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Abstract

This review summarises potential applications of artificial intelligence (AI) in histopathological di-
agnostics of leukemias reported in the available literature. It compares existing AI models focused
on analysing image-based cellular morphology, trained on datasets of either blood smears or bone
marrow slides. Key findings indicate a rising trend in research output and literature on that topic,
with models achieving high accuracy rates — up to over 95% in leukemia detection and subtype
classification. The implications suggest that AI can significantly enhance diagnostic precision, reduce
subjectivity, and streamline workflows in hematopathology. Possible limitations and difficulties of
introducing AI to routine diagnostics are also elaborated on. Overall, integrating AI into leukemia
diagnostics holds promise for improving early detection, supporting clinical decision-making, and
advancing treatment in haematological malignancies.

Keywords: hematopathology; artificial intelligence; leukemia; histopathology; diagnostics

1. Introduction
Today, an increasing emphasis on deep learning algorithms permeates all domains of human

activity. In medicine AI-based decision aids are also gaining importance. The field in which computers
could be an invaluable help for clinicians is the diagnosis of leukemias. Leukemias are among the
15 most common neoplastic diseases and in top 10 when it comes to mortality in 2024 according to
WHO [1]. At the same time they are the most common neoplasms in the Polish pediatric population,
accounting for 28, 7% of child tumors [2]. Only in 2024, in the USA 62000 new leukemia cases are
expected to be diagnosed, 1/3 of which will die [3]. During the last 30 years, a constant increase in
cases has been observed (although with regional differences) [4]. Every diagnosis of leukemia must be
confirmed by a pathologist with a microscope. Currently, ever more histological and cytological slides
are scanned by specialized scanners and then stored digitally. This fact unlocks new possibilites for
applying mechanical learning and using artificial intelligence to recognize abnormal cellular patterns.
This narrative review explores application of this technology in leukemia diagnostics; it summarises
and compares existing models and the data sets on which they are built, at the same time describing
biases, challenges, and limitations that may hinder the spread of their use and the possible effects of
their action on the final results of the diagnostic process.

2. Leukemias and Their Diagnostic Process
Hematopoiesis (the process in which cellular elements of human blood are created) in humans is

very complex. While a detailed analysis and description of all stages and forms of cells development
is outside the scope of this review, one has to note that normally, only final stages are represented in
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blood and intermediate forms are stored within the bone marrow [5]. The next paragraphs help to
build understanding of the diagnostic process of leukemia and the complexities one has to understand
to accomplish it. Leukemia is a neoplasm which derives from white blood hematopoietic cells and is
caused by uncontrolled growth of one intermediate form in the hematopoietic chain. Rarely, it can be a
normal, functional cell which due to mutation grows uncontrollably. An example of such leukemia
can be leukemia introduced by HTLV-1 [6]. Such cells are not functioning properly and their growth
causes suppression of other proper cells in blood. This leads to various symptoms, ranging from
frequent infections to coagulation disorders. If untreated, symptoms may lead to death of the patient.
General symptomatology of oncological disease (e.g fatigue, weight loss) often accompanies. Medical
practitioners divide leukemias into 4 main types, depending on the cells that are overgrowing and on
the rate of growth and disease dynamics: lymphoblastic leukemias (acute - ALL or chronic - CLL) and
myeloid leukemias (acute - AML or chronic - CML) [7]. This classification is a simplification, since some
leukemias are elusive and cannot be clearly ascribed to one type. There are many rare types of leukemia
too, including hairy-cell leukemia (HCL) [8], prolymphocytic leukemia (PLL) [9], or large granular
lymphocytic leukemia (LGLL) [10]. It is also possible for a mixed-phenotype leukemia to occur, where
myeloid and lymphoid features are combined [11]. In order to be qualified to a type, leukemia must
have a certain percentage of cancerous cells (e.g. >20% blasts in AML) or have defined cytogenetic
abnormalities. If abnormalities occur, then the percentage of cells we have to establish the diagnosis of
leukemia can either be smaller or doesn’t have importance at all for diagnosis. The aforementioned main
types are further divided into subtypes - e.g. according to the French-American-British classification [12]
(acute myeloid leukemia into subtypes M0-M7, or acute lymphoblastic leukemia into subtypes L1 - L3).
The identification of the main type of leukemia is often insufficient and doctors need to know which
exactly subtype they are to treat. The therapy differs between leukemia types and subtypes with some of
them more threatening than others, mandating urgent response from the clinicians - a standard example
of such subtype is acute promyelocytic leukemia (M3 subtype of AML according to FAB classification,
where promyelocytes are the neoplastic cells) which causes life-threatening coagulation disorders (DIC)
[13]. On the other hand, many chronic leukemias are indolent and patients sometimes for a long time
don’t experience any symptoms. A good example of such leukemia is CLL, often diagnosed only after
accidental discovery of lymphocytosis in patients’ blood [14]. A brief overview of leukemias, their
markers and their diagnostic criteria are summarised in Table 1.

Table 1. Overview of basic leukemia types*.

