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Article
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Abstract: Unmanned Aerial Vehicles (UAVs), have greatly revolutionized the process of gathering and
analyzing data in diverse research domains, providing unmatched adaptability and effectiveness. This
paper presents a thorough examination of Unmanned Aerial Vehicle (UAV) datasets, emphasizing
their wide range of applications and progress. UAV datasets consist of various types of data, such as
satellite imagery, images captured by drones, and videos. These datasets can be categorized as either
unimodal or multimodal, offering a wide range of detailed and comprehensive information. These
datasets play a crucial role in disaster damage assessment, aerial surveillance, object recognition, and
tracking. They facilitate the development of sophisticated models for tasks like semantic segmentation,
pose estimation, vehicle re-identification, and gesture recognition. By leveraging UAV datasets,
researchers can significantly enhance the capabilities of computer vision models, thereby advancing
technology and improving our understanding of complex, dynamic environments from an aerial
perspective. This review aims to encapsulate the multifaceted utility of UAV datasets, emphasizing
their pivotal role in driving innovation and practical applications in multiple domains.

Keywords: UAV (Unmanned Aerial Vehicle); UAV datasets; object detection; semantic segmentation;
action recognition; event recognition; aerial; surveillance

1. Introduction

Unmanned Aerial Vehicles (UAVs)[1], commonly referred to as drones, have revolutionized the
way we collect and analyze data from above, offering unparalleled versatility and efficiency across
various research fields. This review paper aims to explore the "Multiple Uses of UAV Datasets" by
examining the diverse applications and advancements facilitated by these datasets. UAV datasets
encompass a wide array of data types, including satellite imagery, drone-captured images, and videos,
as well as images from other aerial vehicles like helicopters. These datasets can be unimodal, focusing
on a single type of data, or multimodal, integrating multiple data types to provide deeper, more
comprehensive insights.

UAV datasets have proven to help assess disaster damage because they allow for the classification
of damage from natural disasters using sophisticated semantic segmentation and annotation techniques.
By training computer vision models with these datasets, researchers can automate the aerial scene
classification of disaster events, significantly enhancing response and recovery efforts. The ability
to extract information and detect objects from UAV-captured data is pivotal for tasks such as action
recognition, where human behavior is analyzed from aerial imagery, including recognizing aerial
gestures and classifying disaster events.

A critical application of UAV datasets lies in ’Aerial Surveillance’[2], which supports advanced
research at the intersection of computer vision, robotics, and surveillance. These datasets are used
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for event recognition in aerial videos, aiding in the monitoring of urban environments and traffic
systems. The use of pre-trained models and transfer learning techniques further amplifies the utility of
UAV datasets, allowing for the rapid deployment of sophisticated models for event recognition and
tracking.

In the context of urban surveillance, UAV datasets enhance object recognition capabilities by
providing comprehensive views from both top-down and side perspectives. This facilitates tasks such
as categorization, verification, object detection, and tracking of individuals and vehicles. Moreover,
UAV datasets contribute significantly to understanding and managing forest ecosystems by addressing
the challenge of segmenting individual trees, which is crucial for sustainable forest management.

The versatility of UAV datasets extends to various domains, including developing speech
recognition systems for UAV control using video capture and object tracking in low-light conditions,
which is essential for night-time surveillance operations. Innovative UAV designs, such as bionic
drones with flapping wings, have also led to specialized video datasets used for single object tracking
(SOT)[3][4], demonstrating the broad scope and potential of UAV datasets in enhancing real-time
object tracking under varying lighting conditions.

Overall, UAV datasets represent a cornerstone for cutting-edge research and practical applications
across multiple disciplines. This review will delve into the specific uses and benefits of these datasets,
highlighting their role in advancing technology and improving our understanding of complex, dynamic
environments from an aerial perspective.

The subsequent sections provide a comprehensive exposition of the contributions made by our
study, which can be stated as follows:

• Our study is driven by the increasing importance of UAV datasets in several research domains
such as object detection, traffic monitoring, action identification, surveillance in low-light
conditions, single object tracking, and forest segmentation utilizing point cloud or LiDAR point
process modeling. Through an in-depth analysis of current datasets, their uses, and prospects,
this paper intends to provide valuable insights that will assist researchers in harnessing these
resources for creative solutions. Furthermore, they will acquire knowledge of existing constraints
and prospective opportunities, enhancing their research endeavors.

• We conducted an extensive analysis of a dataset consisting of 15 Unmanned Aerial Vehicles
(UAVs), showcasing its diverse applications in research.

• We emphasized the applications and advancements of several novel methods utilizing these
datasets based on unmanned aerial vehicles (UAVs).

• Our study also delved into the potential for future research and the feasibility of utilizing these
UAV datasets, engaging in in-depth discussions on these topics.

2. Literature Review

An unmanned aircraft or UAV, functions without a human pilot on board and can be operated
remotely by a human controller or independently by onboard computers. Drones are a common term
used to describe UAVs. Drones are employed for various purposes, including surveillance, aerial
photography, agriculture, environmental monitoring, and military operations. However, within the
UAV dataset context, the term encompasses more than just drones. UAV datasets encompass not only
drone image and video datasets, but also include satellite imagery. Table1 and 2 shows the summary
of the literature review performed.

These papers were reviewed to determine the definition and range of applications of UAVs in
computer vision.

2.1. RescueNet

Maryam Rahnemoonfar, Tashnim Chowdhury, and Robin Murphy presented the RescueNet[5]
dataset in their paper, which focuses on post-disaster scene understanding using UAV imagery.
The dataset contains high-resolution images with detailed pixel-level annotations for ten classes
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of objects, including buildings, roads, pools, and trees, which were collected by sUAVs following
Hurricane Michael. The authors employed state-of-the-art segmentation models like Attention
UNet[6], PSPNet[7], and DeepLabv3[8], achieving superior performance with attention-based and
transformer-based methods. The findings demonstrated RescueNet’s effectiveness in improving
damage assessment and response strategies, with transfer learning outperforming other datasets like
FloodNet[9]. The dataset was observed to have limited generalization to other domains and to require
a time-consuming annotation process, despite its detailed annotations.

2.2. UAV-Human

Tianjiao Li et al. developed the UAV-Human[10] dataset, a comprehensive benchmark for
improving human behavior understanding with UAVs. The dataset contains 67,428 multi-modal
video sequences with 119 subjects for action recognition, 22,476 frames for pose estimation, 41,290
frames for person re-identification with 1,144 identities, and 22,263 frames for attribute recognition,
all captured over three months in various urban and rural locations under varying conditions. The
data encompasses RGB videos, depth maps, infrared sequences, and skeleton data. The authors used
methods such as HigherHRNet[11], AlphaPose[12], and the Guided Transformer I3D framework to
recognize actions while addressing fisheye video distortions[13][14] and leveraging multiple data
modalities. The results demonstrated the dataset’s effectiveness in improving action recognition, pose
estimation, and re-identification tasks, with models showing significant performance improvements.
The UAV-Human dataset stands out as a reliable benchmark, encouraging the creation of more effective
UAV-based human behavior analysis algorithms.

2.3. AIDER

Christos Kyrkou and Theocharis Theocharides introduced the AIDER[15] dataset, which is
intended for disaster event classification using UAV aerial images. The dataset contains 2,565 images
of Fire/Smoke, Flood, Collapsed Building/Rubble, Traffic Accidents, and Normal cases, which were
manually collected from various sources, mainly from UAVs. To increase variability and combat
overfitting, images were randomly augmented with rotations, translations, and color shifting. The
paper presents ERNet, a lightweight CNN designed for efficient classification on embedded UAV
platforms. ERNet, which uses components from architectures such as VGG16[16], ResNet[17], and
MobileNet[18], incorporates early downsampling to reduce computational costs. When tested on both
embedded platforms attached to UAVs and desktop CPUs, ERNet achieved almost perfect accuracy
(90%) while running three times faster on embedded platforms. This showed that it is a good choice
for real-time applications that do not need a lot of memory. The study emphasizes the benefits of
combining ERNet with other detection algorithms to improve situational awareness in emergency
response.

2.4. AU-AIR

In their paper Ilker Bozcan and Erdal Kayacan present the AU-AIR[19] dataset, a comprehensive
UAV dataset designed for traffic surveillance. The dataset comprises 32,823 labeled video frames with
annotations for eight traffic-related object categories, along with multi-modal data including GPS
coordinates, altitude, IMU data[20], and velocity. To establish a baseline for real-time performance
in UAV applications, the authors train and evaluate two mobile object detectors on this dataset:
YOLOv3-Tiny[21] and MobileNetv2-SSDLite[22]. The findings highlight the difficulties of object
detection in aerial images, emphasizing the importance of datasets tailored to mobile detectors. The
study highlights the dataset’s potential for furthering research in computer vision, robotics, and aerial
surveillance, while also acknowledging limitations and suggesting future improvements for broader
applicability.
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2.5. ERA

Lichao Mou et al. introduced the ERA[23] dataset, a comprehensive collection of 2,864 labeled
video snippets for 24 event classes and 1 normal class, designed for event recognition in UAV
videos. The videos, sourced from YouTube, are 5 seconds long, 640×640 pixels, and run at 24 fps,
ensuring a diverse dataset that includes both high-quality and extreme condition footage. The paper
employs various deep learning models, including VGG-16, ResNet-50, DenseNet-201[24], and video
classification models like I3D-Inception-v1, to benchmark event recognition. DenseNet-201 achieved
the highest performance with an overall accuracy of 62.3% in single-frame classification. The findings
highlight the difficulties of recognizing events in a variety of environments and scales, noting that
while models can identify specific events such as traffic congestion and smoke, they struggle with
conditions such as night and snow scenes, indicating the need for improved attribute recognition and
temporal cue exploitation in future research.

2.6. UAVid

Ye Lyu et al. introduced the UAVid[25] dataset in their paper which addresses the need for
semantic segmentation in urban scenes from the perspective of UAVs. The UAVid dataset consists of
30 video sequences with 4K high-resolution images, which capture top and side views for improved
object recognition and include 8 labeled classes. The paper highlights the challenges of large-scale
variation, moving object recognition, and temporal consistency. The effectiveness of deep learning
techniques, such as the Multi-Scale-Dilation net which is a novel technique proposed by the author,
was evaluated and resulted in an average Intersection over Union[35] (IoU) score of approximately
50%. Further enhancements were observed by employing spatial-temporal regularization methods like
FSO[36] and 3D CRF[37]. The dataset’s applicability extends to traffic monitoring, population density
analysis, and urban greenery monitoring, showcasing its potential for diverse urban surveillance
applications. The paper also discusses the dataset’s class imbalance and suggests future expansions
and optimizations to enhance its utility for semantic segmentation and other UAV-based tasks.

