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Abstract: Users on the social networking platform have the freedom to express themselves freely.
Towards the same time, this has created a forum for disagreement and hate directed at someone,
society, racism, sexual orientation, and so on. Identifying hate online is a challenging task.
Researchers from all around the world have contributed major methods for detecting hate speech,
but owing to the issue's complexity, there are still many unresolved issues. In this research, we offer
a multi-model learning strategy for detecting hate speech on Twitter. We utilised the Kaggle
TwitterHate dataset, which had 31962 tweets categorised as binary hate or non-hate, to evaluate our
technique. The suggested method is tested using commonly used machine learning classifiers with
multi-model technique. Using TF-IDF features, we acquired detection results of 96.29 %, precision
of 96%, recall of 96%, and f1-score of 96%.
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1. Introduction

Nowadays online social networks (OSN) are the most important and fastest means
of communication. In fact, it is the popular way to communicate with each other [1]. Offers
users freedom of expression. Although it is the main medium and the most popular form
of communication, it becomes the platform for spreading hate speech related to
individuals, racism, sexual purposes, cyberbullying, etc. Aggressive and intentional acts
are reported using OSNs like Twitter, WhatsApp, Facebook, Reddit etc. [3]. Identifying
hate speech online is a difficult problem due to the complex and multilingual nature of
the support that NSOs provide to users [4,5]. Effective hate speech detection is highly
dependent on the availability of benchmark training datasets [6,7,8]. Natural language
processing is widely used to detect hate and offensive language [9,10]. Several studies
suggested the using machine learning as well as deep learning techniques to effectively
detect hate and offensive language in OSNs, and also obtained acceptable results. [11,12].
Researchers around the world propose different language-specific datasets to train the
classifiers and finally achieved significant recognition performance [13,14,15,16].

In this paper, we have proposed multi model learning approach to identify hate
speech or non-hate speech on Twitter's OSN platform. We used Kaggle's TwitterHate
dataset, which contains 31,962 tweets tagged as binary hate or non-hate. The data set was
significantly skewed: 93% of tweets or 29,695 tweets contained data from Twitter without
hate tags and 7% or 2,240 tweets contained data from Twitter with hate tags. We pre-
processed the dataset using NLP (Natural Language Processing) techniques such as stop
word removal, tokenization, stemming, lemmatization, bag of words (BOW), hashtag
removal, and URL removal. We have used features such as TE-IDF, sentiment polarity
score and doc2vector. We used state-of-the-art machine learning classifiers such as
Decision Tree (DT), Logistic Regression (LR), XGBoost, Random Forest (RF), Extra Tree
(ET), AdaBoost and lastly Support Vector Machines (SVM). Using classifiers mentioned
above, we created a multi-model learning classifier using the majority voting technique.
It is found that with the proposed approach we achieved more acceptable and significant
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detection results, such as accuracy 96.29%, precision of 96%, recall of 96% and f1-score of
96% with the TF-IDF features. The major findings of this paper are as follows:

e We proposed the multi-model learning approach for identifying hate-speech
and non-hate-speech on Twitter platform.

e The proposed approach was found to achieve results such as 96.29%
accuracy, 96% precision, 96% recall and 96% fl-score. The experimental
results suggest that our results are acceptable and more reasonable.

e The experimental analysis shows that our results are more stable and
acceptable compared to independent machine learning classifiers.

The remainder of this paper is organized as follows. Section 2 discusses brief related
work on hate speech detection. Section 3 describes the proposed Materials and Methods
in detail. Section 4 discusses the experimental results and the performance of the proposed
approach. Finally, in Section 5, the conclusion is presented.

2. Related Work

In recent various approaches have been proposed by researchers towards hate speech
detection for major OSNs like Twitter, Facebook, Reddit, Wikipedia, YouTube etc. We
described some of the approaches as follows.

Ross, B., et al. have measured the reliability of the hate speech and to what extent in
accordance with subjective ratings [18]. Davidson, T. et al. have used a crowd-sourced
hate speech lexicon to collect the hate speech from the tweets. They have the multiclass
technique to distinguish between different categories of the hate speeches [19]. Badjatiya,
P. have used deep learning framework for hate speech detection from tweets. They
defined this problem by classifying tweets into categories like racist, sexist or neither.
They have used the benchmark dataset of annotated tweets of 16K and stated that the
deep learning techniques outperformed the char/n-gram techniques [20].