AML ALL CML CLL

Median age of
patient 65 years [15] 11 years [16] 66 years [17] 70 years [18]

Onset and disease
dynamics acute acute gradual gradual

Subtypes, M0-M7 (FAB) B-ALL, T-ALL
numerous (based

on genetic
abnormalities)

indolent/aggressive

Percentage of blasts
in pathological

specimen required
for diagnosis

10% or 20%
depending on
mutations [19]

20% lymphoblasts
[20]

less than 10% in
chronic phase,

more than 20% in
blastic phase [21]

criterion not
defined for CLL

Staging scales - -
chronic,

accelerated, blastic
phases [22]

RAI [23], Binet [24]

* More data on specific variants, genetic abnormalities and diagnostic criteria of leukemias and other haematological disorders
can be found here:[25].

The diagnosis of leukemia can only be made by histopathological or cytopathological examination.
Whereas histopathology is occupied with tissue samples, cytopathology analyses smears, where
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the intercellular structure is lost, and the cells are separated from each other. Both approaches
provide important information and contribute to the final diagnosis[26]. Of course, the diagnosis of
leukemia cannot be based solely on the morphological characteristics of cells under the microscope.
Flow cytometry, immunohistochemical methods, and analysis of cell genotypes are used to support
diagnosis[27]. Without them it would neither be possible to diagnose nor to treat leukemia. However,
all these methods come after the morphological analysis, and the diagnostic process starts with histo-
and cytology. The key step of this diagnostic process is also the one prone to most significant errors.
The analysis of microscopic slides is done by eye and depends on the experience, expertise, and
perceptivity of the analyst. The risk of errors is then high and unpredictable, and can reach 40% while
differentiating between leukemia subtypes[28]. This fact does not imply that the diagnosis of the
leukemia subtype is based solely on microscopy without employing other techniques that diminish
the risk or error, but rather shows how subjective and difficult image analysis can be. While there is
no diagnostic problem if e.g. there are 70% or 50% of blasts in AML specimen (we need 20% to be
allowed to diagnose it), trouble begins if the amount is close to 20% - we cannot with certainty say if
there are 19% or 21% of blasts. . . This is a field where an AI model trained to recognise leukemia cells,
with its training and visual recognition capabilities far better than human, will immensely facilitate
diagnostics.

3. Bibliometric Analysis
3.1. Bibliometric Analysis

In order to evaluate the current research trends and scientific interest in the application of artificial
intelligence (AI) in histopathological diagnostics of leukemias, a bibliometric analysis was performed.

3.2. Methodology

Data source: Scopus
Time frame: 2018–2025 (as of July 12, 2025)
Keywords / Queries:

• Q1: ("artificial intelligence" OR "AI" OR "machine learning" OR "deep learning") AND
("histopathology" OR "digital pathology" OR "histological image" OR "microscopic image")
AND ("diagnosis" OR "diagnostic support" OR "classification")
Broad general query covering applications of artificial intelligence in histopathological and cyto-
logical image analysis in hematology, without limiting to specific leukemia types.

• Q2: ("artificial intelligence" OR "AI" OR "deep learning" OR "machine learning") AND
("leukemia" OR "leukaemia" OR "AML" OR "ALL" OR "CML" OR "CLL") AND ("diagnosis"
OR "diagnostic aid" OR "detection" OR "classification") AND ("histopathology" OR "cytology"
OR "microscopic image" OR "blood smear" OR "bone marrow smear")
A more specific query targeting the use of machine learning and deep learning methods in
leukemia diagnostics based on microscopic images, particularly focusing on blood and bone
marrow cell morphology.

• Q3: ("convolutional neural network" OR "CNN" OR "deep learning") AND ("blood smear"
OR "bone marrow smear" OR "cytological image" OR "histopathology") AND ("leukemia" OR
"blood cancer" OR "hematological malignancy")
Query focusing on AI applications in automatic classification and detection of hematological
diseases, with an emphasis on computer-aided diagnostic systems.

• Q4: ("artificial intelligence" OR "machine learning") AND ("leukemia subtype" OR "ALL
subtypes" OR "AML subtypes" OR "FAB classification" OR "immunophenotyping") AND
("classification" OR "differentiation" OR "subtype detection")
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Query focused on systematic reviews, meta-analyses, and review articles on the role of AI in
leukemia diagnostics, capturing trends and current knowledge summaries.

• Q5: ("machine learning" OR "deep learning") AND ("SVM" OR "support vector machine"
OR "random forest" OR "CNN" OR "neural network") AND ("leukemia" OR "hematological
malignancy") AND ("image analysis" OR "cell classification")
Technical query covering innovative algorithms, neural network architectures (e.g., CNN), and
explainable AI systems in morphological image analysis for hematologic diagnostics.

Inclusion criteria:

• Language: English
• Publication types: Articles, Reviews
• Topic: AI in histopathological/cytological diagnostics of leukemias

Screening protocol:
Three-stage abstract and title selection:

1. From each publication set, we selected papers whose abstracts/titles contained at least one
keyword from the:

• AI group (“artificial intelligence”, “ai”, “machine learning”, “deep learning”, “neural net-
work”, “cnn”, “convolutional neural network”, “computer-aided diagnosis”, “automated
diagnosis”, “intelligent system”)

• Morphological image analysis group (“histopathology”, “histopathological”, “cytology”,
“cytological”, “microscopic image”, “blood smear”, “bone marrow”, “digital pathology”,
“cell morphology”, “image analysis”)

2. From the publications passing the previous screening, we additionally selected only those where
the abstracts/titles contained the word ”leukemia”.