2.7. VRAI

Peng Wang et al. introduced the VRAI[26] dataset, the largest vehicle re-identification (ReID)
dataset with over 137,613 images of 13,022 vehicles. This UAV-based dataset includes annotations for
unique IDs, color, vehicle type, attributes, and distinguishing features, capturing a wide range of view
angles and poses from UAVs flying between 15m and 80m. The study devised an innovative vehicle
ReID algorithm that utilizes weight matrices, weighted pooling, and comprehensive annotations to
identify distinctive components. This algorithm surpasses both the baseline and the most advanced
techniques currently available. The paper utilizes a comprehensive strategy to perform vehicle ReID
using aerial images, showcasing its effectiveness through a range of experiments. Ablation study
results demonstrate that the novel Multi-task + DP model, which integrates attribute classification and
additional triplet loss on weighted features, exhibits superior performance compared to less complex
models. The proposed method outperforms ground-based methods such as MGN[38], RNN-HA[39],
and RAM[40], because it can easily handle different view angles in UAV images. Weighted feature
aggregation improves performance, as evidenced by the enhanced mean average precision (mAP)
and cumulative match characteristic (CMC) metrics. Human performance evaluation highlights the
algorithm’s strength in fine-grained recognition, though humans still excel in detailed tasks. The study
suggests further research to improve flexibility, scalability, and real-world application of the algorithm.
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Table 1. Summary of Research and Findings of UAV Datasets discussed

Dataset Dataset Details Paper Findings Limitations Future Work

RescueNet[5] High-resolution
images with
pixel-level
annotations for 10
classes, collected via
UAVs after Hurricane
Michael.

Attention-based and
transformer-based
methods performed
best. Transfer
learning from
RescueNet to
FloodNet improved
segmentation.

Time-consuming
annotation process
and potential lack
of comprehensive
post-disaster elements.

Further evaluation
across different disaster
scenarios to enhance
robustness.

UAV-Human[10] 67,428 multi-modal
video sequences
for action
recognition, pose
estimation, person
re-identification, and
attribute recognition.

Highest action
recognition
accuracies with
night-vision and
IR videos. Pose
estimation methods
achieved mAP scores
of 56.5 and 56.9.

Potential overfitting, lack
of subject diversity, and
constrained capturing
conditions.

Increase sample size and
diversity, and capture
conditions to enhance
model robustness and
generalization.

AIDER[15] 2565 manually
gathered images of
disaster events with
augmentations.

Development of
ERNet, achieving
near state-of-the-art
accuracy (90%) and
over 50 fps on a CPU
platform.

Does not extensively
discuss real-time
implementation
challenges, robustness
in diverse conditions, or
hyperparameter tuning.

Integrate ERNet with
algorithms for detecting
people and vehicles, use
additional modalities like
infrared cameras, and
optimize the model for
improved generalization
and accuracy.

AU-AIR[19] 32,823 labeled video
frames with object
annotations and flight
data.

YOLOv3-tiny and
MobileNetv2-SSD
Lite for real-time
object detection on
UAVs showed
potential for
onboard computer
applicability.

Focus on traffic
surveillance may limit
applicability to other
scenarios, lacks advanced
baselines for tasks like
UAV navigation.

Enhance dataset diversity,
incorporate more
environmental contexts,
and develop additional
baselines leveraging
sensor data for broader
applications.

ERA[23] 2,864 videos
capturing events
in a wide range of
settings and sizes.

DenseNet-201
achieved the highest
accuracy of 62.3%
in single-frame
classification.

Dataset size, class
imbalance, and challenge
of distinguishing events
from normal videos.

Focus on attribute
recognition, temporal
cue exploitation, and
addressing challenging
cases like human action
recognition.

UAVid[25] 30 video sequences
featuring
high-resolution 4K
images with 8 labeled
classes for semantic
segmentation.

Multi-Scale-Dilation
Net achieved an
average IoU score of
around 50%.

Class imbalance,
particularly in urban
street scenes, potentially
affecting model
performance and
generalization.

Balance method
complexity with practical
implementation, expand
dataset size and object
categories, address class
imbalance, and explore
other applications like
object detection and
tracking.

VRAI[26] 137,613 images of
13,022 vehicles with
detailed annotations
captured by two
UAVs.

Outperforms existing
methods in vehicle
ReID techniques
using GANs and
attention models.

Comparison scope,
domain specificity,
annotation complexity,
scalability, and
real-world deployment
insights.

Explore transfer learning,
enhance scalability,
integrate advanced
techniques, focus on
real-world applications,
and improve annotation
strategies.

VERI-Wild[27] Over 400,000 images
of 40,671 vehicle IDs
captured from a real
CCTV camera system
over one month.

FDA-Net
outperforms existing
methods, achieving
highest Rank-1 and
Rank-5 accuracies.

Potential biases due
to urban district focus
and dataset-specific
adversarial scheme.

Explore more challenging
real-world factors,
generate comprehensive
datasets, and leverage
GANs to improve
cross-view ReID
performance.
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Table 2. Summary of Research and Findings of UAV Datasets discussed

Dataset Dataset Details Paper Findings Limitations Future Work

UAV-Assistant[28] Data synthesis
pipeline
combining
egocentric
UAV views
and exocentric
user views with
smooth silhouette
loss.

Smooth silhouette
loss enhances 3D
pose estimation
accuracy.

Lack of real-world data
poses a challenge to
generalizability, and
determining optimal
kernel size for smoothing
filter.

Optimize parameters,
explore additional loss
functions, and validate
approach in real-world
scenarios.

KITE[29] Focus on UAV
control speech
recognition with
multimodal
systems.

Recurrent neural
networks (RNNs) for
language modeling
and visual cues
integration.

Imperfect
command-image
associations, biases
from semi-automatic
methods for training data
generation.

Address biases, enhance
dataset generalizability,
and explore other
architectural decisions.

UAV-Gesture[30] 119
high-definition
video clips of 13
gestures for UAV
navigation and
command.

Annotates body joints
and gesture classes in
37,151 frames using
an extended version
of VATIC.

Limited gesture set and
non-expert actors may
affect dataset quality.

Leverage dataset for
gesture and action
recognition in UAV
control, expand and
refine dataset for broader
research applications.

DarkTrack
2021[31]

110 annotated
sequences
totaling over
100,000 frames
for low-light UAV
tracking.

SCT demonstrated
significant
performance gains
for nighttime UAV
tracking.

Comparisons with
daytime tracking
scenarios needed to
be improved.

Explore advanced
transformer architectures,
attention mechanisms,
noise reduction
strategies, and real-world
validation.

UAVDark 135[32] Over 125k
manually
annotated frames
for dark tracking
methods.

ADTrack
demonstrates
superiority in bright
and dark conditions.

Lacks broader
comparison with other
state-of-the-art trackers.

Further research on
real-time tracking
algorithms, new
image enhancement
methods, multi-sensor
fusion techniques, and
hardware optimization
strategies.

BioDrone[33] 600 videos
annotated
and labeled
at the frame
level for single
object tracking
using bionic
drone-based
systems.

Comprehensive
evaluation platform
for robust vision
research.

Focus on bionic UAVs
may limit generalization,
potential biases in
annotations.

Improve tracking
algorithms, address
computational
complexity and real-time
performance.

FOR-Instance[34] Five collections
from around
the world for
individual tree
segmentation
from UAV-based
laser scanning
data.

Supports both
instance and semantic
segmentation,
adaptable to deep
learning frameworks.

Potential overfitting,
lack of generalizability
to other forest types,
challenges with
unclassified points.

Incorporate more
data types, develop
advanced deep learning
architectures, study tree
species classification, and
conduct longitudinal
studies on forest changes.

2.8. FOR-Instance

For semantic and instance segmentation of individual trees, Stefano Puliti et al. presented the
FOR-Instance[34] dataset in their paper "FOR-Instance: a UAV laser scanning benchmark dataset
for semantic and instance segmentation of individual trees." This dataset fills a gap in the market
for ML-ready datasets and standardized benchmarking infrastructure by offering publicly accessible
annotated forest data for point cloud segmentation[41] tasks. The primary goal is to use data from

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 November 2024 doi:10.20944/preprints202411.0829.v1

https://doi.org/10.20944/preprints202411.0829.v1


7 of 46

unmanned aerial vehicle (UAV) laser scanning to precisely identify and separate individual trees. The
dataset includes extensive annotations that are used for training and evaluation, and it is composed
of five carefully chosen collections from different types of forests worldwide. In the context of
deep learning, the dataset is divided into separate sets for the purpose of training and validation.
In image segmentation research, rasterized canopy height models are utilized, along with either
unprocessed point clouds or two-dimensional projections. The FOR-Instance dataset was found to
be useful for studying and testing advanced segmentation methods. This highlights the significance
of comprehending forest ecosystems and formulating sustainable management techniques. The
standardization of the dataset in 3D forest scene segmentation research helps to address current
methodological limitations, such as overfitting and lack of comparability.

2.9. VERI-Wild

Yihang Lou et al. presented the VERI-Wild[27] dataset, the largest vehicle ReID dataset to date,
in their paper. Over 400,000 photos of 40,000 vehicle IDs are included in the dataset, which was
collected over the course of a month in an urban district using 174 CCTV cameras. The dataset
poses a formidable challenge for ReID algorithms due to its inclusion of diverse conditions such as
varying backgrounds, lighting, obstructions, perspectives, weather, and vehicle types. The authors
introduced FDA-Net, a novel technique for vehicle ReID, to enhance the model’s ability to distinguish
between different vehicles. FDA-Net combines a feature distance adversary network with a hard
negative generator and embedding discriminator. After being tested on the VERI-Wild dataset and
other established datasets, FDA-Net surpassed various standard methods, achieving higher accuracies
in Rank-1 and Rank-5. This demonstrates the effectiveness of FDA-Net in vehicle ReID tasks. The
method’s ability to generate hard negatives significantly improved model performance, highlighting
its potential for advancing vehicle ReID research in real-world scenarios.

2.10. UAV-Assistant

G. Albanis and N. Zioulis et al. introduced the UAV-Assistant[28] (UAVA) dataset in their paper.
The dataset was created using a data synthesis pipeline to generate realistic multimodal data, including
exocentric and egocentric views from UAVs. The dataset can be utilized to train a model that can
estimate the pose of an individual by incorporating a novel smooth silhouette loss in addition to a
direct regression objective. The dataset can be used to train a model that can accurately determine the
position of a person by incorporating a unique smooth silhouette loss along with a direct regression
objective. It also uses differentiable rendering techniques to help the model learn from both real and
fake data. The study highlights the critical role of tuning the kernel size for the smoothing filter to
optimize model performance. The suggested smooth silhouette loss surpasses conventional silhouette
loss functions by reducing discrepancies and enhancing the accuracy of 3D pose estimation. This
approach specifically tackles the lack of available data for estimating the three-dimensional position
and orientation of unmanned aerial vehicles (UAVs) in non-hostile environments. It is different from
existing datasets that primarily focus on remote sensing or drones with malicious intent. The paper
underscores the need for further research on rendering techniques, parameter optimization, and
real-world validations to enhance the model’s generalizability and robustness.

