and linear holding costs without setup costs or backlogging. However, the limitation of this research is that it considers only zero setup costs, which is not practical. Liu and Tu [13] proposed the capacity production-planning (CPP)

problem where the production quantity was limited by inventory capacity and stockout. This problem occurs in petrochemical and glass manufacturing, crude oil refining, and food processing. They applied a minimum-cost flow algorithm to construct the network. By applying standard successive-shortest-path methods, they achieved an overall time complexity $O(T^3)$. Önal et al. [5] modified dynamic programming procedure that restores optimality for the general bounded-inventory lot-sizing problem in $O(T^2)$. However, this study did not include any computational experiments to validate the practical performance of the corrected method. Chu and Chu [14] proposed the dynamic programming approach for the inventory-bounded outsourcing and inventory-bounded outsourcing models. These models execute overall complexity time with $O(T^2 \log T)$ and $O(T^2)$, respectively. The limitation of this approach is impractical for planning horizons longer than a few dozen periods. Hwang and Heuvel [15] presented the $O(T^2)$ algorithm based on dynamic programming and the Monge property for solving a dynamic lot-sizing problem with backlogging and inventory bounds when general production and inventory cost structures are concave. In addition, they introduced the $O(T \log T)$ algorithm using the points-approach and a geometric technique for fixed-charge cost structure as well as the $O(T)$ algorithm using a line-segments approach, including a geometric technique for the fixed-charge cost structure without speculative motives. However, their algorithm does not provide an optimal solution for the ULS-IB problem. Hwang et al. [16] developed the first polynomial-time $O(T^4)$ dynamic-programming algorithm to solve the single-item deterministic Economic Lot-Sizing problem with lost sales and bounded inventory (ELS-LB), under the assumption that each period's inventory capacity is fixed. A drawback of their DP algorithm is that it requires a long running time and a large amount of memory to execute. Boonphakdee and Charnsethikul [23] developed a network-flow based on the dynamic programming approach to solve the single-item uncapacitated lot-sizing problem. In this study, the authors introduce their DP algorithm to generate the initial replenishment plan. Atamtürk and Küçükyavuz [3] proposed a linear programming formulation that achieves tighter relaxations for the single-item lot-sizing problem with inventory bounds and fixed costs. Gutiérrez et al. [20] extended the classical Wagner-Whitin model by time-varying storage capacities and allowing backlogging. They developed a dynamic programming algorithm with time complexity of $O(T^3)$, where T is the number of periods in the planning horizon. Their algorithm applies only when both the production cost and the holding or stockout cost functions are concave. Guan and Liu [4] introduced two stochastic models for the single-item lot-sizing problem under uncertainty including inventory-bound only and the other both inventory-bound and constant order-capacity constraints. They developed dynamic programming algorithms from them with the time complexity $O(T^2)$ and $O(T^2 n \log T)$, respectively, where T is the number of time periods and n is the number of possible order capacities. However, stochastic DP requires complete and precise probability distributions of demand for every period. Chu et al. [6] proposed a single-item dynamic lot-sizing model integrating backlogging, outsourcing, and limited inventory. They developed a dynamic programming algorithm that solves the lot-sizing problem in polynomial time with $O(T^3)$ time complexity, where T is the number of periods in the planning horizon. As a result, their algorithm cannot support concave setup or volume-discount cost structures. Brahimi et al. [8] introduced the Two-Level dynamic Lot-Sizing Problem with Bounded Inventory (2LLSP-BI), integrating raw-material procurement and finished-product production planning under finite warehouse capacity constraints. They introduced a new Lagrangian-relaxation heuristic which decomposes 2LLSP-BI into N single-item lot-sizing subproblems. Each subproblem is solved by a dynamic programming. The time per Lagrangian iteration is $O(N \cdot T^2 + T \cdot I_{max})$, where I_{max} is the number of the capacity bounds. The raw-material inventory has a single static bound, whereas finished-goods storage is unbounded. Finally, Di Summa and Wolsey [24] studied a mixed-integer program that provides a new convex-hull characterization for the single-item discrete lot-sizing problem with a variable upper bound on the initial stock. However, this formulation is in general too large to be practically useful.

In practice, it is hard to handle only a single item in raw-material storage or on the production line. Consequently, managing multiple items can be quite complex. It is difficult to keep each item

and to balance holding costs against ordering costs. Heuristic algorithms are commonly used to solve the multi-item dynamic lot-sizing problem. Many researchers have been interested in creating the heuristic algorithm for solving the multi-item uncapacitated lot-sizing problem with inventory bound (MULSP-IB) due to the practical problem in the real world. This problem is like the multi-item capacitated lot-sizing problem (MCLSP), where the items allocate to a machine with a production capacity constraint. The MULSP-IB only has the limitation of on-hand inventory. Dixon and Poh [27] proposed the smoothing approach. They developed the push and pull operations if all weight or volume of inventory is maintained at more than the storage capacity. For the push operation, replenishment in the existing period t is moved to the consecutive period $t+1$. On the other hand, the pull operation postpones the replenishment in a backward direction from the existing period t to a previous period $t-1$ so that all the weight or volume of inventory is maintained at less than the storage capacity. This procedure runs in $O(n \cdot T)$. The authors apply the principle of this smoothing method to implement the push and pull procedures. The push procedure postpones replenishment from the current period to the next period, whereas the pull procedure shifts it back to the previous period. Moreover, the authors compare this heuristic's performance against other heuristics. Park [25] studied the two systems together. He presented the solutions of integrated production and distribution planning and investigated the effectiveness of their integration in a multi-plant, multi-retailer, multi-item, and multi-period logistic environment. Additionally, he introduced the optimization models and a heuristic solution for both integrated and decoupled planning. Akbalik et al. [7] improved the dynamic programming running in $O(2^n T^{n+1})$ time with a polynomial growth rate if the number of items (n) is fixed to solve the MULSP-IB. However, the T^{n+1} factor makes the algorithm impractical for larger multi-item instances. Gutiérrez et al. [17] extended the smoothing technique of Dixon and Poh[27]. explored the multi-item dynamic lot-sizing problem with storage capacities or inventory bounds. The problem has been presented to bound applying the weight of inventory in a previous period plus the weight of replenishment in the current period. Its average solution is over around 5% of the solution computed by CPLEX. The authors also compare its performance against the proposed heuristics. Melo and Ribeiro [9] presented the multi-item uncapacitated lot-sizing problem with shared inventory bounds. They developed two MIP-based heuristics : a rounding scheme for generating the feasible solution and a relax-and-fix heuristic for improving the solution. These MIP-based heuristics yield only near-optimal solutions on average within about 2-4 % of the true optimum. Witt[10] introduced a mathematical model for the Multi-Level Capacitated Lot-Sizing Problem with Inventory Constraints (MLCLSP-IC). His model integrates capacity bounds at each level of a product Bill-of-Materials and explicit work-in-process inventory limits. Although it is multi-level, the approach supports only a single item per level; it cannot accommodate product families that share capacities or complex Bills of Materials with alternative subassemblies. Finally, heuristics and MIP-based heuristics for solving MULSP-IB are further explained in Table 1 as below.

Table 1. A systematic overview of heuristics and MIP-based approaches.

References	Model.	Stor.	Algo.	Cap.
Dixon and Poh[27]	I&P	BegInv.	DP.&Heu.	Limit.Inv.
Park[25]	I&P&R&V	EndInv.	LR.Heu.	Limit.Inv&P&R
Akbalik et al. [7]	I&P	EndInv.	DP.	Limit.Inv.
Gutiérrez et al. [17]	I&P	BegInv.	DP.&Heu.	Limit.Inv.
Melo and Ribeiro [9]	I&P&PT&V	EndInv.	LP.R.Heu.&Heu.	Limit.Inv.
Witt[10]	I&P	EndInv.	Heu.	Limit.Inv.

Abbreviations, Model. Model formulation I&P = inventory and production constraints; I&P&R&V = inventory,production,retailer and vehicle ; &P&PT&V = inventory,production,production time and vehicle constraints constraints; Stor. Storage capacity EndInv.= ending inventory BegInv.= sum of beginning inventory and replenishment Algo. Algorithm DP.= Dynamic programming DP.&Heu.= Dynamic programming and heuristic. LR.Heu.= Lagrangian-relaxation-based heuristic ; LP.Heu.&Heu = Linear programming-

relaxation-based heuristic and heuristic Heu. = Heuristic; Cap. CapacityLimit.Inv = Limited inventory constraint Limit.Inv&P&R= Limited inventory, plant and vehicle.

In Table 1, the researchers considered only limited storage capacity and did not specifically consider on the case of tight capacity constraints. Therefore, the authors are interested in near-minimal storage capacity constraints, which occur in the automotive assembly industry [26].

This study proposes a new heuristic for computing the approximate replenishment plan for multiple items in each period under storage capacity constraints. The novelty of this study considers the proposed procedure, which can be executed effectively under near-minimal or worst-case storage capacity constraint. Storage capacity is defined as the sum of the weight (or volume) of all items carried over from the previous period and the weight (or volume) of all replenishments in the current period. The authors introduce a dynamic programming approach based on network flow [23] to determine the replenishment plan for each item and propose two methods for computing a multi-item replenishment schedule under storage-capacity constraints. The proposed heuristics consist of a push method and a pull method. The push method postpones replenishments forward from period t to period $t + k$ whenever the inventory level in period t exceeds the limited capacity, and repeats this until the inventory in every period does not exceed its capacity. Then the pull method refines the plan by moving replenishments backward from period t to earlier periods

The second section describes the mathematical formulation of MULSP-IB. The proposed heuristic is effective for solving this problem by the modified push and pull operation. It improves comparison with the push operation by Gutiérrez et al. shown in Section 3, and this heuristic is examined by Gutiérrez's example in Section 4. In Section 5, the randomly generated data has been implemented for solving the different problem sizes. The performance of this proposed heuristic is compared with the result of Gutiérrez et al.'s algorithm and the smoothing method. For the robustness condition, the worst-case condition is analyzed, which is the near-minimal storage capacity. In the sensitivity analysis, varying the storage capacities affects the total cost and inventory levels. Finally, conclusions are provided in Section 6.

2. Problem Description

2.1. Problem Statement

The problem of MULSP-IB can be stated as this: Each demand d_{it} must be partly or entirely replenished at a period t by inventory . In this study, consider that demands and inventory bounds are time-varying, and the total actual weight/volume of inventory is not over storage capacity. The problem is to find the periods and the number of raw materials delivered within these periods. The objective is to construct a replenished plan such that the total cost is minimized.

2.2. Problem Assumptions

Assumptions are provided to define certain parameters and decision variables as follows.

Assumption 1. Storage capacity is the upper bound of stock.

Assumption 2. A replenished item is stored first before it is used to satisfy demand. This means that the inventory at the beginning of a period plus the replenishment is the actual inventory at the end of the periods.

Assumption 3. The sum of demand is not over storage capacity in all periods, and the demands are satisfied at the end of the period.

Assumption 4. Number of items is independent of the quantity of demand and the number of procurement planning horizon.

Assumption 5. Initial inventory in the first period and ending inventory in the last period are zero.

Assumption 6. Backlogging is not allowed.

Assumption 7. There is no consideration of lead time.

2.3. Decision Variables and Parameters

Explanation of decision variables and parameters can be noted in the following.

Indices i the number of items indexed from 1 to N t the number of periods indexed from 1 to T

Parameters d_{it} the demand of item i at period t

$D_{i,t}$ the accumulative demand of item i from period t to period T

$f_{i,t}$ the fixed ordering cost of item i at period t

$h_{i,t}$ the holding cost of item i at period t

$p_{i,t}$ the cost of procuring raw materials of item i at period t

$I_{i,t}$ the inventory level of item i at period t

w_i the unit weight of item i

U_t the storage capacity at period t

Decision variables $x_{i,t}$ the procurement quantity of item i at period t

$Y_{i,t}$ if the replenishment of item i at period t occurs, $Y_{i,t}$ is 1. Otherwise, $Y_{i,t}$ is 0.

2.4 Mathematical Model

This study proposes the model by Gutiérrez et al. [17], which states the MIP formulation as follows:

$$\min \sum_{i=1}^N \sum_{t=1}^T f_{i,t} Y_{i,t} + p_{i,t} x_{i,t} + h_{i,t} I_{i,t} \quad (1)$$

$$\text{s.t. } I_{i,t-1} - I_{i,t} + x_{i,t} = d_{i,t}, \quad i=1, \dots, N, t=1, \dots, T \quad (2)$$

$$\sum_{i=1}^N w_i (I_{i,t-1} + x_{i,t}) \leq U_t, \quad t=1, \dots, T \quad (3)$$

$$x_{i,t} \leq Y_{i,t} D_{i,t}, \quad i=1, \dots, N, t=1, \dots, T \quad (4)$$

$$I_{i,0} = I_{N,T} = 0, \quad i=1, \dots, N \quad (5)$$

$$x_{i,t}, I_{i,t} \in \mathbb{Q}_0 = \mathbb{Q} \cup 0, \quad i=1, \dots, N, t=1, \dots, T \quad (6)$$

$$Y_{i,t} \in \{0, 1\}, \quad i=1, \dots, N, t=1, \dots, T \quad (7)$$

The objective function of MULSP-IB minimizes the sum of ordering, purchased and holding costs in constraint (1). Constraint (2) is the balance of the inventory equation. Each purchased unit and inventory unit at the beginning of the period are always kept first, before moving to production/customers following its demand in constraint (3). Constraint (4) link the purchased variables with the binary variables Y_{it} and accumulated demand ($D_{it} = \sum_{k=t}^T d_{ik}$) of item i from periods t to T . Constraint (5) is the initial inventory in the first period and the ending inventory in the last period are zeroes. Constraint (6) defines the purchased quantity and inventory, which are not negative. In constraint (7), if replenishment occurs at any period, Y_{it} is 1. Otherwise, Y_{it} is 0.