Gao, L. et al. have used logistic regression and neural network models for the hate
speech detection. They have provided the corpus of the hate speech dataset. They have
stated that both models have performed well on the benchmark dataset and achieved
better results in comparison with the baseline classifiers [21]. Founta, A. M. et al. have
proposed incremental and iterative methods for the detection of abusive language on the
social media platforms like Facebook and Twitter. According to them, the proposed
methodology working better for the reduction but robust labels to characterize the
abusive tweets [22]. Zhang, Z. et al. have targeted to identify the characteristics of the
tweets like race, and religion. They have stated that the hate speech detection is a
challenging task due to unique, discriminative features. They have proposed the Deep
Neural Network for the features extraction and to capture the semantics of the hate speech
[23].

Grondahl, T. et al. have suggested that the data and labeling is more important than
the accurate hate speech detection models [24]. Mishra, P. et al. have addressed the
problem of obfuscation of words by users to evade detection model. They have designed
the model for embeddings for unseen words. They have stated that their approach
achieved significant improvement in the detection of hate speech on Twitter and
Wikipedia datasets [25].

Kshirsagar, R. et al. have presented neural network based approach for classification
of hate and non-hate Twitter speech basically in racist and sexist. They have used three
datasets namely, Sexist/Racist (SR), HATE and HAR. They have used word embedding
and pooling features to train the deep neural network [26].

Qian, J., et al. presented two large fully-labeled datasets collected from Gab and
Reddit. They evaluated the datasets in order to better understand common intervention
tactics and to investigate the effectiveness of common automatic response generation
methods [27]. Mansourifar, H. et al. have collected significant dataset from the clubhouse.
They have analyzed the dataset stastically using the Google Perspective Scores. According
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to them, the Perspective Scores outperforms the Bag of Words andWord2Vec textual
features [28].

Gautam, A. et al. have presented the dataset related to MeToo movement. They have
manually annotated the dataset for five different linguistic aspects like, relevance, stance,
hate speech, sarcasm, and dialogue acts [29]. Silva, L. have analyzed the targets of hate
speech in online social media. The have collected the traces of the two social media like
Twitter and Whisper. According to them, their approach identifies the hate speeches and
provides the directions for prevention and detection approaches [30].

Salminen, J. et al. have manually labeled the posts from YouTube and Facebook
videos. They have created taxonomy of different types of targets and trained machine
learning classifiers to automatically detect the online hate speeches. They have conducted
experiments using machine learning classifiers, like Logistic Regression, Decision Tree,
Random Forest, Adaboost, and Linear SVM, to generate a multi-class, multi-label
classification model that automatically detects and classifies hateful comments. They have
achieved best performance using Linear SVM with an average F1 score of 0.79 using TF-
IDF features [31]. ElSherief, M. et al. have presented the comparative study of hate speech
instigators and target users on Twitter. According to them, hate instigators target more
popular and high profile Twitter users [32].

3. Materials and Methods
3.1. Proposed Twitter Hate Speech Detection System

Figure 1 shows our proposed Twitter hate detection system. It has four stages like
pre-processing, feature extraction and learning.

TwitterHate Dataset

[ Pre-processing

.

Feature Extraction

{J, Learning Models
G5 1 U U <7
[ DT ] [ IR ][ XGBoost | | RF ] [ ET ] AdaBoost ] [ svv |
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Majority Voting

{}% Majority Voting Model

Hare Non-Hate

Figure 1. Framework of Proposed Twitter Hate Speech Detection System.

3.2. Pre-processing

We passed the raw TwitterHate dataset from Kaggle into the Python pre-processing
function. We employ a text preparation technique that includes:
e Punctuation Removal,
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e Tokenization,

e Stop Word Removal,

¢ Word Stemming,

e URL Removal, and

e Names to eliminate undesired items from the dataset.

3.3. Feature Extraction

The processed text is then passed on to feature extraction, which extracts features
such as n-gram TF-IDF weights, sentiment polarity scores, and the doc2vec vector.

3.3.1. TF_IDF Features

The TF_IDF statistic is intended to assess the relevance of a word in a set of texts (or
corpus). It is represented by an equation (1). The frequency of the term, TF (t, d), is the
frequency of occurrence of the term t internal document d.

TFE(t,d) = e (1)
2 o
t'ed

Where fi4is the raw count of a term in a document, i.e., the number of times that term
t occurs in document d.