3. Abstracts and titles of the selected publications were then analyzed, and those outside our
thematic scope were excluded.

Deduplication: duplicate removal based on titles.

3.3. Results

The queries formulated and used in the Scopus database were characterized by high sensitivity
but very low specificity. Designing more selective and complex queries carried the risk of omitting
publications relevant to the topic of this study. As a result, thousands of publications were initially
retrieved. From these, through the application of the triple-stage screening algorithm described earlier,
several hundred articles were ultimately selected that reflect the scientific community’s interest in the
subject of this review. While compiling the analysis, we took into consideration only such systems of
artificial intelligence that work on images and carry out image analysis. We left outside the scope of
our work models which analyse specific genetic mutations or chemical biomarkers and focused only
on systems which analyse cellular morphology based on microscopic slides. The results of the analysis
for each query are summarized as follows:

• Q1: 46,690 publications retrieved from Scopus → 10,939 after the first selection stage → 336 after
the second selection stage

• Q2: 22,418 publications retrieved from Scopus → 4,438 after the first selection stage → 381 after
the second fselection stage

• Q3: 2,397 publications retrieved from Scopus → 825 after the first selection stage → 299 after the
second selection stage

• Q4: 1,780 publications retrieved from Scopus → 286 after the first selection stage → 147 after the
second selection stage
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• Q5: 2,646 publications retrieved from Scopus → 820 after the first selection stage → 255 after the
second selection stage

After combining the publications from all queries and removing duplicates, a total of 430 articles
were obtained. Following a detailed analysis of abstracts and titles, 12 articles were excluded as they
were outside the scope of interest. This three-stage analysis enabled reliable filtering of several tens
of thousands of publications, ultimately achieving a precision of 97.2%. However, this figure does
not reflect the actual sensitivity, as the number of relevant articles potentially lost at the query stage
remains unknown.
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Figure 1. Number of publications and total citations per year over the analyzed period.

The data, shown in Figure 1, demonstrate a clear upward trend in the number of publications,
peaking in 2024, indicating growing scientific interest in the application of AI in hematopathological
diagnostics. Citation counts also show an increasing trajectory over time, with a distinct peak between
2021 and 2023, suggesting the emergence of influential articles shaping the development of this field.
It is also interesting to see who are the main contributors by country - this is shown in Figure 2.
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Figure 2. Percentage share of publications by the top four contributing countries and others.

Institutional contributions are visualized in Figure 3, where the most active research centers
are listed. Notably, several universities in Asia and the Middle East are among the top contributors,
reflecting global academic interest beyond traditionally dominant regions.
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Figure 3. Number of publications by the most active research institutions.

A keyword co-occurrence analysis revealed common thematic foci across the included publi-
cations. Figure 4 presents the 15 most frequent keywords, with terms like “leukemia,” “machine
learning,” “deep learning,” “bone marrow,” and “CNN” appearing most often. This suggests that
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most research is concentrated on the classification and segmentation of hematological images using
modern deep learning techniques.
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Diagnosis
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Blood
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Article
Deep Learning

Human
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Figure 4. Frequency of the most common keywords found in the analyzed publications.

3.4. Limitations

This bibliometric analysis is based exclusively on data retrieved from the Scopus database, which
may limit its comprehensiveness in capturing the global scientific output — particularly in comparison
to other databases such as Web of Science or PubMed. However, the choice of Scopus was deliberate,
due to its broad interdisciplinary coverage, high-quality metadata, export functionalities including
citation data, and user-friendly analytical tools which enabled the implementation of complex filtering
procedures. Furthermore, the analysis was conducted based on titles and abstracts without a full-text
screening, which may have led to the omission of some relevant publications (false negatives) or
the inclusion of articles only marginally related to the topic (false positives). The employed search
algorithms relied on keyword matching, which increases the sensitivity of the analysis but may reduce
its precision in the case of non-obvious formulations or interdisciplinary studies. Additionally, the
citation counts were analyzed based on the data available at the time of extraction, meaning that these
values are dynamic and may change over time.

3.5. Conclusions

This prepared bibliometric analysis demonstrates a clear increase in the number of publications
addressing the application of artificial intelligence in histopathological diagnostics of leukemias in
recent years, with a particularly notable acceleration observed between 2021 and 2024. This indicates
a growing scientific interest in this research area and highlights the increasing importance of AI
methodologies in hematological diagnostics. Furthermore, the analysis of keywords and article types
reveals the predominance of studies focusing on deep learning methods, particularly convolutional
neural networks, as well as the development of clinical decision support systems. The highest
research activity is observed among institutions from China, India, the United States, and Saudi
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Arabia, reflecting the global and multi-center nature of work in this field. The affiliation analysis also
shows that research is conducted both at large universities and smaller research centers, indicating
widespread interest across various levels of the scientific community.

4. Datasets
This section offers overview of available databases for the developement and evaluation of

medical image analysis models. In context of leukaemia diagnostics, these datasets offer annotated
images that enable both training and benchmarking of AI-based diagnostic models. Table 2 summarises
43 such datasets related to leukaemia, detailing their publication year, number of images, resolution,
magnification, diagnostic focus or task type, number of citations, and material source.

Table 2. An overview of datasets used to train leukemia-recognition models.

