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Concept Paper  

Graph Signal Fractals: A Generalized Representation 

for Naturally Occurring Fractality in Signals 

Vibhor Kumar 

Indraprastha Institute of Information Technology, Okhla Phase-3, New Delhi; vibhor@iiitd.ac.in 

Abstract: Fractal signals are defined as observation over time points or spatial coordinates with self-

similar patterns. However, when a signal is present as quantified observations on nodes of a graph, 

its fractality needs to be understood comprehensively. Here we describe graph signal fractality which 

can be used to study the fractal behavior of signals on a network. It is a generalised representation 

which can also be used for regular multidimensional signals. We explain here different approaches 

for estimating fractality in graph signals, including a method based on wavelet transform. Graph 

signal fractality estimation could help in multiple applications like graph segmentation, classification 

and imputation and understanding the flow of information on a network. 
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1. Introduction 

Naturally occurring patterns often show fractality. In layman's approach, a fractal is described 

as a geometric shape containing a self-repeating structure at arbitrarily small scales. Often occurrence 

of similar patterns at increasingly smaller scales is termed self-similarity or fractality. In the real 

world, often patterns of structures and natural topology follow approximate self-similarity. Such as 

the structure of the branching of trees or river distributaries tends to have fractal patterns. In the field 

of genomics, the chromatin interaction and its folding have been reported to have a fractal pattern 

(Almassalha et al. 2017). Knowledge of fractals can be utilised in medical diagnoses for diseases like 

cancer. Since healthy human blood vessel cells have a fractal pattern of growth, the cancerous cells 

with abnormal fashion, can be detected based on this approach.  

Fractal patterns have also been used in different computational approaches like machine 

learning, image compression and resolution improvement. Fractal interpolation has been used to 

improve the prediction of time series by increasing the fine-graininess of the predicted signal. 

Estimation of fractality as a feature has been used in signal pattern recognition (Shi 2018).  In order 

to measure the magnitude of repetition or self-similarity the fractal dimension is used. In many cases, 

the dimension of fractality may be more or less than the Euclidean and topological dimension. 

Nevertheless, the estimate of the fractality dimension provides hint patterns of the internal repetitions 

which can help in many ways. 

The concept of fractality has also been exploited for feature selection to avoid over-fitting 

(Alsaeedi et al. 2024) for the prediction of biological signals. For Image compression fractals allow us 

to represent seemingly random patterns with little data (Fisher, n.d.). It has been used for improving 

image resolution and even 3D model creation using fractal image coding (FIC). 

Even though the fractal nature of graph structure is well studied, for graph-signals there is still 

a need for elaboration of calculation and application of fractality. There are multiple examples of 

graph signals such as the traffic-load on the airports connected by the air-routes, traffic load at railway 

junctions or cities connected by roads, sentiment and quantified opinion on social networks. There 

are many examples of multi-dimensional graph signals such as survey data of individuals connected 

through friendship networks or quantified physical properties of the amino-acids in residue 
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interaction networks of proteins. Understanding the fractality of such signals could lead towards 

novel insights. Here we elaborate and explain methods to calculate fractality in graph signals and 

provide some examples.  

2. Understanding Fractal Structures and Fractal Signals 

There is a high similarity between the terms fractal structures and fractal signals. It is often the 

context in which it is mentioned such as, the branches of a tree or fractal graphs can be described as 

fractal structures. However, their image in 2D or 3D dimension can also be called a fractal signal or 

image. The pattern of the fractality in the velocity and movement can be described as a fractal signal. 

While fractal geometry can be used to describe both structures and signals, some patterns are more 

convincing when they are described as signals. Such as the velocity in hydrodynamic turbulent flow 

(Scotti, Meneveau, and Saddoughi 1995) which can be better described as a one-dimensional signal. 

In the field of graph-theory the topic of fractal structure of graphs and networks has been studied 

previously described thoroughly ((Skums and Bunimovich 2020).  

The chromatin interaction pattern can be said to form fractal shapes. However, it is not necessary 

that activation of different loops and domains in chromatin follow a fractal pattern. In other words it 

can be described that graph of chromatin interaction and network representing the hierarchy of 

topologically associated domain (TAD) have a fractal-pattern however the signal of their activity does 

not necessarily have self-similarity.  There are many such examples where the underlying graph 

may have fractal structure whereas the signal on it might not have fractality. Such as, a tree could 

have a fractal branching pattern which can be represented as a fractal graph, but the pattern of 

location of flowers on the branches may not have fractal geometry. 

