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Abstract: Archaeological research, driven by the quest to understand ancient civilizations, relies
heavily on detecting archaeological features to uncover hidden historical information. This article
explores the intersection of airborne (aerial) LiDAR technology and Machine Learning (ML)
techniques in archaeological feature detection. Airborne LiDAR, offering high-resolution 3D terrain
maps, has significantly advanced archaeological surveys by enabling the detection of ancient
structures and landscapes with improved accuracy and efficiency. ML algorithms, particularly
Convolutional Neural Networks (CNNs), complement airborne LiDAR derivatives by automating
feature detection and classification, thus enhancing the efficiency and accuracy of archaeological
research. Through a comprehensive review of past studies, this technical note highlights the potential
contributions of ML-based approaches on LiDAR derivatives in detecting archaeological features,
such as ancient settlements, burial mounds, and urban complexes. Despite notable advancements,
challenges such as data accessibility, algorithm interpretability, and interdisciplinary collaboration
persist.
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1. Introduction

Archaeological feature detection plays a vital role in uncovering the secrets of the past,
informing decision-makers to select more informed choices that balance development needs with the
preservation of cultural heritage, advancing scientific knowledge, and engaging the public in
exploring human history [1]. Across millennia, ancient settlements, roads, fortifications, and
agricultural systems have left lasting marks on the landscape, providing invaluable insights into past
human behaviors, social structures, and technological advancements [2]. By carefully detecting and
analyzing these features, archaeologists can piece together the complex network of ancient
civilizations, shedding light on their history and cultural dynamics. Moreover, archaeological
research provides crucial data that help scholars refine historical chronologies, understand trade
networks, and reconstruct environmental changes that shaped human societies over time.

Yet, the preservation of archaeological sites faces countless threats, ranging from urban
development, looting and wars to erosion and climate change [3]. Unregulated construction projects,
mining activities, and expanding infrastructure often lead to the destruction of historically significant
landscapes before their significance is even recognized [1]. The timely detection and documentation
of archaeological features not only aid in safeguarding cultural heritage sites but also inform crucial
land use planning and resource management decisions [4]. By identifying the locations of ancient
settlements, burial sites, and other cultural features, potential damage from development projects can
be mitigated, and conservation measures can be implemented to ensure the sustainable protection of
heritage assets. Moreover, archaeological feature detection contributes significantly to
interdisciplinary research, bridging fields such as anthropology, history, geography, and
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environmental science [5]. The extensive dataset obtained from archaeological surveys and
excavations helps test hypotheses, refine chronologies, and deepen our understanding of human-
environment interactions over time. Furthermore, discoveries from archaeological feature detection
enrich educational programs, museum exhibits, and public outreach initiatives, fostering curiosity
and appreciation for cultural diversity among the general public [6]. By sharing the stories of past
civilizations and the methods used to uncover their secrets, archaeologists inspire a sense of wonder
and respect for our shared human history.

In their effort to uncover hidden features of ancient landscapes, archaeologists are increasingly
turning to advanced geomatics technologies. Geographic Information Systems (GIS), Remote Sensing
(RS) techniques such as LiDAR and Synthetic Aperture Radar (SAR), and Artificial Intelligence (AI)
have become indispensable tools, enabling the analysis and interpretation of terrain features with
unprecedented precision [7]. For instance, SAR technology offers unique capabilities for identifying
buried archaeological features; examples are the case of Ostia-Portus in Italy, Uyuk River Valley in
Russia, and Apamea site in Syria , where multi-band SAR successfully identified shallow-buried
paleochannels, burial mounds, and looting pits, respectively [8]. To enhance the archaeological
detection, SAR data can be fused to optical imagery. However, due to its complexity and need for
further validation, its application is challenging [9]. These technologies facilitate large-scale
archaeological surveys, reducing the need for invasive excavation methods and allowing researchers
to explore sites that are otherwise inaccessible due to dense vegetation or challenging terrain. Among
these technologies, LIDAR data and Al have emerged as potent tools for detecting archaeological
features efficiently and accurately, offering invaluable insights into preserving endangered sites and
discovering new archaeological areas [10]. Additionally, Al techniques such as Machine Learning
(ML) and Deep Learning (DL) facilitate archaeological features' classification, identification, and
segmentation, opening new avenues for archaeological research.

This technical note aims to critically examine recent archaeological studies that have employed
derivatives of airborne (aerial) LIDAR point cloud data such as Digital Elevation Models (DEMs) and
ML techniques for archaeological site detection, highlighting the significance of these approaches and
identifying critical research gaps and future research prospects. While various studies have explored
the role of Al in archaeology and cultural heritage, they have primarily focused on different
methodologies applied to various RS datasets. For instance, [10] concentrates solely on employing
DL approaches on diverse RS data (e.g., aerial photogrammetry, SAR, multispectral satellite imagery,
and LiDAR) for digital preservation and object detection. Similarly, the focus of [1] is solely on one
DL methodology (i.e., Convolutional Neural Network (CNN)) resulting in the review of six case
studies using different RS data. [11] focuses on state-of-the-art technologies related to Al and RS,
while [12] primarily centers on Semantic Segmentation (SS) of point cloud data derived from LiDAR
and photogrammetry for digital orthophoto mapping, damage investigations, object recognition,
Building Information Model (BIM) and historical BIM. Furthermore, several reviews have
concentrated on the application of LIDAR as well as other unmanned aircraft systems in archaeology
and cultural heritage [13,14]. Moreover, [15] explicitly examines the airborne LiDAR data processing
workflow. However, these reviews only partially focused on utilizing ML for archaeological feature
detection from airborne LiDAR derivatives, which constitutes the primary focus of this study.

2. Research Aims

This study examines the current state of research on the integration of imagery derived from
airborne LiDAR point cloud data and ML techniques in detecting archaeological features. Detecting
such features is crucial in uncovering past civilizations and informing decisions that balance
development with cultural heritage preservation. Airborne LiDAR technology, with its ability to
penetrate vegetation and provide high resolution topographic information, has transformed
archaeological surveying by enabling the identification of subtle landscape features that may not be
visible through traditional methods. Integrating ML algorithms with airborne LiDAR derivatives has
the potential to enhance the efficiency and accuracy of detecting these features. This study aims to
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critically analyze the methodologies, applications, trends, and limitations reported in recent
literature, with a particular focus on how ML has been employed to LiDAR derived products in
archaeological contexts. It also seeks to identify existing research gaps and methodological challenges
such as data processing, model generalizability, and the scarcity of labeled databases. By doing so,
the paper aims to contribute to a more informed understanding of this interdisciplinary field and to
suggest directions for future works.

3. Airborne LiDAR Technology in Archaeological Feature Detection

The 21st century marks the initiation of using LiDAR data in archaeological exploration [16].
One of the earliest notable applications has been carried out in the UK, where LiDAR was utilized to
identify and document earthwork traces of a Roman Fort in West Yorkshire, which traditional
detection methods had overlooked [17]. Initially developed for terrain mapping and vegetation
analysis, LIDAR's role has expanded to include the detection of hidden archaeological features,
particularly in areas where traditional survey methods face limitations [18]. This growing recognition
of LiDAR's capabilities has paved the way for its integration into archaeological research worldwide.

