
Article Not peer-reviewed version

A Computational Model of Minimal

Phenomenal Experience (MPE)

Lars Sandved-Smith *

Posted Date: 12 November 2024

doi: 10.20944/preprints202411.0649.v1

Keywords: free energy principle; phenomenology; pure awareness; minimal phenomenal experience;

computatational modelling

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/3719347


 

Article 

A Computational Model of Minimal Phenomenal 
Experience (MPE)  
Lars Sandved-Smith 

Monash Centre for Consciousness and Contemplative Studies, Monash University, 29 Ancora 
Imparo Way, Clayton, VIC, 3800, Australia; lars.sandvedsmith@gmail.com 

Abstract: Minimal phenomenal experience (MPE), or "pure consciousness," represents a fundamental form of 
conscious experience characterised by reflexive meta-awareness and the absence of many features of regular 
phenomenology. It has been described as e.g. non-conceptual, atemporal, non-egoic and aperspectival. This 
paper aims to develop a computational model of MPE using the mathematics of variational free energy 
minimization derived from the free energy principle (FEP). I employ a computational neurophenomenology 
approach, formalising key phenomenological features of MPE within the active inference framework. The 
model incorporates parametric depth, allowing for higher-order inferences about generative model 
parameters. I relate specific model parameterisations to reported MPE qualities such as meta-awareness, 
equanimity, effortlessness, and non-conceptuality. The proposed model suggests that MPE arises when an 
agent achieves very low free energy through self-directed awareness and modulation of their generative model, 
particularly by emphasising awareness of awareness itself. The model predicts elements of MPE 
phenomenology including a sense of effortlessness, timelessness, and the potential for a "zero-person 
perspective”. The implementation details for a simulation of the proposed model are outlined, as well as 
directions for empirical validation.  

Keywords: free energy principle; phenomenology; pure awareness; minimal phenomenal 
experience; computatational modelling 

 

1. Introduction 

The context of this paper is the research program initiated by Thomas Metzinger on the topic of 
minimal model explanations of human consciousness (Ramstead, Albarracin, Kiefer, Williford, et al., 
2023; Wiese, 2020). He has argued that any explanation of consciousness should endeavour to first 
explain the simplest version of the phenomenon we can identify. This raises the question, what is the 
simplest form of conscious experience we find in humans? In an effort to answer this, Metzinger 
embarked on an ambitious phenomenological enquiry, documenting the experience of hundreds of 
individuals reporting to have experienced (or be experiencing) an absolutely stripped back, “minimal 
phenomenal experience” (MPE) (Metzinger, 2020), also known as “pure consciousness”. 

The results of the “MPE-project” have been documented in Metzinger’s recent book The Elephant 
and the Blind (Metzinger, 2024), which documents the emergent clusters of commonly reported 
qualities or features of MPE. His work has shown that there exists a phenomenological cluster of 
seemingly related experiences that are reported primarily by experienced meditation practitioners. 
The hallmark of these experiences are their simplicity, MPE seems to be devoid of many of the 
features we might usually expect, such as conceptual content, a sense of temporality or even a 
subjective perspective. An explanation of this simple, yet uncommon, experience might form a sound 
foundation upon which to build further scaffolding for consciousness research. Or at the very least, 
serve as an experiential data point that any theory of consciousness must account for. 

However, the primary aim of this paper is not to generate evidence for a theory of consciousness. 
Instead my aim is to outline a methodology for engaging in computational phenomenology and 
demonstrate its potential by developing the beginnings of an explanation of MPE, which myself and 
others can continue to build upon. The value of this methodology resides in the computational 
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language it provides for explaining and understanding our experience, and in particular the 
intriguing and often transformative  phenomenology associated with MPE and contemplative 
practice. These modes of perception have profound intrinsic value to those who experience them, 
therefore a mechanistic explanation of MPE has value beyond the evidence it would lend to a 
candidate theory of consciousness. Computational phenomenology as presented here is best 
understood as a rigorous conceptual scaffolding for facilitating the first person investigation of our 
own lived experience (a “laser pointing at the moon”). This, I would argue, is where the true “fruit” 
of this work is to be found — in a direct experiential recognition of consciousness. Therefore, the 
claims here are pragmatic rather than metaphysical. Any evidence that this work provides for the 
validity of the underlying modelling framework as a theory of consciousness is a secondary effect, 
open to the reader’s interpretation, and not the central motivation.  

The model presented here is an iteration on the model initially proposed in (Metzinger, 2024, 
pp. 475–477), updated to account for a broader range of phenomenological features of MPE.  The 
modelling approach is couched within a methodology known as computational neurophenomenology 
(Ramstead et al., 2022; Sandved-Smith et al., 2024) that leverages the mathematics of variational free 
energy minimization derived from the free energy principle (FEP) (Friston, 2019). The FEP states that 
living systems that persist in time can be understood as engaging in a form of variational Bayesian 
inference about their environment (Da Costa et al., 2020; Da Costa, Friston, et al., 2021; Friston et al., 
2022). The core assumption that enables an FEP based computational neurophenomenology is that 
the (Bayesian) beliefs resulting from this variational inference, i.e. the variational density, can be used 
to model first person phenomenology (Hohwy, 2013). This can be read as a modern iteration of the 
neurophenomenology (NPh) research program first proposed by Francisco Varela (Varela, 1996, 
1997).  

Given that the corpus of evidence for MPE is primarily phenomenological reports, in this paper 
I build the explanatory model by formalising a few select features of MPE phenomenology. For each 
feature I ask how it might be described computationally, which then builds up a collection of 
computational constraints that will inform the proposed model of MPE. A unique feature of an FEP 
based neurophenomenology is that this model, constructed using the phenomenology, can then in 
principle generate neurobiological predictions that serve to test and further refine the proposed 
model and our understanding of MPE. 

In what follows I first provide a brief overview of the free energy principle and its relationship 
to the computational neurophenomenology approach taken here. Then I motivate computational 
interpretations of a few key phenomenological features of MPE. With these elements in place I 
construct a proposed model of MPE. Please refer to the Appendix for simulation implementation 
details and neurobiological predictions that follow from the proposal.   

In doing so a hypothesis emerges that MPE represents the phenomenology of an individual in a 
regime of very low free energy made possible by recursive self-modelling and optimisation of their 
own generative model parameters.   