3. Fractal Signals on Graph 

There is also another category of data-sets where the underlying graph may not have fractality 

but the signal on its nodes or edges could have a fractal pattern. Such as the topology of social-

network may not have fractal geometry, however, the spread of a sentiment on social-network could 

have a fractal pattern (Figure 1A-B). Another example is traffic passing through junctions on the road 

network (Figure 1C). Often large cities tend to have more traffic load on roads which further gets 

divided to other connected cities in a partially fractal manner in spite of the non-fractal nature of the 

road network. Another example is the fractal nature of the excitation of neurons observed by fMRI 

during different activities like watching movies or dreaming. Though temporal fractality of activation 

of neurons has been described by a few researchers (Campbell, Vanderwal, and Weber 2022), the 

underlying factor is controlled by the connection between neurons. Thus at a single time-point the 

activity of neurons connected in a network could show graph-signal fractality. Thus during the flow 

of information on a graph, it is not necessary that it would follow the pattern of the graph. Certain 

nodes or parts of the graph may not allow flow for particular kinds of information. Such as, in a social 

network individuals of different faiths and religions are connected through friendship or 

acquaintance. However, when individuals forward the content of a faith or opinion, they forward it 

to like-minded friends. Even if an individual forwards a content to a friend with a different opinion, 

it is not forwarded further. The topology of sentiments, signal or information flow on graphs could 

be completely different from the underlying graph.  The graph signal approach provides additional 

benefits of estimating and modeling fractality over non-regular and non-fractal graphs. Another such 

example of the fractal signal on a non-regular and non-fractal graph could be obtained by observing 

the presence of hydrophobicity on the amino-acids in the residue interaction network of protein 

structure (Banerji and Ghosh 2009). 
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Figure 1. Examples of possible fractal signals on graph  A) A simple graph where the flow of signal has been 

shown by dark color edges. The presence of signal at nodes has also been shown in red color. B) The pictorial 

representation of a larger network where signal at nodes and signal-flow is shown at edges with bright color.  

C) The road network map of the city is shown. Here nodes of road network are junctions. The traffic on each 

junction would be the signal intensity on nodes of the road network. The pattern of load on nodes is different 

from the structure of the underlying road network. 

3.1. Signal and Images as Special Cases of Graph Signal Fractal 

In order to understand in a Layman approach, if we have an image of a fractal pattern, we can 

consider it as a signal on a regular graph. The regular graph representing an image consists of nodes 

(pixels) with 4 neighbors and the pixel color would be the signal on the regular graph (Figure 2). 

Linear time series data can also be represented as a signal on a graph; its fractality can also be 

modelled with a graph signal processing approach. Even a multi-dimensional signal can be 

interpreted as a regular graph where the number of neighbours of nodes is dependent on dimensions. 

For three dimensions, we can have a regular graph where every node is connected to 6 neighbouring 

nodes. 
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Figure 2. Examples of fractal signals on regular graphs. A) The branching fractal signal on a regular graph, its 

visualisation using a circular style of plotting for the same graph. Similarly, randomised node-locations have 

also been used to plot the same graph-signal. B) The Sierpinski square signal on a regular graph is another 

example where the underlying graph has a different fractality than the signal on its nodes. 

4. Methods to Estimate Fractality of Graph Signals 

Here, we describe how the available methods for estimating fractality can be modified for graph-

signal. For signals on regular graphs like 1D, 2D or 3D fractal signals, boxing-based approach can 

help to estimate fractality. Hausdorff dimension (Fernández-Martínez, García Guirao, and Sánchez-

Granero 2019) is regularly used to describe the dimension of fractality, it is a successor to the box-

counting or  Minkowski-Bouligand approach to estimate self-similarity. In simple mathematical 

terms, it is defined for self-similarity with parameters N and s, described by a power law such as  

N = sd                

Where d= ln(N)/ln(S). The d dimensional Housdorff measure of the set 𝑋 is often defined as  

  where    and the infimum is 

over all the  (Skums and Bunimovich 2020). Here 𝐶  represent countable covers of 𝑋 . Another 

measure to describe self-similarity Lebesgue is linearly proportional to Housdorff measure for Borel 

sets. Where Borel sets are defined as sets that can be made from open and closed sets by repeatedly 

taking countable unions and intersections. For graph structures, Skums and Bunimovich (Skums and 

Bunimovich 2020) have described fractality using isomorphism and Housdorff and Lebesgue 

measures. However for graph signals the measure of fractality is described in a slightly different 

manner, although with a similar notion.  