A word's inverse document frequency represents the fraction of documents in the
corpus that include the term. As seen in the equation (2), words that are unique to a small
percentage of documents have greater relevance values than terms that are common to all
documents,

IDF(t,D) =log

|{d e D:ted}| )

Where N: total number of documents in the corpus.

[{deD:ted}| : number of documents where the term ! appears.
The Term frequency-inverse document frequency (TF-IDF) is calculated using
equation (3),

TFIDF(t,d, D) =TF(t,d)- IDF(t, D) 3)

3.3.2. Sentiment Polarity Score Features

The polarity numeric number determines whether a statement is negative or positive.
Subjectivity, on the other hand, relates to whether a text is objective or subjective.

3.3.3. Doc2vec Features

Doc2vec is the NLP tool for representing documents as vectors which is a generalization
of the word2vec method. Figure 2 illustrates the architecture of the Doc2Vec model.
Figurel is based on BOW (bag of words) model, but lieu of just analyzing neighbouring
word to predict word, we have included another feature vectors that is unique to the
document. Therefore, when training the word vectors W, the document vector D also
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trained and, at the end of the training, carries a numeric representation of the document.
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Figure 2. The architecture of Doc2Vec model

3.4. Machine Learning Classifiers for Twitter Hate Speech Detection

We have evaluated the performance of 7 machine learning classifiers for the detection
of Twitter hate speech, including Decision Tree, XGBoost, Logistic Regression, Random
Forest, Extra Tree, AdaBoost and Support Vector Machines. From these 7 machine
learning classifiers we have built a multi-model classifier using majority voting for the
final decision. We have used the scikit-learn python library implementation of each
classifier [33]. The brief discussion of each classifier is given as below.

3.4.1. Decision Tree

One of the most popular classification approaches is decision tree learning. It is
highly efficient and has classification accuracy comparable to other learning methods. A
decision tree is a tree that reflects the classification model that has been learned. It's an
easy-to-understand decision tree classification paradigm. The method evaluates all
feasible data split tests and chooses the one with the highest information gain [34,35].

3.4.2. Logistic Regression

Logistic regression is a popular Machine Learning algorithm that is used in the
Supervised Learning approach. It is used to predict the categorical dependent variable
from a set of independent variables. The outcome of a categorical dependent variable is
predicted using logistic regression. As a result, the outcome must be a categorical or
discrete value. It can be Yes or No, 0 or 1, true or False, and so on, but instead of displaying
precise values like 0 and 1, it offers probability values that lie between 0 and 1 [36,37].

3.4.3. XGBoost

The XGBoost (eXtreme Gradient Boosting) approach is well-known and successful.
Gradient boosting is a supervised learning approach that combines estimates from a series
of simpler and weaker models to properly predict a target variable. Because of its strong
handling of a wide range of data kinds, relationships, and distributions, as well as the
huge range of hyperparameters that can be fine-tuned, the XGBoost technique performs
well in machine learning issues. XGBoost is capable of dealing with regression,
classification (binary and multiclass), and ranking issues [17].

3.4.4. Random Forest

A random forest, as the name implies, is composed of a huge number of individual
decision trees that collaborate as an ensemble. The random forest generates a class
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prediction for each tree, and the class with the highest votes becomes the forecast of our
model. The Random Forest's basic principle is communal knowledge, which is both
simple and powerful. The random forest model is particularly successful because it is
composed of a large number of largely uncorrelated models (trees) that collaborate to
outperform each of the individual constituent models [38,39].

3.4.5. Extra Tree

Extra trees classifier is type of ensemble learning techniques that aggregates the
classification results of several non correlated decision trees gathered in "Forest" to obtain
its classification results. It is conceptually very similar to Random Forest Classifier and
varies mostly in the manner the decision trees in the forest are formed. The Extra Trees
Forest's Decision Trees are constructed from training samples. Then, at each test node,
each tree is given random samples of k feature from the feature sets. From which each of
the decision tree must select the best features to divide data using important mathematical
criterion. This random selection of features results in the construction of several de-
correlated decision trees [40,41].

3.4.6. AdaBoost

AdaBoost is the most frequently used and researched algorithm, with applications in
a wide range of fields. Freund and Schapire created the AdaBoost algorithm in 1995.
Abstract Boosting is a machine learning strategy that combines a large number of weak
and incorrect classifiers to generate a highly accurate classifier. It's simple to use, quick,
and simple to comprehend. It does not require any previous information from the weak
learner, hence it may be utilised in combination with any weak hypothesis identification
technique [42,43].

