
Article

Not peer-reviewed version

Mapping of Stripe Rust Resistance Gene Yr72 in Two Common Wheat Landraces

[Mumta Chhetri](#) * , Hanif Miah , Debbie Wong , [Matthew Hayden](#) , [Urmil Bansal](#) * , [Harbans Bariana](#) *

Posted Date: 5 October 2023

doi: 10.20944/preprints202310.0280.v1

Keywords: wheat; stripe rust; KASP marker; STS marker; marker validation

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Mapping of Stripe Rust Resistance Gene *Yr72* in Two Common Wheat Landraces

Mumta Chhetri ¹, Hanif Miah ¹, Debbie Wong ², Matthew Hayden ², Urmil Bansal ¹ and Harbans Bariana ^{1,3}

¹ The University of Sydney Plant Breeding Institute - Cobbitty, Department of Plant and Food; mumta.chhetri@sydney.edu.au (M.C.), urmil.bansal@sydney.edu.au (U.B.), H.Bariana@westernsydney.edu.au (H.B.), hanif.miah@sydney.edu.au (H.M.)

² Department of Environment and Primary Industries, AgriBioCentre, La Trobe Research and Development Park, Bundoora, VIC 3082, Australia; Matthew.hayden@agriculture.vic.gov.au (M.H.), Debbie.wong@agriculture.vic.gov.au (D.W.)

³ School of Science, Western Sydney University, Bourke Road, Richmond, NSW 2753, Australia; H.Bariana@westernsydney.edu.au (H.B.)

* Correspondence: H.Bariana@westernsydney.edu.au (H.B.); urmil.bansal@sydney.edu.au (U.B.); mumta.chhetri@sydney.edu.au (M.C.)

Abstract: Stripe rust, caused by *Puccinia striiformis* f. sp. *tritici* (Pst), is a significant challenge to global wheat production. Common wheat landraces AUS27507 and AUS27894 displayed stripe rust resistance against several commercially prevailing Pst pathotypes. These genotypes were crossed with a stripe rust susceptible landrace AUS27229 to understand inheritance of resistance and to determine genomic location(s) of underlying gene(s). F₃ generations of crosses AUS27507/AUS27229 and AUS27894/AUS27229 showed monogenic segregation for stripe rust resistance under greenhouse conditions. The absence of segregation for stripe rust response among the AUS27507/AUS27894-derived F₃ population suggested that both genotypes carry the same gene. The stripe rust resistance gene carried by AUS27507 and AUS27894 was tentatively named *YrAW4*. Bulk segregant analysis placed *YrAW4* in the long arm of chromosome 2B. The AUS27507/AUS27229 F₃ population was enhanced to develop an F₆ recombinant inbred line (RIL) population for detailed mapping of chromosome 2BL. DArT-based SSR, STS and KASP markers were employed to enrich the 2BL map. DArT-based STS markers *sun481* and SNP marker *IWB12294* flanked *YrAW4* proximally (1.8 cM) and distally (1.2 cM), respectively. Deletion mapping placed *sun481* in the deletion bin 2BL-5. All stripe rust resistance genes, previously located on chromosome 2BL, neither express infection type like *YrAW4*, nor are mapped in the deletion bin 2BL-5. Hence *YrAW4* represented a new locus and was formally named *Yr72*. The robustness of *IWB12294* marker in marker-assisted selection was demonstrated by amplification of an alternative allele to that linked *Yr72* in 21 common wheat background.

Keywords: wheat; stripe rust; KASP marker; STS marker; marker validation

1. Introduction

Stripe rust, caused by *Puccinia striiformis* f. sp. *tritici* (Pst), is one of the most destructive diseases of wheat worldwide [1,2]. The first stripe rust incursion in Eastern Australia occurred in 1979 [3,4] and in Western Australia in 2002 [5]. Subsequently it caused several epidemics, including the most recent in 2022, with devastating impacts on the agricultural industry with approximate yield reduction of 84% [6]. Now stripe rust pathogen has a history of 44 years in Australia and it still remains a major constraint for wheat production with an estimated average annual loss of A\$ 127 m [7].

Although more than 80 loci for stripe rust resistance have been characterized and formally named [<https://wheat.pw.usda.gov/GG3/wgc>; visited on July 21, 2023], most of these belong to the

race-specific category. Resistance genes that condition ASR often succumb to the acquisition of virulence in pathogen populations. Wellings and McIntosh[8] summarised the evolution of virulence in *Pst* population and concluded the stepwise attainment in virulence for stripe rust resistance genes *YrA*, *Yr6* and *Yr7* individually and in different combinations. The other commercially important event included the detection of virulence for *Yr17* in 1999. All derivatives of the 1979 introduction (104 E137A-) were virulent on genotypes carrying *Yr3* and *Yr4*. In contrast, the 2002 introduction (134 E16A+) and all its current derivatives are avirulent on *Yr3* and *Yr4*. In addition, this group carried virulence for resistance genes *Yr8* and *Yr9* that have not been deployed widely in Australian wheat cultivars. Stripe rust resistance genes *Yr6*, *Yr7*, *Yr9*, *Yr17* and *Yr27* have been postulated in spring wheat cultivars grown worldwide. Pathotypes carrying virulence for these have been reported in many countries including Australia.