2.11. KITE

The KITE[29] dataset, created to improve speech recognition systems for UAV control, was
presented by Dan Oneata and Horia Cucu in their paper. The KITE eval dataset is a comprehensive
collection that includes 2,880 spoken commands, along with corresponding audio and images. It
is specifically designed for UAV operations and covers a range of commands related to movement,
camera usage, and specific scenarios. The authors employed time delay neural networks[42] (which
is implemented in Kaldi[43]) and recurrent neural networks to perform language modeling. They
initialized the models with out-of-domain datasets and subsequently fine-tuned them for UAV tasks.
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The study emphasizes the efficacy of customizing language models for UAV-specific instructions,
showcasing substantial enhancements in speech recognition precision through domain adaptation.
Future directions include grounding uttered commands in images for enhanced context understanding
and improving the acoustic model’s robustness to outdoor noises.

2.12. UAV-Gesture

A. Perera et al. introduced the UAV-Gesture[30] dataset, which addresses the lack of research
on gesture-based UAV control in outdoor settings. This dataset aims to fill the existing research
gap, as most studies in this field are focused on indoor environments. The dataset consists of 119
high-definition video clips, totaling 37,151 frames, captured in an outdoor setting using a 3DR Solo
UAV and a GoPro Hero 4 Black camera. The dataset comprises annotations of 13 body joints and
gesture classes for all frames, encompassing gestures appropriate for UAV navigation and command.
The dataset was captured with variations in phase, orientation, and camera movement to augment
realism. The authors employed an extended version of the VATIC[44] tool for annotation and
utilized a Pose-based Convolutional Neural Network[45] (P-CNN) for gesture recognition. This
approach resulted in a baseline accuracy of 91.9%. This dataset facilitates extensive research in gesture
recognition, action recognition, human pose recognition, and UAV control, showcasing its efficacy and
potential for real-world applications.

2.13. UAVDark135

In their research Bowen Li et al. presented the UAVDark135[32] dataset and the ADTrack
algorithm. Their work aimed to tackle the challenge of achieving reliable tracking of unmanned
aerial vehicles (UAVs) under different lighting conditions. UAVDark135 is the inaugural benchmark
specifically developed for tracking objects during nighttime. It consists of more than 125,000 frames
that have been manually annotated, addressing a deficiency in current benchmarks. The paper details
the ADTrack algorithm, a discriminative correlation filter-based tracker with illumination adaptive and
anti-dark capabilities, utilizing image illuminance information and an image enhancer for real-time,
all-day tracking. ADTrack performs better in both bright and dark environments, as evidenced by
extensive testing on benchmarks such as UAV123@10fps[46], DTB70[47], and UAVDark135—achieving
over 30 FPS on a single CPU. While effective, the paper recommends broader comparisons with other
state-of-the-art trackers and future research on image enhancement, multi-sensor fusion, and UAV
hardware optimization.

2.14. DarkTrack2021

Junjie Ye et al. presented the DarkTrack2021[31] dataset to tackle the difficulty of tracking
unmanned aerial vehicles (UAVs) in low-light situations. The dataset consists of 110 annotated
sequences containing more than 100,000 frames, providing a varied evaluation platform for
tracking UAVs during nighttime. The researchers created an effective low-light enhancer called
the Spatial-Channel Transformer (SCT), which combines a spatial-channel Transformer with a robust
non-linear curve projection model to effectively enhance low-light images. The Spatial-Channel
Attention Module (SCT) employs a technique that effectively combines global and local information,
resulting in enhanced image quality by reducing noise and improving illumination in nighttime
scenes. This study utilizes the proposed ADTrack algorithm together with 16 state-of-the-art
handmade correlation filter (CF)-based trackers to evaluate their performance on tracking benchmarks
UAV123@10fps, DTB70, and UAVDark135. The aim is to demonstrate the comprehensive robustness
of the proposed ADTrack algorithm in all-day UAV tracking. Evaluations conducted on the public
UAVDark135 and the new DarkTrack2021 benchmarks demonstrated that SCT exhibited superior
performance compared to existing methods in tracking UAVs during nighttime. The practicality of the
approach has been confirmed through real-world tests. The DarkTrack2021 dataset and SCT code are
openly accessible on GitHub for additional research and experimentation.
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2.15. BioDrone

Xin Zhao et al. presented the BioDrone[33] dataset. BioDrone is a pioneering visual benchmark
for Single Object Tracking[48] (SOT) that utilizes bionic drones. It specifically tackles the difficulties
associated with tracking small targets that undergo significant changes in appearance, which are
common in flapping-wing UAVs. The dataset consists of 600 videos containing 304,209 frames
that have been manually labeled. Additionally, there are automatically generated labels for ten
challenge attributes at the frame level. The study presents a new baseline method, UAV-KT,
optimized from KeepTrack[49], and evaluates 20 SOT models, ranging from traditional approaches
like KCF[50] to sophisticated models combining CNNs and SNNs. The results of comprehensive
experiments demonstrate that UAV-KT outperforms other methods in handling challenging vision
tasks with resilience. The paper emphasizes BioDrone’s potential for advancing SOT algorithms and
encourages future research to address remaining challenges, such as camera shake and dynamic visual
environments.

3. Methodology

The term UAV (Unmanned Aerial Vehicle) encompasses a diverse range of applications, requiring
a thorough investigation to examine and define the extensive utilization of UAV datasets. We aimed
to comprehend how these datasets can be employed in different research and project scenarios. To
accomplish this, we implemented an exhaustive search for UAV datasets, initially narrowing our focus
to the keyword "satellite or drone image datasets". The initial search led to the identification of "UAV
datasets". After acknowledging the potential of UAV datasets, we conducted further research in this
field, identifying their diverse applications in object detection, tracking, and event detection, as well as
semantic segmentation and single object tracking.

To gather relevant UAV datasets, we conducted systematic searches on the Internet, employing a
range of keywords and search terms related to UAVs and their applications. We specifically looked for
datasets that showed off the adaptability of UAVs, choosing those that researchers had proposed and
used in other research contexts. This approach ensured that the datasets we included were novel and
provided diverse examples of UAV applications.

We identified and collected 15 UAV image datasets for inclusion in our study. Our selection criteria
focused on datasets that showcased a variety of use cases, including traffic systems (car identification,
person identification, and surveillance systems), damage classification from disasters, and other object
detection and segmentation tasks. Each dataset was thoroughly reviewed and analyzed to understand
its characteristics, intended use, and underlying methodologies.

Our analysis involved a detailed examination of the datasets, resulting in the comprehensive
report included in this paper. This report outlines the behavior, agenda, and applications of each
dataset, providing insights into their respective fields of use. By presenting these findings, we aim to
highlight the versatility and potential of UAV datasets in advancing various research domains. Figure
1 depicts the sequential process of our work.
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Figure 1. Workflow of this Study

3.1. Search Terms

We got the datasets we surveyed in this paper mostly from the website, https://paperswithcode.
com/. Before we found this website we used various search terms to search for the UAV dataset and
came across the website through the search process. Example search strings:

• ("unmanned aerial vehicle" OR UAV OR drone OR Satellite) AND ("dataset" OR "image dataset"
OR "dataset papers")

• (UAV OR "unmanned aerial vehicle") AND ("disaster dataset" OR "traffic surveillance")

These search strings and keywords facilitated a broad yet focused search, enabling us to gather a
diverse set of UAV datasets that demonstrate their wide-ranging applications and research potential.

4. Data Diversity of UAV

The advent of Unmanned Aerial Vehicles (UAVs) has opened new frontiers in data collection
and analysis, transforming numerous fields with their versatile applications. The datasets generated
by UAVs are diverse, encompassing various data types and serving multiple purposes. This section
provides an overview of the various uses of UAV datasets, examines their diversity, and explores the
methods applied to utilize these datasets in different studies.

4.1. Overview of UAV Dataset Uses

UAV datasets are pivotal in numerous domains, including disaster management, surveillance,
agriculture, environmental monitoring, and human behavior analysis. The unique aerial perspectives
provided by UAVs enable the collection of high-resolution imagery and videos, which can be used for
mapping, monitoring, and analyzing different environments and activities.
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4.1.1. Disaster Management

UAV datasets are often used to figure out how much damage hurricanes, earthquakes, and floods
have done. High-resolution images and videos captured by UAVs allow for precise mapping of
affected areas and the identification of damaged infrastructure.

4.1.2. Surveillance

In urban and rural settings, UAV datasets support advanced surveillance activities. They facilitate
the monitoring of traffic, detection of illegal activities, and overall urban planning by providing
real-time, high-resolution aerial views.

4.1.3. Agriculture

UAV datasets help in monitoring crop health, assessing irrigation needs, and detecting pest
infestations. Multispectral and hyperspectral imaging from UAVs enable detailed analysis of vegetation
indices and soil properties.

4.1.4. Environmental Monitoring

UAVs are used to monitor forest health, wildlife, and water bodies. They provide data for studying
ecological changes, tracking animal movements, and assessing the impacts of climate change.
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Table 3. Summary of Experimented Methods and Results on Different Datasets

Dataset Name Experimental Methods in Base
Dataset publication

Analysis on Results

RescueNet[5] PSPNet, DeepLabv3+, Attention
UNet, Segmenter[51]

Attention UNet achieved the best performance
among all evaluated models. PSPNet showed
better performance compared to DeepLabv3+ by
using pyramid pooling. DeepLabv3+ provided
moderate results, improving on the loss of
boundary information. Segmenter showed varying
results depending on the backbone (ViT-Tiny vs.
ViT-Small), with heavier backbones achieving
better results.

UAV-Human[10] Guided Transformer I3D Network,
Video Transformers, Full Model
(Author’s novel method)

Night-vision and IR videos outperformed previous
findings in low-light conditions, achieving 28.72%
and 26.56% accuracy, respectively. However,
depth sequences face noise issues, and fisheye
distortion impacts performance. In ablation studies,
using KL Divergence Constraint resulted in 21.68%
accuracy, while employing guidance loss and Video
Transformers yielded 21.49% accuracy without
RGB stream guidance. Overall, the full model
had the highest accuracy among fisheye-based
methods.

AIDER[15] Novel networks (ERNet, SCFCNet,
SCNet, baseNet), VGG16, ResNet50,
MobileNet

The VGG16 model had the highest accuracy at
91.9% but a low frame rate of 2, while consuming
59.3MB of memory. MobileNet had a high frame
rate of 20 but lower accuracy at 88.5%. Custom
networks like ERNet and SCFCNet had good
accuracy at 90.1% and 87.7% with high frame rates
of 53 and 76, making them suitable for real-time
UAV applications.