Airborne LiDAR technology is an active and non-invasive surveying method that utilizes laser
scanning to generate highly detailed three-dimensional (3D) maps of the terrain surface, creating
detailed 3D point clouds over vast areas. A standard airborne LiDAR setup comprises Airborne Laser
Scanning (ALS), aircraft positioning by Global Navigation Satellite System (GNSS), and an Inertial
Measurement Unit (IMU) [7]. A laser scanner, typically mounted on an aircraft like a plane, helicopter
or drone, emits pulses, generally in the Near-Infrared Range (NIR), at average frequencies of around
one million pulses per second (1 MHz) in various directions along the flight path toward the ground
[19]. The initial commercial systems operated at 10 kHz and were bulky in size, while the
contemporary systems are smaller, lighter, and can handle multiple laser returns [20]. For each laser
pulse that hits the surface, discrete return LiDAR systems [19,21] detect and record a limited number
of returns, while full-waveform systems [13,18] record the entire backscattered energy profile
(continuous signal). These pulses bounce off objects such as the ground surface, vegetation, and
buildings, with their positions determined by calculating the time delay between emission and
reception of each echo, along with the direction of the laser beam and the scanner's position [22,23].
In addition, bathymetric LIDAR has emerged as a specialized tool for underwater surveying. Unlike
NIR LiDAR, which utilizes larger wavelengths, bathymetric LIDAR employs smaller wavelengths in
the green spectrum to penetrate the water column effectively [24]. While early iterations of
bathymetric LiDAR faced limitations in return point density and spatial resolution, recent
advancements have significantly improved instrument quality [25]. This progress has enabled a wide
range of archaeological applications, including documenting submerged sites.

Airborne LiDAR's primary application in archaeology has been identifying archaeological
structures visible as topographic imprints on the ground surface [17]. This technology has
revolutionized archaeological surveying, enabling researchers to identify and analyze features such
as ancient structures, roads, and burial mounds with improved accuracy. Airborne LiDAR offers a
significant increase in spatial resolution compared to photogrammetric and satellite-derived
products obtained from stereo or tristereo imagery [26]. On the other hand, UAV photogrammetric
surveys can be severely limited by the presence of vegetation and by georeferencing challenges,
especially when establishing ground control points in hard-to-reach areas [27]. LIDAR allows for the
filtering of vegetation, buildings, and other man-made structures to create high-resolution bare-soil
Digital Terrain Models (DTMs), which can aid in the detection of archaeological remains. However,
in areas with sparse ground returns, such as dense vegetation or urban settings, the ground surface
must be interpolated which can reduce the quality of DTMs [4,15] and as a result, the accuracy of
archaeological feature detection. The combination of LiDAR-based DTMs and visualization
techniques has contributed to important discoveries in both well studied archaeological areas and
previously overlooked regions due to dense vegetation cover [7]. Besides its efficiency in data
acquisition, airborne LiDAR can support the identification of buried or partially buried
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archaeological features such as ancient trenches, roadways, and agricultural fields [28-31], as well as
geoarchaeological features in low-relief alluvial landscapes [32]. Additionally, for some countries,
airborne LiDAR data is already accessible online immediately or upon request, offering economic
benefits as it is more cost-effective and efficient than traditional methods [33]. However, the quality
of LiDAR data is crucial for accurate and reliable results in various applications, with point density
as a key parameter to assess quality. Point density, representing the number of LiDAR points per unit
area, which can directly influence the level of detail and precision of derived products [33,34].
Ensuring adequate point density and transparency in reporting are essential for maximizing the
utility and trustworthiness of LiDAR-derived information across diverse applications [35]. Regular
updates and monitoring of surveyed and mapped areas are also necessary [19]. Other challenges and
limitations to this technology include high initial investment costs, managing and interpreting large
data volumes, vulnerability to weather and environmental conditions affecting data collection, as
well as logistical obstacles related to site access, permissions, and data privacy [36]. It furthermore
requires collaborations between archaeologists and RS experts, ensuring a more comprehensive and
deeper data analysis.

Airborne LiDAR technology can reveal not only visible archaeological structures but also hidden
features that are often difficult to detect using traditional methods. These hidden features, such as
buried structures, roads, and agricultural fields, are of great significance in archaeological research
[36]. By revealing well preserved sites obscured by natural factors such as dense vegetation or soil
erosion, LiDAR enables archaeologists to explore previously overlooked regions and gain a deeper
understanding of human history and culture [37]. This aspect of LiDAR technology highlights its
potential to revolutionize the study of civilizations that have long since disappeared, offering new
interpretations of their social, economic, and environmental systems [36,38]. Some of the most
significant findings facilitated by airborne LiDAR technology in archaeology include the mapping of
hidden cities and vast urban complexes, such as the expansive Maya civilization in Central America
[21] and the elaborate network of Angkor in Cambodia [34,39], as well as evidence of the architectural
sophistication of ancient civilizations, showcasing elaborate structures like earthworks [40], complex
road networks [28] used for trade and communication, hidden agricultural fields [2], and defensive
structures [10]. Airborne LiDAR has significantly enhanced the visualization and mapping of ancient
cities and extensive landscapes previously obscured by dense vegetation or sediment accumulation.

4. Machine Learning in Archaeological Feature Detection

Methods for detecting archaeological features have evolved from subjective approaches, which
rely primarily on personal interpretation without clear and standardized criteria [41], to more
scientific ones, aided by computing technology. Archaeological feature detection involves field
surveys, RS, and integrating RS with Al [7,11]. The fusion of RS data with Al marks a new era in
archaeology. ML algorithms, a subset of Al, have become indispensable tools for processing and
analyzing large volumes of data in archaeological contexts. Traditional techniques often suffer from
limited coverage, subjective interpretation, and unquantified error rates, leading to false positives
(detecting features that are not actually archaeological) and false negatives (missing actual
archaeological features) [6,38,42,43], which ML blended with RS can overcome by creating a
systematic solution [11]. ML is broadly defined as the capacity of intelligent systems to learn and
improve from prior data [1]. It involves optimizing a model to transform input into a desired output
with increasing efficiency [44,45]. This optimization process, known as training, is performed using
a relevant set of training data. ML algorithms are trained to derive mathematical classifiers or feature
vectors and apply them to extract, sort, classify, and interpret new data [44]. Al uses such ML models
to automate decision-making and data analysis. ML has been successfully applied in various domains
of computer science, including computer vision, data classification, knowledge extraction, and
speech recognition [1,44,45]. They can be applied to a range of digital data, with the most common
types being numerical/categorical data, images, and geospatial data [6,44,46].
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ML methods are categorized into supervised learning, unsupervised learning, and
reinforcement learning. A fourth category, semi-supervised, is also sometimes mentioned [1,45]. The
fundamental difference often lies in the type of training data and whether these data have known
outputs or labels [47]. Supervised learning involves training models using data with known labels to
learn a mapping function that can accurately predict the output for new, unseen inputs [1,45]. This
process involves iteratively refining the model based on the provided training data. Common
supervised learning tasks are divided into two main groups, regression and classification. Regression
tasks aim to learn a real-valued function for continuous outputs, while a classification task assigns
input elements to a predefined set of discrete categories or labels [45]. Examples of common
supervised algorithms include decision trees, maximum likelihood, Random Forests (RF), Support
Vector Machine (SVM), Artificial Neural Networks (ANNs), and DL models like CNNs
[29,30,42,48,49]. SVM, maximum likelihood, and ANNs are commonly used for classifying raster and
images with training data that are created by drawing polygons around known objects [29,48].
Conversely, in unsupervised learning the objective is to find structure, patterns, and inherent
groupings within the unlabeled data autonomously [1,45]. Unlabeled data helps the model learn and
gain familiarity by attempting to make predictions without knowing the true targets [47], and it can
be optimal when features of interest are not previously known [39]. Clustering algorithms are among
the most widely used methods in archaeology and cultural heritage for discovering patterns and
structures in unlabeled datasets [50]. The simplest and most commonly used clustering algorithm is
K-mean [50], which is also integrated into advanced architectures® like PointNet++ for hierarchical
point grouping [51]. Reinforcement learning, with its common Q-learning algorithm, trains models
through rewards and penalties [1,52].