Dataset
name Year Images Resolution MagnificationProblem /

Type Citations Material

[29] 2022 6 963 X 50 classification 55
bone

marrow
smear

[30] 2022 445 X X classification 47 blood
smear

[31] 2022 18 365 X X classification 113 blood
smear

[32] 2022 260 257 × 257 X classification 6 X

[33] 2022 10 661 X X classification 43 X

[34] 2022 368 2592 ×
1944 X classification 77 X

[35] 2023

1 625 full
micro-
graphs
and 20

004 single
cell

200 × 200 100 and
50 classification 40

peripheral
blood

and bone
marrow

[36] 2021 13 504 X X classification 40
bone

marrow
smear

[37] 2021 935 200 × 200 100 classification 13 peripheral
blood

[38] 2021 16 450 X X classification 140 peripheral
blood

[39] 2021 260 X X classification 25 blood
smear

[40] 2021 10 661 X X classification 129 X

[41] 2021 12 528 X X classification 23 X
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Table 2. Cont.

Dataset
name Year Images Resolution MagnificationProblem /

Type Citations Material

[42] 2021 520 500 × 500 100 classification 90 blood
smear

[43] 2021 8 425 144 × 144 10 classification 8 blood
smear

[44] 2022 125 X 20 classification 41
lymph
node

biopsy

[45] 2022 122 5120 ×
5120 X classification 36

bone
marrow
smear

[46] 2022 10 632 X 50 classification 86
bone

marrow
smear

[47] 2023

11 788
full

micro-
graphs
and 131

300 single
cell

X X classification 29
bone

marrow
smear

[48] 2023 1 250 4908 ×
3264

40 and
100 classification 60 blood

smear

[19] 2024 42 386
single cell 256 × 256 X classification 4 peripheral

blood

[49] 2024 204 X X segmentation 8 cytology

[50] 2024 15 719 X 10 and
100 classification 2

bone
marrow
smear

[51] 2024 3 527 X X classification 7 X

[52] 2024 362 224 × 224 X classification 27 X

[53] 2025 669 single
cell X X classification 4 X

[54] 2025 3 256 224 × 224 X classification X blood
smear

[55] 2011 109 2592 ×
1944 300 to 500 segmentation 641 blood

smear

[55] 2011 260 257 × 257 300 to 500 classification 641 blood
smear

[56] 2011 123 X X classification 57

bone
marrow

or periph-
eral

blood

[57] 2014 80 184 × 138 X classification 193 X
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Table 2. Cont.

Dataset
name Year Images Resolution MagnificationProblem /

Type Citations Material

[58] 2014 33

2592 ×
1944 and
1712 ×

1368

300 to 500 classification 369 X

[59] 2015 180 X X classification 172 blood
smear

[60] 2015 130 2592 ×
1944 X classification 150 X

[61] 2016 330 184 × 138 100 classification 83 X

[62] 2017 916 X X classification 50 peripheral
blood

[63] 2017 260 X X classification 130 X

[64] 2018 410 640 × 480 X classification X blood
smear

[65] 2018 330 X 100 classification 359 X

[66] 2018 368 257 × 257 X classification 377 X

[67] 2018 536 512 × 512 X classification 10 X

[68] 2020 104 1920 ×
1200 100 classification 52

bone
marrow
smear

[69] 2020 17 X 40 classification 111
bone

marrow
aspirate

5. Image Processing Methods Used for Histopathological Diagnostics
of Leukemias

In this paper, leukaemia detection is considered through image processing. Images are generally
unstructured data, and their analysis is best done using deep learning models as opposed to classical
models or expert-based AI [70]. Approches to image processing are commonly classified into two
categories based on how the entire analytical process is structured:

• Classical — staged or modular processing approach, whereby distinct phases can be identified:

– preliminary processing (e.g., denoising, normalisation),
– features extraction (e.g., segmantation, edge detection, Hough transform),
– classification (e.g., SVM, random forest).

• End-to-End — final result is produced directly from raw data without any intermediate processing
steps. Such processing can be carried out using Convolutional Neural Network (CNN) and
its advanced variants, which includes models such as AlexNet, VGG16, ResNet, ResNeXt, and
DenseNet.

Each metod contributes uniquely to the extraction and interpretation of relevant features from medical
images, supporting acurate diagnosis. The following section provide a detailed overview of these
techniques.

Segmentation — a division of pixels into mutually exclusive groups. A fundamental method of
segmantation is thresholding, where pixels are assigned to classes based on a threshold T. Binarisation
is a special case involving two classes. The basic form of binarisation is presented in equation (1),
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where pixel z is assigned to class 1 if its value is greather than or equal to the threshold T, and to class
0 otherwise.

z′ =

1 z ≥ T

0 otherwise
(1)

A key aspect of thresholding is an appropriate threshold T selection. In many methods, this value
is determined through histogram analysis. A comparative study of automatic threshold selection
algorithms applied to image processing is presented in [71].

Hough Transform [72] — a technique developed to detect straight lines in images. It operates by
mapping points from the Cartesian space into the Hough space. Equation (2) defines the perpendicular
distance ρ from the origin to a line forming an angle θ with the x-axis and passing through a point
with Cartesian coordinates (x,y).