3. The Proposed Heuristic

The push and pull strategies of Dixon and Poh [27] consider that excess storage capacity has occurred. This is reduced by moving a replenishment quantity from the existing period t to $t+1$ when the sum of both inventory and replenishment of all items ($SIR_{allitems}$) for the existing period is over the storage capacity, called the push operation. On the other hand, a replenishment quantity from period t is returned to a previous period when $SIR_{allitems}$ is less than the storage capacity, called the pull strategy. The push method focuses on reducing $SIR_{allitems}$ in the existing period until success only. Therefore, each iteration enables the reduction of $SIR_{allitems}$ prominently, while ordering cost will grow as necessary, causing total inventory cost to expand as necessary. Furthermore, Gutiérrez et al.'s heuristic extend the push strategy in so far that a replenishment quantity can be moved from any period

t to $t+k$, $k \in (1, \dots, T-t)$. For any iteration, Gutiérrez et al.'s heuristic possibly moves a replenishment quantity from a non-existing period to the next period, resulting in $SIR_{allitems}$ in the existing period not also reducing. However, ordering costs still expanding is unnecessary. This study also applies Dixon and Poh's approach to both the push and pull strategies. For the push strategy, consider a replenishment item in the existing period, which has the maximum sum of inventory and the replenishment quantity (SIR_{max}). Consider an item of SIR_{max} condition, called $iSIR_{max}$ that has an inventory cost of zero at period $t+k$, $k \in (1, \dots, T-t)$ called on t_{zero} . Therefore, a replenishment quantity is equal to its demand in the existing period, then it moves so as to add the original replenished quantity at period t_{zero} . After that, the replenishment quantity of the existing item is balanced for all periods. It runs repeatedly until all $SIR_{allitems}$ are less than storage capacities. This procedure is called the push method.

For the pull strategy, find the periods (t_{min} and t_{max}) with the minimum and maximum differences between $SIR_{allitems}$ and their storage capacities (U), called $SIR_{allitems_U_{min}}$ and $SIR_{allitems_U_{max}}$. If the index of period t_{min} is higher than the index of period t_{max} , consider a SIR_{min} item called $iSIR_{min}$ for period t_{min} . Return the replenished quantity, which is the demand of $iSIR_{min}$ of period t_{min} , to add the original replenished quantity of the same item at period t_{max} . Then, calculate all $SIR_{allitems}$ again. If a new $SIR_{allitems}$ for period t_{max} is still greater than storage capacity at that period, find a new item with SIR_{max} called $iSIR_{max}$. Next, determine the period t_{zero} on $iSIR_{max}$ and calculate the round-up of the new $SIR_{allitems_U}$ for period t_{max} divided by its weight, called $SIR_{allitems_U_{roundup}}$. Move the replenished quantity, $SIR_{allitems_U_{roundup}}$ for period t_{max} , to period t_{zero} . Finally, balance the replenished plan again. This procedure is called the pull method. It can effectively improve the solution generated by the push method. Next, determine the period t_{zero} on $iSIR_{max}$ and calculate the round-up of the new $SIR_{allitems_U}$ for period t_{max} divided by its weight, called $SIR_{allitems_U_{roundup}}$. Move the replenished quantity, $SIR_{allitems_U_{roundup}}$ for period t_{max} , to period t_{zero} . Finally, balance the replenished plan again. This procedure is called the pull method. It can effectively improve the solution generated by the push method. This study proposes a new procedure for solving MULSP-IB. It has a property suggesting that the sum of both the inventory and the replenished quantity for all items

($SIR_{allitems}$) agree with less storage capacity, satisfying all demands for the existing period or equal storage capacity for that period. This property is presented to clarify the logical flow of arguments as follows:

Theorem 1. If t is a period such that $x_{i,t} > 0$ for some items i satisfying $I_{i,t-1} + x_{i,t} = D_{i,t} - D_{i,t+k}$, $k \in (1, \dots, T-t)$, then $\sum_{i=1}^N (I_{i,t-1} + x_{i,t}) < U_t$.

Proof of Theorem 1. For a contradiction method, the assumption is $\sum_{i=1}^N (I_{i,t-1} + x_{i,t}) \geq U_t$.

Given $I_{i,t-1} + x_{i,t} = D_{i,t} - D_{i,k}$. It implies that the total inventory is sufficient to satisfy or exceed the storage limitation. However, some $x_{i,t} > 0$ and $I_{i,t-1} + x_{i,t} = D_{i,t} - D_{i,t+k}$ are used to satisfy the demands such that no additional replenishments can exceed the storage limitation. Therefore, there is no additional inventory available to satisfy or exceed the limitation.

Theorem 2. If t is a period such that $x_{i,t} > 0$ for some items i satisfying $I_{i,t-1} + x_{i,t} \neq D_{i,t} - D_{i,t+k}$, $k \in (1, \dots, T-t)$, then $\sum_{i=1}^N (I_{i,t-1} + x_{i,t}) = U_t$.

Proof of Theorem 2. For a contradiction method, let us study a replenishment ($x_{i,t} > 0$) that there is an item i , for which the assumption is $\sum_{i=1}^N (I_{i,t-1} + x_{i,t}) \neq U_t$. In the case of $\sum_{i=1}^N (I_{i,t-1} + x_{i,t}) < U_t$, given $I_{i,t-1} + x_{i,t} \neq D_{i,t} - D_{i,t+k}$, the inventory level and extended replenishments ($I_{i,t-1} + x_{i,t}$) are not sufficient

to satisfy the sum of the consecutive demand ($D_{i,t} - D_{i,t+k}$). Further, in the case of $\sum_{i=1}^N (I_{i,t-1} + x_{i,t}) > U_t$, there is additional inventory to be over the storage capacity. However, the given condition $I_{i,t-1} + x_{i,t} \neq D_{i,t} - D_{i,k}$ does not satisfy the demand. Therefore, the sum of inventory and replenished quantity cannot exceed the storage capacity. To satisfy demand, the sum of the inventory and replenished quantity of all items in each period must either be less than or equal to the storage capacity explained by Theorems 1 and 2, respectively.

3.1. The Push Method

The objective of this method is to seek the approximate solution of MULSP-IB. The procedure for this method can be explained by the pseudo-algorithms as follows:

```

1: procedure InitialSolution(N, T, U, d, h, f)
2: Input:
3:N← number of items
4:T← number of periods
5:U[1..T] ← inventory bounds per period (network-flow based)
6:d[1..N][1..T] ← demand of item i in period t
7:h[1..N][1..T] ← holding cost of item i in period t
8:f[1..N][1..T] ← ordering cost of item i in period t
9: Output:
10:x[1..N][1..T]← initial replenishment plan
11: for i ← 1 to N do
12:x[i][1..T] ← NetworkFlowDP(i, U, d[i], h[i], f[i])
13: end for
14: return x
15: end procedure
16: procedure PushAlgorithm(N, T, U, d, h, f, x)
17: Input:
18:N← number of items
19:T← number of periods
20:U[1..T] ← storage capacity per period
21:d[1..N][1..T] ← demand of item i in period t
22:x[1..N][1..T] ← initial replenishment plan
23: Output:
24:x[1..N][1..T], TotalCost
25: for t ← 1 to T do
26:// Compute SIR for each item at period t
27:for i ← 1 to N do
28: if t == 1 then
29: inv[i] ← x[i][1] - d[i][1]
30: else
31: inv[i] ← inv_prev[i] + x[i][t] - d[i][t]
32: end if
33: tailDemand ← 0
34: for k ← t to T do
35: tailDemand ← tailDemand + d[i][k]
36: end for
37: SIR[i] ← inv[i] + tailDemand
38: inv_prev[i] ← inv[i]
39:end for
40:SIRall ← Σ_{i=1..N} SIR[i]
```

```

41:slack ← SIRall - U[t]
42:while slack > 0 do
43: iMax ← argmax_{i=1..N} SIR[i]
44: Δ ← d[iMax][t]
45: x[iMax][t] ← x[iMax][t] - Δ
46: if t < T then
47: x[iMax][t+1] ← x[iMax][t+1] + Δ
48: end if
49: // Recompute inventory and SIR
50: SIRall ← 0
51: for i ← 1 to N do
52: if t == 1 then
53:inv[i] ← x[i][1] - d[i][1]
54: else
55:inv[i] ← inv_prev[i] + x[i][t] - d[i][t]
56: end if
57: tailDemand ← 0
58: for k ← t to T do
59: tailDemand ← tailDemand + d[i][k]
60: end for
61: SIR[i] ← inv[i] + tailDemand
62: inv_prev[i] ← inv[i]
63: SIRall ← SIRall + SIR[i]
64: end for
65: slack ← SIRall - U[t]
66: end while
67: end for
68: // Calculate total cost
69: TotalCost ← 0
70: for i ← 1 to N do
71: for t ← 1 to T do
72: if x[i][t] > 0 then
73: TotalCost ← TotalCost + f[i][t]
74: end if
75: TotalCost ← TotalCost + inv_prev[i] * h[i][t]
76: end for
77: end for
78: return x, TotalCost
79: end procedure

```

In line no. 16, pseudo code of dynamic programming based on network flow can be shown in Appendix A.1. The logical sequence including selection rules of the push method can be explained in Figure 1.

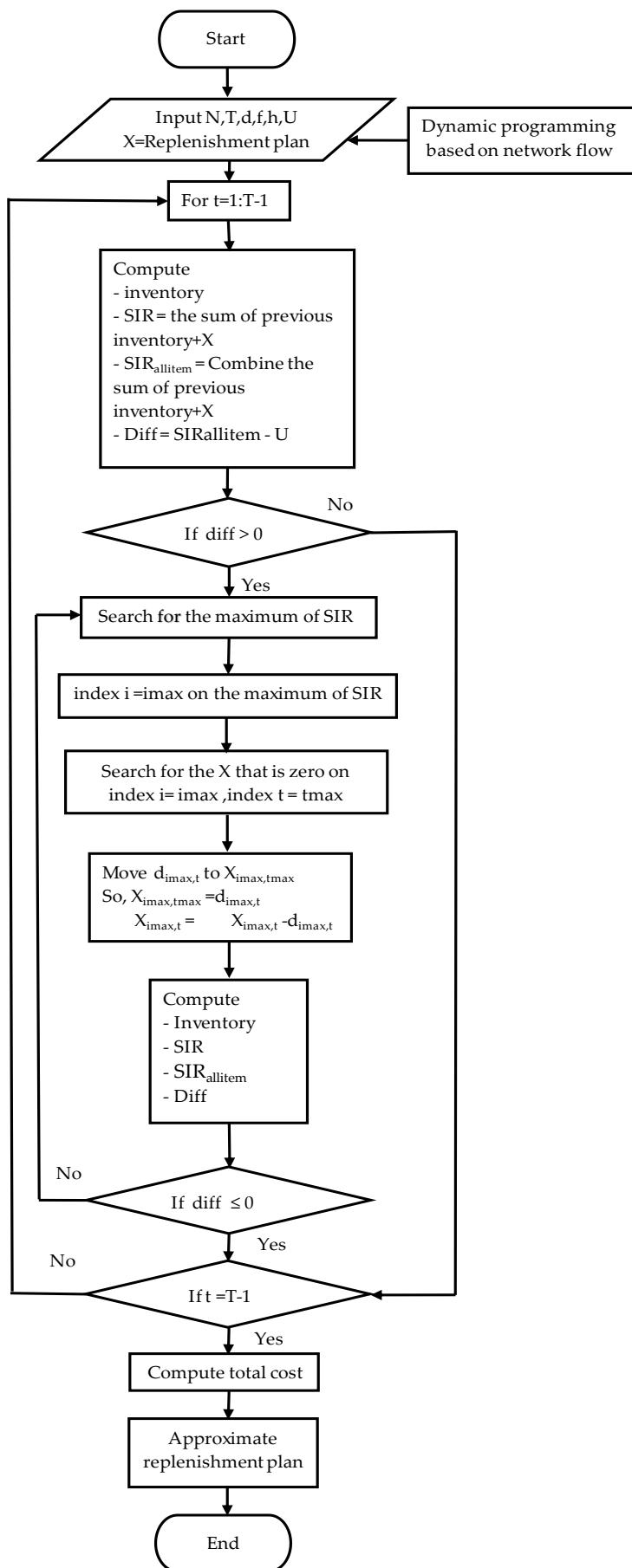


Figure 1. Flow chart of the push method.

In Fig. 1, the algorithm stops computing if the difference (diff) between the sum of previous inventory plus replenishment quantity (SIR_{alitem}) and the storage capacity (U) for each period is less than or equal to zero. This selection rule determines whether to perform the next step of the algorithm. From the pseudo code, dynamic programming based on network flow algorithm has time complexity $O(NTD_{\max}^2)$ that depends on D_{\max} , the largest demand value across all items i and all time periods t . Therefore, large demand values significantly influence the running time when solving large-scale problems. The push algorithm has time complexity $O(N \cdot T \cdot W)$ where W is number of iterations of the while loop per period. If the total inventory exceeds the storage capacity by a large amount, many iterations (W) will be needed to reduce the overcapacity; otherwise, iteration stops. Therefore, in large-scale problems, inventory overcapacity is likely, causing the proposed algorithm to have a high running time. The replenishment plan generated by the push method can be improved to reduce the total cost using the pull method, which will be discussed in the next section.