DL is an advanced form of ML originated in the 1940s with the goal of mimicking human brain
functions [53]. After facing challenges like overfitting and limited data, DL regained popularity in
2006 due to its significant advancements achieved in speech recognition [10]. The term deep refers to
the development of neural networks with more than one hidden layer [1,47,49,53]. Deep Neural
Networks (DNNSs) facilitate automated learning by iterating through massive amounts of data in
images, text, or videos [30]. They seek to exploit the unknown structure in the input data distribution
to discover good representations, often at multiple levels [53]. In other words, DL models build
understanding in a hierarchical way, where complex features are composed of simpler ones learned
in earlier layers and without human needs to define those features explicitly [1,49,53]. DNNs are
composed of simple, highly interrelated processing units called neurons, organized in multiple layers
[53]. There is an input layer, one or more intermediate or hidden layers, and a final output layer [49].
The connections between neurons are represented mathematically by trainable parameters called
weights [53,54]. The training process begins with the input of raw data, such as images, text, video,
or spatial datasets like DTMs, Local Relief Models (LRMs), or 3D point clouds [20,30,40,55-58].
During forward propagation, this data is passed through multiple layers of the network where each
neuron computes a non-linear activation on the weighted sum of its inputs and transmits the signal
forward [21,43,46,49,53,59]. The most common used activation function is Rectified Linear Units
(ReLU?) [21,46,59]. As the data progresses through the hidden layers, the network performs feature
extraction and automatically learns to detect increasingly complex patterns [1,47,49]. This is a key

An architecture refers to the specific design and structure of a neural network. It encompasses the arrangement of layers, the types of

layers (e.g., convolutional, pooling, fully connected), the connections between layers, and the methods used for processing data. Different
architectures are tailored to solve various tasks such as image classification, object detection, or segmentation, and they influence the model's

performance and efficiency.

ReLU is an activation function used in neural networks, defined as f(x) = max(0, x). It introduces non-linearity into the model, enabling it

to learn complex patterns by allowing only positive values to pass through while setting all negative values to zero. This helps in addressing

issues like vanishing gradients and improving training efficiency.
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distinction of DL from classical ML. The final output layer generates predictions depending on the
task: this may include class probabilities [3,31], classifications [3,31], or segmentations [60]. The goal
of training is to adjust the model's weights to minimize the difference between the model's output
and the desired output for a given task [3,53,56]. After each forward pass, a loss function measures
prediction error [53,59]. Then, back propagation propagates the loss information backward through
the network and computes gradients which indicates the contribution of each weight to the error
[21,53]. An optimizer then uses these gradients to adjust the trainable weights, aiming to minimize
the loss function [53,56,59]. Training runs in steps called epochs where each one involves a full
forward and backward pass of all training data through the network [2,53]. After each epoch or a set
of epochs, model performance is validated using unseen data to ensure generalization and prevent
overfitting [2,47].

DL is a step further within ML, with models that follow the same methodologies (such as
classification and regression) but are based on ANNSs, and can significantly improve accuracy with
increased data availability [1,3,49,61]. However, it requires more extended training but shorter
inference times than traditional ML algorithms, relying on large datasets for better accuracy [44]. A
key difference between classical ML techniques and DL is that while the former often need feature
engineering (i.e., selecting, transforming, or creating new features from raw data), human experts to
carefully select input features (such as spectral indices), and the prior calculation and determination
of a range of possible statistically significant input features [40], the later performs feature extraction
by itself [1]. In other words, DL algorithms can identify and extract meaningful patterns or features
directly from raw data, which can be particularly time-saving and advantageous when working with
complex and high-dimensional datasets [1,49]. Similar to ML, DL encompasses different types of
learning (i.e.,, supervised, unsupervised, reinforcement learning) [1,45]. However, DL models
generally require considerable computational resources [40] and large amounts of data to achieve
higher accuracy [3,61]. Traditional ML methods might be more applicable or sufficient when dealing
with limited datasets or specific cases where targets have limited spectral and geometric variations
[49].

Based on the task, DL models can be categorized by their output. First are object detection
models that identify and locate specific objects within an image, typically drawing a bounding box
around them and providing a probability of the object's presence [3,62]. Examples of object detection
architectures include R-CNN, Faster R-CNN, YOLOvV5, and YOLOv4 [3,57,62,63]. In addition, SS
models classify each pixel of an image with a corresponding class, defining semantic regions and
segmenting them [21,62]. This provides both the classification and position of archaeological
structures [3]. Examples of SS architectures include Faster R-CNN, U-Net, Mask R-CNN, ResUnet,
and FCN [3,62]. CNNs are among the most studied architectures, especially when the input data are
images and videos [1,3,43,61]. They have been successfully used in various image applications,
including image classification, object recognition, video classification, and scene labeling [3,61].
Different CNN architectures exist with variation in their layer organization [21]. Figure 1
demonstrates an example of a simple CNN architecture, in which the input image passes through
multiple convolutional layers that extract local features such as edges and textures [3,61]. The pooling
layers help reduce spatial dimensions and control overfitting by preserving the most relevant
features. The extracted features are then fed into fully connected layers that interpret the information
for classification. Finally, an activation function called SoftMax? is applied to the classes. This assigns
probabilities to different classes, enabling the network to learn hierarchical representations of data
automatically [47,61].

3 Softmax is an activation function used in neural networks, particularly in the output layer for classification tasks. It converts raw scores

(logits) into probabilities by exponentiating each score and then normalizing them so that their sum equals one. This allows the model to

assign a probability to each class, facilitating multi-class classification.
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Figure 1. Structure of a simple Convolutional Neural Network (CNN) architecture for n-class classification. The
input image undergoes two convolutional and pooling operations, extracting hierarchical features. The resulting
feature map is flattened and passed through two fully connected layers. Finally, a Softmax activation function
is applied to the output of the last fully connected layer, converting it into a vector of n probabilities

corresponding to the classification classes.