3.4.7. Support Vector Machine

The Support Vector Machine (SVM) is a supervised machine learning technology that
may be used to handle classification and regression issues. It is, however, mostly used in
classification difficulties. Each data item is represented as a point in n-dimensional space,
with the value of each feature being the value of a specific coordinate in the SVM
algorithm. Then, we achieve classification by selecting the hyper-plane that best separates
the two classes. Individual observation coordinates are utilised to compute support
vectors. The SVM classifier is a frontier that best differentiates between the two classes
(hyper-plane/line) [44,45].

3.4.8. Majority Voting

Voting is the most basic ensemble strategy, and it is usually quite effective. It may be
applied to classification and regression issues. In this scenario, it divides a model into two
or more sub-models, in this case five. To integrate predictions from each sub-model, the
majority voting technique is employed. Figure 3 depicts the majority voting process. It is
a meta-classifier that identifies machine learning classifiers that are conceptually similar
or different using a majority vote. We anticipate the final class label using majority voting,
which is the class label that classification algorithms most commonly predict. Using
equation (4) and the majority vote of each classifier Cj, we predict the class label y [46, 47].

y = mode{C1(x), C2(x),...,Cm(x)} 4)

where,y = predicted class label and C1(x), C2(x),..., Cm(x)=classification models.
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Figure 3. Majority Voting Algorithm

4. Experimental Setup and Evaluation
4.1. Dataset and Data Source

We utilized the TwitterHate Kaggle dataset, which contains 31,962 tweets [48]. The
datasets were significantly skewed, having 93% tweets, or 29695 tweets, consisting of non
hate labeled Twitter data and 7%, or 2240 tweets, consisting of hate-labeled Twitter data.
For training and testing, the classifiers divided the dataset in an 80:20 ratios.

4.2. Evaluation Measures

We utilized the following metrics to assess classifier performance. A binary classifier
labels all data elements in a test dataset with a 0 or 1. True positive (TPH), true negative
(TNn), false positive (FPu), and false negative (FNmu) are the four results of this

classification [49]. The following equations are used to compute the Accuracy,, ,
Precision,,, Recall,,and F1-score, measures.

TP, +TN,
TP, +TN,, + FP, +FN,,

Accuracy,, =

©)

TR,

PreCiSionH :W
n TRy

(6)

TP,

Reca”H = m
H H

)

Precision,, - Recall ,
Precision,, + Recall

F1-score, =2-

(8)

4.3. Performance Evaluation of classifiers using Doc2Vect Features on TwitterHate dataset

Table 1 and Figure 4 shows the performance of the models on the TwitterHate dataset
using Doc2Vect features in terms of Accuracy,, , Precision, , Recall, and

F1-score, . The Decision Tree model achieved the Accuracy, of 86.67%,
Precision, of 88%, Recall, of 87% and F1-score, of 87%. The Logistic
Regression model achieved the Accuracy,, of 93.23%, Precision, of 87%, Recall,
of 93% and Fl-score, 90%. The XGBoost model achieved the Accuracy,, of
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93.38%, Precision,, of 94%, Recall, of 93% and F1-score, of 90%. The Random
Forest model achieved the Accuracy,, of 93.40%, Precision, of 93%, Recall, of
93% and F1-score, of 90%. The Extra Trees model achieved the Accuracy, of
93.45%, Precision,, of 93%, Recall,, of 93% and F1-score, of 91%. The AdaBoost
model achieved the Accuracy,, of 93.21%, Precision,, of 87%, Recall, of 93% and
F1-score, of 90%. The Support Vector Machine model achieved the Accuracy,, of
93.23%, Precision,, of 87%, Recall,, of 93% and F1-score,, of 90%. Our proposed
Multi-model model using the majority voting achieved the Accuracy,, of 93.48%,
Precision,, of 92%, Recall, of 93% and F1-score, of 91%. It is found that, our

proposed approach achieved more stable and acceptable results in comparison with
aforementioned models.