3.2. The Pull Method

The objective of this method is to improve the replenishment plan, which is computed by the push method. Some replenishments may be returned from the existing period to the previous period so that the sum of inventory and replenished quantity of all items for the previous period is added to equal its storage capacity. The procedure for the pull method shows the pseudocode of algorithms as follows

```

1: PROCEDURE Pull method
2: INPUT:
3: X[i, t] ← initial replenished quantity for item i in period t
   computed by the push method
4: demand[i, t] ← demand of item i in period t
5: SIR[i, t] ← the sum of previous inventory and replenished
   quantity of item i in period t
6: U ← storage capacity for period t
7: w[i, t] ← weight (or size) of item i in period t
8: T ← total number of periods
9: OUTPUT:
10: replenishment plan[i, t] ← adjusted replenished quantities
11: inventoryCost ← updated total inventory cost
12: // Compute initial aggregate SIR per period
13: FOR t ← 1 TO T DO
14: SIRallitems[t] ←  $\sum_i SIR[i, t]$ 
15: SIRallitems_SC[t] ←  $\sum_i (SIR[i, t] \cdot w[i, t])$ 
16: END FOR
17: // Find periods with min/max aggregate SC usage
18: Tmin ←  $\arg \min_t SIRallitems\_SC[t]$ 
19: Tmax ←  $\arg \max_t SIRallitems\_SC[t]$ 
20: // Loop until the lightest-loaded period index is not after the heaviest
21: IF Tmax < Tmin DO
22: // 1) Move the smallest-rate demand from Tmin to Tmax
23: i_min ←  $\arg \min_i SIR[i, Tmin]$ 
24: qty ← demand[i_min, Tmin]
25: X[i_min, Tmax] ← X[i_min, Tmin] + qty
26: X[i_min, Tmin] ← X[i_min, Tmin] - qty
27: // 2) Rebalance and update all metrics

```

```
28:CALL UpdateMetrics()
29:// 3) If Tmax still exceeds capacity, boost its replenishment
30:IF SIRallitems_SC[Tmax] > U THEN
31: i_max ← arg maxi SIR[i, Tmax]
32: adjustment ← [SIRallitems_SC[Tmax] / w[i_max, Tmax]]
33: X[i_max, Tmax] ← X[i_max, Tmax] + adjustment
34: CALL UpdateMetrics()
35:END IF
36:// 4) Recompute Tmin and Tmax for next iteration
37:Tmin ← arg mint SIRallitems_U[t]
38:Tmax ← arg maxt SIRallitems_U[t]
39: END IF
40: RETURN (X, inventoryCost)
41: END PROCEDURE
42: // Subroutine to recalculate inventory levels, SIR, aggregate metrics, and cost
43: PROCEDURE UpdateMetrics
44: FOR t ← 1 TO T DO
45:FOR each item i DO
46: // Recompute SIR[i, t] based on new replenishment qty and demand
47: SIR[i, t] ← ComputeSIR(X[i, t], demand[i, t])
48:END FOR
49:SIRallitems[t] ←  $\sum_i$  SIR[i, t]
50:SIRallitems_U[t] ←  $\sum_i$  (SIR[i, t] · w[i, t])
51: END FOR
52: inventoryCost ← ComputeTotalCost(X, demand, holdingCosts, orderingCosts)
53: END PROCEDURE
```

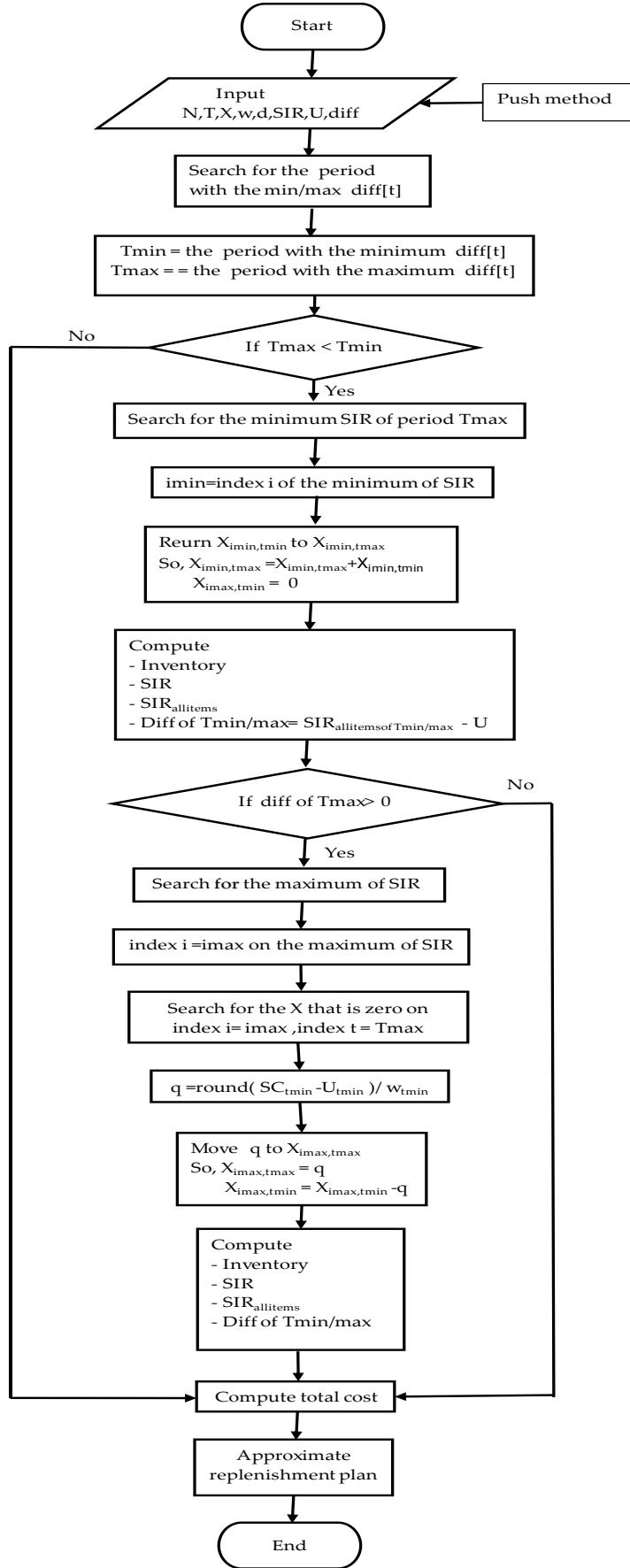


Figure 2. Flow chart of the pull method.

In Fig. 2, the algorithm proceeds to compute an improved solution if the index of the period with the minimum $diff(T_{min})$ is greater than the index of the period with the maximum $diff(T_{max})$. This selection rule determines whether to perform the next step of the algorithm. The push algorithm has time complexity $O(N^2T^2)$ when $L \leq N \cdot T$, where L is the number of loop. The total running time depends on how many iterations L the algorithm performs to balance the load between periods. If L grows large (close to $N \cdot T$ in the worst case), running time can grow quadratically. To explain the heuristic algorithm, the authors use a numerical example to demonstrate it in the next section.

4. A Numerical Example

This study presents the simple example by Gutiérrez et al. [17] to explain the procedure for both proposed methods. Data from this example is shown in Table 2.

Table 2. A simple example by Gutiérrez et al. [17].

Periods t	1	2	3	4	5
U_t	756	673	633	758	608
Item 1, $w_1=1$					
$d_{1,t}$	115	114	96	106	136
$D_{1,t}$	567	452	338	242	136
$f_{1,t}$	595	100	969	240	945
$p_{1,t}$	4	7	9	10	4
$h_{1,t}$	1	1	1	1	1
Item 2, $w_1=4$					
$d_{2,t}$	87	52	111	142	118
$D_{2,t}$	510	423	371	260	118
$f_{2,t}$	255	696	125	637	249
$p_{2,t}$	3	3	0	8	4
$h_{2,t}$	1	1	1	1	1

4.1. The Initial Solution

The optimal replenished plan for each item, which is independent, can be solved by the network flow based on a dynamic programming approach [22]. Thus, the optimal replenished plan is the initial solution for this example, as shown in Table 3.

Table 3. Initial solution for each item.

Periods t	Item	1	2	3	4	5
Replenished plan		567	0	0	0	0
	1		139	0	371	0
	2			0	260	118
Inventory		452	338	242	136	0
	1		52	0	260	118
	2			0	0	0

Inventory cost	4x567+1x452+595	338	242	136	0
1	=3,315				
	3x139+1x52+255	0	385	118	0
2	=724				
Sum of inventory and replenishment (<i>SIR</i>)	567x1=567	452	338	242	1
1					3
					6
	139x4=556	208	1,484	1,040	4
2					7
					2
<i>SIR_{allitems}</i>	1,123	660	1,822	1,282	6
					0
					8
SC	756	673	633	758	6
					0
					8
<i>SIR_{allitems_U}</i>	+367	-13	1,189	524	0

4.2. Solution of the Push Method

From Table 3, *SIR_{allitems}* values of periods 1, 3, and 4 are positive and their *SIR_{allitems}* values are certainly excess. Next, the replenished quantity for period one is moved as follows.

Period 1

Iteration 1

1. Select item 1, which has the maximum *SIR* (*SIR_{max}*) of 567, and find period *t_{zero}* = 5 on item 1, which has an inventory cost of zero.
2. Insert the replenished quantity, which equals the demand of item 1 for period *t_{zero}* = 136 units, on a replenished plan on item 1 for period *t_{zero}*. For balance demand, decrease the replenishment of item 1 for period 1 to 567-136 =431 units.
3. Balance a replenished plan and update inventory, *SIR*, *SIR_{allitems}*, *SIR_{allitems_U}*, and total inventory cost (see Table 4).
4. *SIR_{allitems_U}* for period 1 is reduced to 987-756 = +231. Afterward, go to steps 1-4.

Iteration 2

1. Select item 2, which has *SIR_{max}* of 556, and find period *t_{zero}* = 2 on item 2, which has an inventory cost of zero.
2. Insert the replenished quantity, which equals the demand of item 2 for period *t_{zero}* = 52 units, on a replenished plan on item 2 for period *t_{zero}*. For balance demand, decrease the replenishment of item 2 for period 1 to 139-52 =87 units.
3. Balance a replenished plan and update inventory, *SIR*, *SIR_{allitems}*, *SIR_{allitems_U}*, and total inventory cost (see Table 5).
4. *SIR_{allitems_U}* for period 2 is still reduced to 779-756 = +23. Then, go to steps 1- 4.

Iteration 3

1. Select item 1, which has *SIR_{max}* of 431, and find period *t_{zero}* = 4 on item 1, which has an inventory cost of zero.

2. Insert the replenished quantity, which equals the demand of item 2 for period $t_{zero}=106$ units, on a replenished plan on item 1 for period t_{zero} . For balance demand, decrease the replenishment of item 1 for period 1 to $431-106 = 325$ units.
3. Balance a replenished plan and update inventory, $SIR, SIR_{allitems}, SIR_{allitems_U}$, and total inventory cost (see Table 6).
5. $SIR_{allitems_U}$ for period 1 is reduced to $673-756 = -83$. Stop the iteration and select period 3, which has the $SIR_{allitems_U}$ value of $+947$. Proceed to steps 1-4 for period 3.

Period 3

Iteration 1

1. Select item 2, which has SIR_{max} of 1,484, and find period $t_{zero} = 5$ on item 2, which has an inventory cost of zero.
3. Insert the replenished quantity, which equals the demand of item 2 for period $t_{zero}=118$ units, on a replenished plan on item 2 at period t_{zero} . For balance demand, decrease the replenishment of item 2 for period 3 to $371-118 = 253$ units.
4. Balance a replenished plan and update inventory, $SIR, SIR_{allitems}, SIR_{allitems_U}$, and total inventory cost (see Table 7).
6. $SIR_{allitems_U}$ for period 3 is still reduced to $1,108-633 = +475$. Afterward, go to steps 1-4.

Iteration 2

1. Select item 2, which has SIR_{max} of 348, and find period $t_{zero} = 4$ on item 2, which has an inventory cost of zero.
3. Insert the replenishment, which equals the demand of item 2 at period $t_{zero} = 142$ units on a replenished plan on item 2 at period t_{zero} . For balance demand, decrease the replenishment of item 2 at period 3 to $253-142 = 111$ units.
5. Balance a replenished plan and update inventory, $SIR, SIR_{allitems}, SIR_{allitems_U}$, and total inventory cost (see Table 8).
7. $SIR_{allitems_U}$ for period 3 is reduced to $540-633 = -93$. Stop the loop at period 3. Then, find the next $SIR_{allitems_U}$ to be positive. However, all $SIR_{allitems_U}$ values are negative and zero (-83, -255, -93, -84, 0). Thereafter, stop all iterations of the push method.

Table 4. Execution flow of iteration 1 for period 1 using the push method.

Periods t	Item	1	2	3	4	5
Replenished plan	1	567-136=431	0	0	0	136
	2	139	0	371	0	0
Ending inventory	1	316	202	106	0	0
	2	52	0	260	118	0
Inventory cost	1	4x431+1x316+595 =2,635	202	106	0	1,489
	2	724	0	385	118	0
Sum of inventory and replenishment (SIR)	1	1x431=431	316	202	106	136
	2	556	208	1,484	1,040	472
$SIR_{allitems}$		987	524	1,686	1,146	608
SC		756	673	633	758	608
$SIR_{allitems_U}$		+231	-	+1,053	+388	0
				149		

Table 5. Execution flow of iteration 2 for period 1 using the push method.

Periods <i>t</i>	Item	1	2	3	4	5
Replenished plan	1	431	0	0	0	136
	2	139-52 =87	52	371	0	0
Ending inventory	1	316	202	106	0	0
	2	0	0	260	118	0
Inventory cost	1	2,635	202	106	0	1,489
	2	3x87+255 =516	3x52+696 =852	3x371+1x260+125 =385	118	0
Sum of inventory and replenishment (SIR)	1	431	316	202	106	136
	2	4x87=348	4x87=208	1,484	1,040	472
<i>SIR_{allitems}</i>		779	524	1,686	1,146	608
SC		756	673	633	758	608
<i>SIR_{allitems_U}</i>		+23	-149	+1,053	+388	0

Table 6. Execution flow of iteration 3 for period 1 using the push method.

