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Abstract: Archaeological research, driven by the quest to understand ancient civilizations, relies 

heavily on detecting archaeological features to uncover hidden historical information. This article 

explores the intersection of airborne (aerial) LiDAR technology and Machine Learning (ML) 

techniques in archaeological feature detection. Airborne LiDAR, offering high-resolution 3D terrain 

maps, has significantly advanced archaeological surveys by enabling the detection of ancient 

structures and landscapes with improved accuracy and efficiency. ML algorithms, particularly 

Convolutional Neural Networks (CNNs), complement airborne LiDAR derivatives by automating 

feature detection and classification, thus enhancing the efficiency and accuracy of archaeological 

research. Through a comprehensive review of past studies, this technical note highlights the potential 

contributions of ML-based approaches on LiDAR derivatives in detecting archaeological features, 

such as ancient settlements, burial mounds, and urban complexes. Despite notable advancements, 

challenges such as data accessibility, algorithm interpretability, and interdisciplinary collaboration 

persist. 
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1. Introduction 

Archaeological feature detection plays a vital role in uncovering the secrets of the past, 

informing decision-makers to select more informed choices that balance development needs with the 

preservation of cultural heritage, advancing scientific knowledge, and engaging the public in 

exploring human history [1]. Across millennia, ancient settlements, roads, fortifications, and 

agricultural systems have left lasting marks on the landscape, providing invaluable insights into past 

human behaviors, social structures, and technological advancements [2]. By carefully detecting and 

analyzing these features, archaeologists can piece together the complex network of ancient 

civilizations, shedding light on their history and cultural dynamics. Moreover, archaeological 

research provides crucial data that help scholars refine historical chronologies, understand trade 

networks, and reconstruct environmental changes that shaped human societies over time. 

Yet, the preservation of archaeological sites faces countless threats, ranging from urban 

development, looting and wars to erosion and climate change [3]. Unregulated construction projects, 

mining activities, and expanding infrastructure often lead to the destruction of historically significant 

landscapes before their significance is even recognized [1]. The timely detection and documentation 

of archaeological features not only aid in safeguarding cultural heritage sites but also inform crucial 

land use planning and resource management decisions [4]. By identifying the locations of ancient 

settlements, burial sites, and other cultural features, potential damage from development projects can 

be mitigated, and conservation measures can be implemented to ensure the sustainable protection of 

heritage assets. Moreover, archaeological feature detection contributes significantly to 

interdisciplinary research, bridging fields such as anthropology, history, geography, and 
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environmental science [5]. The extensive dataset obtained from archaeological surveys and 

excavations helps test hypotheses, refine chronologies, and deepen our understanding of human-

environment interactions over time. Furthermore, discoveries from archaeological feature detection 

enrich educational programs, museum exhibits, and public outreach initiatives, fostering curiosity 

and appreciation for cultural diversity among the general public [6]. By sharing the stories of past 

civilizations and the methods used to uncover their secrets, archaeologists inspire a sense of wonder 

and respect for our shared human history. 

In their effort to uncover hidden features of ancient landscapes, archaeologists are increasingly 

turning to advanced geomatics technologies. Geographic Information Systems (GIS), Remote Sensing 

(RS) techniques such as LiDAR and Synthetic Aperture Radar (SAR), and Artificial Intelligence (AI) 

have become indispensable tools, enabling the analysis and interpretation of terrain features with 

unprecedented precision [7]. For instance, SAR technology offers unique capabilities for identifying 

buried archaeological features; examples are the case of Ostia-Portus in Italy, Uyuk River Valley in 

Russia, and Apamea site in Syria , where multi-band SAR successfully identified shallow-buried 

paleochannels, burial mounds, and looting pits, respectively [8]. To enhance the archaeological 

detection, SAR data can be fused to optical imagery. However, due to its complexity and need for 

further validation, its application is challenging [9]. These technologies facilitate large-scale 

archaeological surveys, reducing the need for invasive excavation methods and allowing researchers 

to explore sites that are otherwise inaccessible due to dense vegetation or challenging terrain. Among 

these technologies, LiDAR data and AI have emerged as potent tools for detecting archaeological 

features efficiently and accurately, offering invaluable insights into preserving endangered sites and 

discovering new archaeological areas [10]. Additionally, AI techniques such as Machine Learning 

(ML) and Deep Learning (DL) facilitate archaeological features' classification, identification, and 

segmentation, opening new avenues for archaeological research. 

This technical note aims to critically examine recent archaeological studies that have employed 

derivatives of airborne (aerial) LiDAR point cloud data such as Digital Elevation Models (DEMs) and 

ML techniques for archaeological site detection, highlighting the significance of these approaches and 

identifying critical research gaps and future research prospects. While various studies have explored 

the role of AI in archaeology and cultural heritage, they have primarily focused on different 

methodologies applied to various RS datasets. For instance, [10] concentrates solely on employing 

DL approaches on diverse RS data (e.g., aerial photogrammetry, SAR, multispectral satellite imagery, 

and LiDAR) for digital preservation and object detection. Similarly, the focus of [1] is solely on one 

DL methodology (i.e., Convolutional Neural Network (CNN)) resulting in the review of six case 

studies using different RS data. [11] focuses on state-of-the-art technologies related to AI and RS, 

while [12] primarily centers on Semantic Segmentation (SS) of point cloud data derived from LiDAR 

and photogrammetry for digital orthophoto mapping, damage investigations, object recognition, 

Building Information Model (BIM) and historical BIM. Furthermore, several reviews have 

concentrated on the application of LiDAR as well as other unmanned aircraft systems in archaeology 

and cultural heritage [13,14]. Moreover, [15] explicitly examines the airborne LiDAR data processing 

workflow. However, these reviews only partially focused on utilizing ML for archaeological feature 

detection from airborne LiDAR derivatives, which constitutes the primary focus of this study.  

2. Research Aims 

This study examines the current state of research on the integration of imagery derived from 

airborne LiDAR point cloud data and ML techniques in detecting archaeological features. Detecting 

such features is crucial in uncovering past civilizations and informing decisions that balance 

development with cultural heritage preservation. Airborne LiDAR technology, with its ability to 

penetrate vegetation and provide high resolution topographic information, has transformed 

archaeological surveying by enabling the identification of subtle landscape features that may not be 

visible through traditional methods. Integrating ML algorithms with airborne LiDAR derivatives has 

the potential to enhance the efficiency and accuracy of detecting these features. This study aims to 
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critically analyze the methodologies, applications, trends, and limitations reported in recent 

literature, with a particular focus on how ML has been employed to LiDAR derived products in 

archaeological contexts. It also seeks to identify existing research gaps and methodological challenges 

such as data processing, model generalizability, and the scarcity of labeled databases. By doing so, 

the paper aims to contribute to a more informed understanding of this interdisciplinary field and to 

suggest directions for future works. 

3. Airborne LiDAR Technology in Archaeological Feature Detection 

The 21st century marks the initiation of using LiDAR data in archaeological exploration [16]. 

One of the earliest notable applications has been carried out in the UK, where LiDAR was utilized to 

identify and document earthwork traces of a Roman Fort in West Yorkshire, which traditional 

detection methods had overlooked [17]. Initially developed for terrain mapping and vegetation 

analysis, LiDAR's role has expanded to include the detection of hidden archaeological features, 

particularly in areas where traditional survey methods face limitations [18]. This growing recognition 

of LiDAR’s capabilities has paved the way for its integration into archaeological research worldwide. 