Although CNN s typically perform best with large amounts of labeled data, in many real-world
scenarios, such data may be limited. In these cases, Transfer Learning (TL) can offer an effective
approach to mitigate this challenge. TL is a technique that applies the knowledge gained from solving
one problem to a different but related problem [3]. The core idea is to reuse a model that has been
pre-trained on a large amount of data (for instance on ImageNet dataset) for a source problem to
solve a target problem where only limited data is available [3]. However, differences between the
characteristics of the original training data (for instance, standard computer vision images) and the
new data (such as aerial LIDAR-derived images with different scale and rotation properties) need to
be considered [43]. TL is typically achieved by retraining only a few selected layers of the pre-trained
model on the new dataset [3,43]. Common strategies for applying TL include removing the final layer
of the pre-trained network and replacing it with a new layer suited for the target classification
categories, or fine-tuning the model by adding new training parameters [43]. In fine-tuning, either all
model weights can be updated, or the weights in the lower layers can be frozen while only updating
the upper layers [43]. Studies indicate that TL can significantly improve model accuracy in situations
where the available data for training is limited [2,3,61,64]. This technique directly addresses a major
challenge in DL, which is the requirement for vast amounts of labeled training data to achieve higher
accuracy [1,3,61]. While commonly associated with CNNs, TL can be applied to various ML
paradigms, including supervised and unsupervised learning [24]. Its advantages include reduced
training time and data requirements, improved generalization, and the ability to address domain
shift [54]. However, its effectiveness depends on the similarity between the source and target
domains, and there is a risk of overfitting especially when the target dataset is small or significantly
different from the source dataset [43,54,65]. Despite these limitations, TL remains a valuable
technique for accelerating model development, improving performance, and addressing challenges
in diverse ML applications, particularly in archaeological contexts with data limitations and small
sample sizes [24,43,54,65].

Building on the capabilities of RS data, ML aims to train algorithms to learn from these data to
make predictions or decisions. It has shown potential in automating archaeological feature detection,
such as the use of RF algorithms for the detection of burial mounds in France and Spain [55], Viking
ring fortresses throughout Denmark [66], ancient canals in Belize, Central America [67], and the use
of CNN to detect ancient Maya structures in Guatemala [21]. These advancements hold significant
potential for revolutionizing archaeological research by offering efficient, accurate, and scalable
feature detection and analysis methods.
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5. Past Research Applying Machine Learning on Airborne LiDAR Derivatives
for Archaeological Feature Detection

Over the past four decades, advancements in RS, ML, and cloud computing have revolutionized
our ability to explore ancient landscapes, with airborne LiDAR technology playing a pivotal role in
improving spatial resolution for surveys of previously inaccessible forested areas [67]. The systematic
approach for applying ML techniques to airborne LiDAR data for archaeological feature detection
starts with carefully collecting and preprocessing LIDAR and archaeological datasets, ensuring data
quality and compatibility. Feature engineering follows, wherein relevant attributes are extracted and
engineered to enhance the model's ability to identify archaeological features from the LiDAR
derivatives. A critical decision point arises in model selection, where the choice between traditional
ML algorithms and DL architectures is made, with the possibility of including TL on pre-trained
models. The subsequent steps involve rigorous training and evaluation of the selected model,
ensuring its robustness and generalization to unseen data. Once validated, the model is deployed for
archaeological feature detection on new airborne LiDAR datasets. Continuous monitoring of the
model's performance in real-world applications enables improvements as necessary, thereby
ensuring the efficacy of the archaeological research efforts (Figure 2).

The core idea of each ML/DL model is the ability to perform well on data that has not been seen
during training [6,47]. Ensuring and evaluating this ability, known as generalization, involves several
techniques. The foundation of good generalization lies in having a sufficient amount of high-quality,
representative training data [21,33,68]. However, collecting large, labeled datasets can be challenging,
particularly in specialized domains like archaeology [1,20,43,44,69,70]. Furthermore, using a separate
validation dataset [19] as well as appropriate evaluation strategies [71] could ensure generalization.
Standard evaluation measures developed for general object detection tasks may not be suitable for
archaeological applications due to the unique characteristics of archaeological objects and the
importance of geospatial information for archaeologists [71]. Another strategy to increase the
robustness of the model is applying data augmentation [3,19,55,64]. This involves creating artificial
training samples by applying various transformations (such as cropping, flipping, rotation, scaling,
shifting) to the original data [55]. Applying multi-directional hillshade or other visualization
techniques to DEMs can also augment the training data [3,68]. For 3D point clouds, combining
different augmentation methods, such as Gaussian noise and random rotation, has shown potential
for improving DL models with small datasets [3]. TL also can help with generalization [43,44,54]. For
instance, [43] successfully reapplied TL of a deep CNN, initially trained on Lunar LiDAR datasets,
for detecting historic mining pits [43]. Choosing an architecture that can handle the multi-scale nature
of archaeological features or integrate multiple data sources [19,35,42,69] and optimizing the model’s
hyperparameters (such as the number of epochs) also enhances the model’s ability to generalize to
unseen data [2,71,72].

Feature Engineering Deployment

Figure 2. Steps involved in applying machine learning (ML) to airborne LiDAR data for archaeological feature

detection.

Integrating airborne LiDAR derivatives with ML algorithms for archaeological feature detection
has been the subject of 45 case studies (locations of the studied area are demonstrated in Figure 3),
found after internet research. Figure 4 displays a histogram representing the yearly distribution of
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these articles. This trend suggests a growing interest in the research topic, particularly around 2021
and 2023. On the Scopus website, a set of keywords was searched within the title, abstract, and
keywords of review and scientific articles using the following advanced query:

TITLE-ABS-KEY ("deep learning” OR "machine learning" OR "artificial intelligence” OR "AI" OR
"semantic segmentation" OR "computer vision" )

AND TITLE-ABS-KEY ( "archaeolog*' OR "historical " OR "cultural" OR "heritage" )

AND TITLE-ABS-KEY ( ( "airborne” OR "aerial" ) AND ( "LiDAR" OR "laser" OR "point cloud" )

AND TITLE-ABS-KEY ( ( "object" OR "site” OR "pattern” OR "feature" ) AND ( "detection” OR
"extraction” OR "recognition" ) )

AND ( LIMIT-TO ( DOCTYPE, "ar" ) OR LIMIT-TO ( DOCTYPE, "re"))

AND ( LIMIT-TO (LANGUAGE, "English" ) ).

This search resulted in 41 articles. After a detailed screening, 15 were excluded for reasons such
as duplicate records, irrelevant use of Al or ML, and absence of feature detection/extraction methods
or insufficient methodological detail relevant to the scope of this work. The remaining 26 articles
were presented in Table 1. The same keywords were used to search Google Scholar within the same
timeline (between 2017 and 2024) as the previous search. This search yielded 34 articles, 15
overlapping those on the Scopus website. The remaining 19 new articles were also added to Table 1,
resulting in a total of 45 articles. Of these, 32 used deep CNNs for automatic object detection, applying
different architectures such as U-Net, YOLO, CarcassonNet, WODAN, VGG, Deeplab, and
DeepMoon. However, as highlighted in some papers, their application in large-scale archaeological
mapping may require further evaluation and extension, including the development of optimal
training sample selection methods and evaluation of LiDAR-derived data as inputs [16,54,71]. One
article applied a DL model known as CMX mode, a fusion of SS with Transformers [69]. Another
study conducted a comparison between ML (RF) and DL (fully connected networks) [35]. The
remaining 11 case studies apply different ML algorithms such as SVM, unsupervised ISODATA, RF,
and template matching classifiers to detect the archeological features in airborne LiDAR data (Table
1).