Periods <i>t</i>	Item	1	2	3	4	5
Replenished plan	1	431-106=325	0	0	106	136
	2	87	52	371	0	0
Ending inventory	1	210	96	0	0	0
	2	0	0	260	118	0
Inventory cost	1	4x325+1x210+595 =2,105	96	0	1,300	1,489
	2	516	852	385	118	0
Sum of inventory and replenishment (SIR)	1	325	210	96	106	136
	2	348	208	1,484	1,040	472
<i>SIR_{allitems}</i>		673	418	1,580	1,146	608
SC		756	673	633	758	608
<i>SIR_{allitems_U}</i>		-83	-	+947	+388	0
				255		

Table 7. Execution flow of iteration 1 for period 3 using the push method.

Periods <i>t</i>	Item	1	2	3	4	5
Replenished plan	1	325	0	0	106	136
	2	87	52	371-118=253	0	118
Ending inventory	1	210	96	0	1,300	1,489
	2	0	0	142	0	0
Inventory cost	1	2,105	96	0	1,300	1,489
	2	516	852	1x142+125=267	0	721
Sum of inventory and replenishment (SIR)	1	325	210	96	106	136
	2	348	208	4x253=1,012	568	472
<i>SIR_{allitems}</i>		673	418	1,108	674	608
SC		756	673	633	758	608

<i>SIR_{allitems}_U</i>	-83	-	+475	-84	0
	255				

Table 8. Execution flow of iteration 2 for period 3 using the push method.

Periods <i>t</i> Item	1	2	3	4	5
Replenished plan	1	325	0	0	106
	2	87	52	253-142=111	142
Ending inventory	1	210	96	0	0
	2	0	0	0	0
Inventory cost	1	2,105	96	0	1,300
	2	516	852	125	8x142+637
					= 1,773
Sum of inventory and replenishment (SIR)	1	325	210	96	106
	2	348	208	4x111=444	568
<i>SIR_{allitems}</i>	673	418	540	674	608
<i>SC</i>	756	673	633	758	608
<i>SIR_{allitems}_U</i>	-83	-255	-93	-84	0

From Table 8, the push method can generate a total inventory cost equal to 8,977. However, the GAMS/CPLEX solver can execute this problem with an optimal solution of 8,521. The gap between these solutions is $\left[\frac{8,977 - 8,521}{8,521} \right] \times 100\% = 5.35\%$. This gap is still high. Therefore, this study proposes the pull method to improve the solution.

4.3. Solution of the Pull Method

From Table 8, all *SIR_{allitems}_U* are negative or zero. Therefore, the pull method can generate an improved replenished plan. The procedure for this method can be explained as follows.

1. Search the *SIR_{allitems}_U_{min}* and *SIR_{allitems}_SC_{max}* to be -255 and -83 for periods 2 and 1 from Table 8. So, the index of both periods is *t_{min}*=2 and *t_{max}*=1. So, *t_{min}* is more than *t_{max}*.
2. Find the *SIR_{min}* for period *t_{min}* to be 208 on item 2 from Table 8. Return the replenishment of item 2 at period 2 to add the original replenished quantity on item 2 for period *t_{max}*=1. Thus, the new amount replenished quantity of item 2 for period 1 is 87+52 = 139 units. For balance demand, the replenished quantity of item 2 for period *t_{min}* is reduced to zero (see Table 9).
3. Recalculate *SIR*, *SIR_{allitems}*, *SIR_{allitems}_U*, and total inventory cost (see Table 9).
4. *SIR_{allitems}_U* of item 2 for period 1 (= +125) is still a positive number. Thus, search the item with *SIR_{max}* (= 325) excluding item 2 at period 1, to be 1.
5. For reducing *SIR_{allitems}_U* to zero at period 1, the *SIR_{allitems}_U* is divided by the weight of item 1 for period 1 (+125 / 1=125) on item 1 at period *t_{min}*=2 to be 0+125 = 125 units (see Table 9). For balance demand, reduce the replenishment of item 1 in the previous period (*t*=1) to be = 325-125 = 200 units.
6. Recalculate *SIR*, *SIR_{allitems}*, *SIR_{allitems}_U*, and total inventory cost (see Table 10).
7. *SIR_{allitems}_U* of period 1 is zero and *SIR_{allitems}_U* of period 2 (*t_{min}*) is still -255 (see Table 10), which is the same as Table 9.
8. Find the *SIR_{allitems}_U_{min}* and *SIR_{allitems}_U_{max}* to be -255 and -84 in periods 2 and 3 from Table 10. The index of both periods is *t_{min}*=2 and *t_{max}*=3. So, *t_{min}* is less than *t_{max}*. Then,

stop the iteration.

Table 9. Execution flow in steps 1 to 4 using the pull method.

Periods t	Item	1	2	3	4	5
Replenished	1	325	0	0	106	136
plan			52-			
	2	87+52 =139	52	111	142	118
			=0			
Ending	1	210	96	0	0	0
inventory	2	52	0	0	0	0
Inventory cost	1	2,105	96	0	1,300	1,489
	2	3x139+1x52+255 =724	0	125	1,773	721
Sum of	1	1x325 =325	210	96	106	136
inventory and						
replenishment	2	4x139 =556	208	444	568	472
(SIR)						
$SIR_{allitems}$		881	418	540	674	608
SC		756	673	633	758	608
$SIR_{allitems_U}$		+125	-	-93	-84	0
				255		

Table 10. Execution flow in steps 1 to 4 using the pull method.

Periods t	Item	1	2	3	4	5
Replenished		325-125 =200	0+125=125	0	106	136
plan	1					
	2	139	0	111	142	118
Ending	1	85	96	0	0	0
inventory	2	52	0	0	0	0
Inventory cost		4x200+1x85+595 =1,480	1,071	0	1,300	1,489
	1					
	2	724	0	125	1,773	721
Sum of	1	1x200 =200	210	96	106	136
inventory and						
replenishment (SIR)	2	556	208	444	568	472
$SIR_{allitems}$		756	418	540	674	608
SC		756	673	633	758	608
$SIR_{allitems_U}$		0	-255	-93	-84	0

Therefore, the inventory cost is effectively improved to 8,683. The GAMS/CPLEX solver can calculate the optimal solution of 8,521 units. Both the proposed heuristic and Gutiérrez et al. [17] can also calculate the approximate solution the same as 8,683 and the smoothing method of Nixon and Poh [27] can run about 9,494 (see Table11). Its

replenished plan is shown in Table 11.

Table 11. Replenished plan solved by Gutiérrez et al. [17] and smoothing method [27].

Gutiérrez et al. [17]						Inventory cost
Period	1	2	3	4	5	
Item 1	200	125	0	106	136	5,340
2	139	0	111	142	118	3,343
Total inventory cost						8,683
Nixon and Poh [27]						Inventory cost
Period	1	2	3	4	5	
Item 1	115	210	0	106	136	5,510
2	87	52	111	142	118	3,987
Total inventory cost						9,497

From Tables 10 and 11, the gaps between the proposed heuristic, Gutiérrez et al. [17], the smoothing method [27], and GAMS/CPLEX are 1.9 %, 1.9 %, and 11.45 %, respectively. Both the proposed heuristic and Gutiérrez et al. [17] execute approximately five replenishment orders, whereas the smoothing method executes about six. Consequently, the smoothing method incurs a higher total inventory cost than the other approaches due to the increased ordering cost. For further testing, Minner[18] recommended generating test instances as follows: products varied between 3 and 10 and periods varied between 4 and 18, demands are drawn from a uniform (or normal) distribution over a specified range (e.g. $\backslash U[0,100]$), setup costs are drawn similarly (e.g. $\backslash U[50,150]$), unit production costs are drawn from $U[1,10]$, holding costs are held constant $h = 1$, weights are drawn from $U[1,N]$, and warehouse capacity bounds are taken as

$$A = \sum_{i=1}^N w_i d_{i,t}, \quad U_t = \left[A + B \cdot \left(\sum_{i=1}^N w_i D_{i,t+1} \right) \right] \text{ a fixed fraction } B = 10\%. \quad \text{In the format for the storage capacity, parameter } A \text{ is the sum of the demand on all items at period } t \text{ with the lower bound (B=1%). Authors generate the example data following Minner [18] procedure as shown in Table 12.}$$

From the data, parameter A is the sum of the demand on all items at period t with the lower bound (B=1%). Authors generate the example data following Minner [18] procedure as shown in Table 12.

Table 12. A simple example by formatted data of Minner [18].

Periods t	1	2	3	4	5	6
U_t	1161	529	768	973	721	806
Item 1, $w_1=2$						
$d_{1,t}$	44	47	64	67	67	9
f_1			96			
p_1			6			
h_1			1			
Item 2, $w_2=5$						
$d_{2,t}$	83	21	36	87	70	88
f_2			74			
p_2			10			

h_2							1
Item 3, $w_1=4$							
$d_{3,t}$		88	12	58	65	39	87
f_3				67			
p_3				9			
h_3				1			

A instance of Minner [18] was computed by heuristics and the resulting solutions are presented in Table 13.

Table 13. Total cost and gap solution obtained by the proposed heuristic, Gutiérrez et al. [17] and smoothing [27].

Heuristics/MIP solver	GAMS/ CPLEX	Push and Pull	Gutiérrez et al.	Smoothing
		[17]	[27]	
Total cost	9,928	9,928	10,054	10,030
% Gap solution	-	0	1.27	1.02
No. of additional orders	-	3	4	4

In Table 13, the push-and-pull heuristic achieves an optimality gap of approximately 0 %, outperforming Gutiérrez et al. [17], which has a gap of 1.27 %, and the smoothing method [27], with a gap of 1.02 %. The proposed heuristic places about three replenishment orders, whereas both Gutiérrez et al. [17] and the smoothing method place around four. Consequently, the push-and-pull heuristic's performance is further validated in Section 5 on a set of randomly generated problem instances.

5. Computational Result

For confidence in using heuristics, this study compares the solutions for the proposed heuristic, algorithm by Gutiérrez et al., and GAMS/CPLEX solver. The set of randomly generated problems is identical to the cost framework of Minner [18]. Each problem runs on formatting parameters, as shown in Table 14.

Table 14. Formatting parameters.

Number of periods, T	6	12	24
Number of items, N	10,20,40,60,80,...,160	10,20,30,...,80	10,20,...,160
Number of instances	10	10	5
Weight distribution, w_i		Uniform, $w_i \sim [1,10]$	
Demand distribution, $d_{i,t}$		Uniform, $d_{i,t} \sim [30,150]$	
Ordering cost distribution, $f_{i,t}$		Uniform, $f_{i,t} \sim [100,150]$	

Inventory bounds, U_t	$A = \sum_{n=1}^N w_i d_{i,t}, U_t = \left[A + B \cdot \left(\sum_{n=1}^N w_i D_{i,t+1} \right) \right],$ $B = \{1\%, 5\%, 10\%, 20\%\}$
Cost of procuring raw materials, $p_{i,t}$ = zero and holding cost, $h_{i,t}$ = 1	

The parameter B is the additional capacity generated from the accumulative demand of period $t+1$ with the upper bound. If the upper bound is high, such as $B = 20\%$, the problem can be solved more easily. Otherwise, it is more difficult to address.

This study implements MATLAB 2024 A software to solve the network flow algorithm based on dynamic programming for the initial solution, the proposed algorithm [28], and Gutiérrez et al.'s algorithm [29]. The solution for the MIP model is generated by GAMS 46.3.0 licensed for continuous and discrete problems. An HP Pavilion X360 Notebook running Windows 10 with an Intel Core i7 64-bit processor at 1.99 GHz and 24 GB of RAM was used to execute both the heuristics and MIP formula. MATLAB software uses general-purpose programming that is more flexible and allows users to apply specified code. For generating the optimization solution, the GAMS/CPLEX solver is concentrated on optimization, which is less flexible but powerful for LP, MIP, and NLP problems [31].

The solution for the GAMS/CPLEX solver compares all the results of the experiment. It can be explained with the solution gap equation below.

$$\text{Solution gap (\%)} = \left[\frac{\text{Solution of heuristic} - \text{Solution of GAMS/CPLEX}}{\text{Solution of GAMS/CPLEX}} \right] \times 100$$

5.1. Experiment Results

This study divides the category for the random example into three sub-categories: A small-scale problem based on the number of periods $N = 6$, a medium-scale problem based on the number of periods $N=12$, and a large-scale problem based on the number of periods $N=24$. This experiment shows their solution gaps and computation times varying the parameter B in Tables 15-18, as follows

Table 15. Computation times and solution gaps with near-minimal storage capacity using parameter B = 1%.

	NxT			Min. gap (%)		Max. gap (%)		Avg. gap (%)	
		Push	Gutiérr	Push	Gutiérr	Push	Gutiérr	Push	Gutiérr
		Avg.	Avg.	Avg.	&	ez	's	&	ez
		Push	Gutiérr	GAM	pull	heuristi	push	heuristi	push
		pull	ez's	S/CPL	heuri	c	heuri	c	heuri
		heuristi	heuristi	EX	stic		stic		stic
		c	time	c	time	time			's
		(s.)		(s.)		(s.)			he
									ur
									ist
									ic
									1.
10x6		6.26	6.24	0.49	0.00	0.21	2.77	3.78	0.57
									89

20x6	6	11.45	11.16	0.88	0.38	1.03	5.29	8.30	04	1.
40x6	21.90	21.24	2.56	0.28	2.87	0.88	5.02	0.72	48	3.
60x6	32.48	30.99	5.31	0.44	2.24	1.05	4.53	0.82	57	3.
80x6	44.25	41.81	7.27	0.67	2.65	1.13	4.47	0.91	44	3.
100x6	56.24	51.91	11.92	0.47	3.14	1.17	4.99	0.92	82	3.
120x6	69.42	60.82	12.28	0.55	2.90	1.15	4.60	0.89	64	3.
140x6	84.99	71.33	15.84	0.52	3.03	1.76	5.05	0.94	07	4.
160x6	100.72	81.98	57.13	0.04	2.98	8.51	11.90	2.08	09	5.
	36.73	34.53	6.26					1.16	99	3.
10x12	61.85	64.78	0.85	0.22	2.54	1.32	7.27	0.79	36	5.
20x12	131.74	140.63	3.67	0.73	2.44	1.68	7.31	1.23	53	4.
30x12	204.64	216.34	8.57	1.24	4.21	1.93	7.17	1.51	66	5.
40x12	260.38	273.55	39.66	1.08	4.14	1.89	7.85	1.42	54	5.
50x12	328.35	321.77	74.41	1.15	4.89	1.77	6.64	1.39	71	5.
60x12	409.28	458.70	102.65	1.18	4.98	1.90	6.16	1.39	65	5.
70x12	495.31	679.99	380.50	0.23	4.97	1.46	6.77	1.24	61	5.
80x12	520.24	537.58	2388.1	1.21	4.22	1.48	6.56	1.30	67	5.
	271.5	370.23	333.20					1.33	57	6.
10x24	3,037.37	3,429.14	2.31	0.95	6.04**	1.58	7.73**	1.27	**	89
20x24	6,507.96	5,765.73	59.68	1.58	7.16*	2.20	7.16*	1.83	*	7.