2. From the FEP to Deep Active Inference 

To build a computational model that accounts for the core features of MPE, we need a robust 
modelling framework. The framework employed here is known as the active inference framework 
(AIF) (Smith et al., 2022), which is a particular application of the free energy principle to agentic 
systems. In addition to engaging in variational inference about their environment, agentic systems 
perform autonomous actions to minimise free energy, making them capable of planning and 
decision-making. This entails the minimization of not only variational free energy (based on current 
and past sensory data) but also expected free energy (EFE), which is based on predictions about the 
sensory input they would receive were they to select a specific course of action (policy). Notably, 
acting to minimise free energy is equivalent to maximising evidence for a generative model of self 
and environment, a process known as self-evidencing (Hohwy, 2016).  

As mentioned above, we make the assumption that phenomenology is related to the dynamics 
of the posterior distribution, i.e. state inference. Practically this means that we are hunting for the 
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state inferences that might be related to specific features of MPE reported by participants, and 
crucially the evidence upon which these inferences are formed.  

The computational model outlined here takes the form of a partially observable markov decision 
process (POMDP), which is a common approach to modelling the belief updating that underpins the 
perception and action in active inference agents.  

In particular, this model exhibits a form of reflexivity or depth. In previous work we have 
proposed that awareness of cognitive states, and mental action, can be modelled using a hierarchical 
active inference model exhibiting parametric depth (Sandved-Smith et al., 2021). This depth enables 
the agent to make higher order inferences about the parameters of other inferential processes, i.e. 
form beliefs about beliefs. This formally captures a notion of metacognition or “deep inference” (Da 
Costa & Sandved-Smith, 2024; Sandved-Smith & Da Costa, 2024), and provides a mechanism for 
mental or covert action.  

In this paper, I will adopt this same approach. This is important because it provides a mechanism 
for state inference on the basis of observing one’s own model parameters. Without this depth, the 
phenomenal experience (i.e. state inference) is only about external states and the agent is not capable 
of perceiving anything about how their perception is formed (i.e. the parameters of the generative 
model implicated in inference). The process of perceptual formation would be “transparent” to the 
agent, in the sense that the world is seen through the parameterisation of their generative model. 
When the agent is able to perform second order inferences by observing their internal parameters we 
say that they have “opacified” a previously transparent aspect of their generative model (Metzinger, 
2003; Limanowski & Friston, 2018). This allows the agent to form posterior beliefs that can be used to 
model deeper aspects of human phenomenology, such as the awareness of cognitive states, and, as 
we’ll see — the awareness of awareness itself.  

3. Methodology 

Part of the novelty in the model presented here arises from extending the mechanism of 
parametric depth to a wider range of the model parameters. In the previously proposed model, only 
the likelihood precision was subject to second order inferences. Here I endow the model with the 
ability to form deep inferences about other parameters, such as the preference precision and the 
policy precision (see Figure 2). This broadens the explanatory power of the model since the resulting 
state inferences can be related to various phenomenological features.  

The methodology for performing this relation between phenomenology and model parameters 
starts by understanding the mathematical role that each parameter performs in the posterior 
formation. With practice, this allows us to intuit what it ‘would be like’ (from the perspective of the 
modelled agent) to modulate that particular parameter, in terms of how their perceptual or 
behavioural experience might change. From this mathematically grounded intuition we can form 
hypotheses about how to model different phenomenological features. This is facilitated by also 
having an intimate first person familiarity of the phenomenology in question, e.g. a regular 
meditation practice.  

This methodology might initially sound like mathematical story telling — how do we 
(in)validate any of the hypothetical relations made between phenomenology and parameters? The 
first point to note is that the modelling architecture enforces a degree of internal coherence. This is 
because the model parameters are interdependent. Therefore, a hypothesis we make about one 
parameter has ramifications for other parameters and their related phenomenology. As a result, the 
internal consistency of the model, and its alignment with the relationship between phenomenological 
features, provides an initial source of construct validity. 

In addition, the resulting generative model has predictive power that we can leverage to test the 
predictive validity of the proposal. By virtue of being a computational model we can run simulations 
of expected future model dynamics. This gives rise to three forms of prediction: phenomenological, 
behavioural and neurobiological. The phenomenological predictions arise from studying the 
expected dynamics of the perceptual inferences given the proposed parameterisations. We will see 
examples of a phenomenological prediction in sections 4.4-4.7. The behavioural predictions arise 
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from the ability to simulate action selection in a given task setting. This is not treated here but is 
tractable in principle. For example, does access to MPE change behaviour in a go/no-go task designed 
to test impulsiveness?  

Neurobiological predictions are enabled by the dual interpretation of the dynamics of the agent’s 
internal states, which can be read in terms of the belief dynamics or in terms of the thermodynamics 
of the states per se. This so-called “dual information geometry” is the basis for deep computational 
neurophenomenology (Sandved-Smith et al., 2024), which enables a flow of predictions between the 
phenomenology and neurobiology. This is explained further in Appendix B.  

4. Formalising Phenomenological Features of MPE 

In the following sections we will examine a selection of the core phenomenological 
characteristics associated with MPE. Each section will propose a computational account of the feature 
as we progressively build up a detailed model. The resulting model serves as a computational 
explanation of the experience of MPE, which we can then use to derive insights about the mechanisms 
of MPE and to generate empirical predictions in order to test the translation of the phenomenology 
into the mathematical model. See Table 1 in Section 5 for a summary of the formalisations. 

4.1. Meta-Awareness 

Meta-awareness is the first phenomenological characteristic of MPE we will formalise in the 
construction of the proposed MPE model. In MPE, participants frequently report1 a high degree of 
meta-awareness, i.e. a wakeful awareness of the contents of consciousness.  

“687 I am in a state of wakefulness. I have a strong awareness of the pre-sent moment. It is as if I am 
a guard dog: All my perceptions seem heightened. I am in consciousness but I am not - doing 
anything except perceiving sounds, smells, sensations in my body.”  

(Metzinger, 2024, pp. 33–34) 
In previous work we proposed that meta-awareness can be modelled as the likelihood precision 

of second order observations of model parameters (Sandved-Smith et al., 2021). See the 𝛾஺(ଶ) 
parameter in Figure 1. To justify the face validity of this definition, we simulated the effect of high 
and low meta-awareness in an attentional task, demonstrating that periods of mind-wandering 
(being distracted whilst unaware of the distraction) were reduced with higher meta-awareness. This 
recapitulates empirical results and aligns with existing definitions of meta-awareness. (Dunne et al., 
2019) 

 
1 Citations preceded by numbers represent MPE reports from participants. 
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Figure 1. Generative model with parametric depth. This figure depicts a Bayes graph representation 
of an example generative model with parametric depth. Parametric depth involves the addition of a 
hierarchical level that takes the parameters of the lower level as input for inference. An agent 
endowed with parametric depth is capable of performing second order inferences, i.e. forming beliefs 
about beliefs. In this example the likelihood precision 𝛾஺(ଵ) is the basis of second order inference).  
Notice the precision of the higher level likelihood mapping, 𝛾஺(ଶ), which has previously been related 
to meta-awareness (Sandved-Smith et al., 2021), and is central to the model of MPE outlined in this 
paper. 

