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Abstract: Background/Objectives: Early screening of at-risk patients by detecting pulmonary
nodules before they deteriorate is critical for timely intervention and treatment. Furthermore,
accurately classifying nodule types on computed tomography (CT) images helps in planning
appropriate follow-up and treatment strategies. Methods: We collected CT data from 238 patients
through a medical data collection agency in the United States, where two radiologists annotated 1,904
pulmonary nodules. After excluding part-solid and segmentation-failed nodules, a total of 1,888
nodules were included. Of these, 1,416 nodules were used for training and 472 for internal validation.
External validation was conducted on two independent public datasets: LUNA (n=1,122) and ISBI
(n=220). Using segmentation masks automatically generated by a deep learning-based segmentation
model, radiomic features were extracted and used to train an Al-based model for classifying solid
and ground-glass nodules. Results: The proposed model achieved strong performance across both
internal and external validation datasets. The area under the receiver operating characteristic curve
(AUC) was 0.976 (95% confidence interval [CI]: 0.962-0.990) on the internal validation set. On external
datasets, the model achieved an AUC of 0.962 (95% CI: 0.945-0.979) on LUNA and 0.951 (95% CI:
0.925-0.976) on ISBI, demonstrating high generalizability across different cohorts. Feature-level
analysis showed that higher-percentile voxel intensities, especially from axial slices, contributed most
to classification. Conclusions: This study presents a classification model that distinguishes between
solid and ground-glass nodules with high performance on both internal and external datasets,
supporting its potential utility in early lung cancer screening and personalized follow-up strategies.

Keywords: Pulmonary Nodule; Machine Learning; Classification; Computer Aided Diagnosis;
Computed Tomography

1. Introduction

Lung cancer remains one of the leading causes of cancer-related mortality worldwide [1].
Despite advancements in treatment, the overall five-year survival rate remains low, at approximately
10-15% [2]. Therefore, early screening of at-risk individuals through the detection of pulmonary
nodules before clinical deterioration is critical for timely intervention and improved outcomes [3].

To standardize lung cancer screening and enhance patient care, the American College of
Radiology introduced the Lung Imaging Reporting and Data System (Lung-RADS) guidelines [4].
Since its initial release in 2014, Lung-RADS has undergone several updates—version 1.0 in 2014,
version 1.1 in 2019, and version 1.2 in 2022 [5]. Across all versions, accurate classification of nodule
types—specifically solid nodules and ground-glass nodules (GGNs)—on computed tomography
(CT) images remains essential. For instance, according to Lung-RADS v1.2, a solid nodule is scored
as category 3 (probably benign) if it measures 6 to 8 mm at baseline or 4 to 6 mm if newly detected.
In contrast, a GGN receives a score of 3 if it measures 30 mm or larger, regardless of whether it is
baseline or new.

Recent advances in deep learning have driven progress in computer-aided detection (CADe)
and diagnosis (CADx) systems for lung cancer [6-10]. However, these models typically require
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considerable computational resources, such as high-performance GPUs, which may limit their
deployment in resource-constrained settings. Moreover, while model interpretation techniques—
such as class activation maps (CAMs)—have been developed for deep learning models, they remain
limited in effectively visualizing classification results for small structures like pulmonary nodules
[11,12]. Even when a CAM highlights a region corresponding to a nodule, it is often difficult to
intuitively understand why that area was activated or which specific characteristics influenced the
model’s decision.

Some studies have attempted to quantify the solid component in pulmonary nodules using
threshold-based Hounsfield unit (HU) cutoffs. For example, Lee et al. [13] considered HU values
above -400 to represent solid components, while Matsuguma et al. [14] and Ko et al. [15] used
thresholds of -160 HU and -188 HU, respectively. Although such approaches offer computational
simplicity, they lack standardization and may yield suboptimal performance due to their reliance on
a single threshold.

Radiomics has emerged as a promising alternative, attracting increasing interest in various areas
of medical imaging [16-18]. Compared to deep learning or threshold-based methods, radiomics offers
advantages such as interpretable feature sets and reduced computational burden. Because the models
are built using quantifiable and human-understandable features, the resulting outputs are easier to
interpret and explain. This makes radiomics particularly suitable for lung cancer screening, where
interpretability and efficiency are essential.

Therefore, the aim of this study was to develop and validate an explainable, radiomics-based
CADx system using machine learning (ML) models to classify pulmonary nodule types, with an
emphasis on clinical interpretability and computational efficiency.