All stage resistance (ASR) and adult plant resistance (APR) are two main categories of resistance to rust diseases in wheat. ASR genes protect plants throughout all growth stages, while APR genes provide post-seedling resistance. To achieve long-lasting control, it's essential to combine ASR and APR genes in a single cultivar which is now possible through advancement in molecular technologies. It has enabled efficient mapping of resistance genes and identification of closely linked markers using whole genome scanning [9] using different high-throughput platforms such as Diversity Arrays Technology (DArT) [10], genotyping-by-sequencing (GBS) [11], selective genotyping (SG) [12], and SNP-genotyping arrays [13]. The development of ordered draft sequence of the 17-gigabase with more than 75,000 genes positioned along 21 chromosomes of wheat [14] adds further impetus to mapping and marker development research. Bariana et al. [15] identified genotypes carrying four to six QTL for stripe rust resistance and a genotype combining closely linked genes *Yr15* and *Yr24* were identified by Zakeri et al. [16].

To achieve durable resistance to stripe rust, discovery and characterisation of diverse sources of resistance is essential. Bariana and co-workers screened the Watkins Collection of common wheat landraces [17] and identified genotypes for detailed genetic analysis. Daetwyler et al. [18] predicted the involvement of several chromosomes in conditioning stripe rust resistance among this collection of landraces. Two landraces AUS27507 and AUS27894 exhibited seedling resistance against a range of *Pst* pathotypes in Australia. This study covers genomic location of resistance carried by these genotypes and identification of closely linked markers with the underlying gene(s).

2. Materials and Methods

2.1. Plant Material

AUS27507 and AUS27894 from France and Spain, respectively, were crossed with a susceptible landrace AUS27229. *F*₃ populations comprising 106 and 100 families were developed from AUS27507/AUS27229 and AUS27894/AUS27229 crosses. Only AUS27507/AUS27229 *F*₃ was advanced to generate an *F*₆ recombinant inbred line (RIL) population for further analysis. AUS27894 and AUS27507 were crossed to determine the allelic relationship of the gene(s) carried by these genotypes. Twenty-one Australian wheat cultivars were used to validate markers closely linked with the resistance gene identified in this study.

2.2. Greenhouse Tests

Twenty seeds of each AUS27507/AUS27229 *F*₃ line were sown in 9 cm plastic pots filled with mixture of pine bark and river sand (2:1 ratio). Parental genotypes and the susceptible control Morocco were sown in each experiment. AUS27894/AUS27507 *F*₃ families and AUS27507/AUS27229 *F*₆ RIL population were evaluated against *Pst* pathotype 134 E16A+17+27+ (Plant Breeding Institute, Cobbitty culture no. 617).

2.3. Isolation of Genomic DNA

Leaf tissue was collected from 12 day-old seedlings in 2 ml Eppendorf tubes and was dried on silica gel for 72 hours. Genomic DNA was extracted using the modified CTAB method [19] and quantified using Nano Drop spectrophotometer (NanoDrop® ND1000).

2.4. Bulk Segregant Analysis

Bulked segregant analysis (BSA) was performed on resistant and susceptible bulks prepared by pooling equal amount of DNA from 20 homozygous resistant (HR) and 20 homozygous susceptible (HS) F_3 lines, respectively. The F_1 artificial bulk was prepared combining an equal amount of DNA from rest of the population. DNA of bulks and F_1 were sent to Diversity Arrays Technology Canberra for BSA using high density DArT array Wheat *PstI* (*TaqI*) 3 (<http://www.diversityarrays.com>).

2.5. STS and SSR Genotyping

Sequence of resistance linked DArT clones (kindly provided Dr A. Kilian) was used to develop STS markers using the Primer3 program [22] (<http://primer3.sourceforge.net/>). In addition, 52 SSR markers previously mapped on chromosome 2BL (<http://wheat.pw.usda.gov>) were also genotyped to enrich the genetic map [19–21]. PCRs were carried out in 10 μ l reaction volume containing 2 μ l of 30 ng/ μ l DNA, 1 μ l of 1X PCR buffer containing MgCl₂, 0.75 μ l of dNTPs, 0.4 μ l of forward (1.25 mM) and reverse (5.0 mM) M13 tagged primers, 0.1 μ l (0.5mM) of M13 fluorescent tag and 0.04 μ l of Taq DNA polymerase. PCR amplification conditions described in Randhawa et al. [22] were used. Markers polymorphic on parents and showing strong linkage among HR and HS lines were evaluated on the entire AUS27507/AUS27229 RIL population. Electrophoresis of PCR products was carried out on 2.5-3% agarose (Amresco) gel stained with GelRed™ (Biotium). PCR products were visualized using UV gel documentation system. Markers which could not be differentiated on agarose gel were separated on polyacrylamide gel using Analyzer Gene ReadIR 4300, Li-COR sequencing system (Li-COR Bio-sciences, USA) after denaturing PCR product at 95 °C for five minutes.