This meta-awareness parameter enables the agent to become aware of their internal states, since 
it acts to set the precision or weighting of observations generated by the parameters of the generative 
model. Given that these parameters define the action-perception model of the agent, high meta-
awareness amounts to an ongoing opacification of the processes driving their inferential processes. 
This accords with the common definition of meta-awareness as the capacity to explicitly notice the 
contents of consciousness. 

Hence when parameterising a computational model of MPE, we can use this phenomenological 
data to inform the value of this higher order likelihood precision parameter, setting it to “high”. 
Numerically this implies a value >1. The effect, computationally, is that the agent is able to form 
unambiguous inferences about the state of the various generative model parameters.  

4.1.1. Meta vs Reflexive Awareness 

Interestingly, the experience of meta-awareness during MPE is often reported with a quality of 
reflexivity. In other words, meta-awareness is experienced as a bare awareness of awareness itself.  

“1350 [. . .] When the relevant state arises, it is like seeing seeing, or awareness of 
being aware.” 
“1617 Experiencing awareness of consciousness or of cognizance as such.” 

(Metzinger, 2024, pp. 396–398) 
At a first glance, this reflexiveness can seem at odds with the meta-awareness mechanism 

proposed thus far. The term “meta” can evoke notions of a ‘higher perspective’ or separate vantage 
point from which to look from. Furthermore, this tension can be reinforced by a naive interpretation 
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of the hierarchical model presented in Figure 1. It seems as if the agent is split, creating some 
separation between the part which is aware of the internal states, and the internal states themselves. 
However, upon closer investigation we can see that this reflexive phenomenology is in fact in 
accordance with this computational account.  

The misunderstanding to address is the idea that hierarchical inference creates a separate ‘higher 
perspective’, or internal homunculus. By leveraging the mathematics of Bayesian mechanics, we can 
show that despite the hierarchical, or nested, structure of the agent — there exists an inner-most 
“cognitive core” or “inner screen” that contains all the information from the other levels. This topic 
is explored further in (Ramstead, Albarracin, Kiefer, Klein, et al., 2023; Sandved-Smith & Da Costa, 
2024, §8.1) for interested readers. The key point for our purposes here is that there exists a single 
variational density that captures the beliefs from all levels of the inferential hierarchy. Some of these 
beliefs are about the processes that underpin the formation of other beliefs, and yet all are experienced 
simultaneously.  

Let’s further unpack the computational mechanisms that give the experience of meta-awareness 
a reflexive quality. Or what Metzinger calls the “phenomenal signature of self-knowing”. There are 
three sources of reflexivity in the flow of the computational logic when parametric depth and meta-
awareness are introduced into the model. These provide a mathematical grounding for the 
phenomenology of reflexive awareness that others have described as a “beautiful loop” (Laukkonen 
& Chandaria, 2024). 

The first mechanism relates to the role of the meta-awareness parameter in rendering the 
dynamics of the agent’s own model parameters available for inference. The agent’s model parameters 
collectively underpin the inferential process that leads to the formation of the posterior beliefs, which 
we relate to the perceptual experience. Said differently, meta-awareness enables modelling the 
process of becoming aware of perceptual content (i.e. the formation of posterior beliefs). Therefore, 
high meta-awareness enables the agent to become aware of the process by which their experience 
arises — they are becoming aware of the process of becoming aware of perceptual content. This idea 
is unpacked further in Section 4.2. 

A second mechanism of reflexivity emerges when we model the agent as capable of state 
inference on the basis of the meta-awareness parameter (see Figure 2). This higher order (third level) 
inference of the state of meta-awareness gives the agent an experience of being aware (i.e. meta-
awareness state inference) of the degree to which they are aware (i.e. meta-awareness parameter 
value) of the process of awareness (i.e. the dynamics of the parameters of the generative model). 
Before observing this particular parameter, the agent was already awake and aware of their 
experience. This additional reflexivity of the meta-awareness provides a recognition of the already 
awakeness.  

Finally, a third mechanism of reflexivity emerges from “loopy” logic of belief message passing 
in the hierarchical scheme. Top level inferences influence, and are influenced by, lower level 
inferences. The layers of hierarchical inference therefore induce a hierarchical looping of the belief 
message passing. However, as mentioned above, the beliefs generated by this looping are captured 
in the dynamics of an inner-most variational density — and therefore experienced as a single gestalt 
experience. We would therefore expect that phenomenological reports of meta-awareness attempt to 
express an impression of reflexive self-knowing, that the field of experience refers to itself. Or in 
Metzinger’s words: 

“[...] it is as if the phenomenal signature of knowing dynamically folds back into itself, silently but 
continuously reembedding awareness into itself.” (Metzinger, 2024, p. 394) 
Before moving on, note that Metzinger makes a distinction between dual meta-awareness and 

non-dual meta-awareness, distinguished by the presence or absence of a sense of “me” experiencing 
the meta-awareness. I do not consider this distinction a part of the meta-awareness mechanism itself, 
but instead a consequence of the degree to which the individual’s model contains a “self as cause” 
state factor. This is discussed in section 4.6: “Zero-person perspective”.  

4.2. Modelling the Epistemic Space 
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A key intuition proposed by Metzinger is the notion of an “epistemic space”. This is 
the space of possible phenomenal content that can be known by the agent. Metzinger 
goes on to propose that pure awareness, ie. awareness of awareness, might be related 
to the capacity for an agent to know, or model, the epistemic space itself.  

“In my view, the epistemic-space -metaphor is the best phenomenological -metaphor for pure 
consciousness or minimal phenomenal experience (MPE). [...] and experiencing pure awareness 
simply means having a model of this space, nonconceptually knowing that it exists.”  

(Metzinger, 2024, pp. 46–47) 
This phenomenologically motivated intuition finds a credible computational counterpart when 

we consider the ramifications of a model with parametric depth. The output of a generative model, 
known as the posterior distribution over states, is a belief in the form of a probability distribution. 
This distribution is the agent's best explanation for the causes of their sensory data and is generally 
understood as a computational analogue of the agent’s perceptual experience. The inferential process 
that gives rise to this explanation is a consequence of the observations received and a particular 
parameterisation of the generative model at that moment in time. If we assume a POMDP model 
structure, these parameters include e.g. the likelihood mapping A which encodes beliefs about state 
observation mappings and the transition mapping B which encodes beliefs about possible transitions 
of a state from one moment to the next. A different parameterisation (e.g. different learning history) 
would result in a different posterior distribution.  