2. Materials and Methods

2.1. Study Design and Ethical Approval

Segmed fully de-identified and curated datasets are used in this project. Please check
www.segmed.ai for more information. Re-use of health data for research is exempt from Institutional
Review Board (IRB) evaluation in the United States (US) if the data is de-identified and the subject
identity is protected. This exemption is based on Category 4 of the U.S. Department of Health and
Human Services (HHS) regulations at 45 CFR part 46, Subpart A. Subpart A - Basic HHS Policy for
Protection of Human Research Subjects; (4) Research involving the collection or study of existing
data, documents, records, pathological specimens, or diagnostic specimens, if these sources are
publicly available or if the information is recorded by the investigator in such a manner that subjects
cannot be identified, directly or through identifiers linked to the subjects. Therefore, this study does
not require IRB approval. As this study used de-identified data and was conducted under the
exemption criteria specified by the U.S. Department of Health and Human Services at 45 CFR part
46, Subpart A, the need for informed consent was waived and deemed unnecessary according to
national regulations.

2.2. Patient Population

In this retrospective study, we collected data for the training and internal validation sets from
238 patients through a medical data collection agency in the United States. Due to data
anonymization, clinical variables such as age and gender were unavailable. Two radiologists
identified a total of 1,904 nodules by consensus. Part-solid nodules were excluded due to their
insufficient number in the dataset. After excluding 11 part-solid nodules and 8 segmentation-failed
nodules, 1,885 nodules remained. These were randomly split at the nodule level into 75% for training
and 25% for internal validation, resulting in 1,416 nodules (1,277 solid, 139 ground-glass) for training
and 472 nodules (426 solid, 46 ground-glass) for internal validation.

For external validation, we used two public datasets. From the LUng Nodule Analysis 2016
(LUNA) dataset [19,20], 1,186 nodules were initially considered, and 64 part-solid nodules were
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excluded, resulting in 1,122 nodules (957 solid, 165 ground-glass). From the International Symposium
on Biomedical Imaging 2018 (ISBI) dataset [21], 246 nodules were available, and 26 part-solid nodules
were excluded, yielding 220 nodules (151 solid, 69 ground-glass). A summary of the data distribution
and exclusion criteria is shown in Figure 1.
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Figure 1. Data flow diagrams. GGN, ground-glass nodule.

2.3. CT Acquisition Parameters

A total of 238 chest CT scans used for the internal training and validation sets were acquired in
axial orientation through a medical data collection agency in the United States. The scans were
obtained with the following CT protocols: tube voltage of 80-130 kVp, tube current of 28-706 mA,
slice thickness of 1.0 mm, and in-plane pixel size of 0.53-0.98 mm.

2.4. Image Preprocessing

VUNO Med-LungCT Al was utilized to automatically obtain nodule segmentation masks to
extract radiomic features. Cases without output masks were considered failures and excluded from
the analysis.

2.5. Radiomics Analysis

Radiomic features were extracted from resampled CT images with a voxel size of 0.67x0.67x1.00
mm?3. Volume and first-order features were used due to their relevance to nodule characteristics and
stability [17,22]. Consequently, the 22 features used were as follows: 1) volume, 2) energy, 3) total
energy, 4) entropy, 5) uniformity, 6) minimum, 7) maximum, 8) percentile_10, 9) percentile_25, 10)
percentile_50 (same as median), 11) percentile_75, 12) percentile_90, 13) interquartile range, 14) range,
15) mean, 16) variance, 17) mean absolute deviation, 18) robust mean absolute deviation, 19) root
mean squared, 20) standard deviation, 21) skewness, and 22) kurtosis. Additionally, features were
extracted from a single slice with the largest nodule area in the axial, sagittal, and coronal views,
respectively. Consequently, a total of 66 features (22 features from each of the three views) were used
for model development. For example, percentile_90 refers to the value of HU that represents the top
10% of the voxel intensities within the nodule mask [23].

2.6. Nodule Type Classification Model

The Random Forest (RF) was used to develop an Al-based nodule type classification model [24].
To enhance the robustness of the radiomic features, all the features were normalized with z-scores
and clipped from -3 to 3 using the mean and standard deviation of each feature in the training set.
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The RF parameters were as follows: n_estimators=1000, class_weight="balanced”,
min_samples_split=5. We further analyzed which of the 66 features mainly contributed to nodule
type classification based on the feature importance derived from the RF model. Feature importance
in an RF model is calculated by measuring the increase in the prediction error of the model when the
values of a particular feature are randomly permuted.

2.7. Statistical Analysis

The following software was used: 1) data pre-processing and RF model construction: Python
and Python’s sklearn.ensemble.RandomForestClassifier, 2) nodule segmentation: VUNO Med-
LungCT Al and 3) statistical analysis: R version 4.3.2. The cut-off threshold for classification was
determined based on the internal validation set. Specifically, we selected the threshold at which the
accuracy for solid nodules exceeded 90.0%, resulting in a probability threshold of 0.828.