2.6. SNP Genotyping

Twenty-seven SNPs showed strong linkage with the stripe rust resistance locus in the AUS27507 AUS27894. Closely linked SNPs (*IWA5694*, *IWA5839*, *IWA6130*, *IWA6334*, *IWA6417*, *IWA7265*, *IWB10417*, *IWB10455*, *IWB12294*, *IWB20875*, *IWB21638*, *IWB23209*, *IWB24984*, *IWB25015*, *IWB28191*, *IWB31823*, *IWB33668*, *IWB43166*, *IWB45530*, *IWB45652*, *IWB49793*, *IWB49793*, *IWB62498*, *IWB62757*, *IWB62762*, *IWB69000* and *IWB79078*) were used to design kompetitive allele specific PCR assays (KASP) with two allele-specific and one common primer. These markers were genotyped on the parents and the CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad) was used for comparing KASP amplifications among different genotypes following the protocol given at LGC website (<http://www.ksre.ksu.edu/igenomics/doc1363.ashx>).

2.7. Deletion Bin Mapping of Linked Markers

The DNA samples of chromosome 2BL deletion stocks [del2BL-9, del2BL-3, del2BL-7, del2BL-5 and del2BL-6 [23]; kindly provided by Dr Evans Lagudah were used to confirm the location of resistance gene. Chinese Spring (CS) was used as control.

2.8. Data Analysis

Goodness of fit of observed segregation data to the expected genetic ratios was tested through Chi-squared analysis. Linkage map was constructed using Mapmaker version 3.0 [24] and recombination fractions were transformed to centi Morgans (cM) using Kosambi mapping function [25]. Final genetic linkage map was constructed using MapChart [26].

3. Results

3.1. Inheritance Studies

Seedling stripe rust responses of AUS27507 and AUS27894 varied from 2C to 3C (Figure 1), when evaluated against Pst pathotype 134 E16A+17+27+. Stripe rust screening results of F_3 populations derived from crosses AUS27507/AUS27229 and AUS27894/AUS27229 are presented in Table 1. Both populations showed monogenic inheritance of stripe rust resistance. Both parents and homozygous resistant F_3 lines produced similar stripe rust responses suggesting the presence same gene. AUS27507 and AUS27894 were crossed and F_3 families were generated. All 80 F_3 families produced responses similar to parents confirming presence of the same gene in both genotypes. The resistance locus segregating in both populations was temporarily named *YrAW4*. The AUS27507/AUS27229 derived population was advanced to generate F_6 RIL population. Segregation for *YrAW4* among the RIL population was confirmed (Table 1).

Table 1. Distribution of F_3 families and RIL lines when tested with Pst pathotype 134E16A+Yr17+Yr27+.

Stripe Rust Response	Infection Type	No of lines Observed	χ^2 Expected	(1:2:1) or (1:1)
F3 AUS27507/AUS27229				
Homozygous Resistant	23C to 3C	24	24.8	0.00
Segregating	23C-3C, 3+	58	49.5	1.50
Homozygous Susceptible	3+	17	24.8	2.40
Total		99	99.0	3.90
F3 AUS27894/AUS27229				
Homozygous Resistant	23C to 3C	19	19.3	0.00
Segregating	23C-3C, 3+	44	38.5	0.80
Homozygous Susceptible	3+	14	19.3	1.40
Total		77	77.1	2.20
AUS27507/AUS27229 RIL populations				
Homozygous Resistant		53	51.0	0.08
Homozygous Susceptible		49	51.0	0.08
Total		102	102.0	0.16