Various studies have leveraged airborne LiDAR data and ML techniques to identify ancient
structures and landscapes. For instance, Chinese ancient city walls were delineated using SS applied
to DEMs derived from ALS data [56]. Similarly, other studies have employed CNNs to detect walls
and houses from derivatives of noisy airborne LiDAR data, with applications that extend to mapping
ancient walls in different countries [30,40,46,48,73,74]. Additionally, deep semantic models have been
proposed for predicting the locations of ancient agricultural terraces and walls, highlighting the
potential of cost-effective raster data in transforming archaeological research [29,31,35,48,75]. Such
studies provide valuable references for ancient site detection and monitoring, offering insights into
cultural heritage preservation and aiding in reconstructing urban structures and their functions.

Detection of burial mounds has been another focus, with ML and DL methods applied to
elevation models derived from airborne LiDAR data [20,42,55,57,76,77]. Similarly, segmentation
models trained from scratch have been used to detect clearance cairns in forested areas, enhancing
understanding of historical agricultural activity and settlement organization [2]. Innovative
approaches employing ML-based detection have also been applied to Celtic fields, barrows, and
charcoal kilns in airborne LiDAR data, showcasing the potential of automatic measures for
archaeological research evaluation [6,22,23,62,63,65,71,78-81]. Moreover, mapping Maya
archaeological sites has been difficult due to their location in dense forests and rugged landscapes.
Combining LiDAR data and CNNs can make it easier and more efficient to analyze these sites
[67,68,82]. Also, terrain and topographical features, such as hillforts, have been the focus of various
studies [50,69,70] employing different ML methods. Despite challenges such as the complexity of
LiDAR data, these studies demonstrate encouraging potential, with proposed models freely available
for other users to adapt to their needs.
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Figure 3. Location of the case studies performed to detect archaeological features using airborne LiDAR data

and machine learning methods.

10 ||| |||
0IIII I

2017 2018 2019 2020 2021 2022 2023 2024

=]

(=)

N

(o]

Figure 4. Yearly distribution of the analyzed articles.

In addition, TL has also been employed to reduce the cost and hazards of underwater
archaeology using bathymetric LIDAR data [24]. Techniques like Mask Regional based CNN (R-
CNN) and segmentation have also been utilized to detect relict charcoal hearths and kilns, achieving
impressive results in object detection and instance segmentation [58,77,83]. Other innovative
approaches, such as TL for detecting historic mining pits, have shown strong potential for broader
archaeological tasks, which can demonstrate efficient semi-automated object detection and can
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distinguish between natural and manmade features [43]. Similarly, ML approaches have been

employed to detect Viking ring fortresses in Denmark and hollow roads using DL and image

processing methods [28,61,66]. Furthermore, DL and airborne LiDAR derivatives have been studied

to detect archaeological shell rings, providing insights into native inhabitants and their

socioeconomic networks [64].

Table 1. Case studies that applied different artificial intelligence methods on airborne LiDAR derivatives to

detect archaeological features.

Author

S

[56]

[69]

[68]

[57]

(30]

(70]

(22]

(23]

Archaeological
Sites/Objects

Ancient City Walls

Hillforts

Maya Structures

Burial Mounds

Ancient Agricultural
Water Harvesting Systems

(Terrace and Sidewall)

Historical Terrain

Anomalies

Pitfall Systems

Tar Production Kilns

Study’s Location
(Extent)

Jinancheng, China (16
km?)

England (130,000 km?),
Alto Minho, Portugal
(2,220 km?), Galicia,
Spain (30,000 km?)

Tabasco, Mexico (885
km?), Petén, Guatemala
(615 km?)

Alto Minho, Portugal
(2,220 km?)

Central Negev Desert,
Israel (1,800 km?)

Eifel Region, Germany
(0.01 km?)

Suomenselka, Finland
(6,778.9 km?)

Kuivaniemi (2,760 km?),
Hossa (2,004 km?), and
Néljanka (2,304 km?),
Finland

LiDAR
Derivative
and

Resolution

0.5m DEM!

Im DTM3;
0.5and 2

points/m?2

1m DEM,;
2.07
points/m?2

(ground)

1m DTM

0.125m
DTM; 2

points/m?

DTM,; 200-
300

points/m?

0.25m
DEM; 5

points/m?2

0.25m
DEM; 5

points/m?

Detection
Method
(Architecture/A
lgorithm)
CNN2 (U-Net

segmentation)

CMX*
(Semantic

Segmentation)

CNN
(YOLOV3)

Regional
based-CNN
(YOLOV3)

CNN (modified
U-Net)

ML¢ (Support
Vector
Machine)

CNN (-)

CNN (U-Net)

Quality
Evaluatio

n

Precision
94.12%

F1-score
66%

F1-score
80%

Detection
Rate
72.53%

IoU>53%

Recall 76-
80%
Precision
55-72%
F1-score
57-81%

Reliability
80%

Accuracy
93-95%
Precision
82-97%
Recall 72-
99%
F1-score
77-97%
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Recall 89%
Precision
Northeastern CT, USA
[74] Stone Walls 0 1m DEM CNN (U-Net) 93%
F1-score
91%
Precolonial Stone-Walled
ML (Support
Structures (Circular Thaba-Chweu, South Accuracy
[29] ) ) - Vector
Homestead, Agricultural Africa (31.25 km?) 95%
Machine)
Terrace and Road)
[67] Ancient Canals (Maya Rio Bravo, Belize (~ 5 0.5m DEM ML (Random Accuracy
Wetland) km?) Forest) 66%
Linear Structures ML (Support
[31] (Embankment, Ditch, Blois, France (270 km2?)  0.5m DTM Vector -
Hollow Path, etc.) Machine)
DTM; Dice
. CNN (U-Net o
[2] Clearance Cairns Soderasen, Sweden (-) 0.5-1 ) coefficient
. segmentation)
points/m?2 84%
Gelderland, The 0.5m DTM,;
Barrows and Celtic Faster Regional
[71] Netherlands (2,200 6-10 -
Fields based-CNN
km?) points/m?2
CNN (U-Net Accuracy
[46] Historic Stone Walls Aro, Denmark (88 km?) 0.4m DTM .
segmentation) 93%
DEM,; ML
Archaeological Perticara, Italy (106.45 i
[50] 142 (Unsupervised -
Topography km?) )
points/m? ISODATA)
Precision
Ancient Agricultural CNN (U-Net (Terrace
[75] Negev, Israel (-) - )
Terraces and Walls segmentation)  87%, Wall
60%)
0.5m DTM; F1-score
Celtic Fields and Burial The Biatowieza Forest,
[20] 11 CNN (U-Net) 58%
Mounds Poland (697.8 km?) .
points/m? IoU 50%
Alaska, and Puerto TL7 CNN F1-score
[24] Shipwreck . 1m DEM
Rico, USA (-) (YOLOV3) 92%
TL Mask
. 0.5m DTM; ) Detection
. . Brittany, France (200 Regional
[54] Topographic Anomalies 14 Accuracy
km?) . based-CNN
points/m?2 <77%
(ResNet-101)
Grave mound, Pitfall trap, 0.5m DTM; Faster Regional = Accuracy
[77] ) Norway (937 km?) ]
Charcoal Kiln 5 points/m? based-CNN ~70%
Faster Regional
Earthwork Sites (Pit, Northland, New
[40] ) - based-CNN -
Terrace, Sod Wall, Ditch) Zealand (-)