We can plot each possible posterior as a point on a statistical manifold, i.e. a high dimensional 
plane where each point defines a probability distribution and each dimension is a parameter of the 
generative model. This manifold effectively represents all the possible beliefs the agent might 
entertain, i.e. all the possible perceptual experiences. This has a strong semblance to Metzinger’s 
notion of epistemic space:   

“By definition, an epistemic space is a space of possibilities: It contains -every possi-ble epistemic 
scenario and - every dynamic partitioning of itself that could ever take place—- every- thing that 
could potentially be known and experienced by a given system. An epistemic space contains the 
repertoire of knowledge states that a given system has. Therefore, it encompasses many ways of 
accessing world and self, of making real-ity available to itself, at this specific location in time and 
space.”  

(Metzinger, 2024, p. 50) 
A posterior distribution is intrinsically epistemic in the sense that it captures the agent’s current 

belief state. Hence the statistical manifold that defines all possible posteriors seems a suitable 
candidate for a computational model of epistemic space.  

If we assume this, what would it mean for an agent to form a model of this epistemic space? This 
is precisely what is made possible by the second order inferences enabled by parametric depth. This 
endows the agent with the ability to take their own model parameters as observations for further 
inference. The result is a generative model of the model parameters themselves. Given that these 
parameters define the dimensions of the statistical manifold (epistemic space) of possible posteriors 
(experiences), we can argue that an agent with high meta-awareness is capable of forming a model 
of this space — by modelling the dynamics and interactions of the parameters themselves.  

Hence we find a natural computational analogue of Metzinger’s concept of pure awareness as a 
model of the epistemic space. Note that this creates another interesting recursion or reflexivity in the 
model, the agent is essentially modelling the modelling process that underpins their perception.  See 
Appendix C for additional insights we might draw from this computational account of the epistemic 
space.  

4.2.1. MPE as a Consequence of Generative Model Mastery 

Computationally, the model of the epistemic space is learned through experience and 
introspection, paying attention to the dynamics of the parameters that constitute the agent’s 
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inferential process. This evokes a notion similar to the idea of meditative insight into the nature of 
mind, i.e. refining a model of the space of awareness itself. 

Doing this well confers a unique advantage when we assume that some of the model parameters 
are sensitive to the agent’s beliefs about them, i.e. that there exists a form of mental action that 
modulates the parameters of the generative model (Limanowski & Friston, 2018). This opens an 
entirely new degree of freedom the agent can leverage in the free energy minimising process. In 
addition to updating its model and actively soliciting data that confirms the model (i.e. active 
inference), with parametric depth the agent can dynamically and intelligently adjust its model. 
Changing the model parameters amounts to adopting a “way of seeing” (Burbea, 2014) since the 
resulting posterior (perceptual experience) is changed.  

This leads to a high level hypothesis for what MPE might be at an abstract computational level, 
as well as how it is reached and why this experience arises most reliably for individuals with 
extensive meditation training: With sufficient awareness and control of the parameters of the 
generative model an agent is able to enter a regime of minimal free energy, primarily through the 
self-directed modulation of the generative model itself (i.e. internal rather than external mastery).  

This converges onto an MPE absorption when the agent emphasises an awareness of awareness 
itself. This provides the possibility of incurring very low free energy since the agent is modelling a 
feature of its model that is always present, namely the space in which any experience would take 
place. Under the right conditions this leads to a nearly perfect predictive feedback loop (“Aware? 
Aware. Aware? Aware. Etc.”) due to the “counterfactual invariance” caused by the impossibility of 
imagining what it's like to be unconscious (Metzinger, 2024, p. 51). This hypothesis makes a 
connection between the “minimal” in MPE and “minimal free energy”.   

4.2.2. Unbounded Epistemic Openness as a Flat State Prior 

Metzinger also introduces the concept of “epistemic openness”, which he defines as an 
“unobstructed epistemic space” and argues that this an important phenomenal character of pure 
awareness (Metzinger, 2024, p. 47), related to the commonly reported quality of “unboundedness” in 
MPE. Computationally, this feature implies an attenuation of the prior expectations encoded by the 
transition mapping B. Precise priors act to constrain the space of possible posterior beliefs, whereas 
a completely flat prior opens the possibility of any posterior moment by moment. Flattening the 
influence of the prior expectations is achieved via modulation of the transition precision, 𝛾஻ (see 
Figure 2). The resulting hypothesis is that during MPE the value of the transition precision is low, 
such that the epistemic space of possible beliefs remains unbounded. The agent is therefore 
completely open to the possibility of any epistemic state, without constraining the interpretation of 
the next moment.  

4.3. Equanimity 

Another central feature of MPE phenomenology is the quality of equanimity, described as 
tranquillity, calm, stillness or even “existential ease”. This feature implies a state of non-reactivity or 
imperturbability to incoming stimuli, which can be modelled as a flat distribution over prior 
preferences.  

“2985 [. . .] In my opinion, the most impor-tant - thing was the letting go. I was able 
to perceive bodily sensations and thoughts, but in contrast to everyday life I 
did nothing with them. And this brought me step by step to a deeper level, to 
a state of consciousness that I had never experienced before. It was a state of 
infinite peace. [. . .]”  

(Metzinger, 2024, p. 10) 
In active inference terms, actions are selected on the basis of the expected free energy, G. This is 

the free energy the action (or sequence of actions 𝜋) might incur in the future, given beliefs about 
how the actions will influence state transitions and the likely observations that might be generated 
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by those future states. The expected free energy can be decomposed into epistemic and pragmatic 
terms, where the pragmatic term is dependent on the agent’s prior preferences over outcomes, 
denoted C. These preferences drive the agent to select actions that will solicit the expected 
observations from the internal (interoceptive) or external environments. 

A precise distribution over the prior preferences will result in high expected free energy should 
expected observations diverge from the preferences, driving the agent to avoid or seek out the 
unpreferred or preferred observations respectively. High preference precision translates to high 
sensitivity and reactivity, a strong driver for avoidant action.  

In MPE we observe the opposite phenomenology, with participants reporting a stable calm and 
sense of ease. This implies a down regulation of this precision, such that the pragmatic driver of action 
is flattened and the reactivity to incoming observations is reduced. Computationally this is enabled 
by extending the parametric depth mechanism to the prior preferences C. As with the other model 
parameters, the information used for second order inferences is not the parameter itself, but instead 
the second-order beliefs about the parameter captured by the precision inference. For example, in 
Figure 1 the likelihood precision 𝛾஺  is fed back into the model, not the likelihood A itself. These 
precision parameters (denoted 𝛾 ) are inferred by the agent via free energy minimisation, and 
represent the confidence in the beliefs encoded by the associated parameter (Parr et al., 2022, eq. 
(B.20)).  