Airborne LiDAR technology is an active and non-invasive surveying method that utilizes laser 

scanning to generate highly detailed three-dimensional (3D) maps of the terrain surface, creating 

detailed 3D point clouds over vast areas. A standard airborne LiDAR setup comprises Airborne Laser 

Scanning (ALS), aircraft positioning by Global Navigation Satellite System (GNSS), and an Inertial 

Measurement Unit (IMU) [7]. A laser scanner, typically mounted on an aircraft like a plane, helicopter 

or drone, emits pulses, generally in the Near-Infrared Range (NIR), at average frequencies of around 

one million pulses per second (1 MHz) in various directions along the flight path toward the ground 

[19]. The initial commercial systems operated at 10 kHz and were bulky in size, while the 

contemporary systems are smaller, lighter, and can handle multiple laser returns [20]. For each laser 

pulse that hits the surface, discrete return LiDAR systems [19,21] detect and record a limited number 

of returns, while full-waveform systems [13,18] record the entire backscattered energy profile 

(continuous signal). These pulses bounce off objects such as the ground surface, vegetation, and 

buildings, with their positions determined by calculating the time delay between emission and 

reception of each echo, along with the direction of the laser beam and the scanner's position [22,23]. 

In addition, bathymetric LiDAR has emerged as a specialized tool for underwater surveying. Unlike 

NIR LiDAR, which utilizes larger wavelengths, bathymetric LiDAR employs smaller wavelengths in 

the green spectrum to penetrate the water column effectively [24]. While early iterations of 

bathymetric LiDAR faced limitations in return point density and spatial resolution, recent 

advancements have significantly improved instrument quality [25]. This progress has enabled a wide 

range of archaeological applications, including documenting submerged sites. 

Airborne LiDAR's primary application in archaeology has been identifying archaeological 

structures visible as topographic imprints on the ground surface [17]. This technology has 

revolutionized archaeological surveying, enabling researchers to identify and analyze features such 

as ancient structures, roads, and burial mounds with improved accuracy. Airborne LiDAR offers a 

significant increase in spatial resolution compared to photogrammetric and satellite-derived 

products obtained from stereo or tristereo imagery [26]. On the other hand, UAV photogrammetric 

surveys can be severely limited by the presence of vegetation and by georeferencing challenges, 

especially when establishing ground control points in hard-to-reach areas [27]. LiDAR allows for the 

filtering of vegetation, buildings, and other man-made structures to create high-resolution bare-soil 

Digital Terrain Models (DTMs), which can aid in the detection of archaeological remains. However, 

in areas with sparse ground returns, such as dense vegetation or urban settings, the ground surface 

must be interpolated which can reduce the quality of DTMs [4,15] and as a result, the accuracy of 

archaeological feature detection. The combination of LiDAR-based DTMs and visualization 

techniques has contributed to important discoveries in both well studied archaeological areas and 

previously overlooked regions due to dense vegetation cover [7]. Besides its efficiency in data 

acquisition, airborne LiDAR can support the identification of buried or partially buried 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 June 2025 doi:10.20944/preprints202506.1581.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1581.v1
http://creativecommons.org/licenses/by/4.0/


 4 of 24 

 

archaeological features such as ancient trenches, roadways, and agricultural fields [28–31], as well as 

geoarchaeological features in low-relief alluvial landscapes [32]. Additionally, for some countries, 

airborne LiDAR data is already accessible online immediately or upon request, offering economic 

benefits as it is more cost-effective and efficient than traditional methods [33]. However, the quality 

of LiDAR data is crucial for accurate and reliable results in various applications, with point density 

as a key parameter to assess quality. Point density, representing the number of LiDAR points per unit 

area, which can directly influence the level of detail and precision of derived products [33,34]. 

Ensuring adequate point density and transparency in reporting are essential for maximizing the 

utility and trustworthiness of LiDAR-derived information across diverse applications [35]. Regular 

updates and monitoring of surveyed and mapped areas are also necessary [19]. Other challenges and 

limitations to this technology include high initial investment costs, managing and interpreting large 

data volumes, vulnerability to weather and environmental conditions affecting data collection, as 

well as logistical obstacles related to site access, permissions, and data privacy [36]. It furthermore 

requires collaborations between archaeologists and RS experts, ensuring a more comprehensive and 

deeper data analysis. 

Airborne LiDAR technology can reveal not only visible archaeological structures but also hidden 

features that are often difficult to detect using traditional methods. These hidden features, such as 

buried structures, roads, and agricultural fields, are of great significance in archaeological research 

[36]. By revealing well preserved sites obscured by natural factors such as dense vegetation or soil 

erosion, LiDAR enables archaeologists to explore previously overlooked regions and gain a deeper 

understanding of human history and culture [37]. This aspect of LiDAR technology highlights its 

potential to revolutionize the study of civilizations that have long since disappeared, offering new 

interpretations of their social, economic, and environmental systems [36,38]. Some of the most 

significant findings facilitated by airborne LiDAR technology in archaeology include the mapping of 

hidden cities and vast urban complexes, such as the expansive Maya civilization in Central America 

[21] and the elaborate network of Angkor in Cambodia [34,39], as well as evidence of the architectural 

sophistication of ancient civilizations, showcasing elaborate structures like earthworks [40], complex 

road networks [28] used for trade and communication, hidden agricultural fields [2], and defensive 

structures [10]. Airborne LiDAR has significantly enhanced the visualization and mapping of ancient 

cities and extensive landscapes previously obscured by dense vegetation or sediment accumulation. 

4. Machine Learning in Archaeological Feature Detection 

Methods for detecting archaeological features have evolved from subjective approaches, which 

rely primarily on personal interpretation without clear and standardized criteria [41], to more 

scientific ones, aided by computing technology. Archaeological feature detection involves field 

surveys, RS, and integrating RS with AI [7,11]. The fusion of RS data with AI marks a new era in 

archaeology. ML algorithms, a subset of AI, have become indispensable tools for processing and 

analyzing large volumes of data in archaeological contexts. Traditional techniques often suffer from 

limited coverage, subjective interpretation, and unquantified error rates, leading to false positives 

(detecting features that are not actually archaeological) and false negatives (missing actual 

archaeological features) [6,38,42,43], which ML blended with RS can overcome by creating a 

systematic solution [11]. ML is broadly defined as the capacity of intelligent systems to learn and 

improve from prior data [1]. It involves optimizing a model to transform input into a desired output 

with increasing efficiency [44,45]. This optimization process, known as training, is performed using 

a relevant set of training data. ML algorithms are trained to derive mathematical classifiers or feature 

vectors and apply them to extract, sort, classify, and interpret new data [44]. AI uses such ML models 

to automate decision-making and data analysis. ML has been successfully applied in various domains 

of computer science, including computer vision, data classification, knowledge extraction, and 

speech recognition [1,44,45]. They can be applied to a range of digital data, with the most common 

types being numerical/categorical data, images, and geospatial data [6,44,46]. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 June 2025 doi:10.20944/preprints202506.1581.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1581.v1
http://creativecommons.org/licenses/by/4.0/


 5 of 24 

 

ML methods are categorized into supervised learning, unsupervised learning, and 

reinforcement learning. A fourth category, semi-supervised, is also sometimes mentioned [1,45]. The 

fundamental difference often lies in the type of training data and whether these data have known 

outputs or labels [47]. Supervised learning involves training models using data with known labels to 

learn a mapping function that can accurately predict the output for new, unseen inputs [1,45]. This 

process involves iteratively refining the model based on the provided training data. Common 

supervised learning tasks are divided into two main groups, regression and classification. Regression 

tasks aim to learn a real-valued function for continuous outputs, while a classification task assigns 

input elements to a predefined set of discrete categories or labels [45]. Examples of common 

supervised algorithms include decision trees, maximum likelihood, Random Forests (RF), Support 

Vector Machine (SVM), Artificial Neural Networks (ANNs), and DL models like CNNs 

[29,30,42,48,49]. SVM, maximum likelihood, and ANNs are commonly used for classifying raster and 

images with training data that are created by drawing polygons around known objects [29,48]. 

