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Abstract: In this article some important observations have been reported on recent works related to weakly 

tripotent rings and locally invo-regular rings. Our findings give additional results andcorrect some recent 

results on weakly tripotent rings and locally invo-regular rings appeared in Rendiconti Sem. Mat. Univ. Pol. 

Torino (2021) and Azerbaijan Journal of Mathematics (2021) respectively. In addition we exhibit that if the 

Jacobson radical ( )AJ  of a ring A  is strongly involution t-clean then the characteristic of ( )AJ  need not 

be four. This finding improves an important result appeared in Eur. J. Pure Appl. Math (2022). 
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1. Introduction 

In this paper A  is a unital and associative ring and ( )AJ  and ( )AU  stand for the Jacobson 

radical of A  and the set of units in A  respectively.  We denote the set of all nilpotents and the set 

of all idempotents in A  by ( )AN and ( )AId respectively. We recall that a ring A is said to be a 

weakly tripotent ring if uu =
3

 or ( ) uu −=− 11 3
 for each Au∈ [1,2] and a ring A is said to be 

a locally invo-regular ring if uvuu = or ( ) ( )uvuu −−=− 111 for each Au∈  and some Av∈

with 12
=v [3].  

A ring A is called an involution clean ring if every element of A is expressible as ba +  for 

some )(AInva∈ and some ( )AIdb∈ . If baab = , then A is called strongly involution clean ring 

[4,5]. A ring A is called an involution t-clean ring if every element of A is expressible as tu +  for 

some )(AInvu∈ and some ( )ATript∈ . If tuut = , then A is called a strongly involution t-clean 

ring [4]. It directly follows from these definitions that each involution-clean ring is an involution t-

clean ring. 

It may be worth mentioning that weakly tripotent rings, locally ino-regular rings and associated 

notions have extensively appeared in mathematical literature [1–10]. Motivated by some of our recent 

works [11,12], here we take an opportunity to report some significant observations and results on 

weakly tripotent and locally invo-regular rings. In addition we provide some significant results on 

involution t-clean rings. 

In [2] it has been seen that if A is a weakly tripotent ring having no non-trivial idempotents and 

2 is nilpotent in A  then 
( ) 2Z
AJ

A
≅  and 022

== uu  holds for each ( )AJu∈ . Similarly it has 

been seen in [3] that if A is a locally invo-regular ring having no non-trivial idempotents and 2 is 

nilpotent in A  then 
( ) 2Z
AJ

A
≅  and 022

== uu  holds for each ( )AJu∈ .  

However we observe that if A is a weakly tripotent ring and it does not have non-trivial 

idempotents and 2 is nilpotent in A  then 022
== uu  is not necessarily true for each ( )AJu∈

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 October 2023                   doi:10.20944/preprints202310.0968.v2

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202310.0968.v2
http://creativecommons.org/licenses/by/4.0/


 2 

 

. Similarly we note that if A is a locally invo-regular ring having no non-trivial idempotents and 2
is nilpotent in A  then 022

== uu  is not necessarily true for each ( )AJu∈ .  

Moreover we observe that if A is a weakly tripotent (or locally invo-regular) ring having no 

non-trivial idempotents such that 022
== uu  for each ( )AJu∈  then 043

== uu  for each

( )AJu∈  but the converse of this result is not valid. We exhibit that if A is a weakly tripotent (or 

locally invo-regular) ring having no non-trivial idempotents and 2  is nilpotent in A , then 

043
== uu  for each ( )AJu∈ .  

Further as per [4, Proposition 2.10], if R is a ring such that ( )RJ  is strongly involution t-clean, 

then the characteristic of ( )RJ  is four. However we exhibit that ifR is a ring such that ( )RJ  is 

strongly involution t-clean then the characteristic of ( )RJ  need not be four.  

We provide our observations and results in the next section. 

2. Some Observations and Results 

Theorem 2.1. Let A is a weakly tripotent ring having no non-trivial idempotents and 2  is nilpotent in A , 

then 043
== uu  for each ( )AJu∈ .  

Proof. Let A is a weakly tripotent ring having no non-trivial idempotents and 2  is nilpotent in A .  

By [1, Corollary 10], we have 12
=u  for  each ( )AUu∈  and uu 22

=  for each ( )AJu∈ . It 

may be noted that if ( )AJu∈  then ( )AUu∈+1 . Similarly ( )AUu∈−1 . We note that 

( )AUu∈+1  gives that ( ) uuu 211 22
−==+  and ( )AUu∈−1  gives that 

( ) uuu 211 22
==− . Hence uu 22

−=  and uu 22
=  together give that 043

== uu  for 

each ( )RAJu∈ .  

Theorem 2.2. Let A is a locally invo-regular ring having no non-trivial idempotents and 2  is nilpotent in A

, then 043
== uu  for each ( )AJu∈ .  

Proof. The proof of this Theorem follows from the proof of Proposition 2.1 and the fact that each 

weakly tripotent ring is a locally invo-regular ring [ 3]. 

Proposition 2.3. Let A is a weakly tripotent ring having no non-trivial idempotents and 2 is nilpotent in A  

then  022
== uu is not necessarily true for each ( )AJu∈ .  

Proof. Let 4ZA =  and { }1:,1 2
== ggG . Clearly G  is an abelian group under multiplication. 

Now we shall construct the group ring AG . It may be noted that if GgAa ii ∈∈ ,  then AGu∈  

is expressible as ( ) AGgagaga nn ∈+++ ...2211 [13]. Thus the group ring AG has the following 

sixteen elements. 

0 , 1, 2 , 3 , g , g2 , g3 , g+1 , g+2 , g+3 , g21+ , g22 + , g23 + , g31+ , g32 + , g33 + . 