										7.
30x24			3,549.							42
	7,303.46	8,694.35		2	1.11	7.42*	2.21	7.42	1.84	*
40x24	12,903.5	13,484.4	57,788							7.
	5	0	.2	0.91	7.49*	2.07	7.49*	1.54		49
										7.
	5,994.42	5,357.88	12,280						1.66	30

*;** One and two instances 10x6-160x6 small-scale problem, 10x12-80x12 medium-scale problem and 10x24-40x24 large-scale problem.

Table 16. Computation times and solution gaps when parameter B = 5%.

NxT	Avg.	Avg.	Avg.	Min. gap (%)		Max. gap (%)		Avg. gap (%)	
	Push & pull	Gutiérre z's	GAMS /CPLEX	Push & pull	Gutiérre z's	Pull & push	Gutiérre z's	Pull & push	Gutiérre z's
	heuristic time (s.)	heuristic time (s.)	X time (s.)	heuris tic	heuristic	heuris tic	heuristic	heuris tic	heuristic
10x6	5.65	5.67	0.56	0.00	0.77	3.33	6.54	1.39	3.96
20x6	9.77	10.36	1.04	0.89	1.66	2.35	9.30	1.59	5.33
40x6	21.41	23.14	5.91	1.23	3.27	2.23	8.20	1.72	6.46
60x6	29	31.99	10.34	1.00	5.13	2.32	9.23	1.73	7.31
80x6	35.13	36.28	27.42	1.00	3.98	2.59	8.53	1.76	6.88
100x6	44.65	46.03	33.74	0.92	5.84	1.80	8.29	1.60	6.83
120x6	53.20	54.55	29.79	1.48	5.53	2.11	7.68	1.58	6.71
140x6	63.23	64.96	57.33	0.92	4.89	1.85	6.95	1.53	6.23
160x6	72.58	76.85	33.79	0.98	5.48	2.88	8.21	1.70	6.29
	29.11	30.33	18.43					1.64	6.56
10x12	71.52	62.86	0.89	0.62	0.96	2.49	12.53	1.47	7.01
20x12	142.7	132.49	2.33	0.73	2.18	1.62	7.89	1.21	4.69
30x12	189.3	213.94	3.90	0.65	1.50	1.35	7.76	1.02	4.91
40x12	254.2	256.25	7.00	0.63	2.90	1.23	6.24	0.93	4.38
50x12	319.9	339.75	14.92	0.64	0.13	1.01	5.38	0.88	3.96
60x12	417.6	422.97	18.73	0.66	2.91	1.27	5.62	0.93	4.30
70x12	498.1	526.02	36.40	0.69	2.99	1.18	5.36	0.87	3.94
80x12	523.7	519.15	24.03	0.67	2.11	1.15	6.65	0.82	4.01
	272.22	368.08	12.03					0.92	4.43
10x24	1,398.7	1,578.05	0.45	0.14	1.68	1.68	5.01	0.94	3.19
20x24	6,592.9	7,140.05	6.22	0.31	1.62	0.79	3.08	0.59	2.48
30x24	9,608.8	9,364.59	47.16	0.24	1.06	0.80	2.46	0.58	1.95
40x24	12,824.7	13,504.5	61.94	0.22	1.91	0.58	3.07	0.40	2.60
	8,117.58	8,465.86	5.98					0.55	2.41

10x6-160x6 small-scale problem, 10x12-80x12 medium-scale problem and 10x24-40x24 large-scale problem .

Table 17. Computation times and solution gaps when parameter B = 10%.

NxT	Avg.	Avg.	Avg.	Min. gap (%)		Max. gap (%)		Avg. gap (%)	
	Push & pull	Gutiérrez's heuristic	GAM S/CPL EX	Push & pull	Gutiérrez's heuristic	Pull & push	Gutiérre heuristic	Pull & push	Gutiérre heuristic
	c time	c time	time	tic	tic	tic	tic	heuris	heuristic
	(s.)	(s.)	(s.)					tic	tic
10x6	5.83	5.64	0.31	0.00	0.02	1.71	12.28	0.84	4.93
20x6	10.10	10.19	0.42	0.44	0.73	1.62	13.44	1.11	5.00
40x6	20.40	22.22	2.35	0.51	2.29	2.16	6.55	1.12	4.66
60x6	29.51	28.04	2.04	0.54	2.12	1.88	7.13	1.10	3.97
80x6	35.23	36.34	4.82	0.50	2.55	1.55	5.87	1.01	4.30
100x6	44.68	45.50	7.19	0.48	2.00	1.28	6.22	0.87	4.06
120x6	54.61	54.74	11.24	0.63	2.19	4.05	5.38	1.12	4.06
140x6	62.91	63.74	7.35	0.58	2.65	1.06	5.10	0.80	3.40
160x6	73.68	73.68	7.30	0.56	2.45	2.04	5.25	0.96	3.63
	29.25	29.6	3.97					0.93	3.92
10x12	66.41	62.41	0.45	0.04	0.31	1.74	4.26	0.74	1.74
20x12	141.27	132.11	0.69	0.25	0.25	0.86	4.26	0.57	1.58
30x12	187.59	210.50	1.25	0.39	1.17	1.11	3.27	0.59	1.86
40x12	264.08	256.14	2.23	0.36	0.45	0.74	2.32	0.48	1.42
50x12	325.22	317.78	2.91	0.26	1.02	0.64	2.92	0.46	1.67
60x12	414.79	408.41	3.13	0.28	0.20	0.63	3.22	0.47	2.01
70x12	496.28	495.38	5.75	0.31	1.43	0.77	2.73	0.48	1.98
80x12	517.69	524.16	6.43	0.32	1.41	0.61	2.33	0.45	1.85
	272.6	358.76	2.58					0.49	1.81
10x24	3,177.71	3,508.17	0.53	1.60	1.08	2.52	2.65	0.56	1.74
20x24	6,924.87	7,841.10	1.72	0.98	0.88	1.90	1.74	0.45	1.15

30x2 4	9,188.50	9,681.13	2.38	0.14	0.28	0.45	1.82	0.31	1.10
40x2 4	13,527.0 6	13,764.7 0	3.32	0.16	1.03	0.65	1.78	0.34	1.24
	8,278.51	8,773.25	2.14				0.38	1.23	

10x6-160x6 small-scale problem, 10x12-80x12 medium-scale problem and 10x24-40x24 large-scale problem.

Table 18. Computation times and solution gaps when parameter B = 20 %.

NxT	Avg. Push pull heuristi c (s.)	Avg. Gutiérr ez's heuristi c (s.)	Avg. GAM S/CPL EX time (s.)	Min. gap (%)		Max. gap (%)		Avg. gap (%)		
	Push & ez's heuristi c time (s.)	Gutiérr ez's heuristi c time (s.)	GAM S/CPL EX time (s.)	Push & pull heuris tic time tic	Gutiérr ez's heuristic tic	Pull & push heuris tic time tic	Pull & push heuristic tic	Gutiérr ez's heuristic tic		
	10x6	5.85	5.71	0.29	0.00	0.65	2.50	4.83	0.83	2.48
	20x6	10.02	10.25	0.34	0.09	0.14	1.51	2.18	0.68	1.18
40x6	22.22	22.94	1.74	0.26	1.07	1.29	2.40	0.57	1.76	
60x6	29.54	29.66	0.87	0.20	1.21	1.14	2.34	0.60	1.75	
80x6	35.24	35.71	0.90	0.44	1.18	1.03	2.17	0.62	1.71	
100x6	45.18	45.34	2.02	0.31	1.14	0.84	2.07	0.61	1.71	
120x6	53.90	55.09	1.87	0.36	1.53	0.89	1.53	0.65	1.72	
140x6	62.99	64.38	1.66	0.47	1.67	0.92	2.75	0.67	1.97	
160x6	73.13	74.91	1.81	0.35	1.53	1.66	2.82	0.76	1.87	
	37.56	38.22	1.28				0.66	1.79		
10x12	36.14	32.01	0.28	0.00	0.00	1.07	2.34	0.39	0.65	
20x12	71.55	62.07	0.45	0.00	0.00	0.88	1.65	0.34	0.91	
30x12	185.60	205.13	0.52	0.12	0.25	0.76	1.42	0.37	0.87	
40x12	264.97	258.89	0.70	0.17	0.60	0.49	1.24	0.36	0.92	
50x12	330.85	322.59	1.20	0.19	0.61	0.53	2.38	0.35	1.03	
60x12	491.05	501.27	3.97	0.20	0.61	0.47	1.30	0.33	0.94	
70x12	491.05	501.27	3.97	0.20	0.61	0.47	1.30	0.33	0.94	

80x1 2	515.24	541.88	2.10	0.25	0.59	0.44	1.16	0.34	0.84
	264.63	358.40	1.61					0.36	0.87
10x2 4	3,018.94	3,196.81	0.63	0.82	0.08	1.64	1.07	0.34	0.60
20x2 4	7,084.67	6,422.94	1.14	0.17	0.16	2.41	0.73	0.28	0.47
30x2 4	9,889.41	9,612.80	1.40	0.15	0.38	0.61	0.75	0.31	0.57
40x2 4	13,706.4 9	12,863.7 7	1.78	0.13	0.41	0.31	0.73	0.20	0.56
	8,506.37	8,101.12	2.12					0.27	0.55

10x6-160x6 small-scale problem, 10x12-80x12 medium-scale problem and 10x24-40x24 large-scale problem.

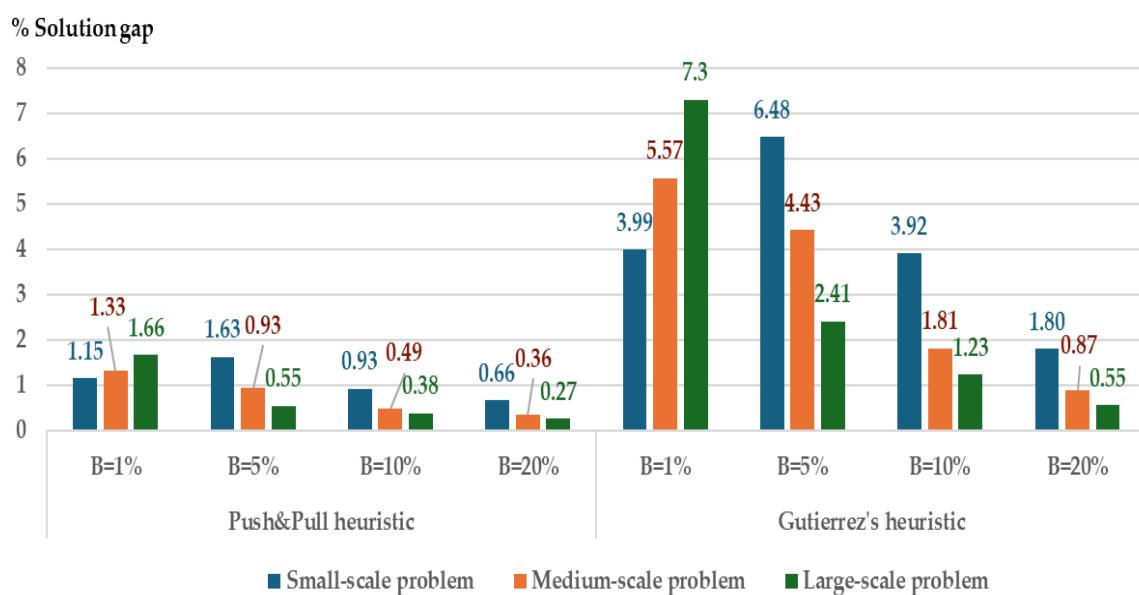


Figure 3. Average solution gap of both heuristics under storage capacities when parameter B=1,5,10 and 20%.

5.1. Solution Gap

In Figure 3, the average solution gaps for the push and pull algorithm on large-scale problem are 0.55%, 0.38%, and 0.20% for parameter $B = 5\%$, 10% and 20% , respectively. Gutiérrez et al.'s heuristic generates solution gaps of about 2.41%, 1.23% and 0.55 %. When comparing the solution gaps, the proposed heuristic performs better than Gutiérrez et al.'s heuristic. The performance of the solution gap depends on the value of parameter B. If parameter B increases, the solution gap is lower. The proposed algorithm can determine the number of replenished quantities to move relaxed while satisfying all demands with a high parameter B. Gutiérrez et al.'s heuristic sometimes moves the replenished quantity from any period to period $t+k$, when $k \in \{1, 2, \dots, T-t\}$. Ordering cost must be paid more frequently when inserting the replenished quantity for period $t+k$ in more time, causing total inventory cost to grow. Unfortunately, the amount of $SIR_{allitem_U}$ for period t does not also decline. While the push and pull heuristic moves each replenished quantity from period t to a consecutive period only with zero inventory cost, it can certainly reduce the replenished

quantity for period t so that the amount of $SIR_{allitems_U}$ reduces.