Conversely, in unsupervised learning the objective is to find structure, patterns, and inherent 

groupings within the unlabeled data autonomously [1,45]. Unlabeled data helps the model learn and 

gain familiarity by attempting to make predictions without knowing the true targets [47], and it can 

be optimal when features of interest are not previously known [39]. Clustering algorithms are among 

the most widely used methods in archaeology and cultural heritage for discovering patterns and 

structures in unlabeled datasets [50]. The simplest and most commonly used clustering algorithm is 

K-mean [50], which is also integrated into advanced architectures1 like PointNet++ for hierarchical 

point grouping [51]. Reinforcement learning, with its common Q-learning algorithm, trains models 

through rewards and penalties [1,52]. 

DL is an advanced form of ML originated in the 1940s with the goal of mimicking human brain 

functions [53]. After facing challenges like overfitting and limited data, DL regained popularity in 

2006 due to its significant advancements achieved in speech recognition [10]. The term deep refers to 

the development of neural networks with more than one hidden layer [1,47,49,53]. Deep Neural 

Networks (DNNs) facilitate automated learning by iterating through massive amounts of data in 

images, text, or videos [30]. They seek to exploit the unknown structure in the input data distribution 

to discover good representations, often at multiple levels [53]. In other words, DL models build 

understanding in a hierarchical way, where complex features are composed of simpler ones learned 

in earlier layers and without human needs to define those features explicitly [1,49,53]. DNNs are 

composed of simple, highly interrelated processing units called neurons, organized in multiple layers 

[53]. There is an input layer, one or more intermediate or hidden layers, and a final output layer [49]. 

The connections between neurons are represented mathematically by trainable parameters called 

weights [53,54]. The training process begins with the input of raw data, such as images, text, video, 

or spatial datasets like DTMs, Local Relief Models (LRMs), or 3D point clouds [20,30,40,55–58]. 

During forward propagation, this data is passed through multiple layers of the network where each 

neuron computes a non-linear activation on the weighted sum of its inputs and transmits the signal 

forward [21,43,46,49,53,59]. The most common used activation function is Rectified Linear Units 

(ReLU2) [21,46,59]. As the data progresses through the hidden layers, the network performs feature 

extraction and automatically learns to detect increasingly complex patterns [1,47,49]. This is a key 

 

1
 An architecture refers to the specific design and structure of a neural network. It encompasses the arrangement of layers, the types of 

layers (e.g., convolutional, pooling, fully connected), the connections between layers, and the methods used for processing data. Different 

architectures are tailored to solve various tasks such as image classification, object detection, or segmentation, and they influence the model's 

performance and efficiency. 

2
 ReLU is an activation function used in neural networks, defined as f(x) = max(0, x).  It introduces non-linearity into the model, enabling it 

to learn complex patterns by allowing only positive values to pass through while setting all negative values to zero. This helps in addressing 

issues like vanishing gradients and improving training efficiency. 
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distinction of DL from classical ML. The final output layer generates predictions depending on the 

task: this may include class probabilities [3,31], classifications [3,31], or segmentations [60]. The goal 

of training is to adjust the model's weights to minimize the difference between the model's output 

and the desired output for a given task [3,53,56]. After each forward pass, a loss function measures 

prediction error [53,59]. Then, back propagation propagates the loss information backward through 

the network and computes gradients which indicates the contribution of each weight to the error 

[21,53]. An optimizer then uses these gradients to adjust the trainable weights, aiming to minimize 

the loss function [53,56,59]. Training runs in steps called epochs where each one involves a full 

forward and backward pass of all training data through the network [2,53]. After each epoch or a set 

of epochs, model performance is validated using unseen data to ensure generalization and prevent 

overfitting [2,47]. 

DL is a step further within ML, with models that follow the same methodologies (such as 

classification and regression) but are based on ANNs, and can significantly improve accuracy with 

increased data availability [1,3,49,61]. However, it requires more extended training but shorter 

inference times than traditional ML algorithms, relying on large datasets for better accuracy [44]. A 

key difference between classical ML techniques and DL is that while the former often need feature 

engineering (i.e., selecting, transforming, or creating new features from raw data), human experts to 

carefully select input features (such as spectral indices), and the prior calculation and determination 

of a range of possible statistically significant input features [40], the later performs feature extraction 

by itself [1]. In other words, DL algorithms can identify and extract meaningful patterns or features 

directly from raw data, which can be particularly time-saving and advantageous when working with 

complex and high-dimensional datasets [1,49]. Similar to ML, DL encompasses different types of 

learning (i.e., supervised, unsupervised, reinforcement learning) [1,45]. However, DL models 

generally require considerable computational resources [40] and large amounts of data to achieve 

higher accuracy [3,61]. Traditional ML methods might be more applicable or sufficient when dealing 

with limited datasets or specific cases where targets have limited spectral and geometric variations 

[49]. 

Based on the task, DL models can be categorized by their output. First are object detection 

models that identify and locate specific objects within an image, typically drawing a bounding box 

around them and providing a probability of the object's presence [3,62]. Examples of object detection 

architectures include R-CNN, Faster R-CNN, YOLOv5, and YOLOv4 [3,57,62,63]. In addition, SS 

models classify each pixel of an image with a corresponding class, defining semantic regions and 

segmenting them [21,62]. This provides both the classification and position of archaeological 

structures [3]. Examples of SS architectures include Faster R-CNN, U-Net, Mask R-CNN, ResUnet, 

and FCN [3,62]. CNNs are among the most studied architectures, especially when the input data are 

images and videos [1,3,43,61]. They have been successfully used in various image applications, 

including image classification, object recognition, video classification, and scene labeling [3,61]. 

Different CNN architectures exist with variation in their layer organization [21]. Figure 1 

demonstrates an example of a simple CNN architecture, in which the input image passes through 

multiple convolutional layers that extract local features such as edges and textures [3,61]. The pooling 

layers help reduce spatial dimensions and control overfitting by preserving the most relevant 

features. The extracted features are then fed into fully connected layers that interpret the information 

for classification. Finally, an activation function called SoftMax3 is applied to the classes. This assigns 

probabilities to different classes, enabling the network to learn hierarchical representations of data 

automatically [47,61]. 

 
3 Softmax is an activation function used in neural networks, particularly in the output layer for classification tasks. It converts raw scores 

(logits) into probabilities by exponentiating each score and then normalizing them so that their sum equals one. This allows the model to 

assign a probability to each class, facilitating multi-class classification. 
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Figure 1. Structure of a simple Convolutional Neural Network (CNN) architecture for n-class classification. The 

input image undergoes two convolutional and pooling operations, extracting hierarchical features. The resulting 

feature map is flattened and passed through two fully connected layers. Finally, a Softmax activation function 

is applied to the output of the last fully connected layer, converting it into a vector of n probabilities 

corresponding to the classification classes. 