4.1. Higuchi’s Method for Estimating Fractal Dimension 

Higuchi’s method(Wanliss and Wanliss 2022) is particularly useful for irregular or self-similar 

signals over time. It is applied as follows: 

I. Consider a signal represented as x(1), x(2), x(3) .... x(N), the time sequence of points for which 

FD has to be estimated, where N is the total number of sample points in the sequence. Construct k 

new time series 𝑥𝑚
𝑘  as, 

{x(m), x(m+k), x(m+ 2k), . . . , x(m+⌊(N − m)/k⌋k)}, for m= 1,2,...,k         (1) 

where m is the initial time value, k is the discrete time interval between points (delay) and ⌊a⌋ 

denotes the integer part of a . 

II. For each of the time series 𝑥𝑚
𝑘  constructed, the average length 𝐿𝑘

𝑚  is computed as: 
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𝐿𝑚
𝑘 =  𝛴𝑖=1

⌊(𝑁−𝑚)/𝑘⌋
 =  

(𝑥(𝑚+𝑖𝑘) − 𝑥(𝑚+(𝑖−1)𝑘))(𝑁−1)

⌊(𝑁−𝑀)/𝑘⌋𝑘
                                         (2) 

where ⌊(N − m)/k⌋k is a normalization factor. 

Thus the average of this length is obtained over all m to obtain L(k). 

III. The fractal dimension is then given as, 

𝐷 = 𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑙𝑜𝑔(𝐿(𝑘)) 𝑣𝑠 𝑙𝑜𝑔(1/𝑘)                                                   (3) 

4.2. Hop-Counting Method 

The hop-counting method is an analogue of box-counting method (“An Effective Method to 

Compute the Box-Counting Dimension Based on the Mathematical Definition and Intervals” 2020) 

which is particularly effective for geometric structures such as an image or spatial data. It identifies 

the self-similarity at different scales for such data. This method overlays a grid of boxes over the 

pattern completely. The size of the boxes, say 𝜖 is varied from a bigger length to a smaller length. 

The count of the number of boxes that contain a part of the pattern, say N(𝜖) is the recorder for each 

𝜖.  

The fractal dimension is defined as,  

𝐷 = 𝑙𝑖𝑚
𝜖→0

𝑙𝑜𝑔(𝑁(𝜖))

𝑙𝑜𝑔(1/𝜖)
                                                                    (4) 

In order to extend such fractality measures for graph signals, one can modify the coordinates to 

hops. Such a box is represented by a window containing a given number of hops. It can be understood 

easily when a graph is regular like an image. However, a similar pattern can be observed on a non-

regular graph. 

4.3. Wavelet-Based Multi-Fractal Analysis 

Wavelets and fractal signals are closely related concepts in the field of signal processing and 

mathematical analysis, particularly in understanding and characterizing complex and self-similar 

signals (Akujuobi and Barniecki, n.d.). Wavelets are mathematical functions that are used to 

decompose signals into different scales or resolutions. Thus, it is quite helpful for the signals that 

demonstrate a varying fractal behavior over scales. When the fractal dimension is defined as the 

Hausdorff dimension of the singularity spectrum, it can be calculated with the partition function 

using the WTMM (Wavelet Transform Modulus Maxima) coefficients(Akujuobi and Barniecki, n.d.; 

Lin and Sharif 2007). 

The WTMM method is focused on the modulus maxima of the wavelet coefficients. It helps to 

identify the local maxima of the modulus over scales that are important for recognizing the 

structure’s local and global irregularities. The wavelet transform of a real-valued function f is defined 

as: 

𝑇[𝑓] (𝑥0, 𝑠)  =  1/𝑠 ∫
∞

−∞
𝑓(𝑥)𝜓(

𝑥−𝑥0

𝑠
)𝑑𝑥                                                 (5) 

where 𝑥0  is the space parameter and  s(> 0) is the scale parameter for analyzing wavelets. 