AU-AIR[19] YOLOv3-tiny, MobileNetv2-SSD
Lite

YOLOv3-tiny achieved higher mAP (38.2%) and
better FPS (22) compared to MobileNetv2-SSDLite
(32.8% mAP and 19 FPS), highlighting its better
performance for real-time object detection tasks
using UAVs.

ERA[23] VGG-16, DenseNet-121, NASNet-L,
C3D (C3D†, C3D‡)[52]

DenseNet-121 achieved the highest overall
accuracy (62.3%) among the models, followed by
NASNet-L (60.2%) and VGG-16 (51.9%). The C3D
models had the lowest accuracy (around 30%).

UAVid[25] FCN-8s[53], Dilation Net, U-Net[54],
MS-Dilation Net

MS-Dilation Net achieved the highest mean IoU
score of 57.3% with pre-training and feature space
optimization, demonstrating the best performance
among the models evaluated.

VRAI[25] MGN, RAM, RNN-HA, Ensemble
methods (e.g. ID Classification
Loss, Triplet + ID Loss), Novel
methods (Multi-task, Multi-task +
Discriminative Parts)

The multi-task model with discriminative parts
achieved the highest mAP (78.63%) and CMC-1
(80.30%). The models using Triplet + ID Loss
also showed high performance, particularly with
Resnet-101 and Resnet-152 backbones.

FOR-instance[27] None, as the paper is solely focused
on constructing the dataset and
explaining how to utilize it for
model.

N/A
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Table 4. Summary of Experimented Methods and Results on Different Datasets

Dataset Name Experimented Methods on Dataset Analysis on results

VERI-Wild[27] GoogLeNet[55], Triplet[56],
Softmax[57], CCL[58], HDC[59],
Unlabeled GAN[60][61], EN
(Embedding Network with Triplet
and Softmax Loss), FDA-Net ⊖ Att,
FDA-Net

FDA-Net consistently outperforms the other
models across different settings, achieving the
highest mAP (35.11%) and match rate (R=1 of
64.03% for small dataset). The proposed FDA-Net
model demonstrates its effectiveness in vehicle
re-identification tasks.

UAV-Assistant
(UAVA)[28]

Singleshotpose[62], Direct, IoU
based experimental methods (e.g.
I0.1, I0.2, I0.1-0.4, G0.1, S0.1, S0.2),
Generalized IoU based method
(Gauss0.1)[63]

Gauss0.1 showed the best overall performance,
particularly in the 6D Pose-5 and 6D Pose-10
metrics. Metrics such as NPE, OE, and CPE
were used, with lower values indicating better
performance and higher values for Acc5 and Acc10
indicating better performance.

KITE[29] Baseline Systems (Unadapted
System, Domain-Specific
System), Domain Adaptation
(Text-Only Adaptation, Rescoring),
Multi-Modal Experiments (Text and
Visual Information)

Domain adaptation and multi-modal approaches
significantly improved the performance of speech
recognition systems for UAV control. The
Unadapted System had a WER of 56.2%, while the
Domain-Specific System achieved 11.7%.

UAV-Gesture[30] Pose-based CNN (P-CNN) P-CNN achieved an overall accuracy of 91.9% for
gesture recognition. The dataset included 119 video
clips, 37,151 annotated frames, and 13 gestures,
providing a robust resource for gesture and action
recognition research.

DarkTrack2021[31] Novel ensembled method: SCT The full implementation of SCT (Spatial-Channel
Transformer) with all components enabled showed
the highest improvement in tracking performance,
with success rate and precision gains of 13.3% and
15.4%, respectively.

UAVDark135[32] ADTrack, State of the art trackers
(e.g. AutoTrack, SiamFC++,
ARCF-HC, SiamRPN++)

ADTrack outperformed all other models in both
bright and dark conditions, showing superior
performance with the highest DP and AUC scores
on the UAVDark135 dataset.

BioDrone[33] KeepTrack, UAV-KT, Generic SOT
Trackers

UAV-KT, designed for flapping-wing UAVs,
showed a 5% improvement over KeepTrack in
precision, normalized precision, and success
scores. Generic SOT Trackers were compared
for robustness and performance across various
conditions.

4.1.5. Human Behavior Analysis

UAV datasets contribute to analyzing human activities and behaviors in public spaces. They are
used for action recognition, pose estimation, and crowd monitoring, offering valuable insights for
security and urban planning.

4.2. Variability of UAV databases

The diversity of UAV datasets lies in their varied data types, capture conditions, and application
contexts. This diversity ensures that UAVs can address a wide range of tasks, each requiring specific
data characteristics.

4.2.1. Data Types

UAV datasets include RGB images, infrared images, depth maps, and multispectral and
hyperspectral images[64]. To capture complex scenarios for human behavior analysis, the UAV-Human
dataset, for example, combines RGB videos, depth maps, infrared sequences, and skeleton data.
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4.2.2. Capture Conditions

A variety of conditions, such as different times of day, weather, light (low light or varied
lumination), and flight altitudes, are encountered when gathering UAV datasets. This variety makes
sure that models that were trained on these datasets are strong and work well in a variety of settings.

4.2.3. Application Contexts

UAV datasets are tailored for specific applications. For example, visualizing data, object
annotations, and flight data are used to address specific problems that come up when monitoring
traffic from the air. Furthermore, the application of high-resolution images of the damage taken after
the disaster, which enable accurate assessment of the damage.

4.3. Methods Applied to the UAV Dataset

Various methods are applied to UAV datasets to extract valuable insights and solve specific
problems. These methods include machine learning, computer vision techniques, and advanced data
processing algorithms. In Table 3 and 4, an overview of the methods used and the analysis of results
are given to gain a better understanding.

4.3.1. Machine Learning and Deep Learning

Deep learning models, such as convolutional neural networks (CNNs)[65], are widely used for
tasks like object detection, segmentation, and classification. For example:

• The RescueNet dataset employs models like PSPNet, DeepLabv3+, and Attention UNet for
semantic segmentation to assess disaster damage.

• The UAVid Dataset presents deep learning baseline methods like Multi-Scale-Dilation net.
The ERA dataset establishes a benchmark for event recognition in aerial videos by utilizing
pre-existing deep learning models like the VGG models (VGG-16, VGG19)[16], Inception-v3[66],
the ResNet models (ResNet-50, ResNet-101, and ResNet-152)[17], MobileNet, the DenseNet
models (DenseNet-121, DenseNet-169, DenseNet-201)[24], and NASNet-L[67].

In the domain of deep learning, ensemble methods play a crucial role. They not only assess model
performance but also boost accuracy while keeping the model’s equilibrium intact. Such as:

• In VRAI dataset, they utilized ensemble techniques such as Triplet Loss, Contrastive Loss,
ID Classification Loss, and Triplet + ID Loss, and introduced multi-task and multi-task +
discriminative parts. These ensemble methods performed better than the state-of-the-art methods
in their claim.

4.3.2. Transfer Learning

Transfer learning is used to leverage pre-trained models on UAV datasets, allowing for quicker
and more efficient training. Like,

• Pre-trained YOLOv3-Tiny and MobileNetv2-SSDLite models, for example, are used for real-time
object detection in the AU-AIR[19] dataset.

4.3.3. Event Recognition

Unmanned Aerial Vehicles (UAVs) have proven to be highly proficient in the field of event
recognition and have gained significant popularity in this domain. Like for example:

• The ERA dataset has been subjected to various methods for event recognition in aerial videos,
including DenseNet-201 and Inception-v3. These methods have demonstrated notable accuracy
in identifying dynamic events from UAV footage.
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• The BioDrone dataset assesses single object tracking (SOT) models and investigates new
optimization approaches for the cutting-edge KeepTrack method for robust vision, which is
presented by flapping-wing unmanned aerial vehicles[33].

4.3.4. Multimodal Analysis

Combining data from multiple sensors enhances the analysis capabilities of UAV datasets. The
multimodal approach of the UAV-Human dataset, which combines RGB, infrared, and depth data,
makes a thorough analysis of human behavior possible.

4.3.5. Creative Algorithms

New algorithms are created to tackle particular problems in the analysis of data from unmanned
aerial vehicles. For example:

• The UAV-Gesture[30] dataset employs advanced gesture recognition algorithms to enable UAV
navigation and control based on human gestures.

• The UAVDark135[32] makes use of ADTrack, a tracker that adapts to varying lighting conditions
and makes use of discriminative correlation filters. It also has anti-dark capabilities.

• To address the issue of fisheye video distortions, the authors of the UAV-Human[10] dataset
suggest a fisheye-based action recognition method that uses flat RGB videos as guidance.

• To classify disaster events from an unmanned aerial vehicle (UAV), the authors of the AIDER[15]
dataset have created a lightweight convolutional neural network (CNN) architecture that they
have named ERNet.

• VERI-Wild[27] introduces FDA-Net, a novel method for vehicle identification. It includes an
embedding discriminator and a feature distance adversary network to enhance the model’s
capacity to differentiate between various automobiles.

4.3.6. Managing Diverse Conditions

Various environmental conditions, such as different lighting, weather, and occlusions, present
challenges that are often addressed by methodologies. Like, DarkTrack2021 used the low-light
enhancer-based method SCT to handle performance in low-light conditions.