Hence, the modulation of the preferences can be achieved computationally by introducing a 
second order precision parameter 𝛾஼ that weighs the influence of C on policy selection. The expected 
free energy becomes: 

 
 

(1) 
 
 

By introducing this parameter into a deep generative model, the agent is able to observe its value 
and perform state inference based on those observations (see Figure 2). Once this is possible, the agent 
has opacified (i.e. modelled) an aspect of their model that was previously transparent. This confers 
the ability to select mental actions on the basis of expected free energy minimisation, which influence 
the parameter value via descending message passing.  

Therefore, during MPE episodes, the hypothesis is that individuals are deliberately cultivating 
a deep state of equanimity. We can model as a flattening of the prior preferences via a mental action 
that decreases the preference precision. The description of “existential ease” is particularly apt, given 
that the preferences define the attracting set of states characteristic to the agent’s biological survival 
and continued existence (the ‘pullback attractor’) (Sajid et al., 2022). 

4.4. Effortlessness  

The mechanism enabling much of the phenomenological modelling, so far, has been the mental 
actions enabled by parametric depth. This provides a computational account of how a cognitive agent 
might effect changes to the parameters of their own perceptual system that would plausibly give rise 
to aspects of the reported MPE phenomenology.  

This active mechanism seems to be in contradiction with an important phenomenological feature 
of MPE: the quality of effortlessness. Individuals report MPE as a state of minimal or zero sense of 
cognitive effort. This is an interesting report that allows us to further test this computational model 
explanation. We will see that effortlessness is in fact predicted by the model given the 
parameterisations we have already laid out above.  

“79 [...] The experience was one of effortlessness, and without any noticeable sense of desire. - There 
was no longer any feeling of needing to get someplace or something.  

(Metzinger, 2024, p. 331) 
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I will adopt the argument outlined in (Parr et al., 2023), wherein the authors propose that 
cognitive effort can be formalised as the divergence between context sensitive mental action selection 
and habitual mental action selection. This divergence represents a complexity term and can be 
understood as the information length of the belief update for mental actions given contextual sensory 
information. This argument rests in part on the thermodynamic requirement of updating the habitual 
prior beliefs given the contextual information, and the shift from context in-sensitive to context 
sensitive action selection that incurs a “cost” in information processing requirements, experienced as 
cognitive effort. The cognitive effort term is thus defined as: 

 
 
 

(2) 
 

Where  𝐷௄௅ denotes the Kullback–Leibler divergence, 𝜋  is the beliefs about covert policies (a 
sequence of mental actions), G is the expected free energy, E is the prior beliefs over policies (or 
habits). 

The phenomenology of effortlessness therefore, finds its computational counterpart as this effort 
term tends towards zero. Mathematically, this can occur under a few specific conditions: 1) when G 
is uniform or similar for all policies, 2) when the amplitude of E is large compared to G or 3) when G 
and E are aligned. 

In the case of MPE, conditions 1 and 2 are at play simultaneously. We have seen above that 
during MPE, the level of meta-awareness is high and the preference precision is low. This translates 
into a very low and uniform value of the expected free energy across mental policies. To see this, refer 
to the expression for G in equation (1) and notice that high meta-awareness acts to increase the 
precision of the likelihood mapping A(2), which decreases its entropy and therefore reduces the 
amplitude of the perceptual ambiguity term. The cost term is also reduced via the equanimity 
mechanism described in the previous section. Hence the expected free energy G will be low 
amplitude and uniform across policies. Furthermore, as we’ll see in the next section, the temporal 
planning depth is flattened during MPE, which also results in a uniform distribution over policies. 
Finally, given the meditative context usually associated with MPE, we can expect the magnitude of 
E to be high through repeated training and habituation.  

Therefore, the computational model of MPE outlined thus far predicts the sense of effortlessness 
reported in MPE, which lends a degree of predictive validity to the model. 

4.5. Non-Conceptuality 

The experience of MPE is often reported to be devoid of any conceptual processing. This is 
sometimes described as an absence of discursive thinking or mental quietude, and other times 
described as the absence of any conceptuality whatsoever, including any notion of a narrative self-
concept.  

“1196 [...] the experience itself in my opinion is best described by the term “nonconceptual.”  

(Metzinger, 2024, pp. 23–24) 
Previous work has argued that non-conceptual modes of cognitive processing can arise in 

situations that lead to a flattening of the temporal planning horizon (i.e. zero temporal depth). These 
situations include psychedelics (Deane, 2021), flow states (Parvizi-Wayne et al., 2024) and deep 
meditative absorption (Laukkonen & Slagter, 2021; Czajko et al., 2024). The commonality is an 
emphasis on processing present moment observations. Whether this is pharmacologically induced, 
situationally enforced or deliberately cultivated, in each case these experiences drive a dedication of 
cognitive resources to the present moment. The argument that connects this to non-conceptuality 
assumes a thermodynamic limit to the inferences a physical agent can perform moment by moment, 
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hence a strong weighting of present moment inference implies a corresponding attenuation of future 
oriented inferences required in planning. 

The simulation of the counterfactual future requires an implicit concept of the agent to be 
projected forward through time, as well as conceptual coarse grainings of the counterfactual 
consequences of future action sequences. We can relate this aspect of the computational process of 
policy inference to what Metzinger calls the “epistemic agent model”.  

Hence by flattening the temporal depth entirely, the agent is no longer inferring the roll-out of 
these concepts for the purpose of action selection. And therefore they do not feature 
phenomenologically, resulting in a state free from self-related thinking or the higher order cognitive 
processing and conceptualisation associated with planning.  

Non-conceptuality therefore implies that the precision of current observational data is 
sufficiently high to require a dedication of cognitive resources to their processing, resulting in a small 
or zero temporal depth. Practically for our model, this translates to high likelihood precision (already 
expected from the formalisation of meta-awareness) and a value near zero for the parameter 
controlling planning depth.  

The absence of conceptualisation and counterfactual planning also aligns with the flattening of 
the transition beliefs discussed in Section 4.2.3. As the transition precision drops, any inferred 
posterior is no longer carried into the next moment. This results in a perception that is completely 
open to the moment without any conceptual constraint. This also has the effect of rendering 
counterfactual planning intractable, since the state roll outs are maximally ambiguous.  