3. Results

3.1. Quantitative Analysis

In the internal validation set, the classification of 472 nodules yielded an area under the receiver
operating characteristic (ROC) curve (AUC) of 0.976 (95% confidence interval [CI]: 0.962-0.990). The
accuracies were 91.5% (390 out of 426) for solid nodules and 93.5% (43 out of 46) for GGNs, resulting
in an overall accuracy of 91.7% (433 out of 472).

In the LUNA16 external validation set (1,122 nodules), the AUC was 0.962 (95% CI: 0.945-0.979),
with accuracies of 96.8% (926 out of 957) for solid nodules and 81.8% (135 out of 165) for GGNs,
resulting in an overall accuracy of 94.6% (1,061 out of 1,122). In the ISBI external validation set (220
nodules), the AUC was 0.951 (95% CI: 0.925-0.976), with accuracies of 88.7% (134 out of 151) for solid
nodules and 85.5% (59 out of 69) for GGNs, yielding an overall accuracy of 87.7% (193 out of 220).

The ROC curves, confusion matrices, and their specific details are shown in Table 1 and Figure

Table 1. Pulmonary nodule type classification performance of the proposed model on internal and external

validation sets.

Metrics Internal External Validation
Validation LUNA ISBI

AUC 0.976 (0.962-0.990) 0.962 (0.945-0.979) 0.951 (0.925-0.976)
Accuracy 0.917 (0.894-0.941) 0.946 (0.930-0.958) 0.877 (0.827-0.918)
Sensitivity 0.915 (0.885-0.940) 0.968 (0.954-0.978) 0.887 (0.826-0.933)
Specificity 0.935 (0.821-0.986) 0.818 (0.751-0.874) 0.855 (0.750-0.928)
NPV 0.544 (0.428-0.657) 0.813 (0.746-0.869) 0.776 (0.666-0.864)
PPV 0.992 (0.978-0.998) 0.969 (0.956-0.979) 0.931 (0.876-0.966)
F1-score 0.952 (0.938-0.967) 0.968 (0.960-0.976) 0.908 (0.871-0.940)

AUC, Area Under the Receiver Operating Characteristic Curve; NPV, Negative Predictive Value; PPV, Positive
Predictive Value. Values are reported as point estimates with 95% confidence intervals in parentheses. LUNA,

LUng Nodule Analysis 2016; ISBI, International Symposium on Biomedical Imaging 2018.
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Figure 2. Experimental results. (a) Receiver operating characteristics (ROC) curves, (b) Confusion matrices.

3.2. Model Interpretation and Explanation

The RF model was trained using a total of 66 features. We visualized the top 33 features with the
highest importance in Figure 3a, and the bottom 33 features with the lowest importance in Figure 3b.
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Figure 3. Feature importance of the proposed model. (a) Top 50% (33 out of 66) features, (b) Bottom 50% (33 out
of 66) features.

Radiomic features were extracted from a single slice with the largest area in the axial, coronal,
and sagittal views, respectively. As shown in Figure 3a, features extracted from the axial slice were
more important than those from the sagittal and coronal views. Of the top 33 features (i.e., the top
50%), 16 originated from the axial view. Among the top 10 features, percentile_90, percentile_75, and
mean from each of the three views were included, indicating that higher intensity characteristics are

the most critical for classifying nodule types. These features capture the upper range of HU values
within the segmented nodules.
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Conversely, percentile_10 features, which reflect lower HU values within the segmented
nodules, were all grouped within the bottom 50% in importance, as shown in Figure 3b. Furthermore,
these lower-ranked features were mostly uniformly distributed with importance values below 0.01
and provided limited interpretative insights.

In summary, although features from all three views were used equally during training, those
from the axial view contributed more significantly to the classification. Additionally, features
representing higher voxel values —such as the 90th percentile, 75th percentile, and mean—were more
important than those capturing lower values. Figure 4 illustrates an example of a decision tree from
the trained RF model, providing an interpretable view of how features contribute to classification at
the individual tree level.

Random Forest (Composed of 1000 Decision Trees)

dEIEERERER

’

percentile_75_axial <= -0.81
samples = 100.0%
value = [0.482, 0,518]
class = Solid

An example of a Decision Tree
(One of 1000 Trees)

51| |total_energy axial <=-0.219 total_energy_axial <=-0.151
samples = 15.1% samples = 8.3%
value = [0.682, 0.318] value = [0.431, 0.569]
class = GGN class = Solid

Figure 4. Overview of the trained Random Forest model.