ρ = x cos θ + y sin θ (2)

Typically Hough space is two-dimensional parameter space defined by the parameters ρ and
θ [73], where a single point in Hough space represents a straingt line in the Cartesian space. The
transformation from Cartesian space to Hough space is a form of voting, where each point in the
Cartesian space votes for the discrete set of lines passing through it. The number of votes corresponds
to the numer of points lying on a given line. An extended version of the Hough transform have been
proposed to the detection of the arbitrary shapes [74].

K-Nearest Neighbors (KNN) — a classification algorithm that does not involve a trainig phase.
Instead, a reference dataset is simply stored in memory. This dataset is divided into classes (e.g., types
of diagnoses). To classify a new instance, the distance (e.g., Eucidean distance) to the known reference
cases is calculated. Then the class most commonly occuring among the k nearest neighbours is then
assigned to the new instance.

Decision Tree (DT) — decision model operates as if–else conditions, which can be visualised as a
tree composed of decision nodes. In the classical approach, each condition is based on a single feature.
The construction of a decision tree begins with the entire training dataset. The feature that provides the
most effective split is selected to form a logical condition (e.g., if blast cells > 20%), which partitions the
dataset into subsets. Each resulting subset is then further divided based on the single feature that best
separates the data at that level. This process is repeated recursively: features are selected, conditions
are formulated, and new nodes are created until a stopping condition, such as reaching maximum tree
depth or achieving a subset contains only one class. Each teaminal node (leaf) corresponds to a specific
class and is used to assign a label to new instance [75].

Random Forest (RF) [76] — this method extends the concept of decision trees by combining the
outputs of multiple independently constructed trees. Each tree is trained on a randomly selected
bootstrap sample of the training data, and feature bagging is applied at each decision point by selecting
a random subset of features. This double randomisation reduces variance and helps prevent overfitting.
Trees are construced independently and in parallel, which makes the method computationally efficient
and scalable.

Classification is performed by aggregation of all trees predictions. Typically through majority
voting or probability averaging [76].

Gradient Boosting (GB) — a technique that builds multiple decision trees sequentially. In contrast
to Random Forest, where trees are trained in parallel. In standard approach, each tree in GB is trained
on the full training dataset with complete feature set. Successive trees aim to correct the prediction
errors made by the ensemble. To reduce the risk of overfitting, GB typically uses shallow trees, with a
maximum depth of 3 to 5 levels. Each indivitual tree is a weak learner and performs poorly in isolation,
but their sequential combination yields a strong predictive model. Unlike Rndom Forest, where each
tree independently predicts the final label, in Gradient Boosting each tree predict the gradient of the
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loss function with respect to the current prediction. These incremental updates are aggregated to form
the final prediction.

The term Gradient Boosting reflects the core mechanism of the method:

• Gradient — each tree approximates the gradient of the loss function with respect to the current
prediction.

• Boosting — combining many weak learners into a single strong model.

The optimisation procedure in Gradient Boosring is conceptually similar to Gradient Descent,
commonly used to update weights in neural networks. However, instead of updating parameters
directly, Gradient Boosting updates the model by adding new trees that reduce the overall loss in the
direction opposite to the gradient [77].

Linear Regression — the method is based on fitting a linear combination of features x using
weights w, expressed by the function fl(x) (3), to the training dataset.

fl(x) = w0 +
n

∑
i

wixi (3)

The prediction error for a single instance is calculated as the squared diffrence between the true
value y and predicted value ŷ. The total error, denoted as loss function JLinReg is defined as the mean of
these squared errors over all training examples (4), and is commonly referred to as the Mean Squared
Error (MSE). Coefficients w are determined by minimising loss function JLinReg.

JLinReg(w) =
1
m

n

∑
i
(ŷi − yi)

2 (4)

In machine learning, the symbol ŷ is commonly used to denote the predicted value, whereas y
refers to the true value from trainig set. In the case of linear regression, the prediction ŷ is expressed as
fl(x), as shown in equation (5).

ŷ = fl(x) (5)

Linear regression is applied to regression problems, where the output is a real-valued numer.
Without additional modifications, the method is not suitable for classification tasks [75].

Logistic Regression (LR) — a method used for binary classification, where calsses are distin-
guished, e.g., ”leukemia” and ”non-leukemia”. The model predicts the probability of belonging to
class 1, e.g., 95% probability of leukemia. It is based on a linear combination fl(x) of features x, as
shown in equation (5), similarly to linear regression. The result of linear combination fl(x) (5) is then
passed through the sigmoid function σ(z) presented in equation (6).

σ(z) =
1

1 + e−z (6)

Prediction ŷ in case of logistic regression is computed as sigmoid function σ applied to linear
function fl(x), as shown in equation (7).

ŷ = σ( f (x)) (7)

The value of function σ( f (x)) ranges from 0 to 1 and is used to represents the probability of
belonging to calss 1. It predicts probabilities rather than continous values, making it suitable for
classification tasks [78]. The loss in logistic regression JlogReg(w), is calculated according to equation
(8).

JlogReg(w) = − 1
m

m

∑
i
[yi · log ŷi + (1 − yi) · log(1 − ŷi)] (8)
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The model coefficients w are determined by minimizing the cost fuction JlogReg(w) from equation
(8). Unlike linear regression, those coefficients cannot be obtained analitically. Instead, numerical
methods such as Gradient Descent [75] or its variants, e.g., Momentum or Adam are used [79].