4.5.1. MPE Modes vs MPE States 

The experience of MPE can be separated into two broad categories, MPE absorption states and 
ongoing MPE modes. An MPE mode is characterised by the experience of pure awareness with other 
perceptual content present, whereas an absorption episode is a state of pure awareness without 
perceptual content.   

If both MPE modes and states share this emphasis on present moment processing, what is the 
mechanism that distinguishes them? In (Metzinger, 2024, pp. 475–477) we suggested that an MPE 
state entails the attenuation of sensory data, whilst maintaining high precision on the inference 
underpinning an awareness of awareness (see s(3) in Figure 2). Whereas an MPE mode can be 
modelled as having both this meta-awareness inference and other ongoing perceptual inference.  

In an MPE mode with perceptual content, the likelihood precisions for all sensory mappings 
remain high. An MPE absorption on the other hand can be modelled by a full allocation of available 
precision to the higher order observation modality exclusively. This implies that an absorption 
episode can be modelled by a system whose incoming data is predominantly the internally generated 
observations of the parameters of their generative model.  

4.6. Zero-Person Perspective 

Possibly the most intriguing quality of MPE is what Metzinger describes as the “zero-person 
perspective” (Metzinger, 2024, p. xix). For a portion of people reporting MPE-like phenomenology, 
the experience is described as being free from a sense of a subject or any egoic form of self-awareness.  

“1612 [...] The world I was experiencing no longer existed in-de-pen-dently, because I had become 
the unfolding of that experience. The previous “I” as experiencer, chooser, thinker did not exist. 
Instead - there was experience itself. -There was a visual center to the experience, but only - because 
that’s where light met the eyes. The center was no longer meaningful in any way.”  

(Metzinger, 2024, p. 397) 
This is difficult to imagine or conceptualise without first hand experience since the subject-object 

distinction appears so self-evident. And yet, advanced meditators commonly describe the possibility 
of a “centreless mode of perception” (Ingram, 2018). Assuming the existence of this phenomenal 
character in MPE states and modes (i.e. ongoing centerlessness), how might we explain this 
computationally? 
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Above we discussed how the flattening of temporal depth attenuates the narrative self construct 
and conceptualisation. However, I put forward that the zero-person perspective represents a more 
fundamental shift in perceptual processing. We can motivate this by appealing to the fact that the 
zero-person perspective is a continuous mode of being, not restricted to a temporary state. This is 
true even when e.g. scheduling a dentist appointment, which requires deep temporal planning. 
Hence, this particular form of non-egoic awareness can not be reduced to the mechanism of shallow 
temporal depth.  

Since experience is modelled as being related to the posterior beliefs, we can approach this by 
asking: what is the posterior distribution associated with the habitual sense of self? What is the “I” or 
“me” posterior? A posterior is the best guess the agent has about the cause of some subset of 
observations. So we can rephrase this question as, what observations exist for the agent, which might 
be explained as being caused by the agent itself? 

Due to parametric depth, the agent is observing their own model parameters (Figure 1). The 
causal process that generates these observations is dependent on both the external dynamics and the 
agent’s internal dynamics (i.e. the interdependent dynamics of the parameters of the agent’s model). 
Therefore, if an agent does not have an accurate model of their own internal states, there will be 
factors influencing their self-observations that can not be predicted (namely their own parameter 
dynamics), which result in unexpected observations, i.e. free energy.  

Therefore, the computational hypothesis for the source of the self concept is that the agent 
explains away this source of uncertainty by attributing its cause to the agent itself. In other words, 
the self concept is the explanation of the unperceived influence of generative model parameters on 
experience.  

This posterior explanation is, in a sense, correct — the agent's internal states (which parameterise 
its beliefs) are indeed the cause of the prediction error. However, the appeal to an abstract cause, the 
“me” concept, does not provide the predictive capacity for avoiding the prediction errors in the first 
place. Instead, the posterior is applied post hoc, as a reasonable coarse grained explanation of causal 
processes that have not yet been modelled. As a result, the prediction error persists but is quickly 
swept under the rug of the ego-inference.  

Why would this self-inference be absent in MPE? If we assume, as discussed in the previous 
section, that MPE arises when an individual has a sufficiently opacified model of the epistemic space, 
i.e. of their own model parameters, then it follows that MPE would be devoid of self-concept defined 
in this way. With such a precise model, the agent would no longer have a need for the abstract 
explanation to explain away the prediction errors caused by their lack of understanding of their own 
parameter dynamics, because these prediction errors would not arise in the first place — precisely 
because of the accurate predictive model that has been developed. In other words, the appeal to “self 
as cause” to explain away the unperceived internal causes is not required when the agent has a good 
model of these causes.  

Hence the self state factor gets pruned away in a moment (or series of moments) of insight or 
Bayesian model reduction (Friston, Lin, et al., 2017), in favour of a more accurate understanding of 
the mechanisms underpinning the inferential construction of the perceptual content, i.e. the dynamics 
of the parameters being modelled via parametric depth. Said differently, by clearly seeing the 
workings of the mind, the agent is liberated from the abstract self concept and the predictive 
dissonance born of a lack of understanding.  

4.7. Atemporality 

Another fascinating feature of MPE is the reported sense of timelessness.  
“3330 I would best describe my experiences with terms like “stopping of time”, "perception of space 
without time” [. . .] 
2771 It was an experience of not moving forward, not moving back, neither of staying still.” 

(Metzinger, 2024, p. 248) 
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Two computational mechanisms might explain different aspects of this experience. In some 
cases, timelessness is described as “timeless change” or a “changing now”, whereas in other cases the 
experience is a more abstract or pure timelessness (e.g. “an eternity experience”). We’ll see that both 
of these are predicted by the model presented thus far.  

The experience of a “changing now” is well captured by the flattening of the temporal planning 
horizon described in section 4.5. Under those conditions, there is no mental time travel or projection 
into future or past states. Instead, perceptual inference of present moment sensory data is dominant, 
without a sense of what will happen next. Change is still present since the posterior distribution is 
being updated moment by moment, however only the current belief about present observations are 
entertained.  

Pure timelessness, on the other hand, can be explained computationally as resulting from the 
small information length of belief updates during an MPE absorption. The experience of temporal 
duration has recently been associated with the information length of the trajectory of beliefs (Da 
Costa, et al., forthcoming). A lack of temporal duration would therefore imply a very small 
information length in the belief updates. Mathematically this relates the sense of temporal duration 
to KL divergence between prior and posterior beliefs about states: 

 
(3) 

 
This hypothesis has yet to be tested empirically. However, phenomenologically it has a prima 

facie plausibility as the information length represents how much the agent's experience is changing 
moment by moment.  