One may easily note that each element AGu∈  satisfies uu =
3

 or ( ) uu −=− 11 3
. Hence 

AG  is a weakly tripotent ring. We note that 0  and 1  are idempotent elements of R  and R  

does not have any other idempotent element. Also 2  is nilpotent inR . We have  

( ) { }3g22g,32g,1g,2g,3,1, ++++=AU and

( ) { }3g33g,12g,2g,3g,22,0, ++++=AJ . 

Clearly ( )AJg ∈+ 33 , but ( ) ( ) 033233 2
≠+=+ gg . Hence the proof is complete. 
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Proposition 2.4. Let A is a locally invo-regular ring having no non-trivial idempotents and 2 is nilpotent in 

A  then 022
== uu  is not necessarily true for each ( )AJu∈ .  

Proof. We prove it as follows. Let us consider the ring A  given above (we refer the proof of 

Proposition 2.3). After some computation one finds that uvuu = or ( ) ( )vvuu −−=− 111  holds 

for each Au∈  and some Av∈ with 12
=v . Therefore A  is a locally invo-regular ring.  

We have already noted that 2  is nilpotent in A and A is has no non-trivial idempotent 

elements. Further ( )AJu∈+1  such that ( ) ( ) 0121 2
≠+=+ uu . Hence the proof is complete. 

Proposition 2.5. Let A is a weakly tripotent ring having no non-trivial idempotents then == 022 uu

043
== uu  for each ( )AJu∈  but the converse of this result is not valid. 

Proof. Let A is a weakly tripotent ring such that it has no non-trivial idempotents. Let 022
== uu  

for each ( )AJu∈ . This gives that 02 23
== uu . This in turn implies that 043

== uu  for each

( )AJu∈  The converse is not valid. Let us consider the ring A given in the proof of Proposition 2.3. 

Clearly ( )RJu∈+1  such that  ( ) ( ) 0141 3
=+=+ uu  but ( ) ( ) 0121 2

≠+=+ uu . 

Proposition 2.6. Let A is a locally invo-regular ring having no non-trivial idempotents then 

== 022 uu 043
== uu  for each ( )AJu∈  but the converse of this result is not valid. 

Proof.  The proof directly follows from the above. 

Proposition 2.7. Let A is a noncommutative ring such that ( )AJ  is strongly involution t-clean, then the 

characteristic of ( )AJ  is not necessarily four  

Proof.  Let { }baebabeaebaeaA +++++= ,,,,,,,0 . Here we take  









=

00
00

0a , 







=

10
01

e , 







=

01
01

a , 







=

10
10

b , 







=+

00
11

be , 







=+

11
00

ae , 









=++

01
10

bae , 







=+

11
11

ba .  

One may verify that A  is a noncommutative ring with identity under addition and 

multiplication of matrices modulo two. We have 

( ) ( ) { }baaAJAN +== ,0 . 

( ) { }babeaeeaAId ,,,,,0 ++= . 

( ) { } ( )AUbaeeAInv =++= , . 

( ) { } { }AIdbaeeATrip ∪++= , . 

It is clear that 0a  is a strongly involution t- clean element. It may be noted that tuba +=+  

such that ( )AInvu∈ , ( )ATript∈  and tuut = . Here eu =  and ( )baet ++= . Therefore 

ba +  is also strongly involution t-clean element. Thus ( )AJ  is strongly involution t-clean. 

However the characteristic of ( )AJ  is not four. Hence our claim is verified. 

Proposition 2.8. Let A is a commutative ring such that ( )AJ  is strongly involution t-clean, then the 

characteristic of ( )AJ  is not necessarily four  
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Proof. Let { }aeaeaA += ,,,0 . Here we take  









=

00
00

0a , 







=

10
01

e , 







=

01
10

a , 







=+

11
11

ae . 

It is easy to check that A  is a commutative ring with identity under the addition and the 

multiplication of matrices modulo two. Clearly in this case we have 

( ) { } ( )AUaeAInv == ,  

( ) { }eaAId ,0=  

( ) ( ) { }0aAInvATrip ∪=  and ( ) { }aeaAJAN +== ,)( 0 .  

One may verify that ( )AJ  is strongly involution t-clean. However the characteristic of ( )AJ  

is not four. Hence our claim is justified. 

Proposition 2.9. Let A is a ring such that ( )AJ  is strongly involution t-clean, then 022
== aa  for each

( )AJa∈  implies 043
== aa  for each ( )AJa∈ . The converse is not true. 

Proof. The proof easily follows. The converse is not valid can be seen as follows. Let 8ZA = . It is 

easy to see that A  is an involution t-clean ring. It may be noted that 043
== aa for each ( )AJa∈

. However 022
== aa  does not hold for each ( )AJa∈ . 

In the following Proposition we prove that if A is any ring such that ( )AJ  is strongly 

involution t-clean, then the characteristic of  ( )AJ  is two provided 02
=a  for each ( )AJa∈ .   

Proposition 2.10. If A is a ring such that ( )AJ  is strongly involution t-clean, then the characteristic of  

( )AJ  is two provided 02
=a  for each ( )AJa∈ .   

Proof. Let A is a ring and ( )AJ  is strongly involution t-clean. Let 02
=a  for each ( )AJa∈ .  Then 

by Proposition 7 [4], there exist ( )AInvu∈  and ( )AInvt∈  such that tua += . This gives 

( ) 022022 ==+=+ atuttut . Finally 02 =at gives 02 =a (since 12
=t ). Therefore 

02 =a  for each ( )AJa∈ .  Hence the characteristic of ( )AJ  is two in this case. Thus proof is 

complete. 
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