Regularisation — a technique used to prevent overfitting. It is typically achieved by incorporating
a penalty term into the loss function, which discourages large weights values w. Consequently, the
weights are kept close to zero. There are two common forms of regularisation used in linear models:

• L1 regularisation ||w||1, known as Lasso (Least Absolute Shrinkage and Selection Operator) [80],
consists of the sum of the absolute values of the weights w as shown in equation (9).

||w||1 =
m

∑
i
|wi| (9)

• L2 regularisation ||w||22, known as Ridge [81], consists of the sum of squared weights w as shown
in equation (10)

||w||22 =
m

∑
i

w2
i (10)

These regularisation techniques are widely adopted in machine learning models [75].
Ridge Regression — extension of linear regression that incorporates L2 regularisation [75,81],

which penalises large coefficient calues w through ||w||22 (10). The Ridge Regression loss function JridReg

presented in (11), augments the linear regression loss JlinReg (4) with the L2 penalty term ||w||22 (10).
The strength of the regularisation is controlled by the hyperparameter λ, which balances model fit and
coefficient magnitude.

JridReg(w) = λ
m

∑
i

w2
i + JlinReg(w) (11)

Ridge Classifier (RC) — classification approach based on Ridge Regression, defined by the loss
function JridReg(w) in equation (11). It is applied to binary problems with labels y ∈ {0, 1}. The model
fits a Ridge Regression, and prediction is made by thresholding the output function fl(x) (3) as shown
in equatin (12).

ŷRC =

1 if fl(x) ≥ 0.5

0 otherwise
(12)

The threshold if 0.5 is used under the assumption that the classes are encoded as 0 and 1, and the
model output is interpreted on this scale.

Lasso Regression (LR) — similar to Ridge Regression. The key difference is the use of L1
regularisation (9) instead of L2 [80]. The loss function for Lasso Regression JRL(w) is defined in
equation (13). It combines the linear regression loss function JlinReg(w) (4) with the L1 regularisation
||w||1 (9). The strength of the regularisation is controlled by the hyperparameter λ.

JRL(w) = λ
m

∑
i
|wi|+ JlinReg(w) (13)

Elastic Net — a combination of Lasso and Ridge Regression. It combines L1 regularisation
||w||1 (9) and L2 regularisation ||w||22 (10). The loss function JEN(w) (14) defined in equation (14)
includes the hyperparameter λ1 controlling the regularisation L1 strength and λ2 controlling regulari-
sation L2 strength. It enables the balance between feature selection and coefficient shrinkage [82].

JEN(w) = JlinReg(w) + λ2||w||22 + λ1||w||1 (14)
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Support Vector Machine (SVM) — a binary classification model trained on dataset S =

(xi, y1), ..., (xn, yn), where xi ∈ Rd, and y ∈ {−1,+1}. The model is based on a linear combina-
tion of features, analogous to the linear regression (3). Predictions are made based on the sign of the
decision function, as shown in equation (15). The output ŷ is eiter −1 or +1.

ŷ = sign( fl(x)) (15)

The training objective is to maximise the separation between two classes −1 and +1. It is done by
increasing the margin, defined as the distance between the decision boundary and the nearest data
points. A larger margin is assumed to improve generalisation of the model to new data. It has been
observed that the classification boundary is determined by a small subset of the training data, known
as support vectors [83], which lie closest to the margin.

SVM uses the hinge loss function Lhinge(y, f (x)), defined in equation (16), which penalises mis-
classifications and margin violations. Only examples within a margin of 1 contribute to the loss.

Lhinge(y, f (x)) = max(0, 1 − y · f (x)) (16)

The overall loss function JSVM(w) consists of two components: a regularisation term and the
hinge loss, as shown abstractly in equation (17). Typically, L2 regularisation is employed.

JSVM(w) = regularization + hinge loss (17)

To control the trade-off between model complexity and classification performance, different
scaling strategies for the loss function are used. In the original formulation [83], the hinge loss is scaled
by hyperparameter C, as shown i equation (18). Note that the regularisation term ||w||22 (10) is scaled
by 1

2 for convenience, resulting in gradient of w rather than 2w.

JSVM1(w) =
1
2
||w||22 + C

n

∑
i

Lhinge(yi, f (xi)) (18)

An alternative formulation has been proposed in [75], where the regularisation term ||w||2 (10)
is scaled by λ, and the hinge loss is averaged over all treining samples. This approach is shown in
equation (19).

JSVM2(w) = λ
m

∑
i

w2
i +

1
n

n

∑
i

Lhinge(yi, f (xi)) (19)

Both JSVM1(w) (18) and JSVM2(w) (19) allow one to control the balance between regularisation
and the hinge loss, but they achieve this through different scaling mechanisms.

k-means This clustering — algorithm partitions data into k disjoint groups called clusters. The
number of clusters k is defined prior to training. The clustering is performed by minimising the
within-cluster sum of squares (WCSS), i.e., the sum of squared Euclidean distances between data
points x and their assigned cluster centroids µ. The loss function Jk−means is formally definied in
equation (20). It aggregates the squared distance between each of the n data points x and the centroids
µ of the cluster to which it is assigned. The set Cj denotes all data points x assigned to cluster j. The
corresponding cluster centroid is denoted by µj.