Although CNNs typically perform best with large amounts of labeled data, in many real-world 

scenarios, such data may be limited. In these cases, Transfer Learning (TL) can offer an effective 

approach to mitigate this challenge. TL is a technique that applies the knowledge gained from solving 

one problem to a different but related problem [3]. The core idea is to reuse a model that has been 

pre-trained on a large amount of data (for instance on ImageNet dataset) for a source problem to 

solve a target problem where only limited data is available [3]. However, differences between the 

characteristics of the original training data (for instance, standard computer vision images) and the 

new data (such as aerial LiDAR-derived images with different scale and rotation properties) need to 

be considered [43]. TL is typically achieved by retraining only a few selected layers of the pre-trained 

model on the new dataset [3,43]. Common strategies for applying TL include removing the final layer 

of the pre-trained network and replacing it with a new layer suited for the target classification 

categories, or fine-tuning the model by adding new training parameters [43]. In fine-tuning, either all 

model weights can be updated, or the weights in the lower layers can be frozen while only updating 

the upper layers [43]. Studies indicate that TL can significantly improve model accuracy in situations 

where the available data for training is limited [2,3,61,64]. This technique directly addresses a major 

challenge in DL, which is the requirement for vast amounts of labeled training data to achieve higher 

accuracy [1,3,61]. While commonly associated with CNNs, TL can be applied to various ML 

paradigms, including supervised and unsupervised learning [24]. Its advantages include reduced 

training time and data requirements, improved generalization, and the ability to address domain 

shift [54]. However, its effectiveness depends on the similarity between the source and target 

domains, and there is a risk of overfitting especially when the target dataset is small or significantly 

different from the source dataset [43,54,65]. Despite these limitations, TL remains a valuable 

technique for accelerating model development, improving performance, and addressing challenges 

in diverse ML applications, particularly in archaeological contexts with data limitations and small 

sample sizes [24,43,54,65].  

Building on the capabilities of RS data, ML aims to train algorithms to learn from these data to 

make predictions or decisions. It has shown potential in automating archaeological feature detection, 

such as the use of RF algorithms for the detection of burial mounds in France and Spain [55], Viking 

ring fortresses throughout Denmark [66], ancient canals in Belize, Central America [67], and the use 

of CNN to detect ancient Maya structures in Guatemala [21]. These advancements hold significant 

potential for revolutionizing archaeological research by offering efficient, accurate, and scalable 

feature detection and analysis methods. 
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5. Past Research Applying Machine Learning on Airborne LiDAR Derivatives 

for Archaeological Feature Detection 

Over the past four decades, advancements in RS, ML, and cloud computing have revolutionized 

our ability to explore ancient landscapes, with airborne LiDAR technology playing a pivotal role in 

improving spatial resolution for surveys of previously inaccessible forested areas [67]. The systematic 

approach for applying ML techniques to airborne LiDAR data for archaeological feature detection 

starts with carefully collecting and preprocessing LiDAR and archaeological datasets, ensuring data 

quality and compatibility. Feature engineering follows, wherein relevant attributes are extracted and 

engineered to enhance the model's ability to identify archaeological features from the LiDAR 

derivatives. A critical decision point arises in model selection, where the choice between traditional 

ML algorithms and DL architectures is made, with the possibility of including TL on pre-trained 

models. The subsequent steps involve rigorous training and evaluation of the selected model, 

ensuring its robustness and generalization to unseen data. Once validated, the model is deployed for 

archaeological feature detection on new airborne LiDAR datasets. Continuous monitoring of the 

model's performance in real-world applications enables improvements as necessary, thereby 

ensuring the efficacy of the archaeological research efforts (Figure 2). 

The core idea of each ML/DL model is the ability to perform well on data that has not been seen 

during training [6,47]. Ensuring and evaluating this ability, known as generalization, involves several 

techniques. The foundation of good generalization lies in having a sufficient amount of high-quality, 

representative training data [21,33,68]. However, collecting large, labeled datasets can be challenging, 

particularly in specialized domains like archaeology [1,20,43,44,69,70]. Furthermore, using a separate 

validation dataset [19] as well as appropriate evaluation strategies [71] could ensure generalization. 

Standard evaluation measures developed for general object detection tasks may not be suitable for 

archaeological applications due to the unique characteristics of archaeological objects and the 

importance of geospatial information for archaeologists [71]. Another strategy to increase the 

robustness of the model is applying data augmentation [3,19,55,64]. This involves creating artificial 

training samples by applying various transformations (such as cropping, flipping, rotation, scaling, 

shifting) to the original data [55]. Applying multi-directional hillshade or other visualization 

techniques to DEMs can also augment the training data [3,68]. For 3D point clouds, combining 

different augmentation methods, such as Gaussian noise and random rotation, has shown potential 

for improving DL models with small datasets [3]. TL also can help with generalization [43,44,54]. For 

instance, [43] successfully reapplied TL of a deep CNN, initially trained on Lunar LiDAR datasets, 

for detecting historic mining pits [43]. Choosing an architecture that can handle the multi-scale nature 

of archaeological features or integrate multiple data sources [19,35,42,69] and optimizing the model’s 

hyperparameters (such as the number of epochs) also enhances the model’s ability to generalize to 

unseen data [2,71,72]. 

 

Figure 2. Steps involved in applying machine learning (ML) to airborne LiDAR data for archaeological feature 

detection. 

Integrating airborne LiDAR derivatives with ML algorithms for archaeological feature detection 

has been the subject of 45 case studies (locations of the studied area are demonstrated in Figure 3), 

found after internet research. Figure 4 displays a histogram representing the yearly distribution of 
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these articles. This trend suggests a growing interest in the research topic, particularly around 2021 

and 2023. On the Scopus website, a set of keywords was searched within the title, abstract, and 

keywords of review and scientific articles using the following advanced query: 

TITLE-ABS-KEY ( "deep learning" OR "machine learning" OR "artificial intelligence" OR "AI" OR 

"semantic segmentation" OR "computer vision" ) 

AND TITLE-ABS-KEY ( "archaeolog*" OR "historical " OR "cultural" OR "heritage" )  

AND TITLE-ABS-KEY ( ( "airborne" OR "aerial" ) AND ( "LiDAR" OR "laser" OR "point cloud" ) 

) 

AND TITLE-ABS-KEY ( ( "object" OR "site" OR "pattern" OR "feature" ) AND ( "detection" OR 

"extraction" OR "recognition" ) )  

AND ( LIMIT-TO ( DOCTYPE , "ar" ) OR LIMIT-TO ( DOCTYPE , "re" ) ) 

AND ( LIMIT-TO ( LANGUAGE , "English" ) ). 

This search resulted in 41 articles. After a detailed screening, 15 were excluded for reasons such 

as duplicate records, irrelevant use of AI or ML, and absence of feature detection/extraction methods 

or insufficient methodological detail relevant to the scope of this work. The remaining 26 articles 

were presented in Table 1. The same keywords were used to search Google Scholar within the same 

timeline (between 2017 and 2024) as the previous search. This search yielded 34 articles, 15 

overlapping those on the Scopus website. The remaining 19 new articles were also added to Table 1, 

resulting in a total of 45 articles. Of these, 32 used deep CNNs for automatic object detection, applying 

different architectures such as U-Net, YOLO, CarcassonNet, WODAN, VGG, Deeplab, and 

DeepMoon. However, as highlighted in some papers, their application in large-scale archaeological 

mapping may require further evaluation and extension, including the development of optimal 

training sample selection methods and evaluation of LiDAR-derived data as inputs [16,54,71]. One 

article applied a DL model known as CMX mode, a fusion of SS with Transformers [69]. Another 

study conducted a comparison between ML (RF) and DL (fully connected networks) [35]. The 

remaining 11 case studies apply different ML algorithms such as SVM, unsupervised ISODATA, RF, 

and template matching classifiers to detect the archeological features in airborne LiDAR data (Table 

1). 

Various studies have leveraged airborne LiDAR data and ML techniques to identify ancient 

structures and landscapes. For instance, Chinese ancient city walls were delineated using SS applied 

to DEMs derived from ALS data [56]. Similarly, other studies have employed CNNs to detect walls 

and houses from derivatives of noisy airborne LiDAR data, with applications that extend to mapping 

ancient walls in different countries [30,40,46,48,73,74]. Additionally, deep semantic models have been 

proposed for predicting the locations of ancient agricultural terraces and walls, highlighting the 

potential of cost-effective raster data in transforming archaeological research [29,31,35,48,75]. Such 

studies provide valuable references for ancient site detection and monitoring, offering insights into 

cultural heritage preservation and aiding in reconstructing urban structures and their functions. 