5.2. Worst Cases Analysis

For the robust condition of the push & pull heuristic, this study introduces the near-minimal storage capacity. The performance of a heuristic depends on the value of the storage capacity. Suppose each storage capacity is likely near the sum of demand for each period, called near-minimal storage capacity. Moving the partial or whole replenished quantities to the next period is difficult.

In Table 15, it is difficult for Gutiérrez et al.'s heuristic to execute any random instances with near-minimal storage capacities. It can calculate only one and two from five and ten instances, such as 20x24, 30x24, and 40x24 problems ($N \times T$). Other solutions cannot satisfy the demand. Meanwhile, the push and pull heuristic can calculate all random instances with these storage capacities. Its solution gap performs well on the small-and medium-scale problem, at about 1.15% and 1.33%, the same as the other instances with high storage capacities (parameter B = 5-20%).

At the same time, Gutiérrez et al.'s heuristic gap solution is about 3.99% and 5.57%. Therefore, the push and pull heuristic enables computing the replenished plan significantly better with near-minimal storage capacities.

For large-scale problems ($T=24$), MATLAB cannot run on the extension of the number of periods due to being out-of-memory. When increasing the number of periods, its memory usage exceeds 76 GB. The limitation of the system memory space (RAM and swap file) used by MATLAB for this computer is about 76 GB.

To strengthen empirical benchmarking and provide better justification, compare the proposed heuristics with additional baseline methods, including the smoothing heuristic [27], implemented using the state-of-the-art code [31]. The authors compare their solution gap performance, which is shown in Table 19.

Table 19. Gap performance of the proposed, Gutiérrez et al., and smoothing heuristics under storage capacities with parameter B = 1%, 5%, 10%, and 20%.

Parameter B		The push and pull heuristic			
		Problem size	10X6 small-scale problem	10X12 medium-scale problem	10X24 large-scale problem
1%		Avg.	0.57	0.79	1.27
		Max.	0.73	1.32	1.58
5%		Avg.	1.39	1.47	0.94
		Max.	2.62	2.49	1.27
10%		Avg.	0.85	0.74	0.56
		Max.	1.81	1.74	1.2
20%		Avg.	1.84	0.34	0.34
		Max.	2.5	0.88	1.64
Gutiérrez et al.'s heuristic					
1%		Avg.	1.89	5.36	6.89
		Max.	3.51	7.27	7.73
5%		Avg.	3.96	7	0.94
		Max.	6.54	11.84	1.04

		Avg.	4.92	1.74	1.74
		Max.	12.28	4.26	2.65
		Avg.	2.48	0.65	0.6
		Max.	4.83	2.34	1.07
Smoothing heuristic [27]					
		Avg.	1.89	4.24	5.97
		Max.	3.4	6.24	6.79
		Avg.	3.96	4.68	2.3
		Max.	6.54	7.53	2.46
		Avg.	4.13	2.04	2.8
		Max.	9.83	3.51	8.46
		Avg.	1.7	0.73	0.77
		Max.	3.35	1.53	1.35

In Table 19, the proposed heuristic shows good average gap performance on large-scale problems, such as the 10x24 case, with gaps of about 1.27% and 0.34% under storage capacities $B = 1\%$ and 20% , respectively. In comparison, Gutiérrez et al.'s heuristic has gaps of approximately 6.89% and 1.07%, while the smoothing heuristic has gaps of about 5.97% and 1.35%, respectively. As a result, the gap performances of Gutiérrez et al.'s and the smoothing heuristics differ by only a small amount. Therefore, the proposed heuristic is able to compute an approximate replenishment plan that is better than the previous heuristics.

5.3. Computation Time

This study implements the codes based on the state-of-the-art methods for both heuristics. Both the push & pull heuristic and the heuristic by Gutiérrez et al. have the same time complexity, denoted as $O(W \cdot N \cdot T^2)$. Therefore, the running times of the two heuristics are nearly the same. The time complexity for the network flow based on dynamic programming algorithm [22] has $O(NTD_{\max}^2)$ for generating the initial solution. The computation time of both heuristics combines the running time for the network flow based on dynamic programming for the initial solution with the running time of each heuristic. The worst-case complexity of the GAMS/CPLEX solver has $O(2^{NXT})$, which is an exponential growth rate. However, this solver enhances performance with the branch-cut and benders decomposition algorithm for reducing the running time efficiency in large-scale problems [28] when compared with MATLAB software. For computation time, this study focuses on small-to-medium and large-scale problems with near-minimal storage capacity. Therefore, the data in Figure 4 include both small-to-medium and large-scale problems (see Table 15) with storage capacities parameter $B=1\text{-}20\%$. Both the heuristics and MIP solver generate solutions under storage capacities. The computation time for these conditions is shown in Figures 4-7, as follows:

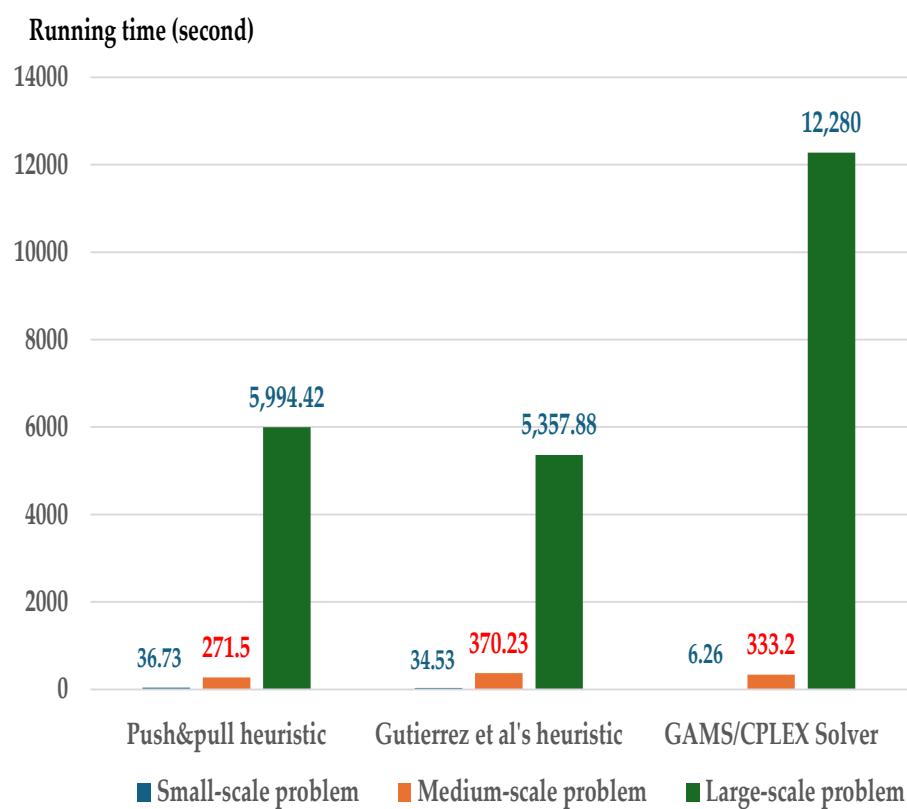


Figure 4. Average computation time with near-minimal storage capacity ($B=1\%$) using a) push and pull heuristic b) Gutiérrez et al.'s heuristic, , and c) GAMS/CPLEX solver.

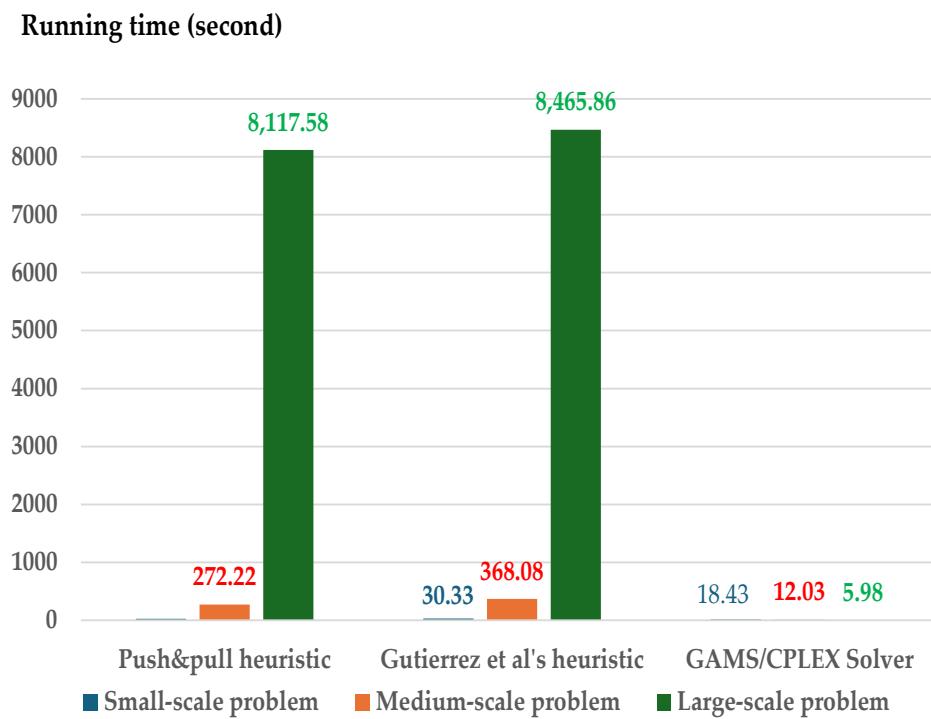


Figure 5. Average computation time with near-minimal storage capacity (B=5%) using a) push and pull heuristic b) Gutiérrez et al.'s heuristic, , and c) GAMS/CPLEX solver.

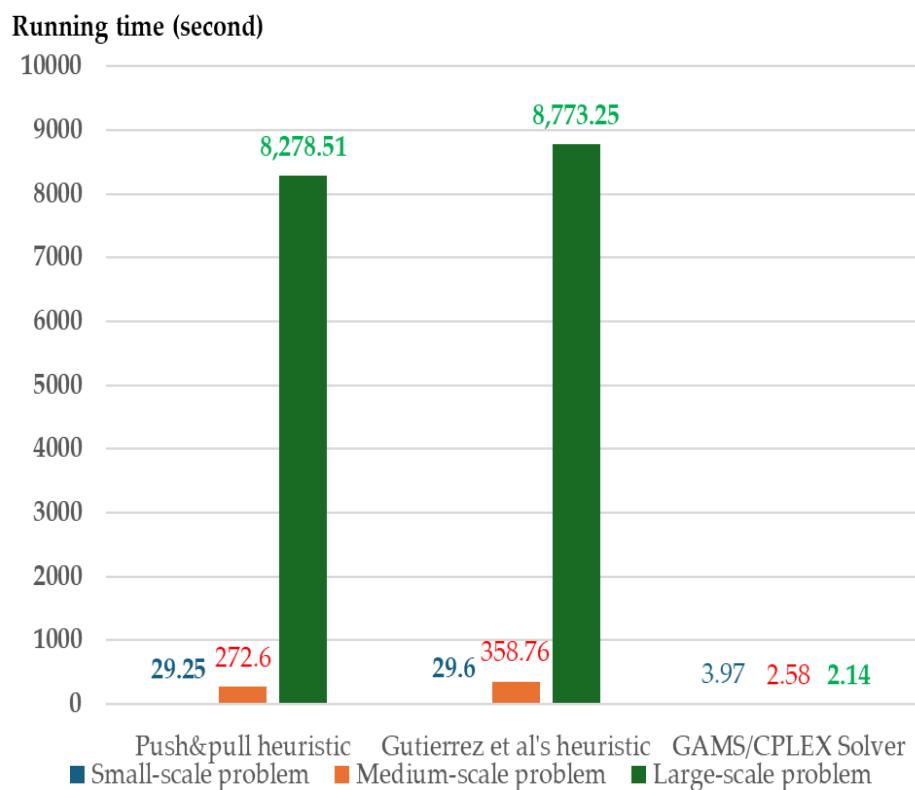


Figure 6. Average computation time with near-minimal storage capacity (B=10%) using a) push and pull heuristic b) Gutiérrez et al.'s heuristic, , and c) GAMS/CPLEX solver.

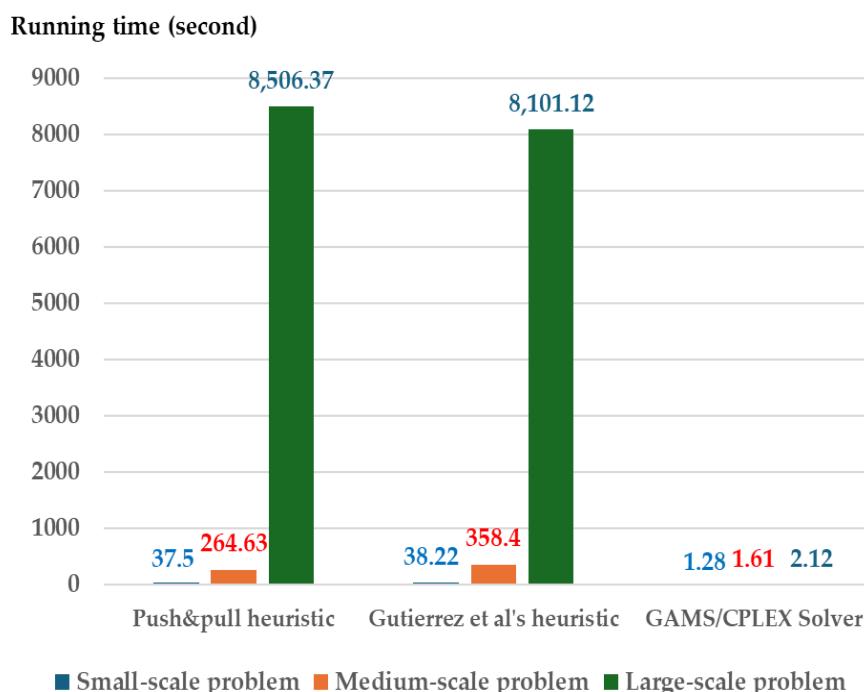


Figure 7. Average computation time with near-minimal storage capacity (B=20%) using a) push and pull heuristic b) Gutiérrez et al.'s heuristic, and c) GAMS/CPLEX solver.