Table 1: Performance Evaluation of classifiers using Doc2Vect Features on TwitterHate dataset

Model Accuracy,, (%) Precision,, (%) Recall, (%) F1-score, (%)
DT 86.67 88 87 87
LR 93.23 87 93 90
XGBoost 93.38 94 93 90
RF 93.40 93 93 90
ET 93.45 93 93 91
AdaBoost 93.21 87 93 90
SVM 93.23 87 93 90
Proposed Approach 93.48 92 93 91

Evaluation of classifiers using
Doc2Vect Features on TwitterHate
dataset

7 4 /
8 o/ N

==@==Accuracy ==@==Precision

Recall Fl-score

Figure 4. Evaluation of classifiers using Doc2Vect Features on TwitterHate dataset

4.4. Performance Evaluation of classifiers using Sentiment Polarity Score Features on
TwitterHate dataset

Table 2 Figure 5 shows the performance of the models on the TwitterHate dataset
using Sentiment Polarity Score features in terms of Accuracy,,, Precision,, Recall, and


https://doi.org/10.20944/preprints202203.0333.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 March 2022 d0i:10.20944/preprints202203.0333.v1

90f13

F1-score, . The Decision Tree model has achieved the Accuracy, of 91.57%, Precision, of
90%, Recall, of92% and F1-score, of 90%. The Logistic Regression model achieved the
Accuracy,, of 93.23%, Precision, of 87%, Recall,, of 93% and F1-score, of 90%. The
XGBoost model achieved the Accuracy,, of 93.23%, Precision, of 87%, Recall,, of 93%
and Fl-score, of 90%. The Random Forest model achieved the Accuracy, of 92.85%,
Precision, of 90%, Recall, of 93% and Fl-score, of 91%. The Extra Trees model
achieved the Accuracy, of 92.68%, Precision, of 90%, Recall, of 93% and F1-score, of
91%. The AdaBoost model achieved the Accuracy, of 93.23%, Precision, of 87%, Recall,,
of 93% and FI1-score, of 90%. The Support Vector Machine model achieved the
Accuracy,, of 93.23%, Precision, of 87%, Recall, of 93% and F1-score, of 90%. Our
proposed Multi-model model using the majority voting achieved the Accuracy, of
93.43%, Precision, of 92%, Recall, of 93% and Fl-score, of 91%. It is found that, our

proposed approach achieved more stable and acceptable results in comparison with
aforementioned classifiers.

Table 2. Performance Evaluation of classifiers using Sentiment Polarity Score Features on TwitterHate dataset.

Model Accuracy,, (%) Precision,, (%) Recall,, (%) F1-score, (%)
DT 9157 90 92 90
LR 93.23 87 93 90
XGBoost 93.23 87 93 90
RF 92.85 90 93 o1
ET 92.68 90 93 91
AdaBoost 93.23 87 93 90
SVM 93.23 87 93 90
Proposed Approach 93.43 92 93 91

Evaluation of classifiers using
Sentiment Polarity Score Features on

TwitterHate dataset
94 J —— I —
92 / ,
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Figure 5. Evaluation of classifiers using Sentiment Polarity Score Features on TwitterHate dataset
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4.5. Performance Evaluation of classifiers using TF-IDF Features on TwitterHate dataset

Table 3 and Figure 6 shows the performance of the models on the TwitterHate dataset
using TF-IDF features in terms of Accuracy,, Precision,, Recall, and F1-score,. The

Decision Tree model has achieved the Accuracy, of94.48%, Precision, of95%, Recall, of
95% and Fl-score, of 95%. The Logistic Regression model achieved the Accuracy, of
95.10%, Precision, of 95%, Recall, of 95% and F1-score, of 94%. The XGBoost model
achieved the Accuracy, of 95.48%, Precision, of 95%, Recall, of 95% and Fl-score, of
95%. The Random Forest model achieved the Accuracy, of 96.48%, Precision, of 96%,
Recall,, of 96% and F1-score, of 96%. The Extra Trees model achieved the Accuracy, of
96.51%, Precision, of 96%, Recall,, of 97% and F1-score, of 96%. The AdaBoost model
achieved the Accuracy, of 94.76%, Precision, of 94%, Recall,, of 95% and F1-score, of
94%. The Support Vector Machine model achieved the Accuracy, of 96.17%, Precision, of
96%, Recall, of 96% and F1-score, of 96%. Our proposed Multi-model model using the
majority voting achieved the Accuracy, of 96.29%, Precision, of 96%, Recall, of 96% and
F1-score, of 96%. It is found that, using TF-IDF features all the models have achieved

significant improvement in results in terms of accuracy, precision, recall and fl-score as
compare to other features. Also, our proposed approach achieved more stable and
acceptable results in comparison with aforementioned models.