Detection of burial mounds has been another focus, with ML and DL methods applied to 

elevation models derived from airborne LiDAR data [20,42,55,57,76,77]. Similarly, segmentation 

models trained from scratch have been used to detect clearance cairns in forested areas, enhancing 

understanding of historical agricultural activity and settlement organization [2]. Innovative 

approaches employing ML-based detection have also been applied to Celtic fields, barrows, and 

charcoal kilns in airborne LiDAR data, showcasing the potential of automatic measures for 

archaeological research evaluation [6,22,23,62,63,65,71,78–81]. Moreover, mapping Maya 

archaeological sites has been difficult due to their location in dense forests and rugged landscapes. 

Combining LiDAR data and CNNs can make it easier and more efficient to analyze these sites 

[67,68,82]. Also, terrain and topographical features, such as hillforts, have been the focus of various 

studies [50,69,70] employing different ML methods. Despite challenges such as the complexity of 

LiDAR data, these studies demonstrate encouraging potential, with proposed models freely available 

for other users to adapt to their needs. 
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Figure 3. Location of the case studies performed to detect archaeological features using airborne LiDAR data 

and machine learning methods. 

 

Figure 4. Yearly distribution of the analyzed articles. 

In addition, TL has also been employed to reduce the cost and hazards of underwater 

archaeology using bathymetric LiDAR data [24]. Techniques like Mask Regional based CNN (R-

CNN) and segmentation have also been utilized to detect relict charcoal hearths and kilns, achieving 

impressive results in object detection and instance segmentation [58,77,83]. Other innovative 

approaches, such as TL for detecting historic mining pits, have shown strong potential for broader 

archaeological tasks, which can demonstrate efficient semi-automated object detection and can 
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distinguish between natural and manmade features [43]. Similarly, ML approaches have been 

employed to detect Viking ring fortresses in Denmark and hollow roads using DL and image 

processing methods [28,61,66]. Furthermore, DL and airborne LiDAR derivatives have been studied 

to detect archaeological shell rings, providing insights into native inhabitants and their 

socioeconomic networks [64]. 

Table 1. Case studies that applied different artificial intelligence methods on airborne LiDAR derivatives to 

detect archaeological features. 

Author

s 

Archaeological 

Sites/Objects 

Study’s Location 

(Extent) 

LiDAR 

Derivative 

and 

Resolution 

Detection 

Method 

(Architecture/A

lgorithm) 

Quality 

Evaluatio

n 

[56] Ancient City Walls 
Jinancheng, China (16 

km2) 
0.5m DEM1 

CNN2 (U-Net 

segmentation) 

Precision 

94.12%  

[69] Hillforts 

England (130,000 km2), 

Alto Minho, Portugal 

(2,220 km2), Galicia, 

Spain (30,000 km2) 

1m DTM3; 

0.5 and 2 

points/m2 

CMX4 

(Semantic 

Segmentation) 

F1-score 

66% 

[68] Maya Structures 

Tabasco, Mexico (885 

km2), Petén, Guatemala 

(615 km2) 

1m DEM; 

2.07 

points/m2 

(ground) 

CNN 

(YOLOv3) 

F1-score 

80% 

[57] Burial Mounds 
Alto Minho, Portugal 

(2,220 km2) 
1m DTM 

Regional 

based-CNN 

(YOLOv3) 

Detection 

Rate 

72.53%  

[30] 

Ancient Agricultural 

Water Harvesting Systems 

(Terrace and Sidewall) 

Central Negev Desert, 

Israel (1,800 km2) 

0.125m 

DTM; 2 

points/m2 

CNN (modified 

U-Net) 
IoU5 53% 

[70] 
Historical Terrain 

Anomalies 

Eifel Region, Germany 

(0.01 km2) 

DTM; 200-

300 

points/m2 

ML6 (Support 

Vector 

Machine) 

Recall 76-

80% 

Precision 

55-72% 

F1-score 

57-81% 

[22] Pitfall Systems 
Suomenselka, Finland 

(6,778.9 km2) 

0.25m 

DEM; 5 

points/m2 

CNN (-) 
Reliability 

80% 

[23] Tar Production Kilns 

Kuivaniemi (2,760 km2), 

Hossa (2,004 km2), and 

Näljänkä (2,304 km2), 

Finland 

0.25m 

DEM; 5 

points/m2 

CNN (U-Net) 

Accuracy 

93-95% 

Precision 

82-97% 

Recall 72-

99% 

F1-score 

77-97% 
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[74] Stone Walls 
Northeastern CT, USA 

(-) 
1m DEM CNN (U-Net) 

Recall 89% 

Precision 

93% 

F1-score 

91% 

[29] 

Precolonial Stone-Walled 

Structures (Circular 

Homestead, Agricultural 

Terrace and Road) 

Thaba-Chweu, South 

Africa (31.25 km2) 
- 

ML (Support 

Vector 

Machine) 

Accuracy 

95% 

[67] Ancient Canals (Maya 

Wetland) 

Rio Bravo, Belize (~ 5 

km2) 

0.5m DEM ML (Random 

Forest) 

Accuracy 

66%  

[31] 

Linear Structures 

(Embankment, Ditch, 

Hollow Path, etc.) 

Blois, France (270 km2) 0.5m DTM 

ML (Support 

Vector 

Machine) 

- 

[2] Clearance Cairns Söderåsen, Sweden (-) 

DTM; 

0.5-1 

points/m2 

CNN (U-Net 

segmentation) 

Dice 

coefficient 

84% 

[71] 
Barrows and  Celtic 

Fields 

Gelderland, The 

Netherlands (2,200 

km2) 

0.5m DTM; 

6-10 

points/m2 

Faster Regional 

based-CNN 
- 

[46] Historic Stone Walls Aro, Denmark (88 km2) 0.4m DTM 
CNN (U-Net 

segmentation) 

Accuracy 

93% 

[50] 
Archaeological 

Topography 

Perticara, Italy (106.45 

km2) 

DEM; 

142 

points/m2 

ML 

(Unsupervised 

ISODATA) 

- 

[75] 
Ancient Agricultural 

Terraces and Walls 
Negev, Israel (-) - 

CNN (U-Net 

segmentation) 

Precision 

(Terrace 

87%, Wall 

60%) 

[20] 
Celtic Fields and Burial 

Mounds 

The Białowieza Forest, 

Poland (697.8 km2) 

0.5m DTM; 

11 

points/m2 

CNN (U-Net) 

F1-score 

58% 

IoU 50% 

[24] Shipwreck 
Alaska, and Puerto 

Rico, USA (-) 
1m DEM 

TL7 CNN 

(YOLOv3) 

F1-score 

92% 

[54] Topographic Anomalies 
Brittany, France (200 

km2) 

0.5m DTM; 

14 

points/m2 

TL Mask 

Regional 

based-CNN 

(ResNet-101) 

Detection 

Accuracy  

< 77% 

[77] 
Grave mound, Pitfall trap, 

Charcoal Kiln 
Norway (937 km2) 

0.5m DTM; 

5 points/m2 

Faster Regional 

based-CNN 

Accuracy  

~70% 

[40] 
Earthwork Sites (Pit, 

Terrace, Sod Wall, Ditch) 

Northland, New 

Zealand (-) 
- 

Faster Regional 

based-CNN 

(ResNet-101) 

- 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 June 2025 doi:10.20944/preprints202506.1581.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1581.v1
http://creativecommons.org/licenses/by/4.0/


 13 of 24 

 