In Figure 4, the computation time generated by the GAMS/CPLEX solver increases exponentially for the large-scale problem under near-minimal storage capacities ($B = 1\%$). In general, the CPLEX solver must execute effectively with a branch-and-cut algorithm and special heuristic. However, the running time for solving a large-scale problem includes poor performance with near-minimal storage capacities. The MIP solver must determine lot size with high running time to generate an optimal solution. This is a limitation of the MIP solver. In contrast, the computation time for both heuristics, which generate approximate solutions for large-scale problems, performs well compared to the MIP solver. Nevertheless, the computation time of the MIP solver on small- to medium-scale and large-scale problems performs well compared to both heuristics when the storage capacities have higher B values (see Figures 5–7). The running times for both heuristics are nearly the same due to their similar time complexity.

Therefore, considering the storage capacity constraints, both heuristics perform well under near-minimal capacity for large-scale problems, whereas the MIP solver computes efficiently with shorter running times for small- and medium-scale problems. For high storage capacity constraints ($B = 5\text{--}20\%$), the MIP solver performs well with shorter running times across all problem scales.

5.4. Sensitivity Analysis

Authors present a sensitivity analysis on the varied parameter B to show its impact on the cost performance of the proposed heuristics, order frequency, and inventory levels. The results of this analysis are shown in Figures 8 to 10 below.

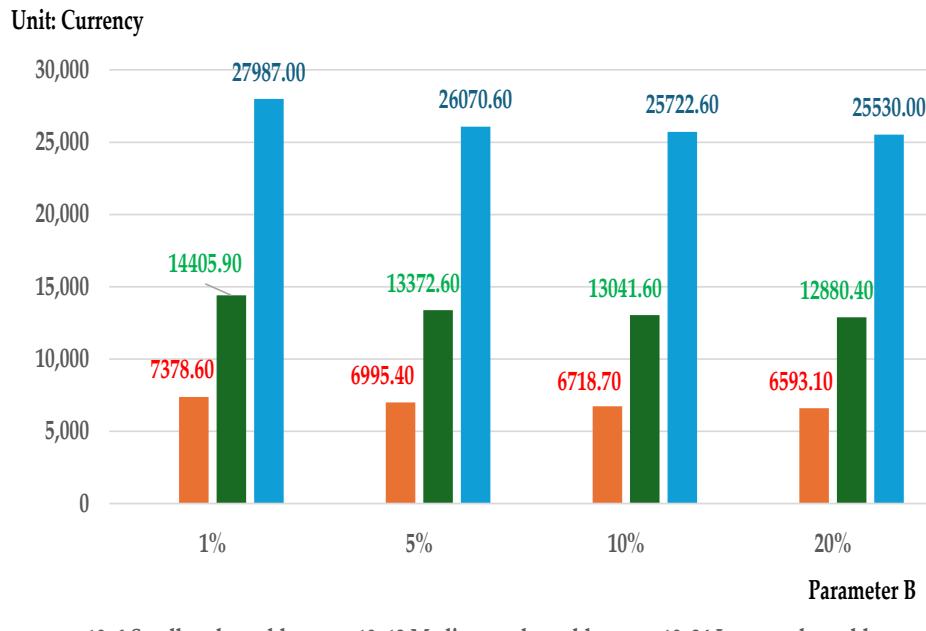


Figure 8. Total cost vs. storage capacity parameter B (1%–20%) for different problem Scales.

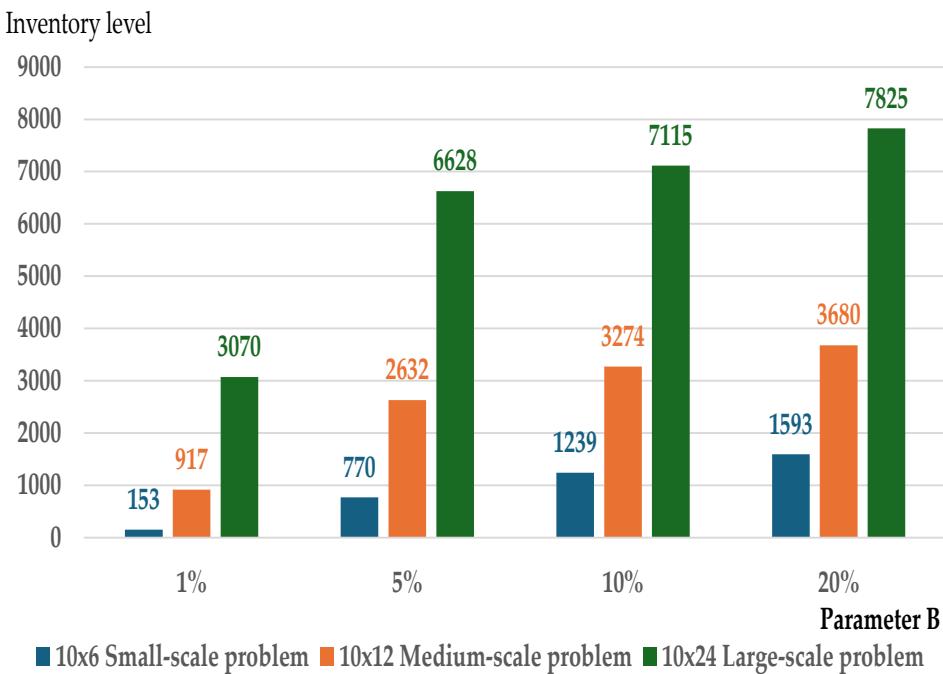


Figure 9. Inventory level vs. storage capacity parameter B (1%–20%) for different problem scales

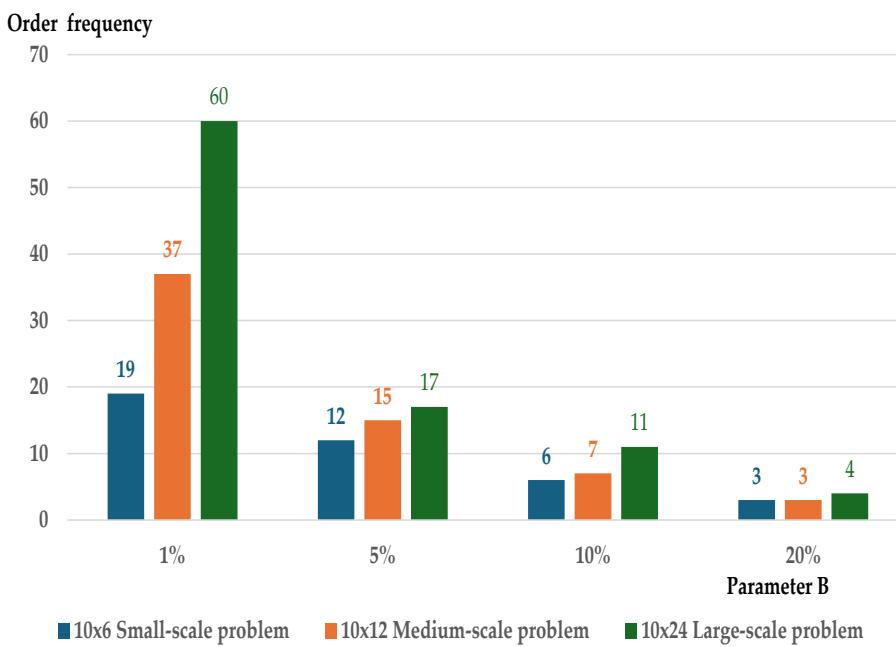


Figure 10. Order frequency vs. storage capacity parameter B (1%–20%) for different problem scales.

In Figure 8, the total cost for each problem size is high when the storage capacity is near minimal, and it decreases as the storage capacity increases. Under the near-minimal storage capacity constraint, the inventory level for each problem size is low due to the limited storage space (see Figure 9). This results in more frequent orders with smaller replenishment quantities to meet all demand. The higher order frequency causes an increase in the total cost (see Figure 10).

Under high storage capacity constraints, the total cost for each problem size is

low, but the inventory level is higher due to the increased storage space. The order frequency is also lower in order to reduce the total cost.

In summary, tight storage space leads to higher total costs due to increased order frequency. On the other hand, larger storage capacity results in lower total costs but requires higher investment to expand the storage space.

5.5. Statistical Validation of Heuristic Stability and Reliability

For validation of heuristic stability and reliability, the authors evaluate the total cost and running time of the proposed heuristic using statistical parameters such as average, standard deviation, minimum and maximum values, and confidence intervals, as shown in Table 20.

Table 20. Statistics parameters of total cost computed by the push and pull methods under near-minimal storage capacities (B=1%).

Problem	Average (currency)	Standard deviation	Lower confidence interval ^(a)	Upper confidence interval ^(a)	Min. total cost	Max. total cost
10x6	7378.6	158.1	6904.4	7852.7	7114	7640
20x6	14570	261.2	13786.2	15353.79	14200	15081
40x6	29012.2	340.2	27991.6	30032.8	28409	29498
60x6	43445	400.0	42244.9	44645.1	42930	43941
80x6	58025.2	544.1	56393.1	59657.3	57059	58883
100x6	72482.8	565.9	70784.9	74180.6	71498	73354
120x6	86833	607.5	85010.5	88655.5	85551	87392
140x6	101220.8	645.9	99282.9	103158.7	99805	101875
160x6	115562.2	710.6	113430.5	117693.9	114175	116367
10x12	14405.9	184.0	13853.8	14957.9	14160	14742
20x12	28599.9	232.3	27902.9	29296.9	28134	28871
30x12	42776.4	329.6	41787.7	43765.1	42106	43239
40x12	56862.5	365.5	55765.9	57959.1	56166	57551
50x12	70941.3	335.1	69936.1	71946.5	70393	71384
60x12	85055.2	584.1	83302.9	86807.5	83928	85927
70x12	99057.1	546.9	97416.1	100698.1	97851	99605
80x12	113184.8	514.6	111641.1	114728.5	112018	114040
10x24	27987	335.1	26981.6	28992.4	27722	28410
20x24	55547.6	460.6	54165.7	56929.5	54820	56051
30x24	82909	476.8	81478.7	84339.3	82590	83730
40x24	110034.8	762.3	107748.0	112321.6	108971	111105

^(a) Lower and upper confidence interval = $\bar{x} \pm 3s$ with 99.7% confidence interval, s = standard deviation.

Table 21. Statistics parameters of running time computed by the push and pull methods under near-minimal storage capacities (B=1%).

Problem	Average (second)	Standard deviation	Lower confidence interval ^(a)	Upper confidence interval ^(a)	Min. cost	total cost	Max. cost	total
10x6	6.25	0.54	4.63	7.88	5.79	7.59		
20x6	11.45	0.31	10.53	12.38	11.04	12.02		
40x6	21.90	0.37	20.78	23.04	21.37	22.54		
60x6	32.48	0.46	31.09	33.87	31.75	33.17		
80x6	44.25	0.93	41.45	47.05	43.04	45.86		
100x6	56.24	0.94	53.43	59.05	55.02	57.71		
120x6	69.42	1.26	65.65	73.18	67.90	71.21		
140x6	84.98	2.49	77.52	92.46	82.41	91.25		
160x6	100.72	1.46	96.35	105.09	98.57	103.74		
10x12	61.85	5.27	46.03	77.68	55.48	71.94		
20x12	131.74	4.84	117.23	146.26	126.34	141.33		
30x12	204.63	16.03	156.53	252.74	182.15	236.27		
40x12	260.38	23.67	189.36	331.41	229.37	311.10		
50x12	328.35	34.155	225.89	430.82	279.38	402.51		
60x12	409.28	40.99	286.31	532.24	351.43	492.47		
70x12	495.31	40.97	372.41	618.22	443.17	585.65		
80x12	520.24	26.18	441.69	598.79	478.54	566.50		
10x24	3257.11	608.49	1431.63	5082.59	2647.19	4108.03		
20x24	6507.96	340.99	5485	7530.92	6159.20	6964.99		
30x24	9103.45	416.01	7855.43	10351.48	8471.77	9610.50		
40x24	14628.15	1370.03	10518.05	18738.25	11694.79	14786.62		

^(a)Lower and upper confidence interval = $\bar{x} \pm 3s$ with 99.7% confidence interval, s = standard deviation.

Tables 20 and 21, all total cost and running time values fall within the lower and upper bounds of the 99.7% confidence intervals around the average values. It indicates that the heuristic's performance is reliable, and low variability is a direct measure of its stability.

6. Conclusions

This study proposes a novel push-pull heuristic for solving the multi-item uncapacitated lot-sizing problem under near-minimal storage capacities. When capacity constraints are nearly minimal across multiple items, novel heuristics are required. Prior heuristics did not directly consider the tight storage capacity constraints. The just-in-time operation in the assembly automobile industry is difficult to share the storage capacity on the multi-item parts. The proposed heuristic can be applied to manage tight storage capacity while keeping multiple items. To compute the initial replenishment plan, authors implement a dynamic programming based on network flow to generate a single-item lot size plan for all periods under unlimited storage capacity of each period. The push procedure identifies iteratively the maximal sum of beginning inventory plus the replenishment quantity which moves to the next period without violating the near-minimal storage capacity. Each iteration will increase inventory cost with the ordering

cost. The push and pull procedure requires fewer iterations during computation. In comparison, Gutiérrez et al.'s heuristic selects successive periods, resulting in more iterations and increased ordering costs to meet the near-minimal capacity constraints. The result of computation shows that the proposed heuristic performs well on the gap solution under near-minimal storage capacities. The running time of the proposed heuristic performs well on large-scale problem, whereas GAMS/CPLEX solver run with minimal run time on small-and medium-scale problem. However, in the sensitivity analysis, a near-minimal storage capacity constraint results in high inventory costs due to the increased frequency of orders.