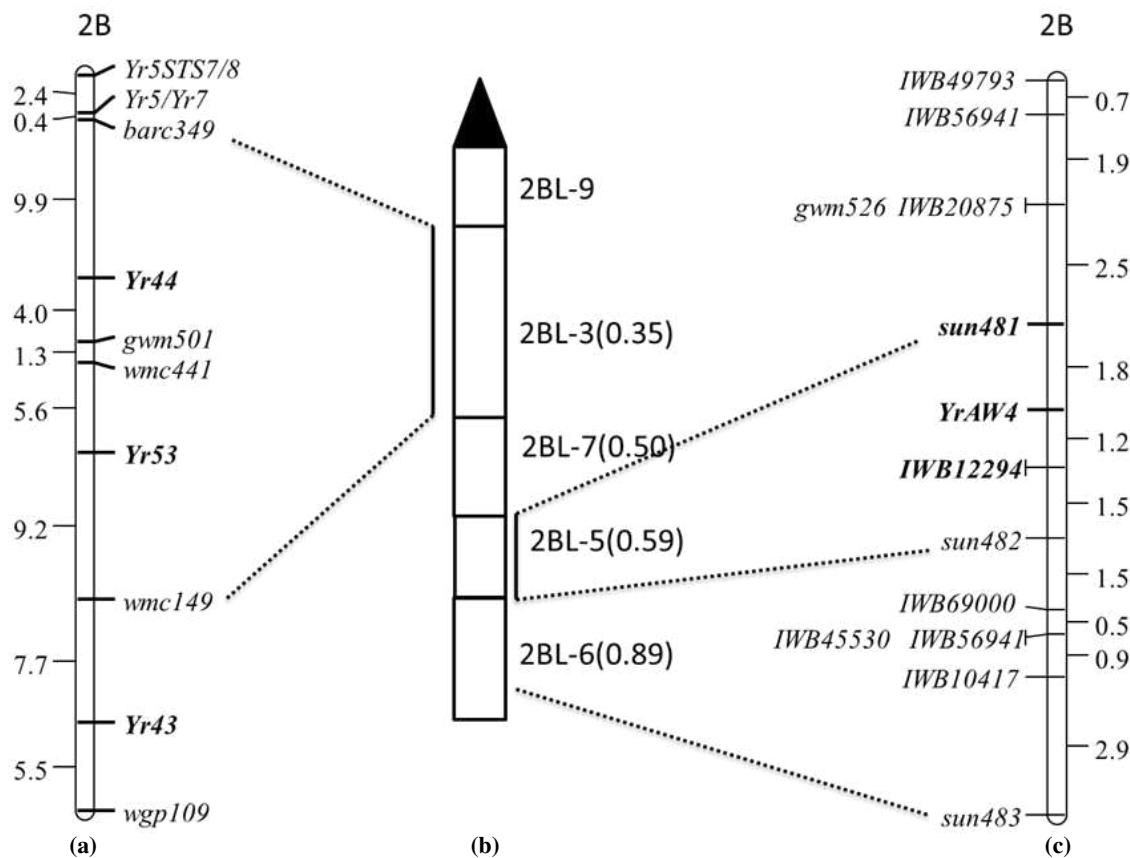


Figure 1. Range of infection types produced by AUS27507 (a) IT 2C, (b) 3C and (c) AUS27229 IT 3+.

3.2. Molecular Mapping

Twenty homozygous resistant and homozygous susceptible lines each from AUS27507/AUS27229 F_3 population were used to construct contrasting bulks. These bulks were subjected to BSA using DArT markers. DArT markers *wPt-2397*, *wPt-665550*, *wPt-7161*, *wPt-8916*, *wPt-1722*, *wPt-4197*, *wPt-6542*, *wPt-9104.2*, *wPt1650.2*, *wPt-2185*, *wPt-0510*, *wPt-0948*, *wPt-3632*, *wPt-7350*, *wPt-9104.1*, *wPt-9190*, and *wPt-9336* showed linkage with *YrAW4*. All these markers are located in chromosome 2BL. Linked DArT clones were converted to STS markers and tested on the AUS27507/AUS27229 RIL population. The STS primers were named as “sun” (Sydney University). Four STS markers *sun483* (*wPt-2397*), *sun481* (*wPt-665550*), *sun482* (*wPt-7161*) and *sun484* (*wPt-8916*)

showed polymorphism between parents and were genotyped on the entire RIL population. Markers *sun481* and *sun482* flanked *YrAW4* at genetic distances of 1.8 cM (proximally) and 2.7 cM (distally), respectively (Figure 2).

Figure 2. Diagrammatic representation of (a) stripe rust resistance genes *Yr5/Yr7*, *Yr44*, *Yr53* and *Yr43* as given in Xu et al. 2013 (b) deletion bins (c) genetic linkage map of AUS27507/AUS27229 RIL population showing the location of *YrAW4*.

3.3. Deletion Mapping of Flanking Markers

YrAW4-linked STS markers *sun481* and *sun482* were genotyped on DNA of the 2BL deletion stocks: del2BL-9, del2BL-3, del2BL-7, del2BL-5 and del2BL-6 to determine their precise genomic locations. Chinese Spring, AUS27507, AUS27894 (resistant parents) and AUS27229 (susceptible parent) were used as controls. The amplicons produced by deletion stocks were compared with Chinese Spring. Marker *sun482* amplified the expected product in del 2BL-5, del2BL-6 and CS, whereas *sun481* amplified the target band only in del 2BL-5 and CS. These results placed the closest marker *sun481* in the deletion bin 2BL-5 (Figure 2b,c).

3.4. Saturation of Chromosome 2BL using SNP Markers

AUS27507/AUS27229 RIL population was genotyped using 90K Infinium SNP wheat array. Twenty-one SNPs markers on chromosome 2BL mapped close to *YrAW4* and spanned 759 to 784 Mbp region in physical map of Chinese Spring (IWGSC RefSeq_V2.0). These were converted into KASP assays, and those showing parental polymorphisms were genotyped on the entire population (Figure 2). Eight KASP markers were incorporated into the AUS27507/AUS27229 chromosome 2BL map (Table 3, Figure 2). The final map included 1 SSR, 3 STS and 8 KASP markers (Figure 2c). The SNP marker *IWB12294* mapped 1.2 cM distal to *YrAW4* and 1.5 proximal to *sun482* (Figure 2). Sequences of the primers for markers included in the final map are given in Tables 2 and 3.

Table 2. Primer sequences of closely linked STS markers derived from DArT- markers spanning the *YrAW4* region.