If we adopt this point of view, then the experience of pure timelessness in MPE follows from the 
computational model outlined thus far. Recall that parametric depth enables the agent to perceive 
their own model parameters. The observations at each level are generated by the precision of the 
parameter at the layer below. The precision can be understood as a summary statistic of the 
parameter; it fluctuates on a slower timescale and contains less information than the parameter itself. 
Therefore, as we ascend the parametric hierarchy, the amplitude of the belief updating decreases2.  

As we have seen, during an MPE absorption, only the higher level inferences are present, with 
lower level sensory data being attenuated. Assuming the individual has stabilised their awareness, 
the information length of updates to this state inference will trend towards zero. Which is experienced 
subjectively as a ceasing of temporal duration.  

4.8. Bliss 

Finally, how does this computational model explain the reports of positive affect during MPE?  
“3305 [...] Great happiness flowed through me. [...] 
2687 [. . .] a deep feeling of joy, timelessness, happiness emerged.”  

(Metzinger, 2024, p. 147) 
The experience of joy, awe, bliss or gratitude is common in reports of MPE, however not a 

necessary feature. Many meditators report pure awareness experiences without these qualities. 
Furthermore, these qualities are often reported in otherwise normal daily experiences. So how does 
our computational model account for this variance?  

Within the active inference framework, the experience of affect has been modelled as state 
inference on the basis of observations of the “model precision” parameter. The model precision 
(denoted 𝛾 or 𝛾ீ) is a global summary statistic that is dependent on all the other parameters of the 
generative model. It encodes the agent’s confidence in their entire action model. Inferring this 

 
2 This is also the mechanism that prevents an infinite regress of the hierarchical levels. Each additional level becomes less 

informative as it tracks slower time scale fluctuations. Therefore the complexity cost of the additional model structure 

quickly outweighs the accuracy gained by tracking ever more subtle dynamics.  
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parameter is answering the question “how well am I doing at minimising free energy compared to 
how well I expected to be doing?”. Therefore, this computational account of “affective inference” 
(Hesp et al., 2021) ties valence to the rate of change of the free energy (Joffily & Coricelli, 2013). Hence 
we can model high valence as a negative rate of change in the free energy, i.e. when the agent is doing 
‘better and better’ at minimising free energy. 

In the sections above we discussed how the accurate modelling of the agent’s model parameters 
can lead to improved free energy minimisation, as the prediction errors arising from internal causes 
are resolved through improved self-modelling. This decrease in free energy is also a result of high 
meta-awareness (low perceptual ambiguity) and high equanimity (low preference precision). If we 
assume that the transition into these conditions that define MPE extends over some duration of time, 
this creates a scenario where the free energy incurred by the agent may be decreasing faster than their 
model predicts.  

Therefore, whilst this is the case, computationally they will be ‘pleasantly surprised’ by the 
decrease in free energy that accompanies the increasingly opaque and preferenceless self-model, 
which in turn will register as an increase in model precision and uptick of positive valence. However, 
once a stable optimum of free energy has been reached, the rate of change will decrease and the 
associated valence will taper. This may account for the variance seen in reports of MPE and forms 
the basis of a prediction that positive valence is most likely encountered in the onset phase of MPE.  

5. Conclusion 

This paper presents an updated computational model of minimal phenomenal experience (MPE) 
grounded in the mathematics of the free energy principle and active inference. By formalising key 
phenomenological features of MPE within a deep active inference framework, we have developed a 
mechanistic account that explains first-person experiential reports with computational descriptions. 

The model suggests that MPE emerges as a consequence of entering a regime of very low free 
energy (or equivalently very high self-evidencing) characterised by: 

• High meta-awareness, modelled as increased precision of higher-order observations of model 
parameters. 

• Flattened prior preferences, resulting in a state of equanimity. 
• A precise model of the agent's own modelling process (i.e. generative model parameters), 

enabling a "zero-person perspective." 

These conditions lead to further computational predictions related to reported 
phenomenological qualities of MPE, including effortlessness, timelessness, and a sense of pure 
awareness devoid of conceptual content. 

The significance of this work extends beyond explaining MPE. It demonstrates the potential of 
computational neurophenomenology to formalise and help us understand subtle aspects of conscious 
experience, providing a rigorous framework for investigating altered states of consciousness and 
meditative practices. Moreover, it offers a new perspective on the nature of self-awareness and the 
computational underpinnings of different modes of perception. 

However, several limitations must be acknowledged. The model remains theoretical and 
requires empirical validation. Future work will focus on deriving and testing predictions about 
neurobiological dynamics during MPE states and designing experiments to assess the model's 
accuracy.  

Finally, as mentioned in the introduction, my hope with this work is to contribute to a 
computational language for describing phenomenology. Such a language can serve a map for guiding 
and inspiring the first person investigation of our own lived experience. It is my view that an 
experiential grokking of consciousness is far more valuable than another theory of consciousness.  

Appendix A. Simulating MPE 
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The formalisations of MPE phenomenology explored here are detailed enough to define a 
generative model parameterisation apt for simulating the experience and dynamics of MPE. The 
simulation implementation and results are outside the scope of this paper, however Figure 2 below 
depicts the model structure as a Bayes graph and the table below summarises the parameterisations 
to be implemented, derived from the phenomenological features of MPE. 

 
Figure 2. Deep generative model structure of MPE. This figure depicts a Bayes graph representation 
of the proposed generative model of minimal phenomenal experience. The first (blue) layer captures 
the agent’s inferences about external states (i.e. their perceptual inference) and overt motor actions 
u(1). Perceptual inference on this level is dependent on a number of generative model parameters 
shown in white boxes. The agent is inferring the precision of these parameters, shown in shaded blue 
circles, e.g.  𝛾஺(ଵ). These precision parameters are observed by the agent, and the basis of second order 
inferences shown in the orange box. The model constructed at this level captures the dynamics of and 
interactions between the parameters underpinning the perceptual process, which we have related to 
the model of the epistemic space (awareness). Actions at this level are mental (covert) actions that 
modulate the various precision parameters. The ambiguity of this second level of inference is 
dependent on the higher order likelihood precision 𝛾஺(ଶ). When this is high, the agent is able to form 
inferences on the basis of their model parameters, i.e. they are aware of or have “opacified” an aspect 
of their perceptual process. Finally, at the third level the agent is able to make inferences about 𝛾஺(ଶ)giving rise to an experience of being aware of the degree of awareness of the space of awareness. 