(ResNet-101)
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ML (Support
Accuracy
[48] Stone Wall, Pottery Chun Castle, UK (-) 1m DSM Vector 70%
>70%
Machine)
Detection
. . Regional Rate
. Galicia, Spain (29,574
[55] Burial Mounds km?) 1m DTM based-CNN 89.5%,
m
(YOLOV3) Precision
66.75%
Veluwe, The CNN Accuracy
[28] Trace Hollow Roads Netherlands (93.75 0.5m DTM 89%, F1-
(CarcassonNet)
km?) score 42%
o Veluwe, The DTM; Precision
Barrow, Celtic Field, CNN
[63] ) Netherlands (2,200 6-10 64%, F1-
Charcoal Kiln . (YOLOv4)
km?) points/m? score 76%
Detection
_ South Carolina, USA Mask Regional
[64] Shell Rings 1.5m DEM Accuracy
(6,712 km?) based-CNN
~75%
ML (Random
F-score 64-
Field Systems (Medieval Forest) and DL
Southern Vosges, 1m DEM,; 91% (ML)
[35] Terraced Slopes, and . (Fully
France (1,462 km?) 5 points/m? and 55-
Ridges and Furrows) Connected
77% (DL)
Networks)
New England, USA 1m DEM,; Fl-score
[62] Relict Charcoal Hearths ) CNN (U-Net)
(493 km?) 2 points/m? 86%
[83] Relict Charcoal Hearth 0.5m DEM  Modified Mask Recall
Sites Regional 83%,
Germany (3.4 km?) o
based-CNN Precision
87%
Faster
0.5m DTM;
[79] Barrow, Celtic Field, Veluwe, The 6-10 Regional F1-score
Charcoal kiln Netherlands (2200 km?) . based-CNN 70%
points/m?
(WODAN 2.0)
Classificat
, Mask Regional
Petén, Guatemala (2144 ion
[21] Maya Structures Im DEM  based-CNN (U-
km?) Accuracy
Net)
95%
0.5m DEM;
Maya Settlements i
. Campeche, Mexico (230 14.7 Accuracy
[82] (Aguada, Building, ] CNN (VGG-19)
km?) points/m? 95%
Platform)
(ground)
[58] Bomb Crater, Charcoal Harz mountains, 0.5m DTM  CNN (Deeplab IoUe
Kiln, Barrow Germany (47,000 km?) v3+) 76.8%
ML (Random  Identifyin
[76] Burial Mounds Romania (200 km?) 0.5m DEM;
Forest) g
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2-6 Accuracy
points/m? 96%
Precision
[73] House, Wall, Pyramid, etc. Mexico (-) 0.3m DEM CNN (VGG) 979
Recall 80%
(0.5m
Dartmoor National 0.25m and TL CNN DSM) and
[43] Historic Mining Pits
Park, UK (-) 0.5m DSM# (DeepMoon) 83%
(0.25m
DSM)
LiDAR Reeional
egiona
Veluwe, The images; & Fl-score ~
[78] Barrows and Celtic Fields based-CNN
Netherlands (440 km?) 6-10 WODA 70%
points/m? ( N)
Bornholm, Denmark ML (Random
[66] Viking Age Fortress 1.6m DTM -
(42,036 km?) Forest)
LiDAR
Veluwe, The
Barrow, Celtic Field, images; CNN
[6] . Netherlands (437.5 -
Charcoal Kiln km?) 6-10 (WODAN)
m
points/m?2
[65] Prehistoric Roundhouses, 0.25m Detection
Shieling Huts, Clearance DTM; Accuracy
Cairns 2.75 (Roundho
Arran, Scotland (432 ] TL CNN
points/m? use 73%,
km?) (ResNet-18) o
(ground) Huts 26%,
Cairns
20%)
Classificat
Hollow Way, Stream,
Lower Saxony, Hierarchical ion
[61] Pathway, Lake, Street, Im DTM
Ditch. et Germany (-) CNN Accuracy
itch, etc.
91%
0.25m
. Brittany, France (246.7 DTM; ML (Random
[42] Burial Mounds -
km?) 14 Forest)
points/m?2
Grave, Mound, Pitfall
) Oppland, Norway (29 ML (Template
[80] Trap, Charcoal Burning - -
km?) Matching)
Pit, Charcoal Kiln
ML (Template
[81] Maori Storage Pits New Zealand (-) 1m DEM ( .p -
Matching)

! Digital Elevation Model. 2 Convolutional Neural Network which is one type of deep learning approaches. 3

Digital Terrain Model. 4 RGB-X Semantic Segmentation with Transformers. 5 Intersection over Union. ® Machine

Learning. 7 Transfer Learning. 8 Digital Surface Model.
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Table 1 highlights the lack of consistency in evaluation metrics across studies. Various metrics
such as accuracy, precision, recall, F1-score, IoU, and detection rate have been computed, which make
direct comparisons between studies difficult. This inconsistency can limit the ability to assess how
well ML methods are performing on a global scale and across different archaeological contexts.
Calculating a unified and consistent metric would enable a standardized comparison, providing
deeper insights into the effectiveness and reliability of these methods in archaeological applications.

Another insight is that CNN-based methods, especially with high resolution airborne LiDAR
derivatives and for localized studies with detailed archaeological features (for instance, the
Netherlands and Mexico [71,73,79,82]), demonstrate superior detection accuracy and precision
compared to traditional ML methods. While higher resolution LiDAR tends to achieve better
detection performances, as seen in cases like tar production kilns [23] and burial mounds [76], coarser
resolutions are used for larger study extents but often result in moderate detection rates. CNN-based
methods are the most commonly used, demonstrating versatility by detecting a wide range of
archaeological features, including walls [30,40,46,73,74], mounds [20,55,57,77], and Maya structures
[21,68,82]. However, ML methods are effective for more straightforward feature types (like canals
and linear structures) but less robust for complex features.

Techniques such as filtering and applying enhancement methods on LiDAR data help overcome
challenges like vegetation obstruction and erosion effects [50]. While specific LIDAR guidelines are
still evolving (both for data acquisition and for data validation), expertise in landscape analysis
remains crucial for accurate assessments, with LiDAR technology enriching our understanding of
landscapes over time [33]. In summary, integrating airborne LiDAR derivatives with ML techniques
appears to offer promising avenues for supporting archaeological research and cultural heritage
preservation, with various studies showcasing the effectiveness of these approaches across diverse
archaeological tasks. Furthermore, collaboration between archaeologists and ML experts may
contribute to the refinement of detection methods, and adopting standard evaluation measures can
facilitate cross-study comparisons, fostering the development of human-centered ML methods for
archaeological feature detection. Finally, archaeological sites remain vulnerable to a range of threats,
including environmental factors (such as natural disasters or climate change) and human activities
(such as urban development or looting). Despite these challenges, the mentioned studies (Table 1)
provide meaningful insights aiding the interpretation of archaeological sites and planning
management strategies to protect and preserve them.

6. Discussion

LiDAR is particularly valuable in archaeological research because of its ability to penetrate dense
vegetation, such as forest canopies, and capture detailed measurements of the ground surface. This
capability is crucial for discovering unknown archaeological features in heavily vegetated areas
which are often challenging to investigate through traditional framework or optical imagery. LIDAR
data are often processed into DTMs or other visualization products like hillshades or local relief
models, allowing archaeologists to visualize topographical changes that may indicate the presence of
archaeological remains such as earthworks, mounds, or ditches. The increasing availability of LIDAR
datasets reinforces the potential for automated analysis.