The diversity of UAV datasets is a cornerstone of their utility, enabling a wide array of applications
across different fields. From disaster management to human behavior analysis, the rich variety of
data types, capture conditions, and application contexts ensures that UAV datasets can meet the
specific needs of each task. The application of advanced methods, including deep learning, transfer
learning, and multimodal analysis, further enhances the value derived from these datasets, pushing
the boundaries of what UAVs can achieve in research and practical applications.
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Table 5. Summary of Methods Employed on Uav Datasets and Their Benefits

Employed Method Name of the Dataset Benefit from the Use of Method

Attention UNet28, ViT-Tiny,
ViT-Small

RescueNet[5] Improved disaster response strategies, enhanced model
performance in segmentation tasks through transfer
learning

Fisheye-based action
recognition approach,
HigherHRNet, AlphaPose

UAV-Human[10] Robust models for human behavior understanding

ERNet AIDER[15] High performance with minimal memory requirements,
suitable for real-time aerial image classification

YOLOv3-Tiny,
MobileNetv2-SSDLite

AU-AIR[19] Real-time object detection on UAVs, bridging the gap
between computer vision and robotics

DenseNet-201,
I3D-Inception-v1,
TRN-Inception-v3

ERA[23] High performance in single-frame and video classification
tasks

Multi-Scale-Dilation net,
FSO, 3D CRF

UAVid[25] Enhanced semantic segmentation performance in urban
scenes, addressing large-scale variation and moving object
recognition

Convolutional and
connection layers, weight
matrices, weighted pooling

VRAI[26] Superior vehicle re-identification performance

Aggregating tree-wise F1
scores, weighting coefficients
for averaging F1 scores

FOR-instance[34] Improved methods for individual tree segmentation,
crucial for understanding forest ecosystems

FDA-Net (Feature Distance
Adversary Network)

VERI-Wild[27] Enhanced discriminative capability in vehicle
re-identification tasks

Smooth silhouette loss UAV-Assistant
(UAVA)[28]

Improved performance in 3D pose estimation tasks

Time delay neural network,
domain adaptation
techniques

KITE[29] Enhanced UAV command recognition systems through
visual context and domain adaptation

Pose-based Convolutional
Neural Network (P-CNN)

UAV-Gesture[30] High accuracy in gesture recognition for UAV control

Spatial-Channel Transformer,
curve projection model

DarkTrack2021[31] Improved nighttime UAV tracking accuracy by enhancing
low-light images

Illumination adaptive,
anti-dark capabilities,
efficient image enhancer

UAVDark135[32] Superior performance in all-day aerial object tracking,
adaptability to different light conditions

KeepTrack-optimized
UAV-KT

BioDrone[33] Addresses challenges in tracking tiny targets with drastic
appearance changes, providing a robust benchmark for
vision research

5. The Potential of Computer Vision Research in UAV Datasets

Unmanned Aerial Vehicles (UAVs) have greatly expanded the fields of computer vision research.
UAV datasets offer unique and flexible data that is used in a range of computer vision tasks, from
recognizing actions to finding objects. This section explores how UAV datasets are advancing computer
vision research, contributing to various tasks from action recognition to object detection, as illustrated
in Figure 2, which highlights the diverse applications and the development of new methods centered
around these datasets.
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5.1. Leveraging UAV Datasets for Computer Vision Applications

Human behavior analysis, emergency response, tracking at night, surveillance, and many other
uses can be done with UAV datasets in computer vision. These are some of the areas where UAV
datasets are used, along with an example of how to describe a dataset based on the datasets we talked
about in our research paper.

5.1.1. Human Behavior Understanding and Gesture Recognition

The UAV-Human platform is essential for utilizing UAVs to study human behavior, including a
range of conditions and perspectives for pose estimation and action recognition. This dataset contains
multi-modal information, including skeleton, RGB, infrared, and night vision modalities. Essential
for UAV control and gesture identification, UAV-Gesture contains 119 high-definition video clips
with 13 gestures for command and navigation that are marked with body joints and gesture classes.
Because this dataset was captured outside, it has more practical UAV control applications because of
the variations in phase, orientation, and body shape.

5.1.2. Emergency Response and Disaster Management

RescueNet provides detailed pixel-level annotations and high-resolution images for 10 classes,
including buildings, roads, pools, and trees. It is designed for post-disaster damage assessment
using UAV imagery. It supports semantic segmentation using state-of-the-art models, enhancing
natural disaster response and recovery strategies. AIDER focuses on classifying disaster events,
utilizing images of traffic accidents, building collapses, fires, and floods to support real-time disaster
management applications by training convolutional neural networks (CNNs).

5.1.3. Traffic Surveillance and Vehicle Re-Identification

In traffic surveillance, AU-AIR prioritizes real-time performance and offers annotations for
a variety of object categories, including cars, buses, and pedestrians. It bridges the gap between
computer vision and robotics by offering multi-modal sensor data for advanced research in data
fusion applications. VRAI is the largest UAV-based vehicle re-identification dataset, containing over
137,613 images of 13,022 vehicles with annotations for unique IDs, color, vehicle type, attributes, and
discriminative parts. It supports vehicle ReID tasks with diverse scenarios and advanced algorithms.
VERI-Wild, which contains over 400,000 photos of 40,000 vehicles taken by 174 CCTV cameras in
various urban settings, is essential for research on vehicle re-identification. It uses techniques like
FDA-Net to improve ReID accuracy by addressing variations in backgrounds, illumination, occlusion,
and viewpoints.

5.1.4. Event Recognition and Video Understanding

For training models in event recognition in UAV videos, ERA contains 2,864 labeled video snippets
for 24 event classes and 1 normal class that were gathered from YouTube. This dataset captures dynamic
events in various conditions, supporting temporal event localization and video retrieval tasks.

5.1.5. Nighttime tracking and low-light conditions

Including 110 annotated sequences with over 100,000 frames, DarkTrack2021 is crucial for
improving UAV tracking at night. By employing spatial-channel transformers (SCT) and non-linear
curve projection models, it improves the quality of low-light images and offers a thorough assessment
framework. The UAVDark135 dataset and the ADTrack algorithm are designed for all-day aerial
tracking. ADTrack performs well in low light and adjusts to various lighting conditions thanks to
its discriminative correlation filter foundation. More than 125,000 frames, specially annotated for
low-light tracking scenarios, are included in the UAVDark135 dataset.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 November 2024 doi:10.20944/preprints202411.0829.v1

https://doi.org/10.20944/preprints202411.0829.v1


18 of 46

5.1.6. Object Tracking and Robust Vision

With 600 videos and 304,209 manually labeled frames, BioDrone is a benchmark for single object
tracking with bionic drones. It captures challenges such as camera shake and drastic appearance
changes, supporting robust vision analyses and evaluations of various single object tracking algorithms.

5.1.7. Urban Scene Segmentation and Forestry Analysis

UAVid provides annotations for eight classes and 30 high-resolution video sequences in
4K resolution to address segmentation challenges in urban scenes. It uses models such as
Multi-Scale-Dilation net to support tasks like population density analysis and traffic monitoring.
FOR-instance provides UAV-based laser scanning data for tree instance segmentation and is intended
for use in point cloud segmentation in forestry. It facilitates benchmarking and method development
by supporting both instance and semantic segmentation.

5.1.8. Multimodal Data Synthesis and UAV Control

UAV-Assistant facilitates monocular pose estimation by introducing a multimodal dataset
featuring exocentric and egocentric views. It enhances 3D pose estimation tasks with novel smooth
silhouette loss function and differentiable rendering techniques. KITE incorporates spoken commands,
audio, and images to enhance UAV control systems. It includes commands recorded by 16 speakers,
supporting movement, camera-related, and scenario-specific commands with multi-modal approaches.

Together, these datasets improve a wide range of computer vision applications, including robust
vision in difficult conditions, real-time traffic surveillance, emergency response, and human behavior
analysis.

5.2. Development of Novel Methods Using UAV Datasets

UAV datasets have spurred the development of innovative methods in computer vision. As an
example, the Guided Transformer I3D framework, which addresses distortions through unbounded
transformations guided by flat RGB videos, was developed using the UAV-Human dataset. This
framework enhances action recognition performance in fisheye videos. This approach is a prime
example of how UAV datasets drive the creation of specialized algorithms to address particular
difficulties brought about by aerial viewpoints.

Figure 2. Diverse Applications of UAV Datasets in Computer Vision Research

The DarkTrack2021 benchmark introduces a Spatial-Channel Transformer (SCT) for enhancing
low-light images in nighttime UAV tracking. Meanwhile, Bowen Li and team present the UAVDark135
dataset and the ADTrack algorithm for all-day aerial object tracking. ADTrack, equipped with adaptive
illumination and anti-dark capabilities, outperforms other trackers in both well-lit and dark conditions.
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It processes over 30 frames per second on a single CPU, ensuring efficient tracking under various
lighting conditions. The study emphasizes how crucial image illuminance data is and suggests a useful
image enhancer to improve tracking performance in all-day situations.

For emergency response applications, the AIDER dataset has facilitated the development of
ERNet, a lightweight CNN architecture optimized for embedded platforms. ERNet’s architecture,
which incorporates downsampling at an early stage and efficient convolutional layers, allows for
real-time classification of aerial images on low-power devices. This showcases the practical use of
UAV datasets in disaster management.

The VERI-Wild dataset introduces a novel approach called FDA-Net for vehicle reidentification.
This method utilizes a unique type of network to generate difficult negative examples in the feature
space. On the other hand, the VRAI dataset has developed a specialized vehicle ReID algorithm that
leverages detailed annotation information to explicitly identify unique parts for each vehicle instance
in object detection.

Ultimately, UAV datasets are essential in the field of computer vision research, providing distinct
data that is invaluable for a diverse array of applications. They allow for the development of
novel methods tailored to the specific challenges and opportunities presented by UAV technology,
accelerating progress in areas such as human behavior analysis, emergency response, and nighttime
tracking.

6. Limitations of UAVs

While Unmanned Aerial Vehicles (UAVs) have significantly advanced data collection and analysis
in numerous fields, they are not without limitations, particularly concerning the datasets they generate.
This section delves into the primary constraints associated with UAV datasets, emphasizing their
impact on the field and suggesting areas for improvement.

6.1. Data Quality and Consistency

One of the most pressing limitations of UAV datasets is the inconsistency in data quality. Weather,
time of day, and UAV stability are just a few variables that can affect the quality of data that UAVs
collect. Such as, datasets collected during poor weather conditions or at night may need more visibility
and increased noise, complicating subsequent analysis and model training. Even with advancements
like low-light image enhancers and specialized algorithms for nighttime tracking, these solutions often
need improvement and require further refinement to match the reliability of daytime data.

6.2. Limited Scope and Diversity

UAV datasets often need more diversity in terms of geographic locations, environmental
conditions, and the variety of captured objects. Many existing datasets, such as AU-AIR and ERA,
focus heavily on specific scenarios like urban traffic surveillance or disaster response, which limits their
generalizability to other contexts. Additionally, datasets such as UAV-Human and UAVDark135 tend
to feature limited subject diversity and controlled environments, which may not accurately represent
real-world conditions. This lack of diversity can lead to models that perform well in specific conditions
but struggle in untested environments.

6.3. Annotation Challenges

The process of annotating UAV datasets is often time-consuming and labor-intensive.
High-resolution images and videos captured by UAVs require detailed, pixel-level annotations, which
are essential for tasks like semantic segmentation and object detection. This is clearly seen in datasets
such as RescueNet and FOR-Instance, where the annotation process is recognized as a major bottleneck.
The intensive labor required for comprehensive annotation limits the availability of large, well-labeled
datasets, which are crucial for training robust machine learning models.
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6.4. Computational and Storage Demands

The high resolution and large volume of data generated by UAVs pose significant computational
and storage challenges. Processing and analyzing large-scale UAV datasets demand substantial
computational resources and advanced hardware, which may only be readily available to some
researchers. For example, the dense and high-resolution images in datasets like UAVid and BioDrone
require extensive processing power for effective utilization. Additionally, the storage of such
vast amounts of data can be impractical for some institutions, hindering widespread access and
collaboration.