Table 1. Summary of computational formalisations of core features of MPE. 
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Appendix B. Empirical Predictions 

The advantage of employing the free energy principle in the construction of a 
neurophenomenological model is that the formalism provides a principled route towards the 
empirical testing of the proposed model. Please refer to (Ramstead et al., 2022; Sandved-Smith et al., 
2024) for a detailed treatment on this topic. Briefly, this is enabled by the dual interpretation of the 
dynamics of the internal states under the FEP. The internal states can be understood, on the one hand, 
as parameterising the agent’s beliefs about external states (the so-called “extrinsic dynamics”). And 
on the other hand, their dynamics can be described in terms of the internal states per se (the “intrinsic 
dynamics”). (Friston et al., 2020) 

The upshot is that the assumptions we make about the belief dynamics necessarily entail 
predictions about the thermodynamics of the internal states that can be tested empirically. The 
relationship between the equations governing the intrinsic thermodynamics and empirical 
neurobiology is described by the neural process theory that accompanies the free energy principle 
(Friston, FitzGerald, et al., 2017; Parr & Friston, 2018; Da Costa, Parr, et al., 2021). A detailed treatment 
of the neurobiological ramifications implied by the model presented here is the subject of future 
work. However, to demonstrate the logic a few example directions are highlighted below. 

6.1. Timelessness and Metabolic Cost 

The information length of belief updating, which we related to the experience of temporal 
duration, has also been related to the metabolic cost incurred by the belief updating (Da Costa, et al., 
forthcoming). Therefore, the computational account of phenomenal timelessness as small 
information length in the belief trajectory entails a prediction about the metabolic load. We can 
therefore make the prediction that the overall energy consumption of the brain, as measured by the 
amplitude of a BOLD fMRI signal, will be lower during MPE.  

6.2. Effortlessness and the Brain 
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In (Parr et al., 2023) the authors propose that their account predicts that we can associate 
cognitive effort with the basal ganglia and prefrontal cortices. This leads to a tractable empirical 
prediction — during MPE we should observe reduced activation in the prefrontal cortex and anterior 
cingulate regions associated with cognitive control. 

6.3. Precision Parameters and Neurotransmitters 

Others have argued that the functional role of the likelihood, transition and model precision 
parameters are mediated by the cholinergic, noradrenergic and dopaminergic neurotransmitter 
systems respectively. What these systems have in common is the same basic effect on synaptic 
transmission (i.e. neuromodulatory gain control). (Parr & Friston, 2017a; Schwartenbeck et al., 2015) 

The computational model of MPE proposed here entails specific dynamics for these parameters, 
namely high likelihood precision, low transition precision and an initially high, then tapering model 
precision. This translates into empirical predictions about activity in the brain regions associated with 
the respective neurotransmitter systems, i.e. the nucleus basalis of Meynert (cholinergic), the locus 
coeruleus (noradrenergic) and the ventral tegmental area (dopaminergic). In the transition from 
normal waking consciousness to MPE, we should observe changes in the activation patterns in these 
regions.  

Appendix C. Deepening Awareness, Emptiness and Cessation 

By describing awareness as the model of the epistemic space of possible posteriors, we are 
confronted by the fact that the map is not the territory, i.e. the model of the epistemic space is not the 
epistemic space itself. This is only the agent's model of the statistical manifold that encompasses the 
full potential of possible beliefs. Two insights can be drawn from this fact. First, this provides a 
mechanism for the experience of “becoming more aware” or the experience of “deepening into pure 
awareness”.  

“1354 [...] The experience of pure awareness in meditation has become more and more 
evident over time and with evolving meditation practice.”  

(Metzinger, 2024, p. 450) 
This also resonates with contemplative traditions that view awareness as an evolving, limitless 

process, where recognising awareness is both an initial insight and an ever-expanding journey 
without a fixed endpoint. The computational metaphor for this expansion is the continued mapping 
of the manifold of possible posterior beliefs.  

Several commentators have highlighted that this process is inherently open-ended due to 
intrinsic limits to self-representation (Friston et al., 2012; Fields et al., 2024; Sandved-Smith & Da 
Costa, 2024). Heuristically we can understand why; as more of the space is mapped, the agent 
themself is changed, which changes the thing to be mapped. In other words, by knowing ourselves 
we are changing the thing to be known, in a way that keeps full self-representation alway just out of 
reach. At a first glance, relating MPE to a regime of minimal free energy might seem at odds with a 
process of continued model expansion. However note that minimising free energy is equivalent to 
maximising evidence for a generative model, i.e. “self-evidencing”.  

A second insight that we can draw from the computational understanding of the epistemic space 
is the idea that “awareness itself is empty”. Emptiness refers to the notion that a feature of experience 
does not possess inherent qualities or existence.  Pure awareness per se is often reported to be the 
fundamental ground of experience, something deeply ‘true’. However, if we model awareness as the 
agent’s model of the epistemic space — we can see that the experience of pure awareness itself is also 
an ongoing construction (i.e. empty of intrinsic nature separate from the agent).  

This points to the possibility of a deeper non-experience beyond awareness, accessed by 
deconstructing even this fundamental model of the epistemic space itself. 

“3323 [. . .] However, later on- there- were more “experiences” in which the very last remnant of 
this pure consciousness in meditation was extinguished. This was like an inner death, but then also 
an even greater freedom than pure consciousness itself. - There it was clearly experienced that pure 
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consciousness is far from being the deepest pos-si-ble (or highest pos-si-ble) - thing, but that 
“-behind” it - there exists a much more extensive, indescribable “not-- anything.” But it cannot be 
described in words, since it is no longer an experience; rather, it can at most be described as the 
absence of all experience, or as absolute freedom.”  

(Metzinger, 2024, p. 189) 
This beautiful quote speaks to the experience of “cessations” that are not uncommon in 

advanced meditation practitioners (Laukkonen et al., 2023; Agrawal & Laukkonen, 2024; van 
Lutterveld et al., 2024). A cessation is a discontinuity in experience, a short or extended moment of 
nothing at all. This is distinct from MPE, which is still an experience however minimal it might be. 
However, we might ask, what is the relationship (if any) between MPE and cessation?  

A preliminary hypothesis is that MPE is a phenomenological cluster that exists in the vicinity of 
cessation, i.e. MPE is the experience of a region of state space incurring minimal free energy whereas 
a cessation is a limit case of zero free energy.  

Ethical Statement: This submission consists solely of theoretical analysis. No experiments were conducted 
involving AI, human or animal subjects. I have carefully designed our approach to focus on formal descriptions 
rather than implementations that could potentially give rise to sentience, however unlikely. This research aims 
to further scientific understanding while maintaining strict ethical boundaries against creating or risking the 
creation of artificial sentient beings. 
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