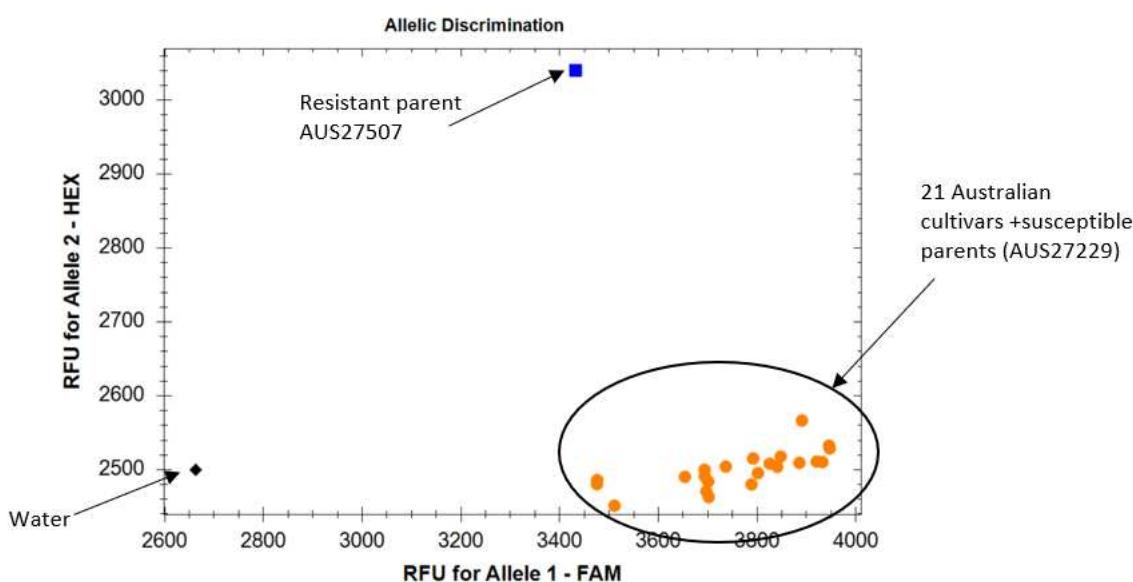
STS Markers	DArT- Markers	Forward a	Reverse
<i>sun481</i>	<i>wPt-665550</i>	GGCCAAGGTATGTTGATC TCCAAATGAAACCAGGAA GT	GG
<i>sun482</i>	<i>wPt-7161</i>	GCTCCTCTCGTTGATTGAG	GATGCAAAGGGAGAAAG CTG
<i>sun483</i>	<i>wPt-2397</i>	CAGTAGCATCCAACCCACGGGACGGATGATGAGACA T	GA

^a CACGACGTTGTAAAACGAC represents M13 sequence.

Table 3. Kompetitive Allele-Specific polymerase chain reaction (KASP) markers, designed from SNPs spanning the *YrAW4* region.

SNPs	Allele 1 ^a	Allele 2 ^b	Common Primer
<i>IWB4979</i>	CCATGTTCAAGGGTCTCA 3 ATTA	CCATGTTCAAGGGTCTC AATTCA	TCGCCTGATATATTACAAC CTTT
<i>IWB5694</i>	AGGAGGAATGGAAGTTT 1 GATACT	AGGAGGAATGGAAGTT TGATACG	TGCAGAAAATGACAGCCTG A
<i>IWB2087</i>	AGAGTAGGCATGCGAGTCT 5 T	AGAGTAGGCATGCGAGT CTC	CAAGCACTTACAGGTTCC G
<i>IWB1229</i>	TCCTCCGGCATTCCCT 4	TCCTCCGGCATTCCCTG	AGCGTGCTGTACTCGCC
<i>IWB6900</i>	TGTTCTAGCTAACCAAGGC 0 AA	CTGTTCTAGCTAACCAAG GCAG	CGAGCCAGAGTCTGAGACC A
<i>IWB4553</i>	GAAACCAGCCGCAGAGT 0 AT	TGAAACCAGCCGCAGA GTAC	GCAGTCAAGTTTGGAACTG G
<i>IWB5694</i>	AAGGAGGAATGGAAGTT 1 TGATACT	AAGGAGGAATGGAAGT TTGATACG	TGCAGAAAATGACAGCCTG A
<i>IWB1041</i>	TTTTCTTGTAGGAGGCAA 7 AGATTCAA	TTCTTGTAGGAGGCAA GATTCAC	TGATAATGTAAGCAGGAGT GTGCAATGTA

^a Allele 1 labeled with FAM: GAAGGTGACCAAGTTCATGCT; ^b Allele 2 labeled with HEX: GAAGGTCCGAGTCAACGGATT.


3.5. Validation of *YrAW4* Linked Markers

A set of Australian common wheat and durum wheat cultivars was tested with flanking markers *IWB12294* and *sun481*. *IWB12294* produced SNP allele 'G' in the resistant parent AUS27507 and allele 'T' in susceptible parent AUS27229 (Table 4 and Figure 3). SSR marker amplified *YrAW4* linked *sun481_{240bp}* and *sun481_{100bp}* allele in resistant and susceptible parents, respectively (Table 4). Amplification of the 'T' allele and the *sun481_{100bp}* allele in all test cultivars confirmed the usefulness of these markers in marker assisted selection of *YrAW4* in breeding programs.

Table 4. Validation of closely linked STS marker *sun481* and SNP marker *IWB12294* on Australian cultivars.