Jk−means =
k

∑
j

∑
xi∈Cj

||xi − µj||2, (20)

The k-means minimise the loss function Jk−means by iteratively refining the assignment of data
points x and the positions cluster centroids µ. At each iteration the algorithm performs two alternating
steps:

1. Assignment step — each data point xi is assigned to the cluster Cj whose centroid µj is closest.
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2. Update step — for each cluster Cj, the centroid µj is updated as the mean of the data points xi

assigned to cluster Cj, as show in equation (21).

µj =
1

|Cj| ∑
xi∈Cj

xi (21)

These two steps are repeating until convergence, typically when cluster assignments stabilise or the
decrease in Jk−means falls below a set threshold [84].

Multilayer perceptron (MLP) — a feedforward artificial neural network (ANN) composed of
layers of units called neurons. The network consists of an input layer, one or more hidden layers, and
an output layer producing the prediction ŷ. Each neuron computes a linear combination of its inputs,
analogous to the linear function defined in equation (3). Specifically, in layer l, neuron j computes
linear combination of its weights w(l)

j and the outputs of neurons from previous layer, denotes as

a(l−1)
j , as shown in equation (22).

z(l)j = w(l)
j,0 + ∑

i
w(l)

j,i ai(l − 1) (22)

The output of the neuron j on layer l is then computed by applying a nonlinear activation fuction ϕ

to the linear combination z(l)j . This output is defined as a(j)
i in the equation (23).

a(l)j = ϕ(z(l)j ) (23)

Logistic regression can be interpreted as a single-neuron MLP with sigmoid (6) activation, whose
schematic is shown in Figure A1. The diagram illustrates the linear combination of inputs x1 . . . xn

and weights w1 . . . wn represented as a circle, followed by the sigmoid activation function shown as a
rectangle, producing the output prediction ŷ.

MLP generalises this concept by stacking multiple neurons into layers with various activation
functions. In a standard MLP, each neuron in a given layer receives as input all outputs from the
neurons in the precending layer. This type of connection is reffered to as a fully connected (FC) or
dense layer [75]. A schematic of such a network is presented in Figure A2. It consists of a single
input layer with 5 inputs, denotes as x1 . . . x5. There are two hidden layers, each containing 3 neurons.
The first hidden layer inlcludes neurons h(1)1 . . . h(1)3 , and the second hidden layer includes neurons

h(2)1 . . . h(2)3 . Finally, there is a single output ŷ.
Convolutional Neural Network (CNN) — an artificial neural network architecture specifically

designed for image processing tasks. A foundational contribution in this area is LeNet-5 architectur
introduced in [85]. In [85], convolutional layers were proposed to enable the local extraction of
features such as edges, corners, textures etc. without the need for manual feature engineering. The
mathematical formulation of a convolutional layer is presented in equation (24), where X denotes the
input to the layer, K is the convolutional kernel, b is the bias term, ϕ is the activation function, and Y
represents the output of the layer.

Y = ϕ(X ∗ K + b) (24)

The operation reffered to as convolution (25) in equations (24) is, in fact, a cross-correlation, as
the kernel K is not flipped as in the strict mathematical definition. Nevertheless, this operation is
convencionally called convolution and will be reffered to as such throughout this paper.

Z = X ∗ K (25)

The convolution (in practice, cross-correlation) of an input matrix X with a filter K of size m × n
produces an output matrix Z. Each element Z(i, j) is computed as the sum of element-wise products
between the overlapping region of X and the filter K, as shown in equation (26).
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Z(i, j) = ∑
m

∑
n

X(i + m, j + n) · K(m, n) (26)

This operation (26) is performed by sliding the filter K across the spatial dimensions of X. At each
location, local patch is combined with the filter, and the result forms a single output value.

When the input matrix X is a two-dimensional array, as in (26), it can be interpreted as a single-
channel image (e.g., a grayscale image). In the multi-channel case, such as RGB image, the filter is
extended across channels. The output Z(i, j) is then computed as the sum over all d channels, as
expressed in equation (27).

Z(i, j) = ∑
d

∑
m

∑
n

X(d, i + m, j + n) · K(d, m, n) (27)

A common application of convolution prior to its use in CNNs was edge detection, using fixed
kernels such as the Roberts [86], Sobel [87] and Prewitt [88] operators. The Sobel operator [87]
consists of two 3 × 3 filters: KSobel1 and KSobel2, shown in equation (28). The first filer, KSobel1, detects
vertical edges, by responding strongly to horisontal intensity changes. The second filer, KSobel2, detects
horisontal edges, by responding strongly to vertical intensity changes.

KSobel1 =

−1 0 1
−2 0 2
−1 0 1

, KSobel2 =

−1 −2 −1
0 0 0
1 2 1

 (28)

In contrast to these manually designed edges detectors, the filters in CNNs are not predefined.
Instead they are represented by trainable weights w which are learned from data during training.

In classical CNN architectures, convolutional layers are typically followed by pooling layers. In
the original LeNet-5 architecture [85], there were referred to as subsampling. Althrough the term
pooling is now more widely used. A pooling layer operates similarly to a convolutional layer, sliding
a fixed size window (e.g., 2 × 2) over the input matrix. However, instead of computing a weighted
sum, it applies an aggregation function. Common choices includes the maximum (max pooling) or
the average (average pooling). Pooling layers do not contain trainable parameters. Their behaviour
remains fixed during both training and evaluation.