The application of ML/DL to derivatives of aerial LIDAR data represents a transformative shift
in archaeology, especially for subtle feature detection over expansive areas. Traditional
archaeological methods, including manual analysis of remotely sensed data, are often time
consuming and labor intensive. Therefore, the integration of ML/DL techniques offers promising
solutions to automate the detection process, enhancing efficiency and potentially reducing costs
associated with extensive manual surveys. DL models, particularly CNNSs, have demonstrated state-
of-the-art performance in object recognition tasks and are well suited for analyzing raster images
derived from aerial LIDAR. Various ML/DL approaches such as object detection, segmentation, and
classification have been applied to identify diverse archaeological features. Examples include the
detection of burial mounds using DL or RF [33,42,55,57,76,84], qanat shaft using CNNs [1], tar
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production kilns using U-Net based algorithm [23], hollow roads [28], stone walls and farmsteads
[74,85], and hillforts [15,69]. These automated methods can assist archaeologists to quickly identify
potential areas of interest across large regions which then can guide subsequent fieldworks and can
reduce the need for exhaustive manual analysis. This study showed that ML/DL approaches can
achieve high detection rates and accuracy in identifying known features, while also discovering
previously unrecorded sites.

Despite the significant potential and early successes, the application of ML/DL to LiDAR
derivatives for archaeological detection faces several critical challenges that need careful
consideration and ongoing research. First challenge is the availability and preparation of training
data. DL models typically require large amounts of data to achieve high accuracy [1,71], and such
extensive datasets are often scarce in the archaeological field. Insufficient interpretation has been
shown to lead to limitations in training experiments [19]. Analyzing archaeological features in LIDAR
derivatives is a task that requires archaeological expertise. This makes the creation of large, well-
labeled datasets expensive and time-consuming. Furthermore, the quality and consistency of expert
interpretation can vary which potentially introduces bias and error into the training data. This can
degrade classifier accuracy. The entire process, from data acquisition to interpretation, involves
assumptions and decisions by the operator, which can introduce subjectivity and compromise
validity if not properly reported. This underscores the crucial need for standardized documentation,
including metadata (data about data) and paradata (documentation of process), to ensure scientific
transparency, replicability, and reflexivity. Beyond training data volume, challenges also exist in
working with LiDAR data of varying point densities and intrinsic precision. Particularly detecting
features in low-density data is difficult. While higher point density LIDAR coverages may become
available in the future, researchers currently face issues with available data quality and quantity.
Another issue is the lack of publicly available archaeological data due to ethical concerns regarding
site protection. Standardized, open-access, and large datasets are lacking, which makes the
evaluation and comparison of the performance of different ML/DL models across various
archaeological contexts difficult. Fairly comparing different detection methods is challenging because
their performance heavily depends on the datasets, metrics, and evaluation methods used. This
highlights the need for adopting standard evaluation measures within the archaeological community.
There is also a gap in providing efficient and automatic data structuring pipelines for existing
datasets that were not originally acquired for heritage detection purposes.

Another significant issue is the prevalence of false positives when applying ML/DL models to
LiDAR data. Archaeological features, especially those that are subtle or degraded, often have similar
morphologies to natural or artificial non-archaeological shapes in the landscape. This bird’s-eye
perspective challenge in LIDAR data means that objects with similar forms (e.g., small mounds, pits)
can be difficult for ML models to be distinguished without additional context or validation
[15,33,57,69]. While post-processing validation steps such as analyzing the 3D shape of potential
detections can help reduce false positives, a persisting high rate of false positives can require
significant effort for subsequent ground truthing. Conversely, false negatives are also a concern.
Although, in some applications, maximizing detection (completeness) is prioritized over minimizing
false positives (correctness) [70]. This ensures that no actual features are overlooked. Further
investigation can later confirm or reject the findings.

The variability in archaeological feature characteristics and landscape contexts such as the
ambiguous boundaries of ancient features [75] presents further challenges and requires further
dedicated studies. Archaeological remains are in diverse sizes, shapes, and levels of preservation.
Moreover, their appearance in LiDAR data can be influenced by factors like erosion, vegetation
density, and the specific LIDAR processing techniques used. Developing models that can effectively
detect this wide range of features across topographically varied landscapes is complex. Model
transferability between different geographic regions and archaeological sites is not guaranteed and
often requires fine-tuning or retraining [14,19]. The necessary resolution and point density of LIDAR
data also vary depending on the size and detail of the archaeological features being sought. Lower
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densities might miss smaller or less distinct features. Deriving suitable raster products (like DTMs or
other visualizations) from raw aerial LIDAR involves numerous decisions and algorithms. Therefore,
the choice of processing steps can significantly impact the performance of ML/DL models and as a
result the visibility of archaeological features. Documenting this complex workflow is crucial for
scientific transparency and replicability which is not yet standardized.

Although deep CNN models hold significant potential, they are still not commonly used in
detecting archaeological remains [10]. To our knowledge, there has been limited evaluation of CNN5s'
object-segmentation capabilities. Most CNN-based object detection techniques in this domain rely on
two-stage detectors, such as R-CNNs, Faster R-CNNs, and Mask R-CNNs. While these approaches
are robust and often highly accurate, they can face challenges related to slower processing speeds
than one-stage detectors. Two-stage CNN detectors first generate region proposals (i.e., areas in the
image that might contain objects) and then classify each proposed region and refine its bounding box,
while one-stage detectors predict object locations and classes directly in a single step, making them
faster but sometimes less accurate [6,51,61]. Additionally, difficulties persist in selecting suitable DL
approaches, generating training datasets, and accurately labeling data. Furthermore, adaptable ML
methods applied for the segmentation of unstructured 3D data are still under discussion and are not
yet consolidated [19]. Three notable contributions include the Multi-Level Multi-Resolution (MLMR)
SS approach, which utilizes RF algorithms for classification [84], the implementation of the PointConv
architecture for high-accuracy classification of 3D point clouds [3], and the application of DL on 3D
airborne LiDAR data for SS and object detection of historical defensive architectures [19]. These
approaches can offer innovative solutions for analyzing LiDAR-generated datasets and detecting
archaeological structures with improved accuracy and efficiency. However, most existing DL
approaches for point clouds are primarily focused on other fields, like robotics, autonomous driving,
and indoor modeling [19]. Adapting these methods for use in cultural heritage and landscape
contexts requires significant modifications. Model generalization and adaptability are in fact
challenging when applying systems developed in one region or for one type of feature to areas with
different site typologies and landscapes, and normally requiring fine-tuning [69].