[48] Stone Wall, Pottery Chun Castle, UK (-) 1m DSM 

ML (Support 

Vector 

Machine) 

Accuracy 

 >70% 

[55] Burial Mounds 
Galicia, Spain (29,574 

km2) 
1m DTM 

Regional 

based-CNN 

(YOLOv3) 

Detection 

Rate 

89.5%, 

Precision 

66.75% 

[28] Trace Hollow Roads 

Veluwe, The 

Netherlands (93.75 

km2) 

0.5m DTM 
CNN 

(CarcassonNet) 

Accuracy 

89%, F1-

score 42% 

[63] 
Barrow, Celtic Field, 

Charcoal Kiln 

Veluwe, The 

Netherlands (2,200 

km2) 

DTM; 

6-10 

points/m2 

CNN 

(YOLOv4) 

Precision 

64%, F1-

score 76% 

[64] Shell Rings 
South Carolina, USA 

(6,712 km2) 
1.5m DEM 

Mask Regional 

based-CNN 

Detection 

Accuracy 

~75%  

[35] 

Field Systems (Medieval 

Terraced Slopes, and 

Ridges and Furrows) 

Southern Vosges, 

France (1,462 km2) 

1m DEM; 

5 points/m2 

ML (Random 

Forest) and DL 

(Fully 

Connected 

Networks) 

F-score 64-

91% (ML) 

and 55-

77% (DL) 

[62] Relict Charcoal Hearths 
New England, USA 

(493 km2) 

1m DEM; 

2 points/m2 
CNN (U-Net) 

F1-score 

86% 

[83] Relict Charcoal Hearth 

Sites 
Germany (3.4 km2) 

0.5m DEM 

 

Modified Mask 

Regional 

based-CNN 

Recall 

83%, 

Precision 

87% 

[79] 
Barrow, Celtic Field, 

Charcoal kiln 

Veluwe, The 

Netherlands (2200 km2) 

0.5m DTM; 

6-10 

points/m2 

 Faster 

Regional 

based-CNN 

(WODAN 2.0) 

F1-score 

70% 

[21] Maya Structures 
Petén, Guatemala (2144 

km2) 
1m DEM 

Mask Regional 

based-CNN (U-

Net) 

Classificat

ion 

Accuracy 

95% 

[82] 

Maya Settlements 

(Aguada, Building, 

Platform) 

Campeche, Mexico (230 

km2) 

0.5m DEM; 

14.7 

points/m2 

(ground) 

CNN (VGG-19) 
Accuracy 

95% 

[58] Bomb Crater, Charcoal 

Kiln, Barrow 

Harz mountains, 

Germany (47,000 km2) 

0.5m DTM CNN (Deeplab 

v3+) 

IoU6 

76.8% 

[76] Burial Mounds Romania (200 km2) 0.5m DEM; 
ML (Random 

Forest) 

Identifyin

g 
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2-6 

points/m2 

Accuracy 

96% 

[73] House, Wall, Pyramid, etc. Mexico (-) 0.3m DEM CNN (VGG) 
Precision 

97%  

[43] Historic Mining Pits 
Dartmoor National 

Park, UK (-) 

0.25m and 

0.5m DSM8 

TL CNN 

(DeepMoon) 

Recall 80% 

(0.5m 

DSM) and 

83% 

(0.25m 

DSM) 

[78] Barrows and Celtic Fields 
Veluwe, The 

Netherlands (440 km2) 

LiDAR 

images; 

6-10 

points/m2 

Regional 

based-CNN 

(WODAN) 

F1-score ~ 

70% 

[66] Viking Age Fortress 
Bornholm, Denmark 

(42,036 km2) 
1.6m DTM 

ML (Random 

Forest) 
- 

[6] 
Barrow, Celtic Field, 

Charcoal Kiln 

Veluwe, The 

Netherlands (437.5 

km2) 

LiDAR 

images; 

6-10 

points/m2 

CNN 

(WODAN) 
- 

[65] Prehistoric Roundhouses, 

Shieling Huts, Clearance 

Cairns 
Arran, Scotland (432 

km2) 

0.25m 

DTM; 

2.75 

points/m2 

(ground) 

TL CNN 

(ResNet-18) 

Detection 

Accuracy 

(Roundho

use 73%, 

Huts 26%, 

Cairns 

20%) 

[61] 

Hollow Way, Stream, 

Pathway, Lake, Street, 

Ditch, etc. 

Lower Saxony, 

Germany (-) 
1m DTM 

Hierarchical 

CNN 

Classificat

ion 

Accuracy 

91% 

[42] Burial Mounds 
Brittany, France (246.7 

km2) 

0.25m 

DTM; 

14 

points/m2 

ML (Random 

Forest) 
- 

[80] 

Grave, Mound, Pitfall 

Trap, Charcoal Burning 

Pit, Charcoal Kiln 

Oppland, Norway (29 

km2) 
- 

ML (Template 

Matching) 
- 

[81] Maori Storage Pits New Zealand (-) 1m DEM 
ML (Template 

Matching) 
- 

1 Digital Elevation Model. 2 Convolutional Neural Network which is one type of deep learning approaches. 3 

Digital Terrain Model. 4 RGB-X Semantic Segmentation with Transformers. 5 Intersection over Union. 6 Machine 

Learning. 7 Transfer Learning. 8 Digital Surface Model. 
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Table 1 highlights the lack of consistency in evaluation metrics across studies. Various metrics 

such as accuracy, precision, recall, F1-score, IoU, and detection rate have been computed, which make 

direct comparisons between studies difficult. This inconsistency can limit the ability to assess how 

well ML methods are performing on a global scale and across different archaeological contexts. 

Calculating a unified and consistent metric would enable a standardized comparison, providing 

deeper insights into the effectiveness and reliability of these methods in archaeological applications. 

Another insight is that CNN-based methods, especially with high resolution airborne LiDAR 

derivatives and for localized studies with detailed archaeological features (for instance, the 

Netherlands and Mexico [71,73,79,82]), demonstrate superior detection accuracy and precision 

compared to traditional ML methods. While higher resolution LiDAR tends to achieve better 

detection performances, as seen in cases like tar production kilns [23] and burial mounds [76], coarser 

resolutions are used for larger study extents but often result in moderate detection rates. CNN-based 

methods are the most commonly used, demonstrating versatility by detecting a wide range of 

archaeological features, including walls [30,40,46,73,74], mounds [20,55,57,77], and Maya structures 

[21,68,82]. However, ML methods are effective for more straightforward feature types (like canals 

and linear structures) but less robust for complex features.  

Techniques such as filtering and applying enhancement methods on LiDAR data help overcome 

challenges like vegetation obstruction and erosion effects [50]. While specific LiDAR guidelines are 

still evolving (both for data acquisition and for data validation), expertise in landscape analysis 

remains crucial for accurate assessments, with LiDAR technology enriching our understanding of 

landscapes over time [33]. In summary, integrating airborne LiDAR derivatives with ML techniques 

appears to offer promising avenues for supporting archaeological research and cultural heritage 

preservation, with various studies showcasing the effectiveness of these approaches across diverse 

archaeological tasks. Furthermore, collaboration between archaeologists and ML experts may 

contribute to the refinement of detection methods, and adopting standard evaluation measures can 

facilitate cross-study comparisons, fostering the development of human-centered ML methods for 

archaeological feature detection. Finally, archaeological sites remain vulnerable to a range of threats, 

including environmental factors (such as natural disasters or climate change) and human activities 

(such as urban development or looting). Despite these challenges, the mentioned studies (Table 1) 

provide meaningful insights aiding the interpretation of archaeological sites and planning 

management strategies to protect and preserve them. 