Cultivar and RIL	<i>sun481</i> (bp)	<i>IWB12294</i> (G:T)
AUS27507 and HR RIL	240	G
AUS27229 and HS RIL	100	T
Calingiri	100	T
Carnamah	250+120+100	T
Derrimut	120+100	T
DiamondBird	250+100	T
EGA Bellaroi (durum)	120+100	T

EGA BonnieRock	130+120+100	T
EGA Gregory	250+130+100	T
EmuRock	250+120+100	T
Espada	250+120	T
Forest	250+120+100	T
Giles	255+100	T
Gladius	250+120+100	T
Hyperno (durum)	250+100	T
Magenta	250+120+100	T
Merlin	250+120+100	T
Orion	250+120+100	T
Scout	120+100	T
Spitfire	250+120+100	T
Sunvale	255+250+100	T
Ventura	100	T
Wyalkatchem	250+100	T

Figure 3. Allelic discrimination plot of SNP marker *IWB12294* using KASP assay. Allele 2 (blue) represents AUS27507 carrying *YrAW4* and Allele 1 (orange dots) represents Australian cultivars and susceptible parent AUS27229.

4. Discussion

This study identified a new stripe rust resistance locus in landraces AUS27507 and AUS27894. Different genomic resources were used to determine the genomic location and to identify closely linked markers for marker assisted selection of this gene. Absence of segregation among AUS27894/AUS27507 F3 population demonstrated presence of the same gene in both genotypes. The resistance locus was temporarily named *YrAW4*. DArT based BSA indicated the location of *YrAW4* in chromosome 2BL and deletion mapping of flanking DArT markers refined the location of *YrAW4* in the deletion bin 2BL-5. Markers *sun481* and *sun482* mapped 1.8 cM proximal and 2.7 cM distal to *YrAW4*, respectively. The target genomic region was enriched by converting *YrAW4*-linked SNP markers to KASP assays. Marker *IWB12294* mapped 1.2 cM distal to *YrAW4* and 1.5 cM proximal to *sun482* (Figure 2c).

Seedling stripe rust resistance genes *Yr5*, *Yr7*, *YrSp*, *Yr43*, *Yr44* and *Yr53* were previously reported in the long arm of chromosome 2B (2BL) [https://wheat.pw.usda.gov/GG3/wgc]. *Yr5* and *Yr7* were mapped 21cM away from centromere. *Yr7* was proved as an allele of *Yr5* [27]. *Yr5* produce

IT from 0; to; against Australian Pst pathotype 134 E16A+ and its derivatives and *Yr7* is not effective against this group of pathotypes and hence *YrAW4* cannot be either of these genes. Moreover, *Yr5*-linked marker, *Yr5STS7/8* [28], Digenic segregation among *YrAW4/YrSp* F2 population (H.S. Bariana unpublished results) also excluded the possibility of *YrAW4* to be *YrSp*.

Yr43 [29], *Yr44* [30] and *Yr53* [30] produce IT 2 on a 0 to 9 scale, which is much lower than IT 2C-3C (on a 0 to 4 scale) produced by *YrAW4*. Xu et al. [30] placed flanking markers for *Yr43*, *Yr44* and *Yr53* in the chromosomal deletion bin 2BL-3, which is next to the centromeric deletion bin 2BL-9 (Figure 2a, 2b). The *YrAW4*-linked marker *sun481* was mapped in the deletion bin 2BL-5. Based on infection type and deletion bin location, we believe that *YrAW4* is a unique locus and therefore, *YrAW4* was formally named *Yr72*.

The usefulness of markers closely linked with the resistance gene requires validation across potential backgrounds in which the target gene has to be transferred. Presence of the resistance-linked allele in genotypes carrying the target gene is referred to as 'positive validation' and the absence/amplification of an alternate allele in cultivars lacking the target locus is called 'negative validation'. Since *YrAW4* has not yet been deployed in modern cultivars, 'negative validation' was performed. Markers *sun481* and *IWB12294* were negatively validated among a set of Australian wheat cultivars including two durum wheat genotypes (Table 4 and Figure 3). These robust markers can be used (Tables 2 and 3) for marker assisted selection of *Yr72* in these backgrounds.

Markers linked with genes *Yr15* [31], *Yr51* [22] and *Yr57* [32] that are effective against currently predominant Pst pathotypes and race non-specific APR genes *Yr18* [33], *Yr36* [34] and *Yr46* [35] are available to deploy different combinations of these genes in future wheat cultivars. SNP markers linked with economic traits are preferred by breeding companies for their amenability for high-throughput testing. *YrAW4* linked SNP marker *IWB12294* offers this opportunity (Table 3) for marker assisted selection and marker-assisted pyramiding of this gene with other ASR and APR genes. *YrAW4* is currently being transferred to leading Australian cultivars through marker assisted selection.

Author Contributions: This study was planned by H.B. and U.B. and H.B., U.B. and H.M. created the mapping population. H.B and M.C. performed phenotyping in the greenhouse. M.H. and D.W. carried out bulk segregant analysis. U.B. and M.C. developed STS and KASP markers and mapped those on the RIL population. The manuscript was ddrafted by M.C., U.B and H.B and was read and approved by all authors.

Funding: Financial support from the Australian Government (scholarship) via the Australia Awards program, University of Sydney and the GRDC Australia is gratefully acknowledged.

Institutional Review Board Statement: Not applicable involving wheat.

Informed Consent Statement: Not applicable as this study did not involve humans.

Data Availability Statement: All data included in this publication.