6.5. Integration with Other Data Sources

Another limitation is the integration of UAV datasets with other data sources. While multimodal
datasets that combine UAV data with other sensor inputs (such as satellite imagery, GPS data, and
environmental sensors) provide richer insights, they also introduce complexity in data alignment and
fusion. The AU-AIR dataset, which includes visual data along with GPS coordinates and IMU data,
exemplifies the potential and challenges of such integration. Ensuring the synchronized and accurate
fusion of data from multiple sources remains a technical hurdle that needs addressing.

6.6. Real-Time Data Processing

The ability to process and analyze UAV data in real-time is critical for applications like
disaster response and surveillance. However, achieving real-time processing with high accuracy
is challenging due to the aforementioned computational demands. Models such as those evaluated in
the DarkTrack2021 and UAVDark135 datasets show promise but often require optimization to balance
speed and accuracy effectively. Real-time processing also necessitates robust algorithms capable of
handling dynamic environments and changing conditions without significant delays.

6.7. Ethical and Legal Considerations

Finally, the use of UAVs and their datasets is subject to various ethical and legal considerations.
Issues such as privacy, data security, and regulatory compliance must be addressed to ensure
responsible and lawful use of UAV technology. These considerations can limit the scope of data
collection and usage, particularly in populated areas or sensitive environments, thereby constraining
the availability and applicability of UAV datasets.

Despite the transformative potential of UAV datasets across various disciplines, their limitations
must be acknowledged and addressed to maximize their utility. Improving data quality, enhancing
dataset diversity, streamlining annotation processes, and overcoming computational and storage
challenges are essential steps. Additionally, integrating UAV data with other sources, advancing
real-time processing capabilities, and adhering to ethical and legal standards will ensure that UAV
datasets can be effectively leveraged for future research and applications. By tackling these limitations,
the field can fully harness the power of UAV technology to drive innovation and deepen our
understanding of complex, dynamic environments from an aerial perspective.

7. Prospects for Future UAV Research

Future studies on UAV datasets need to focus on a few crucial areas to improve their usefulness
and cross-domain applicability as the field grows. The following suggestions highlight the crucial
paths for creating UAV datasets and maximizing their potential for future innovations.

7.1. Enhancing Dataset Diversity and Representativeness

Further investigations ought to concentrate on generating more varied and representative UAV
datasets. This involves capturing data in a wider range of environments, weather conditions, and
geographic locations to ensure models trained on these datasets are robust and generalizable. To obtain
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comprehensive data for tasks like environmental monitoring, urban planning, and disaster response,
datasets can be expanded to include a variety of urban, rural, and natural settings.

7.2. Incorporating Multimodal Data Integration

Integrating multiple data modalities, such as thermal, infrared, LiDAR[68], and hyperspectral[64]
imagery, can significantly enrich UAV datasets. In the future, these data types should be combined to
create multimodal datasets that provide a more comprehensive view of the scenes that were recorded.
This integration can improve the accuracy of applications such as vegetation analysis, search and
rescue operations, and wildlife monitoring.

7.3. Advancing Real-Time Data Processing and Transmission

For applications like emergency response and traffic monitoring that demand quick analysis and
decision-making, developing techniques for real-time data processing and transmission is essential.
Future research should focus on optimizing data compression, transmission protocols, and edge
computing techniques to enable swift and efficient data handling directly on UAVs.

7.4. Improving Annotation Quality and Efficiency

High-quality annotations are vital for the effectiveness of UAV datasets in training machine
learning models. Future studies should investigate automated and semi-automated annotation tools
that leverage AI to reduce manual labor and improve annotation accuracy. Additionally, crowdsourcing
and collaborative platforms can be utilized to gather diverse annotations, further enhancing dataset
quality.

7.5. Addressing Ethical and Privacy Concerns

As UAVs become more prevalent, addressing ethical and privacy issues becomes increasingly
important. Guidelines and frameworks for the ethical use of UAV data should be established by future
research, especially for applications involving surveillance and monitoring. It is important to focus on
creating methods that protect privacy and collect data in a way that respects regulations and earns the
trust of the public.

7.6. Expanding Application-Specific Datasets

The creation of customized datasets for specific uses can effectively boost new ideas in certain
areas. For instance, datasets focused on agricultural monitoring, wildlife tracking, or infrastructure
inspection can provide domain-specific insights and improve the precision of related models. To
address the specific needs of various industries, future research should give priority to developing
such targeted datasets.

7.7. Enhancing Interoperability and Standardization

Standardizing data formats and annotation protocols across UAV datasets can make it easier for
researchers and developers to use and make the datasets more interoperable. Future efforts should
aim to establish common standards and benchmarks, enabling the seamless integration of datasets
from various sources and promoting collaborative research efforts.

7.8. Utilizing Advanced Machine Learning Techniques

The application of cutting-edge machine learning techniques, such as deep learning and
reinforcement learning, to UAV datasets holds immense potential for advancing UAV capabilities.
Future research should explore innovative algorithms and models that can leverage the rich data
provided by UAVs to achieve breakthroughs in areas like autonomous navigation, object detection,
and environmental monitoring.
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7.9. Leveraging Advanced Machine Learning Techniques

Longitudinal studies that collect UAV data over long periods of time can give us useful
information about how things change over time in different settings. Future research should emphasize
continuous data collection efforts to monitor changes in ecosystems, urban developments, and
disaster-prone areas, enabling more informed and proactive decision-making.

7.10. Fostering Collaborative Research and Open Data Initiatives

Encouraging collaboration among researchers, institutions, and industries can accelerate
advancements in UAV datasets. Open data initiatives that make UAV datasets public should be
supported by future research. These initiatives will encourage innovation and allow a wider range of
researchers to contribute to and use these resources.

By addressing these future research directions, the field of UAV datasets can continue to evolve,
offering increasingly sophisticated tools and insights that drive progress across multiple domains.
UAV datasets are still being improved and added to, which is very important for getting the most out
of UAV technology and making room for new discoveries and uses.
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Table 6. Performance Metrics and Results for Different Datasets and Methods

Dataset Name Reference Methods Performance

AU-AIR[19]

[69]
YOLOv3

mAP Speed(FPS)

59.83 29

YOLOv4
mAP Speed(FPS)

67.35 24

RSSD-TA-LSTM-GID
mAP Speed(FPS)

71.68 23

[70]
res2net50

mAP Speed(FPS)

88.93 45.73

rs2net101
mAP Speed(FPS)

90.52 7.21

hourglass-104
mAP Speed(FPS)

91.62 7.19

[71]
RetinaNet

Voting Strategy mAP(%)

Unanimous 6.63

YOLO + RetinaNet
Voting Strategy mAP(%)

Consensus 3.69

RetinaNet + SSD
Voting Strategy mAP(%)

Consensus 4.03

[72]
Faster R-CNN

mAP(%)

13.77

SSD
mAP(%)

9.1

YOLOv3
mAP(%)

13.33

YOLOv4
mAP(%)

25.94

FOR-instance[34]

[73]
PointNet

mIoU micro F1

35.65 52.56

PointNet++
mIoU micro F1

33.00 49.57

Point Transformers
mIoU micro F1

22.97 37.13

[74]
HFC (on CULS plot 1)

Precision Recall F1 score

0.89 0.8 0.84

HFC (on NIBIO plot)
Precision Recall F1 score

0.89 0.85 0.87

HFC (on NIBIO2 plot)
Precision Recall F1 score

0.85 0.85 0.85

HFC (on SCION plot)
Precision Recall F1 score

0.95 0.90 0.92

HFC (on RMIT plot)
Precision Recall F1 score

0.89 0.85 0.87

HFC (on TUWEIN plot)
Precision Recall F1 score

0.84 0.80 0.82

UAV-Assistant[28]

[75]
BPnP[76]

ACC2 ACC5

95.2 98.36

55.31 85.34

HigherHRNet[77]
ACC2 ACC5

89.92 97.75

HRNet[78]
ACC2 ACC5

90.75 98.04
1 "Plot" here refers to the forest types that were looked at in the FOR-instance dataset release.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 November 2024 doi:10.20944/preprints202411.0829.v1

https://doi.org/10.20944/preprints202411.0829.v1


24 of 46

Table 7. Performance Metrics and Results for Different Datasets and Methods

Dataset Name Reference Methods Performance

AIDER[15]

[79]
EmergencyNet

memory(MB) F1 Score(%)

0.368 95.7

VGG16
memory(mB) F1 Score(%)

59.39 96.4

ResNet50
memory(MB) F1 Score(%)

96.4 96.1

[80]
AISCC-DE2MS

MSE PSNR

0.042 61.898

Genetic Algorithm
MSE PSNR

0.06 60.349

Cat Swarm Algorithm
MSE PSNR

0.12 57.339

Artificial Bee Colony Algorithm
MSE PSNR

0.165 55.956

DarkTrack2021[31]

[81]
SAM-DA-Track

AUC Precision (normalized) Precision

0.451 0.524 0.593

UDAT
AUC Precision (normalized) Precision

0.421 0.499 0.570

SiamBAN
AUC Precision (normalized) Precision

0.422 0.491 0.566

[82]
SiamAPN

DP 1 NDP 2 AUC

0.43 0.389 0.446

SiamAPN++
DP NDP AUC

0.494 0.446 0.375

UAV-Human[10]

[83] Proposed Novel Method
Precision Recall F1 Score

0.49 0.49 0.48

[84]
CLIP[85]

Top1/Top5 3 (Filtering ratio 90%)

1.79 / 7.05

ViFi CLIP[86]
Top1/Top5 (Filtering ratio 90%)

4.67 / 15.18

[87]
2s-MS&TA-HGCN-FC (Novel method)

CSv1 CSv2

44.33 70.69

4s-MS&TA-HGCN-FC (Novel method)
CSv1 CSv2

45.72 71.84

FR-AGCN[88]
CSv1 CSv2

43.98 69.5

UAVDark135[32]

[89]
DCPT

Success Rate Precision Normalized Precision

0.577 0.703 0.701

DIMP50-SCT
Success Rate Precision Normalized Precision

0.562 0.717 0.71

DIMP18[90]
Success Rate Precision Normalized Precision

0.542 0.702 0.69

[91]
DL+SiamAPN

Success Rate Precision

0.389 0.516

SiamAPN[92]
Success Rate Precision

0.3 0.424

DL+DIMP50
Success Rate Precision

0.544 0.7

DIMP50[93]
Success Rate Precision

0.526 0.672

VRAI[26]

[94]
Proposed Novel Method

mAP R-1 Accuracy

0.828 0.844

TransReID[95]
mAP R-1 Accuracy

0.814 0.826

[95]
RotTrans

mAP R-1 Accuracy

0.848 0.838

TransReID
mAP R-1 Accuracy

0.786 0.803

1 DP: Dynamic Precision. 2 NDP: Normalized Dynamic Precision. 3 Top1/Top5: The authors of [84], employed the
metric of Top1/Top5 for measuring accuracy in single-label classification.
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Table 8. Performance Metrics and Results for Different Datasets and Methods