6. Discussion 

LiDAR is particularly valuable in archaeological research because of its ability to penetrate dense 

vegetation, such as forest canopies, and capture detailed measurements of the ground surface. This 

capability is crucial for discovering unknown archaeological features in heavily vegetated areas 

which are often challenging to investigate through traditional framework or optical imagery. LiDAR 

data are often processed into DTMs or other visualization products like hillshades or local relief 

models, allowing archaeologists to visualize topographical changes that may indicate the presence of 

archaeological remains such as earthworks, mounds, or ditches. The increasing availability of LiDAR 

datasets reinforces the potential for automated analysis. 

The application of ML/DL to derivatives of aerial LiDAR data represents a transformative shift 

in archaeology, especially for subtle feature detection over expansive areas. Traditional 

archaeological methods, including manual analysis of remotely sensed data, are often time 

consuming and labor intensive. Therefore, the integration of ML/DL techniques offers promising 

solutions to automate the detection process, enhancing efficiency and potentially reducing costs 

associated with extensive manual surveys. DL models, particularly CNNs, have demonstrated state-

of-the-art performance in object recognition tasks and are well suited for analyzing raster images 

derived from aerial LiDAR. Various ML/DL approaches such as object detection, segmentation, and 

classification have been applied to identify diverse archaeological features. Examples include the 

detection of burial mounds using DL or RF [33,42,55,57,76,84], qanat shaft using CNNs [1], tar 
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production kilns using U-Net based algorithm [23], hollow roads [28], stone walls and farmsteads 

[74,85], and hillforts [15,69]. These automated methods can assist archaeologists to quickly identify 

potential areas of interest across large regions which then can guide subsequent fieldworks and can 

reduce the need for exhaustive manual analysis. This study showed that ML/DL approaches can 

achieve high detection rates and accuracy in identifying known features, while also discovering 

previously unrecorded sites. 

Despite the significant potential and early successes, the application of ML/DL to LiDAR 

derivatives for archaeological detection faces several critical challenges that need careful 

consideration and ongoing research. First challenge is the availability and preparation of training 

data. DL models typically require large amounts of data to achieve high accuracy [1,71], and such 

extensive datasets are often scarce in the archaeological field. Insufficient interpretation has been 

shown to lead to limitations in training experiments [19]. Analyzing archaeological features in LiDAR 

derivatives is a task that requires archaeological expertise. This makes the creation of large, well-

labeled datasets expensive and time-consuming. Furthermore, the quality and consistency of expert 

interpretation can vary which potentially introduces bias and error into the training data. This can 

degrade classifier accuracy. The entire process, from data acquisition to interpretation, involves 

assumptions and decisions by the operator, which can introduce subjectivity and compromise 

validity if not properly reported. This underscores the crucial need for standardized documentation, 

including metadata (data about data) and paradata (documentation of process), to ensure scientific 

transparency, replicability, and reflexivity. Beyond training data volume, challenges also exist in 

working with LiDAR data of varying point densities and intrinsic precision. Particularly detecting 

features in low-density data is difficult. While higher point density LiDAR coverages may become 

available in the future, researchers currently face issues with available data quality and quantity. 

Another issue is the lack of publicly available archaeological data due to ethical concerns regarding 

site protection. Standardized, open-access, and large datasets are lacking, which makes the 

evaluation and comparison of the performance of different ML/DL models across various 

archaeological contexts difficult. Fairly comparing different detection methods is challenging because 

their performance heavily depends on the datasets, metrics, and evaluation methods used. This 

highlights the need for adopting standard evaluation measures within the archaeological community. 

There is also a gap in providing efficient and automatic data structuring pipelines for existing 

datasets that were not originally acquired for heritage detection purposes.  

Another significant issue is the prevalence of false positives when applying ML/DL models to 

LiDAR data. Archaeological features, especially those that are subtle or degraded, often have similar 

morphologies to natural or artificial non-archaeological shapes in the landscape. This bird's-eye 

perspective challenge in LiDAR data means that objects with similar forms (e.g., small mounds, pits) 

can be difficult for ML models to be distinguished without additional context or validation 

[15,33,57,69]. While post-processing validation steps such as analyzing the 3D shape of potential 

detections can help reduce false positives, a persisting high rate of false positives can require 

significant effort for subsequent ground truthing. Conversely, false negatives are also a concern. 

Although, in some applications, maximizing detection (completeness) is prioritized over minimizing 

false positives (correctness) [70]. This ensures that no actual features are overlooked. Further 

investigation can later confirm or reject the findings. 

The variability in archaeological feature characteristics and landscape contexts such as the 

ambiguous boundaries of ancient features [75] presents further challenges and requires further 

dedicated studies. Archaeological remains are in diverse sizes, shapes, and levels of preservation. 

Moreover, their appearance in LiDAR data can be influenced by factors like erosion, vegetation 

density, and the specific LiDAR processing techniques used. Developing models that can effectively 

detect this wide range of features across topographically varied landscapes is complex. Model 

transferability between different geographic regions and archaeological sites is not guaranteed and 

often requires fine-tuning or retraining [14,19]. The necessary resolution and point density of LiDAR 

data also vary depending on the size and detail of the archaeological features being sought. Lower 
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densities might miss smaller or less distinct features. Deriving suitable raster products (like DTMs or 

other visualizations) from raw aerial LiDAR involves numerous decisions and algorithms. Therefore, 

the choice of processing steps can significantly impact the performance of ML/DL models and as a 

result the visibility of archaeological features. Documenting this complex workflow is crucial for 

scientific transparency and replicability which is not yet standardized. 

Although deep CNN models hold significant potential, they are still not commonly used in 

detecting archaeological remains [10]. To our knowledge, there has been limited evaluation of CNNs' 

object-segmentation capabilities. Most CNN-based object detection techniques in this domain rely on 

two-stage detectors, such as R-CNNs, Faster R-CNNs, and Mask R-CNNs. While these approaches 

are robust and often highly accurate, they can face challenges related to slower processing speeds 

than one-stage detectors. Two-stage CNN detectors first generate region proposals (i.e., areas in the 

image that might contain objects) and then classify each proposed region and refine its bounding box, 

while one-stage detectors predict object locations and classes directly in a single step, making them 

faster but sometimes less accurate [6,51,61]. Additionally, difficulties persist in selecting suitable DL 

approaches, generating training datasets, and accurately labeling data. Furthermore, adaptable ML 

methods applied for the segmentation of unstructured 3D data are still under discussion and are not 

yet consolidated [19]. Three notable contributions include the Multi-Level Multi-Resolution (MLMR) 

SS approach, which utilizes RF algorithms for classification [84], the implementation of the PointConv 

architecture for high-accuracy classification of 3D point clouds [3], and the application of DL on 3D 

airborne LiDAR data for SS and object detection of historical defensive architectures [19]. These 

approaches can offer innovative solutions for analyzing LiDAR-generated datasets and detecting 

archaeological structures with improved accuracy and efficiency. However, most existing DL 

approaches for point clouds are primarily focused on other fields, like robotics, autonomous driving, 

and indoor modeling [19]. Adapting these methods for use in cultural heritage and landscape 

contexts requires significant modifications. Model generalization and adaptability are in fact 

challenging when applying systems developed in one region or for one type of feature to areas with 

different site typologies and landscapes, and normally requiring fine-tuning [69]. 