Acknowledgments: The first author acknowledges the Royal Government of Bhutan, Ministry of Agriculture and Forestry (MoAF), for granting study leave and the Australian Government for the Australian Leadership Award to pursue PhD studies at the University of Sydney. We are thankful to Dr. Evans Lagudah for providing the deletion stocks.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Wellings, C.R. Global status of stripe rust: a review of historical and current threats. *Euphytica* **2011**, *179*, 129-141, doi:10.1007/s10681-011-0360-y.
2. Stubbs, R.W. Stripe rust. In *The Cereal Rusts Vol II*, Roelfs, A.P., Bushnell, W.R., Eds.; Academic Press: Orlando, Florida, USA, 1985; pp. 61-101.
3. O'Brien, L.; Brown, J.S.; Young, R.M.; Pascoe, I. Occurrence and Distribution of Wheat Stripe Rust in Victoria and Susceptibility of Commercial Wheat Cultivars. *Australasian Plant Pathology* **1980**, *9*, 14, doi:10.1071/app9800014.

4. O'Brien, L.; Brown, J.S.; Young, R.M.; Pascoe, I. Occurrence and distribution of wheat stripe rust in Victoria and susceptibility of commercial wheat cultivars. *Aust Plant Pathol* **1980**, *9*, 14, doi:10.1071/app9800014.
5. Wellings, C.R.; Wright, D.G.; Keiper, F.; Loughman, R. First detection of wheat stripe rust in Western Australia: evidence for a foreign incursion. *Australasian Plant Pathology* **2003**, *32*, 321-322, doi:10.1071/Ap03023.
6. Murray, G.M.; Ellison, P.J.; Watson, A. Effects of stripe rust on the wheat plant. *Australasian Plant Pathology* **1995**, *24*, 261-270, doi:10.1071/APP9950261.
7. Murray, G.M.; Brennan, J.P. Estimating disease losses to the Australian wheat industry. *Australasian Plant Pathology* **2009**, *38*, 558-570, doi:10.1071/APP9950261.8.
8. Wellings, C.R.; McIntosh, R.A. *Puccinia striiformis* f.sp. *tritici* in Australasia: pathogenic changes during the first 10 years. *Plant Pathol* **1990**, *39*, 316-325, doi:10.1111/j.1365-3059.1990.tb02509.x.
9. Edae, E.A.; Olivera, P.D.; Jin, Y.; Poland, J.A.; Rouse, M.N. Genotype-by-sequencing facilitates genetic mapping of a stem rust resistance locus in *Aegilops umbellulata*, a wild relative of cultivated wheat. *BMC genomics* **2016**, *17*, 1039, doi:10.1186/s12864-016-3370-2.
10. Akbari, M.; Wenzl, P.; Caig, V.; Carling, J.; Xia, L.; Yang, S.; Uszynski, G.; Mohler, V.; Lehmensiek, A.; Kuchel, H.; et al. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. *Theor Appl Genet* **2006**, *113*, 1409-1420, doi:10.1007/s00122-006-0365-4.
11. Jaccoud, D.; Peng, K.; Feinstein, D.; Kilian, A. Diversity arrays: a solid state technology for sequence information independent genotyping. *Nucleic Acids Res* **2001**, *29*, E25, doi:10.1093/nar/29.4.e25.
12. Xue, S.; Zhang, Z.; Lin, F.; Kong, Z.; Cao, Y.; Li, C.; Yi, H.; Mei, M.; Zhu, H.; Wu, J.; et al. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. *Theor Appl Genet* **2008**, *117*, 181-189, doi:10.1007/s00122-008-0764-9.
13. Sun, C.; Dong, Z.; Zhao, L.; Ren, Y.; Zhang, N.; Chen, F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. *Plant Biotechnol J* **18**:1354-1360
14. Eversole, K.; Feuillet, C.; Mayer, K.F.; Rogers, J. Slicing the wheat genome. Introduction. *Science* **2014**, *345*, 285-287, doi:10.1126/science.1257983.
15. Bariana, H.S.; Bansal, U.K.; Schmidt, A.; Lehmensiek, A.; Kaur, J.; Miah, H.; Gill, M.B.; Howes, N.; McIntyre, C.L. Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. *2010 Euphytica* **176**:251-260. *Euphytica* **2010**, *176*, 251-260
16. Zakeri, A.; McIntosh, R.A.; Hovmoller, M.S.; Wellings, C.R.; Shariflou, M.R.; Hayden, M.; Bariana, H.S. Recombination of *Yr15* and *Yr24* in chromosome 1BS. In Proceedings of the Proceedings of 10th International Wheat Genetics Symposium, Paestum, Rome, Italy, 1-5 September 2003, 2003; pp. 417- 420.
17. Miller, T.; Reader, S.; Ambrose, M. The Watkins wheat collection. *Annu Wheat News* **2000**, *46*, 172.
18. Daetwyler, H.D.; Bansal, U.K.; Bariana, H.S.; Hayden, M.J.; Hayes, B.J. Genomic prediction for rust resistance in diverse wheat landraces. *Theor Appl Genet* **2014**, *127*, 1795-1803, doi:10.1007/s00122-014-2341-8.
19. Bansal, U.K.; Kazi, A.G.; Singh, B.; Hare, R.A.; Bariana, H.S. Mapping of durable stripe rust resistance in a durum wheat cultivar Wollaroi. *Mol Breeding* **2014**, *33*, 51-59, doi:10.1007/s11032-013-9933-x.
20. Rozen, S.; Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. In *Bioinformatics Methods and Protocols*, Misener, S., Krawetz, S., Eds.; Methods in Molecular Biology™; Humana Press: Totowa, NJ, 1999; Volume 132, pp. 365-386.
21. Somers, D.J.; Isaac, P.; Edwards, K. A high-density microsatellite consensus map for bread wheat (*Triticum aestivum* L.). *Theor Appl Genet* **2004**, *109*, 1105-1114, doi:10.1007/s00122-004-1740-7.
22. Randhawa, M.; Bansal, U.; Valarik, M.; Klocova, B.; Dolezel, J.; Bariana, H. Molecular mapping of stripe rust resistance gene *Yr51* in chromosome 4AL of wheat. *Theor Appl Genet* **2014**, *127*, 317-324, doi:10.1007/s00122-013-2220-8.
23. Endo, T.R.; Gill, B.S. The deletion stocks of common wheat. *Journal of Heredity* **1996**, *87*, 295-307, doi:10.1093/oxfordjournals.jhered.a023003.
24. Manly, K.F.; Cudmore, R.H., Jr.; Meier, J.M. Map Manager QT, cross-platform software for genetic mapping. *Mammalian genome : official journal of the International Mammalian Genome Society* **2001**, *12*, 930-932, doi:10.1007/s00335-001-1016-3.
25. Kosambi, D.D. The estimation of map distances from recombination values. *Ann Eugen* **1944**, *12*, 172-175.
26. Voorrips, R.E. MapChart: software for the graphical presentation of linkage maps and QTLs. *J Hered* **2002**, *93*, 77-78, doi:10.1093/jhered/93.1.77.
27. Zhang, P.; McIntosh, R.A.; Hoxha, S.; Dong, C. Wheat stripe rust resistance genes *Yr5* and *Yr7* are allelic. *Theor Appl Genet* **2009**, *120*, 25-29, doi:10.1007/s00122-009-1156-5.
28. Chen, X.M.; Soria, M.A.; Yan, G.P.; Sun, J.; Dubcovsky, J. Development of sequence tagged site and cleaved amplified polymorphic sequence markers for wheat stripe rust resistance gene *Yr5*. *Crop Sci* **2003**, *43*, 2058-2064, doi:10.2135/cropsci2003.2058.
29. Cheng, P.; Chen, X.M. Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s. *Theor Appl Genet* **121**, 195-204 (2010). <https://doi.org/10.1007/s00122-010-1302-0>