Dataset Name Reference Methods Performance

UAV-Gesture[30]

[96]
Novel Multifeature+CNN method

Accuracy

0.95

P-CNN[97]
Accuracy

0.91

MLP_7j[98]
Accuracy

0.94

[98]
DD-Net_7j[99]

Accuracy

0.915

P-CNN
Accuracy

0.919

MLP_7j
Accuracy

0.948

UAVid[25]

[100]
BANet

mIoU(%)

64.6

MSD benchmark[25]
mIoU(%)

57.0

[101]
A²-FPN

mIoU(%)

65.7

MSD benchmark
mIoU(%)

57.0

[102]
UNetFormer

mIoU(%)

67.8

ABCNet
mIoU(%)

63.8

BANet
mIoU(%)

64.6

BoTNet
mIoU(%)

63.2

[103]
MSD benchmark

mIoU(%) FPS

57.0 1.00

BiSeNet[104]
mIoU(%) FPS

61.5 11.08

CAN
mIoU(%) FPS

63.5 15.14

VERI-Wild[27]

[105] FDA-Net[106]
mAP(small) mAP(medium) mAP(large)

0.351 0.298 0.228

PVEN
mAP(small) mAP(medium) mAP(large)

0.825 0.77 0.697

[107]
MLSL[108]

mAP(large) R-1 accuracy (large)

0.366 0.775

FastReID
mAP(large) R-1 accuracy (large)

0.773 0.925

[109]
GiT

mAP(T10000) R-1 accuracy (T10000)

0.675 0.854

PCRNet[110]
mAP(T10000) R-1 accuracy (T10000)

0.671 0.85

[111]
HPGN

mAP(T10000) R-1 accuracy (T10000)

0.65 0.8268

Triplet Embedding[112]
mAP(T10000) R-1 accuracy (T10000)

0.516 0.699

[113]
Baseline[114]

mAP(large) R-1 accuracy (large)

0.65 0.95

SAVER
mAP(large) R-1 accuracy (large)

0.677 0.958

8. Results and Discussion of Reviewed Papers

The datasets discussed in this section represent the application of the papers reviewed in this
survey. Our analysis of the datasets revealed that KITE, RescueNet, and Biodrone are relatively new

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 November 2024 doi:10.20944/preprints202411.0829.v1

https://doi.org/10.20944/preprints202411.0829.v1


26 of 46

and have not been thoroughly investigated in the literature. While one of the datasets we reviewed,
ERA, is not very recent, it still lacks the enough amount of study to fully emphasize its potential. The
datasets included in our review were selected based on the number of citations their associated papers
have received, emphasizing those with higher citation counts. We delved into several papers that
make compelling use of the datasets we evaluated. In our examination, we carefully reviewed the
details of the analysis of results and experiments conducted by other researchers. These researchers
utilized the datasets we assessed as benchmarks and applied various methods. We have included the
best results for the methods applied to the datasets we reviewed in this section and in Table 6, 7 and 8.

8.1. AU-AIR

In their study, Jiahui et al.[69] selected AU-AIR as a benchmark dataset to create their proposed
real-time object detection model, RSSD-TA-LATM-GID, specifically designed for small-scale object
detection. The performance of their model surpassed that of YOLOv4[115] and YOLOv3[116]. The
researchers employed the MobileNetv-SSDLite ensemble approach, which yielded the lowest mean
average precision (mAP) score.

Walambe et al.[71] employed baseline models on the AU-AIR dataset as one of their evaluative
benchmarks. The objective of the study was to demonstrate the attainability of different techniques and
ensemble techniques in the detection of objects with varying scales. The baseline technique yielded
the highest performance, with a mean average precision (mAP) score of 6.63%. This outcome was
achieved by employing color-augmentation on the dataset. The performance metrics for the ensemble
methods YOLO+RetinaNet and RetinaNet+SSD were found to be 3.69% and 4.03%, respectively. The
authors Saeed et al.[70] made modifications to the architecture of the CenterNet model by using other
Convolutional Neural Networks (CNNs) as backbones, such as resnet18, hourglass-104, resnet101, and
res2net101. Among all the CNNs as backbone. The findings are presented in Table 6.

Gupta and Verma in their paper [72] utilized the AU-AIR data as a reference point, employing
a range of advanced models to achieve precise and automated detection and classification of road
traffic. The YOLOv4 model achieved the highest mean average precision (mAP) score of 25.94% on
the AU-AIR dataset. The Faster R-CNN and YOLOv3 models achieved the second and third highest
maximum average precision (mAP) scores, with values of 13.77% and 13.33% respectively.

8.2. FOR-instance

Bountos et. al. extensively utilized the "FOR-Instance" dataset in their study, [73], while
introducing their innovative approach FoMo-Net. The dataset was utilized to analyze point cloud
representations obtained from LiDAR sensors in order to gain a deeper understanding of tree geometry.
Existing baseline techniques such as PointNet, PointNet++, and Point Transformer were employed
to accomplish these objectives on aerial modality. The corresponding findings are presented in Table
7. In a separate paper, Zhang et. al.[74] used the "FOR-instance" dataset to train their proposed HFC
algorithm and compare its performance with other established approaches. The authors utilized
several techniques and ensemble approaches (Xing2023, HFC+Xing2023, HFC+Mean Shift, HFC) on
several forest types (CULS, NIBIO, NIBIO2, SCION, RMIT, TUWIEN) shown in the FOR-instance
dataset. Among all the methods, HFC demonstrated superior performance. The optimal outcomes
achieved by the HFC approach on various forest types represented in the FOR-instance dataset are
presented in Table 7.

8.3. UAV-Assistant

Albanis et al. used the UAV-Assistant dataset as benchmark for their research, [75]. They
conducted a comparative analysis of BPnP[76] and HigherHRNet’s[77] 6DOF object pose estimation
using several different criteria. Analysis revealed that loss functions play a crucial role in posture
estimation. Specifically, the l_p loss function outperformed the l_h loss function, particularly in
the case of the M2ED drone, resulting in improved accuracy metrics. HigherHRNet demonstrated
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greater performance compared to HRNet[78] on smaller objects such as the Tello drone, but not on the
M2ED drone, indicating its potential superiority under smaller object classifications. Their analysis of
qualitative heatmaps revealed that the l_p loss function performed better than the Gaussian-distributed
l_h model in accurately locating keypoints. Table 7 displays the accuracy metrics (ACC2 and ACC5)
obtained from the research conducted by Albanis and his colleagues. In the case of BPnP, we have
included the accuracy for both M2ED and Tello drones respectively, as they achieved the highest
accuracy outcomes. Regarding HRNet and HigherHRNet, they achieved the best accuracy specifically
for M2ED.

8.4. AIDER

The AIDER dataset has been utilized as a benchmark by Alrayes et al. and the authors of AIDER
in developing their innovative method, "EmergencyNet." In their paper, [79] various pre-trained
models were applied to the AIDER dataset, with the best F1 accuracy achieved using VGG16 (96.4%)
and ResNet50 (96.1%). However, the memory consumption for VGG16 and ResNet50 was quite
high, at 59.39MB and 96.4MB respectively. However, EmergencyNet achieved 95.7% F1 accuracy
with only 0.368MB of RAM. ResNet50 had nearly 24 million parameters, while VGG16 had 14.8
million. Alrayes et al. benchmarked their AISCC-DE2MS model with AIDER. They found that their
algorithm outperformed the genetic, cat-swarm, and artificial bee colony algorithms. MSE and PSNR
were utilized to evaluate. These methods were used to compare five photos to evaluate the model’s
performance. The best result from the five photos is shown in Table 6.

8.5. DarkTrack2021

Changhong Fu and his team utilized the DarkTrack2021 benchmark as a foundation for developing
the Segment Anything Model (SMA) powered framework SAM-DA. Their research [81] focused on
effectively addressing illumination variation and low ambient intensity. They conducted a comparative
analysis between their model and various methods, particularly the Baseline tracker UDAT[117]
method. Their novel approach outperformed the Baseline UDAT method, achieving substantial
improvements of 7.1% in illumination variation and 7.8% in low ambient intensity. The authors
evaluated 15 state-of-the-art trackers and found that SAM-DA demonstrated the most promising
results. Additionally, Changhong Fu delved into Siamese Object Tracking in their another study [82],
highlighting the significance of UAVs in visual object tracking. They also leveraged the DarkTrack2021
datasets as a benchmark to assess model performance in low-illumination conditions, with detailed
results and the applied models presented in Table 6.

8.6. UAV-Human

Azmat et al.[83] address UAV-captured data-based human action recognition (HAR) challenges
and approaches in their UAV-Human dataset research. Azmat et al. evaluated their HAR system on
67,428 video sequences of 119 people in various contexts from the UAV-Human dataset. The approach
has a mean accuracy of 48.60% across eight action classes, indicating that backdrops, occlusions, and
camera motion hinder human movement recognition in this dataset. Lin et al.[84] studied text bag
filtering techniques for model training, emphasizing data quality. Their ablation study indicated that
text bag filtering ratio influences CLIP matching accuracy and zero-shot transfer performance. Filtering
training data improved model generalization, especially in unsupervised learning. Huang et al.[87]
evaluated the 4s-MS&TA-HGCN-FC skeleton-based action recognition model on the UAV-Human
dataset. The model achieved 45.72% accuracy on the CSv1 benchmark and 71.84% on the CSv2
test, surpassing previous state-of-the-art techniques. They found that their technique can manage
UAV-captured data’s viewpoints, motion blurring, and resolution changes.
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8.7. UAVDark135

Zhu et al.[89] and Ye et al.[91] used the UAVDark135 dataset to evaluate their strategies for
increasing low-light tracking performance. The Darkness Clue-Prompted Tracking (DCPT) approach
by Zhu et al. showed considerable gains, reaching a 57.51% success rate on UAVDark135. A
1.95% improvement over the base tracker demonstrates the effectiveness of including darkness clues.
Additionally, DCPT’s gated feature aggregation approach increased success score by 2.67%, making it
a reliable nighttime UAV tracking system. Ye et al.’s DarkLighter(DL) approach improved tracking
performance on the UAVDark135 dataset. DL improved SimpAPN[118][92] tracker AUC by over
29% and precision by 21%. It also worked well across tracking backbones, enhancing precision and
success rates in light variation, quick motion, and low resolution circumstances. DL surpassed modern
low-light enhancers like LIME by 1.68% in success rate and 1.45% in precision.