Integrating information from various sensors, such as combining airborne LiDAR data with
photogrammetric data [10], aerial imagery, multispectral/hyperspectral imaging, geophysical
surveys, and ground-based LiDAR scans [86-88] or utilizing multispectral LiDAR [67,89], offers the
opportunity to overcome the limitations of single data sources by extracting richer and more detailed
information about the potential archaeological features. However, challenges remain in effectively
integrating these diverse datasets considering variations in resolution, penetration, texture, color,
accuracy, and the dynamic nature of the environment. Therefore, these techniques are not commonly
used, and there is limited evidence of their effectively detecting hidden remains. Moreover, the
development of hybrid ML/DL models that fuse predictions from different models, combine DL with
traditional methods, or integrate ML/DL with external knowledge sources or processes [75,78] could
further enhance the accuracy and interpretability of archaeological feature detection algorithms. The
application of these hybrid approaches can lead to high detection and segmentation performance
even with relatively small training datasets. It could address a common limitation in archaeological
contexts where large training datasets are scarce. By combining the strengths of different methods,
these hybrid models can potentially achieve higher accuracy and reduce false positives compared to
using a single method. However, challenges exist. Implementing such combined approaches can
require substantial computational resources and processing time [69]. While hybrid detection
methods can be fast, the process often requires significant human expertise for creating and refining
training datasets, validating results, and interpreting findings, especially when dealing with complex
or heterogeneous archaeological features [23]. Also, managing various data types introduces storage
challenges. Important practical aspects could be excluding negative zones (i.e.,, areas where
archaeological information cannot be obtained, such as built-up areas or areas with insufficient data
quality) [15], and establishing specific arrangements for the long-term storage and archiving of digital
data products, considering the necessary storage space [23]. Therefore, their successful
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implementation needs careful consideration of data requirements, computational resources, and the
critical role of human expertise in the workflow.

Last but not least, the successful implementation of ML/DL in archaeology requires close
interdisciplinary collaboration and knowledge integration between archaeologists, computer
scientists, and remote sensing experts. Applying complex computer algorithms remains uncommon
for many archaeologists, because it often requires the expertise of computer science specialists.
Additionally, a barrier of meaning [11] exists which represents the gap between the expert
archaeologist's knowledge and the knowledge learned by the machine. To address this, it is
fundamental to enhance the involvement of archaeologists in the learning process. This enables them
to contribute their expertise and to provide domain knowledge to the machine [71]. Archaeologists
provide the expertise necessary for identifying and interpreting potential features, defining target
classes for ML/DL models, and validating results through ground truthing. Computer scientists
develop and refine the ML/DL algorithms. And, remote sensing specialists handle data acquisition
and processing. Integrating archaeological knowledge into the ML/DL workflow, such as using
location-based ranking or incorporating specific archaeological object patterns, can improve model
performance and reduce false positives [4,33,57]. Moreover, international collaboration and
establishing standardized datasets [71] are essential for facilitating the evaluation of ML and DL
models in feature detection and classification within the archaeological field. By leveraging
technological innovations and fostering collaboration among archaeological teams, we can accelerate
the pace and improve the quality of archaeological investigations, ultimately contributing to a deeper
understanding of ancient civilizations and the preservation of cultural heritage.

Future research directions may focus on addressing the identified challenges. Finding ways to
deal with the lack of labeled training data is very important. This could be done using methods like
active learning, weakly supervised learning, or more effective data augmentation techniques such as
generating synthetic point cloud data and 3D bounding box labels [19]. Furthermore, creating and
sharing standardized, open-access datasets with high-quality annotations and ground truth
validation would significantly facilitate the development and comparison of ML/DL models.
Moreover, further investigation is needed to understand: how different LIDAR processing techniques
impact the visibility of various archaeological features? how to optimize these techniques for
automated detection? Developing transferable methodological approaches that can adapt to varying
primary data densities, particularly addressing low-density applications, is needed. It is also
important to develop more robust models that can deal with the inherent differences in
archaeological features, can work well across various landscapes and data types, are able to leverage
higher point density LiDAR data as it becomes available and can incorporate new data sources like
LiDAR intensity values. Besides, exploring the fusion of LIDAR with other remote sensing data, such
as multispectral imagery or photogrammetry, and exploring the potential opportunities of
hyperspectral LIDAR may provide additional information to improve detection accuracy and reduce
false positives. Therefore, future work should include ablation studies to quantitatively assess how
much each individual data source (or the combination of them) contributes to the model's
performance. This helps prove whether using multiple data sources actually improves the results.
Likewise, refining post-processing validation methods such as using 3D information from the point
cloud or incorporating spatial context analysis could help filter out non-archaeological features.
Finally, fostering interdisciplinary and international collaboration and knowledge integration is
crucial. Collaboration among surveyors, archaeologists, and software engineers for method
development is encouraged. Moreover, future research should also place site findings within their
broader regional and temporal context [22] and consider investigating archaeological features that
extend over national borders by combining LiDAR data and AL

7. Conclusion

Our work serves as a valuable bridge between traditionally separate disciplines by
demonstrating how Al-driven object detection using CNNs and LiDAR can be effectively applied to
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archaeological research. By clearly mentioning underutilized technical operations, such as direct 3D
point cloud analysis, broad-scale model generalization, and human-AlI collaborative workflow, this
study promotes meaningful collaboration across archaeology, geosciences/RS, computer
science/engineering, heritage management, and public engagement. It can support the growing
interdisciplinary momentum in landscape archaeology and can contribute to the development of
sustainable, scalable, and scientifically robust methodologies for both academic research and heritage
practices.

Integrating airborne LiDAR derivatives with ML techniques represents a notable advancement
in archaeological research. The combination of LIDAR's high-resolution terrain mapping capabilities
with the automation capabilities of ML algorithms has the potential to enhance current
methodologies, enabling more efficient and systematic detection of hidden archaeological landscapes
and structures.

Through this literature review, we have explored the diverse applications of ML-based
approaches in archaeological feature detection, ranging from identifying ancient settlements to
detecting burial mounds and urban complexes. These studies demonstrate the potential of ML
techniques, particularly DL models, in augmenting traditional archaeological methods and
facilitating a deeper understanding of past civilizations.

Despite the significant progress, several challenges and opportunities for future research remain.
Addressing issues such as data accessibility, algorithm interpretability, and interdisciplinary
collaboration will be essential for advancing the field further. Moreover, exploring DL-based
processes for classifying 3D point cloud datasets and establishing standardized evaluation measures
are critical steps toward enhancing the reliability and applicability of ML models in archaeological
research.

Ultimately, by drawing on technological innovations and encouraging collaboration among
interdisciplinary teams, there is potential to enhance the pace and quality of archaeological
investigations. Continued exploration and innovation may help deepen our understanding of ancient
civilizations, support cultural heritage preservation, and inspire future generations to engage with
the rich diversity of human history.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

ALS Airborne Laser Scanning
ANNs Artificial Neural Networks
BIM Building Information Model
CNN Convolutional Neural Network

DEMs Digital Elevation Models

DL Deep Learning

DNNs Deep Neural Networks

DTMs Digital Terrain Models

DSMs Digital Surface Models

GIS Geographic Information Systems
GNSSs Global Navigation Satellite System
IMU Inertial Measurement Unit
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LiDAR Light Detection and Ranging

LRMs Local Relief Models

ML Machine Learning

NIR Near-Infrared Range

R-CNN  mask Regional based Convolutional Neural Network
ReLU Rectified Linear Units

RF Random Forest

RNN Recurrent Neural Network

RS Remote Sensing

SAR Synthetic Aperture Radar

SIM Structure from Motion

SS Semantic Segmentation

SVM Support Vector Machine

TL Transfer Learning

UAV Unmanned Aerial Vehicle
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