Instead of averaging over wave coefficients, only the local maxima of 𝑇[𝑓](𝑥, 𝑠) is used. For a given 

scale s the position of local maxima 𝑥𝑗  is determined such that 𝑇[𝑓](𝑥𝑗 − 1, 𝑠)  <  𝑇[𝑓](𝑥𝑗 , 𝑠)  >

 𝑇[𝑓](𝑥𝑗 + 1, 𝑠). All such local maxima at a scale are found and sum of their qth power is taken, such 

that       

𝑍(𝑞, 𝑠)  =  ∑𝑗𝑚𝑎𝑥
𝑗=1 | 𝑇[𝑓](𝑥𝑗 , 𝑠)|𝑞                                                  (6) 

Often scaling behavior of 𝑍(𝑞, 𝑠) can be described with scaling exponents 𝜏̂(𝑞) such that  

𝑍(𝑞, 𝑠) ~ 𝑠𝜏̂(𝑞)                                                   (7) 

Here 𝜏̂(𝑞)  shows the fractal property of the signal. For mono-fractal signal the exponents 

𝜏̂(𝑞)follow a straight line.  If 𝜏̂(𝑞) is not linearly related to 𝑞 then signal has different fractality at 

different locations or in other words, it is multi-fractal. One can apply the Legendre transform to 𝜏̂(𝑞) 

to know the multifractal spectrum. Thus wavelets can capture multifractality with different long-

range correlations due to small and large fluctuations. The shuffled series from this type of 

multifractals will exhibit randomness, hshuf(q) = 0.5, i. e. non-multifractal behavior.   
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4.3.1. Graph Wavelet and Graph Signal Fractality 

Wavelet transform of signal on graph nodes can be performed to get an estimate of fractality 

(“Wavelets on Graphs via Spectral Graph Theory” 2011) (see supplementary material and Figure 3). 

To apply WTMM method one can find maxima at each level such that at a scale 𝑠, 𝑇[𝑓](𝑛𝑖 , 𝑠)  >

𝑇[𝑓](𝑛𝑗 , 𝑠)   where node 𝑛𝑗  could be any direct neighbor of node 𝑛𝑖 . Further, the qth power of 

maxima of graph-signal wavelet at a level would be added, such as  

𝑍(𝑞, 𝑠)  =  ∑𝑖𝑚𝑎𝑥
𝑖=1 | 𝑇[𝑓](𝑛𝑖 , 𝑠)|𝑞                                                 (8) 

Here, again the scaling behavior of 𝑍(𝑞, 𝑠) can be described as 

𝑍(𝑞, 𝑠) ~ 𝑠𝜏̂(𝑞)      where 𝜏̂(𝑞) is a scaling exponent.  

 

Figure 3: The graph wavelet transform of fractal signal on regular graph. A) original graph signal which 

follows the structure of Sierpinski triangle and its wavelet coefficients at different levels. GSP toolbox (Perraudin 

et al. 2014) was used to make the plots to explain our concept. B) The Sierpinski square-shaped graph signal and 

its graph wavelet coefficient at different levels. 

5. Discussion 

Fractality for one, two or multi-dimensional signals has been studied previously and proven to 

be useful. Graph signal fractality described here generalises self-similarity patterns of all such signals 

including quantified information on nodes of a graph. The fractality estimation method for graph 

signals can also be applied to nearly all kinds of signals. Here we have explained the approach of 

extension two fractality estimation methods for graph signals. However, there are multiple other 

methods to estimate signal fractality such as Katz (“A Note on Fractal Dimensions of Biomedical 

Waveforms” 2009), Petrosian(Fu, Li, and Ye, n.d.) and Sevcik fractality(“On Fractal Dimension of 

Waveforms” 2006). One can also explore extensions of such methods for graph signals. 

Fractality of graph-signal could prove to be useful for analysing a variety of data-sets. The 

concept of using fractality to increase resolution and fine-granularity can be easily used in the 

prediction of signals on graphs as well multi-dimensional. However, in addition to signals and multi-

dimensional structures, many data-sets can not be directly mapped as graph signals. In such cases, 

one can infer a graph among data-points using the K-nearest neighbor approach. Previously a few 

studies have used such an approach to impute missing signals(Mishra, Srivastava, and Kumar 2020), 

however, the exploitation of fractality on KNN-based graphs between data-points needs more a 

comprehensive study. 

Here, we have explained fractality estimation using a single signal on a graph. However, there 

could be more complex signals on graphs such as temporal or multidimensional signals on nodes. 

The temporal signals on graphs can be used to study the evolving fractality of graph-signal with time. 

However, the inclusion of multidimensional signal patterns at every node of the graph needs further 

generalisation in future. 
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