8.8. VRAI

VRAI was utilized to establish a vehicle re-identification baseline. Syeda Nyma Ferdous, Xin Li,
and Siwei Lyu [94] tested their uncertainty-aware multitask learning framework on this dataset and
achieved 84.47% Rank-1 accuracy and 82.86% mAP. This model’s capacity to handle aerial image size
and position fluctuations was greatly improved by multiscale feature representation and a Pyramid
Vision Transformer (PVT) architecture. Shuoyi Chen, Mang Ye, and Bo Du[95] focused on vehicle
ReID using VRAI. RotTrans, a rotation-invariant vision transformer, surpassed current innovative
approaches by 3.5% in Rank-1 accuracy and 6.2% in mean average precision (mAP). This approach
solved UAV-based vehicle ReID challenges that typical pedestrian ReID methods struggle with. The
process was further complicated by the need to present results in a certain format for performance
evaluation.

8.9. UAV-Gesture

Usman Azmat et al.[96] and Papaioannidis et al.[98] utilized the UAV-Gesture dataset to evaluate
their recommendations for human action and gesture recognition. They used the UAV-Gesture
collection of 119 high-definition RGB movies representing 13 unique motions used to control UAVs. The
dataset is ideal for testing recognition systems due to its diversity of views and movement similarities.
The Usman Azmat et al. method achieved 0.95 action recognition accuracy on the UAV-Gesture dataset.
Mean precision, recall, and F1-score for the system were 0.96, 0.95, and 0.94. Several investigations
supported by confusion matrices showed the system’s ability to distinguish gestures. Papaioannidis et
al. found that their gesture recognition method outperformed DD-Net[119] and P-CNN[120] by 3.5%
in accuracy. The authors stressed the need of using 2D skeletal data from movies to boost recognition
accuracy. Real-time performance makes their method suitable for embedded AI hardware in dynamic
UAV situations.

8.10. UAVid

The UAVid dataset has been extensively utilized as a benchmark by several researchers in the
development of innovative methods for semantic segmentation in urban environments. Wang et
al.[100] introduced the Bilateral Awareness Network (BANet) and applied it to the UAVid dataset,
achieving a notable mean Intersection-over-Union (mIoU) score of 64.6%. BANet’s ability to
accurately segment various classes within high-resolution urban scenes was demonstrated through
both quantitative metrics and qualitative analysis, outperforming other state-of-the-art models like the
MSD benchmark.

Similarly, Rui Li et al.[101] proposed the Attention Aggregation Feature Pyramid Network
(A²-FPN) and reported significant improvements on the UAVid dataset. A²-FPN achieved the highest
mIoU across five out of eight classes, surpassing BANet by 1% in overall performance. The model’s
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effectiveness was particularly evident in its ability to correctly identify moving vehicles, a challenging
task for many segmentation models.

Libo Wang et al.[102] introduced the UNetFormer, which further pushed the boundaries of
semantic segmentation on the UAVid dataset. Achieving an impressive mIoU of 67.8%, the UNetFormer
outperformed several advanced networks, including ABCNet[121] and hybrid Transformer-based
models like BANet and BoTNet[122]. The UNetFormer demonstrated a strong ability to handle
complex segmentation tasks, particularly in accurately identifying small objects like humans.

Lastly, Michael Ying Yang et al.[103] applied the Context Aggregation Network(CAN) to the
UAVid dataset, achieving a mIoU score of 63.5% while maintaining a high processing speed of 15 frames
per second (FPS). This model was noted for its ability to maintain consistency in both local and global
scene semantics, making it a competitive choice for real-time applications in urban environments.

8.11. VERI-Wild

The VERI-Wild dataset has been extensively utilized as a benchmark by several researchers in the
development of innovative methods for vehicle re-identification (ReID) in real-world scenarios. Meng
et al.[105] introduced the Parsing-based View-aware Embedding Network (PVEN) and applied it to
the VERI-Wild dataset, achieving significant improvements in mean Average Precision (mAP) across
small, medium, and large test datasets, with increases of 47.4%, 47.2%, and 46.9%, respectively. PVEN’s
ability to perform view-aware feature alignment allowed it to consistently outperform state-of-the-art
models, particularly in Cumulative Match Characteristic (CMC) metrics, where it showed a 32.7%
improvement over FDA-Net at rank 1.

Similarly, Lingxiao He et al.[107] evaluated the FastReID toolbox on the VERI-Wild dataset,
highlighting its effectiveness in accurately identifying vehicles across various conditions. FastReID
achieved state-of-the-art performance, particularly in Rank-1 accuracy(R1-Accuracy) and mAP,
showcasing its robustness in handling the complexities of vehicle ReID tasks in surveillance and
traffic monitoring environments.

Fei Shen et al.[109] applied the GiT method on the VeRi-Wild dataset, securing top performance
across all testing subsets, including Test3000(T3000), Test5000(T5000), and Test1000(T1000). The GiT
method outperformed the second-place method, PCRNet, by 0.41% in Rank-1 identification rate and
0.45% in mAP on the Test1000 subset. The study emphasized the importance of leveraging both
global and local features, as GiT demonstrated superior generalization across different datasets and
conditions. In a separate study, Fei Shen et al.[111] developed the Hybrid Pyramidal Graph Network
(HPGN) approach, which achieved the highest Rank-1 identification rate among the evaluated methods
on the VERI-Wild dataset, so making more contributions to the advancing field of vehicle ReID. The
findings highlighted the resilience of HPGN, especially in difficult circumstances such as fluctuating
day and night situations, where alternative approaches exhibited a decrease in effectiveness.

Lastly, Khorramshahi et al.[113] presented a residual generation model that improved mAP by
2.0% and CMC1 by 1.0% compared to baseline models. The model’s reliance on residual information,
as indicated by a high alpha value (α = 0.94) which proved crucial in extracting robust features from
the dataset. This self-supervised method further proved its adaptability and usefulness in vehicle ReID
tasks by showcasing its efficacy on the VERI-Wild dataset.

9. Conclusions

In this survey paper, we looked at the current state of UAV datasets, highlighting their various
applications, inherent challenges, and future directions. UAV datasets are essential in areas such
as disaster management, surveillance, agriculture, environmental monitoring, and human behavior
analysis. Advanced machine learning techniques have improved UAV capabilities, enabling more
precise data collection and analysis. Despite their potential, UAV datasets face several challenges,
including data quality, consistency, and the need for standardized annotation protocols. Ethical
and privacy concerns necessitate strong frameworks to ensure responsible use. Future research
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should increase dataset diversity, integrate multimodal data, and improve real-time data processing.
Improving annotation quality and promoting collaborative research and open data initiatives will
increase dataset utility. To summarize, UAV datasets are at a critical stage of development, with
significant opportunities for technological advancements. Addressing current challenges and focusing
on future research directions will result in new discoveries, keeping UAV technology innovative and
practical.
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Appendix A. Visual Representation of Reviewed Datasets

The following images were captured from the papers in which they were presented as a new
dataset or from the dataset repositories referenced in their paper where they were made available as
public dataset repositories.

Appendix A.1. AIDER

Figure A1. Aerial Image Dataset for Applications in Emergency Response (AIDER): A selection of
pictures from the Augmented Database
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Appendix A.2. BioDrone

Figure A2. Illustrations of the flapping-wing UAV used for data collection and the representative data
of BioDrone. Different flight attitudes for various scenes under three lighting conditions are included
in the data acquisition process, ensuring that BioDrone can fully reflect the robust visual challenges of
the flapping-wing UAVs.

Appendix A.3. ERA

Figure A3. Overview of the ERA dataset. Overall, they have collected 2,864 labeled video snippets for
24 event classes and 1 normal class: post-earthquake, flood, fire, landslide, mudslide, traffic collision,
traffic congestion, harvesting, ploughing, constructing, police chase, conflict, baseball, basketball,
boating, cycling, running, soccer, swimming, car racing, party, concert, parade/protest, religious
activity, and non-event. For each class, we show the first (left) and last (right) frames of a video. Best
viewed zoomed in color.
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Appendix A.4. FOR-instance

(a) Image 1 (b) Image 2 (c) Image 3

(d) Image 4 (e) Image 5

Figure A4. Samples of the various FOR-instance data collections’ instance and semantic annotations.
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Appendix A.5. UAVDark135

Figure A5. The first frames of representative scenes in newly constructed UAVDark135. Here, target
ground-truths are marked out by green boxes and sequence names are located at the top left corner of
the images. Dark special challenges like objects’ unreliable color feature and objects’ merging into the
dark can be seen clearly.

Appendix A.6. UAV-Human

Figure A6. Examples of action videos in UAV-Human dataset. The first and second rows show two
video sequences of significant camera motions and view variations, caused by continuously varying
flight attitudes, speeds and heights. The last three rows display action samples of the dataset, showing
the diversities, e.g., distinct views, various capture sites, weathers, scales, and motion blur.
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Appendix A.7. UAVid

Figure A7. Example images and labels from UAVid dataset. First row shows the images captured by
UAV. Second row shows the corresponding ground truth labels. Third row shows the prediction results
of MS-Dilation net+PRT+FSO model. The last row shows the labels.

Appendix A.8. DarkTrack2021

Figure A8. Initial frames of specific sequences from the DarkTrack2021 archive. Objects being tracked
are indicated by green boxes, and sequence names are shown in the top left corner of the photos.
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Appendix A.9. VRAI

Figure A9. Overview of our gathered dataset for Unmanned Aerial Vehicle (UAV)-based vehicle ReID.
In order to facilitate thorough investigation, the authors have included a comprehensive range of
information in the dataset, such as color, vehicle type, Skylight (Sky.), Bumper (Bum.), Spare tire (Spa.),
Luggage rack (Lug.), and distinguishing components.
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Appendix A.10. VERI-Wild

Figure A10. Exemplary photos extracted from the dataset. The dataset is obtained from a
comprehensive real video surveillance system including 174 cameras strategically placed around
an urban area spanning over 200 square kilometers.

Appendix A.11. RescueNet

Figure A11. Graphical representation of complex scenes from the RescueNet dataset. The first and third
rows display the original photos, while the lower rows provide the associated annotations for both
semantic segmentation and image classification functions. Displayed on the right are the 10 classes,
each represented by their segmentation color.
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Appendix A.12. UAV-Assistant

Figure A12. This diagram illustrates the many modalities present in the UAV-Assistant dataset, which
consists of a randomly chosen collection of images. The uppermost row displays color photos, the
second row displays depth, the third row displays the normal map, and the last row displays flight
silhouettes of the drone.
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Appendix A.13. AU-AIR

Figure A13. The AU-AIR dataset includes extracted frames that are annotated with object information,
time stamp, current location, altitude, velocity of the UAV, and rotation data observed from the IMU
sensor. This figure presents an exemplar of it.
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Appendix A.14. UAV-Gesture

Figure A14. This diagram displays thirteen explicitly chosen gestures, each accompanied by a single
picked image. Directions of hand movement are shown by the arrows. The amber color marks serve
as approximate indicators of the initial and final locations of the palm for ONE iteration. Neither the
Hover nor Land gestures are dynamic gestures.
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Appendix A.15. Kite

Figure A15. Exemplary commands and visual representations derived from the KITE dataset.
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