Future research could expand this proposed heuristic for applying this proposed heuristic then evaluating in a assembly automobile plant to improve the practical applicability and credibility. Another extension, it could run with the stochastic demand or lead time constraints to make it applicable across a wider range of academic settings.

Author Contributions: Conceptualization, W.B. and D.H. and P.C.; methodology, W.B. and D.H.; software, W.B.; validation, W.B. and D.H.; formal analysis, W.B. and D.H.; investigation, W.B. and D.H.; resources, D.H.; data curation, W.B. and D.H.; writing—original draft preparation, W.B. and D.H.; writing—review and editing, W.B., D.H. and P.C.; visualization, W.B. and D.H.; supervision, P.C.; project administration, W.B. and D.H.; funding acquisition, W.B. and D.H. All authors have read and agreed to the published version of the manuscript.

Funding: This study received no external funding.

Data Availability Statement: The data presented in this study are available and can be requested to the corresponding author.

Acknowledgments: The authors would like to express our sincere appreciations to all constructive comments and recommendations from reviewers leading to the improved final version of this manuscript. This study was supported by the Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Thailand.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Appendix A.1

Pseudo code of dynamic programming based on network flow

```

1: PROCEDURE MultiItemLotSizing
2: // d[N][T] ← demand matrix (rows: items, cols: periods)
3: // order[N][T] ← fixed ordering cost matrix
4: // weight[N] ← per-item weight (for capacity constraint)
5: // pc[N][T] ← per-unit production cost matrix
6: // h ← unit holding cost
7: // Output:
8: // sol[N][T] ← lot-sizes for each item and each period
9: // invencost[N] ← total inventory cost per item
10: CONST M ← 10^10// "infinite" penalty
11: CONST extra ← 1// cost offset for indexing
12:
13: FOR g ← 1 TO N DO// for each item
14: // 2. Compute sumdemand and cumdemand
15: FOR k ← 1 TO T DO
16: sumdemand[g][k] ← Σ_{i=1..T} d[g][i]

```

```
17:END FOR
18:cumdemand[g][1] ← sumdemand[g][1]
19:FOR k ← 2 TO T DO
20: cumdemand[g][k] ← cumdemand[g][k-1] + sumdemand[g][k]
21:END FOR
22:
23:// 3. Build DP network of size S = T + Σ_k sumdemand[g][k] + 1
24:S ← T + Σ_{k=1..T} sumdemand[g][k] + 1
25:ALLOCATE dcost[1..S][1..S]
26:
27:// 4. Fill dcost for "period 0" (building initial inventory)
28:FOR inv ← 0 TO sumdemand[g][1] DO
29: lot ← inv - 0 + 0
30: IF lot > 0 THEN
31: y ← 1
32: ELSE
33: y ← 0
34: END IF
35: dcost[1][inv+1] ← inv*h + lot*pc[g][1] + y*order[g][1] + extra
36:END FOR
37:
38:// 5. Fill dcost for periods 1..T-1
39:node_i ← 1
40:FOR p ← 1 TO T-1 DO
41: prev_node_i ← node_i
42: FOR inv_prev ← 0 TO sumdemand[g][p] DO
43: node_i ← prev_node_i + inv_prev
44: FOR inv_curr ← 0 TO sumdemand[g][p+1] DO
45: lot ← inv_curr - inv_prev + d[g][p]
46: IF lot > 0 THEN
47: y ← 1
48: ELSE
49: y ← 0
50: END IF
51:// compute holding penalty
52: IF lot == 0 AND inv_prev - inv_curr == d[g][p] THEN
53: hold ← inv_curr * h
54: ELSE IF lot > 0 AND inv_prev - inv_curr + lot == d[g][p] THEN
55: hold ← inv_curr * h
56: ELSE
57: hold ← M
58: END IF
```

```
59:// assemble cost
60:IF hold == M THEN
61:cost ← M
62:ELSE
63:cost ← hold + lot*pc[g][p] + y*order[g][p]
64:END IF
65:dcost[node_i][node_i + sumdemand[g][p+1] + 1] ← cost + extra
66: END FOR
67: END FOR
68: node_i ← node_i + sumdemand[g][p+1] + 1
69:END FOR
70:
71:// 6. Fill dcost for final period T
72:FOR inv_prev ← 0 TO sumdemand[g][T] DO
73: node_i ← node_i + inv_prev
74: lot ← 0 - inv_prev + d[g][T] // end inventory is forced to 0
75: IF lot > 0 THEN
76: y ← 1
77: ELSE
78: y ← 0
79: END IF
80: IF lot == 0 AND inv_prev - 0 == d[g][T] THEN
81: hold ← 0 * h
82: ELSE IF lot > 0 AND inv_prev - 0 + lot == d[g][T] THEN
83: hold ← 0 * h
84: ELSE
85: hold ← M
86: END IF
87: IF hold == M THEN
88: cost ← M
89: ELSE
90: cost ← hold + lot*pc[g][T] + y*order[g][T]
91: END IF
92: dcost[node_i][S] ← cost + extra
93:END FOR
94:
95:// 7. Solve DP by backward recursion
96:ALLOCATE fn[1..S+1] ← 0
97:ALLOCATE fnmat[1..S][1..S]
98:// 7.1 Initialize last column
99:FOR i ← 1 TO S DO
100:fnmat[i][S] ← dcost[i][S]
```

```

101: END FOR
102: fn[S] ← MIN_{i=1..S} fnmat[S][i]
103: // 7.2 Recurrence
104: FOR i ← S-1 DOWNTO 1 DO
105:FOR j ← i TO S DO
106: IF dcost[i][j] > 0 THEN
107: fnmat[i][j] ← dcost[i][j] + fn[j+1]
108: END IF
109:END FOR
110:fn[i] ← MIN_{j=i..S} fnmat[i][j]
111: END FOR
112:
113: // 8. Trace optimal path
114: INITIALIZE optimalsol[0..T+1][1..5] ← 0
115: current_node ← 1
116: FOR period ← 0 TO T DO
117:// find next node j where fn[current_node] == fnmat[current_node][j]
118:SELECT smallest j ≥ current_node such that fn[current_node] == fnmat[current_node][j]
119:lot ← corresponding lot-size on arc (current_node→j)
120:inv ← previous_inv - demand + lot
121:optimalsol[period+1] ← (prev_inv, lot, demand, inv, arc_cost - extra)
122:current_node ← j + 1
123: END FOR
124:
125: // 9. Record item-level solution
126: FOR p ← 1 TO T DO
127:sol[g][p] ← max(0, optimalsol[p+1].lot)
128: END FOR
129: invencost[g] ← fn[1] - extra
130: END FOR
131:
132: END PROCEDURE

```

References

1. Love; S.F. Bounded Production and Inventory Models with Piecewise Concave Costs. *Manag. Sci.* **1973**, *20*, 313-318.
2. Loparic, M.; Pochet, Y.; Wolsey, L.A. The Uncapacitated Lot-Sizing Problem with Sales and Safety Stocks. *Math. Program.* **2001**, *89*, 487-504.
3. Atamtürk, A.; and Küçükyavuz, A. Lot Sizing with Inventory Bounds and Fixed Costs: Polyhedral Study and Computation. *Oper. Research.* **2005**, *53*, 711-730.
4. Guan, Y.; Liu, T. Stochastic Lot-Sizing Problem with Inventory-Bounds and Constant Order-Capacities. *Eur. J. Oper. Res.* **2010**, *207*, 1398-1409.

5. Önal, M.; Heuvel, W. V.D.; Liu, T. A Note on the Economic Lot Sizing Problem with Inventory Bounds. *Eur. J. Oper. Res.* **2012**, *223*, 290-294.
6. Chu, C.; Chu, F.; Zhong, F.; Yang, S. A Polynomial Algorithm for a Lot-Sizing Problem with Backlogging, Outsourcing, and Limited Inventory, *Comput. Ind. Eng.* **2013**, *64*, 200-210.
7. Akbalik, A.; Penz, B.; Rapine, C. Multi-Item Uncapacitated Lot Sizing Problem with Inventory Bounds. *Optim. Lett.* **2015**, *9*, 143-154.
8. Brahimi1, N.; Absi, N.; Dauzère-Pérès, S.; and Kedad-Sidhoum, S. Models and Lagrangian Heuristics for a Two-Level Lot-Sizing Problem with Bounded Inventory. *OR Spectrum.* **2015**, *37*, 983-1006.
9. Melo, R.A.; Ribeiro, C.C. Formulations and Heuristics for the Multi-Item Uncapacitated Lot-Sizing Problem with Inventory Bounds. *Int. J. Prod. Res.* **2015**, *55*, 576-592.
10. Witt, A. A Heuristic for the Multi-Level Capacitated Lot Sizing Problem with Inventory Constraints. *Int. J. Manag. Sci. Eng. Manag.* **2019**, *14*, 249-252.
11. Mohammadi, A.; Shegarian, E. A Mixed Integer Linear Programming Model for the Multi-Item Uncapacitated Lot-Sizing Problem: a case study in the trailer manufacturing industry. *Int. J. Multivar. Data Anal.* **2017**, *1*, 173-199.
12. Sedeno-Noda, A.; Gutierrez, J.; Abdul-Julbar, B.; Sicilia, J. An $O(T \log T)$ Algorithm for the Dynamic Lot Size Problem with Limited Storage and Linear Costs. *Comput. Optim. Appl.* **2004**, *28*, 311-323.
13. Liu, X.; Tu, Y. Production Planning with Limited Inventory Capacity and Allow Stockout. *Int. J. Prod. Econ.* **2008**, *111*, 180-191.
14. Chu, F.; Chu, C. Single-Item Dynamic Lot-Sizing Models with Bounded Inventory and Outsourcing", *IEEE Trans. Syst. Man. Hum.* **2008**, *38*, 70-77.
15. Hwang, H.-C.; Heuvel, W.V.D. Improved Algorithms for a Lot-Sizing Problem with Inventory Bounds and Backlogging. *Nav. Res. Logist.* **2012**, *59*, 244-253.
16. Hwang, H.-C.; Heuvel, W. V. D.; Wagelmans, A. P. M. The Economic Lot- Sizing Problem with Lost Sales and Bounded Inventory. *IIE TRANS.* **2013**, *45*, 912-924.
17. Gutiérrez, J.; Colebrook, M.; Abdul-Jalbar, B.; Sicilia, J. Effective Replenishment Policies for the Multi-Item Dynamic Lot- Sizing Problem with Storage Capacities. *Comput. Oper. Res.* **2013**, *40*, 2844-2851.
18. Minner, S. A Comparison of Simple Heuristics for Multi-Product Dynamic Demand Lot-Sizing with Limited Warehouse Capacity. *Int. J. Prod. Econ.* **2009**, *118*, 305-310.
19. Wagner, H.M.; Whitin, T.M. Dynamic Version of the Economic Lot Size Model. *Manag. Sci.* **1958**, *5*, 89-96.
20. Gutiérrez, J.; Sedeño-Noda, A.; Colebrook, M.; Sicilia, J. A Polynomial Algorithm for the Production/Ordering Planning Problem with Limited Storage. *Comput. Oper. Res.*, **2007**, *34*, 934-937.
21. Toczyłowski, E. An $O(T^2)$ Algorithm for the Lot-Sizing Problem with Limited Inventory Levels. In Proceedings of International Conference on Emerging Technologies and Factory Automation (ETFA) , Paris, France, 10-13 October 1995, pp.78-Available online: <https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=496709&tag=1> (accessed on 9
22. September 2024)
23. Ojeda, A. Multi-level production planning with raw-material perishability and inventory bounds. Ph.D. (Industrial Engineering) of Concordia University , Montreal, Canada , September, 2019
- Boonphakdee, W.; Charnsethikul, P. Column Generation Approach for Solving Uncapacitated Dynamic Lot-Sizing Problems with Time-Varying Cost. *Int. J. Math. Oper. Res.* **2022**, *23*, 55-75.
24. Di Summa, M.; Wolsey, L.A. Lot-Sizing with Stock Upper Bounds and Fixed Charges. *SIAM J. Discret. Math.* **2010**, *24*, 853- 875.

25. Park, Y.B. An Integrated Approach for Production and Distribution Planning in Supply Chain Management. *Int. J. Prod. Res.* **2005**, *43*, 1205–1224.
26. Emde, S. Sequencing Assembly Lines to Facilitate Synchronized Just-In-Time Part Supply. *J. Sched.* **2019**, *22*, 607–621.
27. Dixon, P.S.; Poh, C.L. Heuristic Procedures for Multi-Item Inventory Planning with Limited Storage. *IIE TRANS.* **1990**, *22*, 112–123.
27. 28.MATLAB code for Heuristic for the multi-item lot-sizing with storage capacities available online : <https://www.mathworks.com/matlabcentral/fileexchange/179289-heuristic-for-the-multi-item-lot-sizing-with-storage-cap>, MATLAB Central File Exchange. Retrieved January 18, 2025.
28. MATLAB code for Heuristic of Gutierrez et al. 2013 algorithm Available online: <https://www.mathworks.com/matlabcentral/fileexchange/179294-heuristic-of-gutierrez-et-al-2013-algorithm>, MATLAB Central File Exchange. Retrieved January 18, 2025.
29. MATLAB code for Smoothing Heuristic Multi-item Lot size with Storage cap. Available online: <https://www.mathworks.com/matlabcentral/fileexchange/181148-smoothing-heuristic-multi-item-lot-size-with-storage-cap>, MATLAB Central File Exchange. Retrieved May 15, 2025.
30. CPLEX solver Available online: <https://documentation.aimms.com/platform/solvers/cplex.html> (accessed on 23 Dec 23, 2024)

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.