31. Xu, L.S.; Wang, M.N.; Cheng, P.; Kang, Z.S.; Hulbert, S.H.; Chen, X.M. Molecular mapping of *Yr53*, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat. *Theor Appl Genet* **2013**, *126*, 523–533, doi:10.1007/s00122-012-1998-0.
32. Yaniv, E.; Raats, D.; Ronin, Y.; Korol, A.; Grama, A.; Bariana, H.; Dubcovsky, J.; Schulman, A.; Fahima, T. Evaluation of marker-assisted selection for the stripe rust resistance gene *Yr15*, introgressed from wild emmer wheat. *Mol Breeding* **2015**, *35*, 1–12, doi:10.1007/s11032-015-0238-0.
33. Randhawa, M.S.; Bariana, H.S.; Mago, R.; Bansal, U.K. Mapping of a new stripe rust resistance locus *Yr57* on chromosome 3BS of wheat. *Mol Breeding* **2015**, *35*, 1–8, doi:ARTN 65 10.1007/s11032-015-0270-0.
34. Lagudah, E.S.; Krattinger, S.G.; Herrera-Foessel, S.; Singh, R.P.; Huerta-Espino, J.; Spielmeyer, W.; Brown-Guedira, G.; Selter, L.L.; Keller, B. Gene-specific markers for the wheat gene *Lr34/Yr18/Pm38* which confers resistance to multiple fungal pathogens. *Theor Appl Genet* **2009**, *119*, 889–898, doi:10.1007/s00122-009-1097-z.
35. Uauy, C.; Brevis, J.C.; Chen, X.; Khan, I.; Jackson, L.; Chicaiza, O.; Distelfeld, A.; Fahima, T.; Dubcovsky, J. High-temperature adult-plant (HTAP) stripe rust resistance gene *Yr36* from *Triticum turgidum* ssp. *dicoccoides* is closely linked to the grain protein content locus *Gpc-B1*. *Theor Appl Genet* **2005**, *112*, 97–105, doi:10.1007/s00122-005-0109-x.
36. Herrera-Foessel, S.A.; Singh, R.P.; Lillemo, M.; Huerta-Espino, J.; Bhavani, S.; Singh, S.; Lan, C.; Calvo-Salazar, V.; Lagudah, E.S. *Lr67/Yr46* confers adult plant resistance to stem rust and powdery mildew in wheat. *Theor Appl Genet* **2014**, *127*, 781–789, doi:10.1007/s00122-013-2256-9.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.