Integrating information from various sensors, such as combining airborne LiDAR data with 

photogrammetric data [10], aerial imagery, multispectral/hyperspectral imaging, geophysical 

surveys, and ground-based LiDAR scans [86–88] or utilizing multispectral LiDAR [67,89], offers the 

opportunity to overcome the limitations of single data sources by extracting richer and more detailed 

information about the potential archaeological features. However, challenges remain in effectively 

integrating these diverse datasets considering variations in resolution, penetration, texture, color, 

accuracy, and the dynamic nature of the environment. Therefore, these techniques are not commonly 

used, and there is limited evidence of their effectively detecting hidden remains. Moreover, the 

development of hybrid ML/DL models that fuse predictions from different models, combine DL with 

traditional methods, or integrate ML/DL with external knowledge sources or processes [75,78] could 

further enhance the accuracy and interpretability of archaeological feature detection algorithms. The 

application of these hybrid approaches can lead to high detection and segmentation performance 

even with relatively small training datasets. It could address a common limitation in archaeological 

contexts where large training datasets are scarce. By combining the strengths of different methods, 

these hybrid models can potentially achieve higher accuracy and reduce false positives compared to 

using a single method. However, challenges exist. Implementing such combined approaches can 

require substantial computational resources and processing time [69]. While hybrid detection 

methods can be fast, the process often requires significant human expertise for creating and refining 

training datasets, validating results, and interpreting findings, especially when dealing with complex 

or heterogeneous archaeological features [23]. Also, managing various data types introduces storage 

challenges. Important practical aspects could be excluding negative zones (i.e., areas where 

archaeological information cannot be obtained, such as built-up areas or areas with insufficient data 

quality) [15], and establishing specific arrangements for the long-term storage and archiving of digital 

data products, considering the necessary storage space [23]. Therefore, their successful 
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implementation needs careful consideration of data requirements, computational resources, and the 

critical role of human expertise in the workflow. 

Last but not least, the successful implementation of ML/DL in archaeology requires close 

interdisciplinary collaboration and knowledge integration between archaeologists, computer 

scientists, and remote sensing experts. Applying complex computer algorithms remains uncommon 

for many archaeologists, because it often requires the expertise of computer science specialists. 

Additionally, a barrier of meaning [11] exists which represents the gap between the expert 

archaeologist's knowledge and the knowledge learned by the machine. To address this, it is 

fundamental to enhance the involvement of archaeologists in the learning process. This enables them 

to contribute their expertise and to provide domain knowledge to the machine [71]. Archaeologists 

provide the expertise necessary for identifying and interpreting potential features, defining target 

classes for ML/DL models, and validating results through ground truthing. Computer scientists 

develop and refine the ML/DL algorithms. And, remote sensing specialists handle data acquisition 

and processing. Integrating archaeological knowledge into the ML/DL workflow, such as using 

location-based ranking or incorporating specific archaeological object patterns, can improve model 

performance and reduce false positives [4,33,57]. Moreover, international collaboration and 

establishing standardized datasets [71] are essential for facilitating the evaluation of ML and DL 

models in feature detection and classification within the archaeological field. By leveraging 

technological innovations and fostering collaboration among archaeological teams, we can accelerate 

the pace and improve the quality of archaeological investigations, ultimately contributing to a deeper 

understanding of ancient civilizations and the preservation of cultural heritage.  

Future research directions may focus on addressing the identified challenges. Finding ways to 

deal with the lack of labeled training data is very important. This could be done using methods like 

active learning, weakly supervised learning, or more effective data augmentation techniques such as 

generating synthetic point cloud data and 3D bounding box labels [19]. Furthermore, creating and 

sharing standardized, open-access datasets with high-quality annotations and ground truth 

validation would significantly facilitate the development and comparison of ML/DL models. 

Moreover, further investigation is needed to understand: how different LiDAR processing techniques 

impact the visibility of various archaeological features? how to optimize these techniques for 

automated detection? Developing transferable methodological approaches that can adapt to varying 

primary data densities, particularly addressing low-density applications, is needed. It is also 

important to develop more robust models that can deal with the inherent differences in 

archaeological features, can work well across various landscapes and data types, are able to leverage 

higher point density LiDAR data as it becomes available and can incorporate new data sources like 

LiDAR intensity values. Besides, exploring the fusion of LiDAR with other remote sensing data, such 

as multispectral imagery or photogrammetry, and exploring the potential opportunities of 

hyperspectral LiDAR may provide additional information to improve detection accuracy and reduce 

false positives. Therefore, future work should include ablation studies to quantitatively assess how 

much each individual data source (or the combination of them) contributes to the model's 

performance. This helps prove whether using multiple data sources actually improves the results. 

Likewise, refining post-processing validation methods such as using 3D information from the point 

cloud or incorporating spatial context analysis could help filter out non-archaeological features. 

Finally, fostering interdisciplinary and international collaboration and knowledge integration is 

crucial. Collaboration among surveyors, archaeologists, and software engineers for method 

development is encouraged. Moreover, future research should also place site findings within their 

broader regional and temporal context [22] and consider investigating archaeological features that 

extend over national borders by combining LiDAR data and AI. 

7. Conclusion 

Our work serves as a valuable bridge between traditionally separate disciplines by 

demonstrating how AI-driven object detection using CNNs and LiDAR can be effectively applied to 
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archaeological research. By clearly mentioning underutilized technical operations, such as direct 3D 

point cloud analysis, broad-scale model generalization, and human-AI collaborative workflow, this 

study promotes meaningful collaboration across archaeology, geosciences/RS, computer 

science/engineering, heritage management, and public engagement. It can support the growing 

interdisciplinary momentum in landscape archaeology and can contribute to the development of 

sustainable, scalable, and scientifically robust methodologies for both academic research and heritage 

practices. 

Integrating airborne LiDAR derivatives with ML techniques represents a notable advancement 

in archaeological research. The combination of LiDAR's high-resolution terrain mapping capabilities 

with the automation capabilities of ML algorithms has the potential to enhance current 

methodologies, enabling more efficient and systematic detection of hidden archaeological landscapes 

and structures. 

Through this literature review, we have explored the diverse applications of ML-based 

approaches in archaeological feature detection, ranging from identifying ancient settlements to 

detecting burial mounds and urban complexes. These studies demonstrate the potential of ML 

techniques, particularly DL models, in augmenting traditional archaeological methods and 

facilitating a deeper understanding of past civilizations. 

Despite the significant progress, several challenges and opportunities for future research remain. 

Addressing issues such as data accessibility, algorithm interpretability, and interdisciplinary 

collaboration will be essential for advancing the field further. Moreover, exploring DL-based 

processes for classifying 3D point cloud datasets and establishing standardized evaluation measures 

are critical steps toward enhancing the reliability and applicability of ML models in archaeological 

research. 

Ultimately, by drawing on technological innovations and encouraging collaboration among 

interdisciplinary teams, there is potential to enhance the pace and quality of archaeological 

investigations. Continued exploration and innovation may help deepen our understanding of ancient 

civilizations, support cultural heritage preservation, and inspire future generations to engage with 

the rich diversity of human history. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Abbreviations 

The following abbreviations are used in this manuscript: 

AI Artificial Intelligence 

ALS Airborne Laser Scanning 

ANNs Artificial Neural Networks 

BIM Building Information Model 

CNN Convolutional Neural Network 

DEMs Digital Elevation Models 

DL Deep Learning 

DNNs Deep Neural Networks 

DTMs Digital Terrain Models 

DSMs Digital Surface Models 

GIS Geographic Information Systems 

GNSS Global Navigation Satellite System 

IMU Inertial Measurement Unit 
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LiDAR Light Detection and Ranging 

LRMs Local Relief Models 

ML Machine Learning 

NIR Near-Infrared Range 

R-CNN mask Regional based Convolutional Neural Network 

ReLU Rectified Linear Units 

RF Random Forest 

RNN Recurrent Neural Network 

RS Remote Sensing 

SAR Synthetic Aperture Radar 

SfM Structure from Motion 

SS Semantic Segmentation 

SVM Support Vector Machine 

TL Transfer Learning 

UAV Unmanned Aerial Vehicle 
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