Table 3: Performance Evaluation of classifiers using TF-IDF Features on TwitterHate dataset

Model Accuracy,, (%) Precision,, (%) Recall,, (%) F1-score, (%)
DT 94.98 95 95 95
LR 95.10 95 95 94
XGBoost 95.48 95 95 95
RF 96.48 96 96 96
ET 96.51 96 97 96
AdaBoost 94.76 94 95 94
SVM 96.17 96 96 96
Proposed Approach 96.29 96 96 96

Performance Evaluation of classifiers
using TF-IDF Features on TwitterHate
dataset

A — N

==@==Accuracy ==@-=Precision

Recall Fl-score

Figure 6. Evaluation of classifiers using TF-IDF Features on TwitterHate dataset
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4.6. Performance Evaluation of classifiers using All Features (Doc2Vect+ Sentiment Polarity
Score+ TF-IDF) on TwitterHate dataset

Table 4 and Figure 7 shows the performance of the models on the TwitterHate dataset
using combination of all features (Doc2Vect+ Sentiment Polarity Score+ TF-IDF) in terms

of Accuracy,, Precision,, Recall, and F1-score,. The Decision Tree model has achieved
the Accuracy, of 93.23%, Precision, of 94%, Recall, of 94% and F1-score, of 94%. The
Logistic Regression model achieved the Accuracy, of 95.56%, Precision, of 95%, Recall,
of 95% and Fl-score, of 94%. The XGBoost model achieved the Accuracy, of 95.53%,
Precision, of 95%, Recall, of 96% and F1-score, of 95%. The Random Forest model
achieved the Accuracy, of 95.81%, Precision, of 96%, Recall,, of 96% and F1-score, of
95%. The Extra Trees model achieved the AcCUracy, of 96.50%, Precision, of 96%,
Recall,, of 96% and F1-score, of 96%. The AdaBoost model achieved the Accuracy, of
94.45%, Precision, of 94%, Recall, of 94% and F1-score, of 94%. The Support Vector
Machine model achieved the Accuracy, of 96.09%, Precision, of 96%, Recall, of 96%
and Fl-score, of 96%. Our proposed Multi-model model using the majority voting
achieved the Accuracy, of 96.14%, Precision, of 96%, Recall, of 96% and Fl-score, of

96%. It is found that, our proposed approach achieved more stable and acceptable results
in comparison with aforementioned models.

Table 4. Performance Evaluation of classifiers using All Features (Doc2Vect+ Sentiment Polarity Score+ TE-IDF) on

TwitterHate dataset.

Model Accuracy,, (%) Precision,, (%) Recall,, (%) F1-score, (%)
DT 94.23 94 94 94
LR 95.26 95 95 94
XGBoost 95.53 95 96 95
RF 95.81 96 96 95
ET 96.50 96 96 96
AdaBoost 94.45 94 94 94
SVM 96.09 96 96 96
Proposed Approach 96.14 96 96 96

Evaluation of classifiers using All
Features (Doc2Vect+ Sentiment
Polarity Score+ TF-IDF) on
TwitterHate dataset
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Figure 7. Evaluation of classifiers using All Features (Doc2Vect+ Sentiment Polarity Score+ TF-IDF) on TwitterHate

dataset.
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5. Conclusions

In this work, we proposed a multi-model learning technique for detecting Twitter
hate speech. We have used Twitter Hate speech dataset, which consists of 31962
samples. The dataset consists of 93% tweets, or 29695 tweets, including non hate labeled
Twitter data and 7%, or 2240 tweets, containing hate labeled Twitter data. We utilized
commonly used machine learning classifiers such as Decision tree, Logistic regression,
XGBoost, Random forest, Extra tree, AdaBoost, and Support vector machine to analyze
the dataset. We used TF-IDF, sentiment polarity score, and doc2vector features. Our
experimental results reveal that, when compared to other features, all of the classifiers
achieved considerable hate speech identification using TF-IDF features, even better than
all of the combined features. Using multi-model settings and TF-IDF features, we were
able to achieve more consistent and acceptable detection results with accuracy of 96.29 %,
precision of 96%, recall of 96%, and f1-score of 96%.
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