3.3. Qualitative Analysis

Figure 5 illustrates example images along with their prediction scores and the top five features
ranked by importance. The segmentation masks were obtained using VUNO Med-LungCT Al The
bar graphs do not represent the raw feature values but instead show z-score-normalized values for
visualization. As shown in Figure 4, when the model output approaches 0, the top five feature values
tend to be lower; conversely, as the output nears 1, the values increase. This reflects that the features
primarily represent the 50th, 75th, and 90th percentile voxel intensities within the nodule. The model
employs a decision threshold of 0.828. Notably, the closest GGN (prediction score: 0.74) and solid
nodule (prediction score: 0.84) fall near this threshold, making it ambiguous to definitively classify
them into one of the two types.
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Figure 5. Representative example images according to the prediction scores. Outputs closer to the left indicate
probabilities near 0 (probably GGN), while outputs closer to the right indicate probabilities near 1 (probably
solid nodule). The model’s cut-off is 0.781, with the five rightmost images predicted as solid nodules. The bar

graphs show the z-score normalized values of the five features with the highest feature importance.

4. Discussion

This study demonstrates the effectiveness of a fast, explainable, and computationally efficient
Al-based CADx system for classifying pulmonary nodule types—an essential task in clinical
decision-making and alignment with global guidelines [5]. By leveraging radiomic features and an
RF classifier, our model achieved robust performance in distinguishing between solid and GGNss.

Our findings highlight three major contributions. First, we validated the model not only on
institutionally collected data but also on two independent public datasets—LUNA and ISBI. Despite
differences in patient populations and imaging sources, the model maintained high classification
performance across these external cohorts, demonstrating its robustness and generalizability. Second,
by combining handcrafted radiomic features with a RF classifier, we achieved high classification
performance with low computational complexity. Unlike deep learning models that typically require
graphic processing unit (GPU) acceleration, our system runs efficiently on central processing units
(CPUs), making it accessible in resource-limited settings. Third, the use of explainable AI (XAI)
enables transparent interpretation of model behavior, allowing clinicians to identify which features
contribute most to classification decisions—an advantage rarely found in traditional deep learning
models.

From a clinical perspective, accurate classification of nodule types is essential for risk
stratification and individualized patient management [5]. Solid nodules are more likely to be
malignant and often warrant closer surveillance or early intervention [25]. In contrast, GGNs tend to
represent less aggressive pathology but require long-term monitoring for potential progression. As
Lung-RADS guidelines recommend different follow-up strategies based on nodule type and size,
precise classification directly impacts clinical workflows and patient outcomes.
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Although classification models often suffer from performance degradation when applied to
unseen external datasets, our CADx system maintained its predictive performance across multiple
external cohorts. This robustness highlights the potential of our model for broad clinical applicability
without the need for extensive site-specific retraining, particularly given its use of multi-view and
high-dimensional radiomic features.

Interpretability is another key advantage of our approach. While deep learning methods often
operate as black boxes, our RF model allows for clear identification of influential features. Prior XAI
techniques, such as CAMs, typically indicate spatial regions of interest but do not clarify what feature
types of drive predictions [11,12,26]. In contrast, our model highlights specific, mathematically
defined radiomic features that directly inform the decision-making process. This transparency can
enhance clinical trust and adoption.

Our feature importance analysis revealed that features derived from the axial view, particularly
those reflecting higher HU values—such as the 90th, 75th percentiles, and mean—were most
influential in distinguishing nodule types. These findings provide insight into the imaging
characteristics that drive classification and could guide future development of CADx tools and
manual assessment strategies.

Despite these strengths, our study has limitations. First, part-solid nodules and segmentation-
failed cases were excluded, which could limit generalizability. Second, although model inference is
CPU-compatible, segmentation still benefits from GPU acceleration. Third, the current study assumes
prior nodule detection, and future work should evaluate performance in a fully integrated detection-
to-classification pipeline.

In conclusion, we developed an explainable, radiomics-based CADx system that effectively
classifies pulmonary nodule types with high performance and generalizability. Validation on two
independent public datasets confirmed its robustness across cohorts, supporting its applicability in
real-world clinical settings. Future research should explore its extension to more complex nodule
subtypes, such as part-solid and cystic nodules, in alignment with evolving Lung-RADS guidelines.
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Abbreviations

The following abbreviations are used in this manuscript:
Lung-RADS Lung Imaging Reporting and Data System

GGN Ground-Glass Nodule

CT Computed Tomography

CADe Computer-Aided Detection

CADx Computer-Aided Diagnosis

CAM Class Activation Map

HU Hounsfield Unit

ML Machine Learning

LUNA LUng Nodule Analysis 2016

ISBI International Symposium on Biomedical Imaging 2018
RF Random Forest

ROC Receiver Operating Characteristic

AUC Area Under the receiver operating characteristic Curve
CI Confidence Interval

XAI Explainable AI

GPU Graphic Processing Unit

CPU Central Processing Units
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