The convolutional and pooling layers produces a multi-dimensional feature map, typically
represented as 3D matrix. To enable classification, this feature map is flattened into a one-dimensional
vector by a dedicated flatten layer. The flattened representation is then passed to a fully connected
network, structurally identical to a traditional multilayer perceptron (MLP). These layers generate
the final prediction, such as a classification. A schematic overview of the LeNet-5 is presented in
Figure A3.

AlexNet — a Deep Convolutional Neural Network (DCNN) proposed in [89], which achieved first
place in the ImageNet ILSVRC-2012 competition. The AlexNet architecture represents an extension
of the classical LeNet-5 approach. A schematic overview of the AlexNet is presented in Figure A4.
This networks consists of five convolutional layers, each followed by ReLU activation function. After
the first convolutional layer, response normalisation [89] and max pooling are applied. The same
sequence follows the second convolutional layer. The third, fourth, and fifth convolutional layers
are applied consecutively without intermediate layers. Max pooling is applied only after the fifth
convolutional layer. The output from this max pooling is passed to a flatten layer, which reshapes the
feature map from a 6 × 6 × 256 matrix into one-dimensional vector of size 9216. This vector is then fed
into three fully connecded layers. The first two uses ReLU activation, while the final layer consists of
1000 neurons with softmax activation, corresponding to the 1000 target classification categories.

VGG16 — a deep convolutional neural network (DCNN) proposed by Simonyan and Zisserman
from the Visual Geometry Group (VGG) at the University of Oxford [90]. In their work, six model
variations were introduced, differing in number of parameters and depth of 11, 13, 16 and 19 layers.
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The architecture employs convolutional layers with 3 × 3 filters and same padding, ensuring that
the spatial dimensions of the input and output feature maps remain identical. These convolutional
layers are grouped into blocks. Each block contains two to four consecutive layers followed by 2 × 2
max pooling layer. An example of such a module, containing three convolutional and single max
pooling layer is shown in Figure A5.

The standard VGG network [90] is composed of five such blocks, each with a varing number of
convolutional layers, followed by three fully connected (FC) layers at the end. The final layer consists of
1000 neurons with softmax activation, identical to the output configuration used in AlexNet [89]. The term
VGG16 refers to the version with a total of 16 learnable layers: 13 convolutional and 3 fully connected
layers. The convolutional layers are distributed across the five blocks as follows: 2, 2, 3, 3 and 3.

ResNet — a deep convolutional neural network (DCNN) architecture introduced in [91]. Its’ key
innovation is the introduction of skip connections which create a direct pathway between the input
and output of a block. An example of such a block i shown in Figure A6 where the input x is passed
through two convolutional layers, Conv1 and Conv2, producing an intemediate output F(x). The
input x is then added to this output, resulting in F(x) + x, followed by a ReLU activation.

These skip connections allows the network to skip certain layers through residual learning, thereby
improving gradient propagation. It effectively addresses the vanishing gradient problem and enables
training of very deep networks. In [91], authors evaluated architectures from 20 do 1202 layers. In practice,
commonly used ResNet variants include ResNet-18, ResNet-34, ResNet-50, ResNet-101 and ResNet-152.

ResNeXt — an extension of the ResNet architecture was proposed in [92]. Its key component
is a transformation block which incorporates multiple parallel convolutional paths. A schematic
representation of a typical ResNeXt block is presented in Figure A7. Each path, also reffered to as a
cardinality branch, processes the input x independently using sequence of convolutional layers. The
number of paths is defined by a hyperparameter known as cardinality [92]. The usual configuration
of each path includes three convolutional layers per path: 1 × 1, 3 × 3 and 1 × 1. While the structure
of these paths is identical, each utilises separate, independently learned weights. The outputs of all
paths are summed element-wide. This is then combined with the original input x via a skip connection,
following the residual learning approach introduced in ResNet.

DenseNet — a deep convolutional neural network (DCNN) architecture introduced in [93]. Its
key innovation lies in the introduction of dense connections, which extend the concept of skip connections
originally proposed in ResNet [91]. In DenseNet, each layer receives as input a concatenation of
the outputs from all preceding layers, rather than just from the immediate previous one. Each layer
produces a fixed number of new feature channels, referred to as the growth rate, which are appended to
the existing feature set. As a result, the number of channels increases linearly with network depth. To
reduce feature dimensionality, between dense blocks are inserted transition layers, consisting of 1 × 1
convolution followed by pooling layer.

Inception — a deep convolutional neural network (DCNN) architecture proposed in [94]. Its key
feature is the use of parallel processing within an Inception module where each path performs a different
operation. The structure of a single Inception module is shown in Figure A8. This module contains four
parallel branches, all of which receives the same input x:

• a sequence of 1 × 1 followed by 3 × 3 convolutions,
• a sequence of 1 × 1 followed by 5 × 5 convolutions,
• a 3 × 3 max pooling followed by 1 × 1 convolution,
• a single 1 × 1 convolution.

The outputs of all paths are concatenated along the channel dimension.
Inception combines the idea of multi-branch parallel processing from ResNetXt with the feature

aggregation characteristic of DenseNet. However, unlike ResNet and DenseNet, Inception does not use
skip connections.

Xception — a deep convolutional neural network (DCNN) architecture proposed in [95], which
extends the concept introduced in Inception. Its core innovation is the use of depthwise separable
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convolutions. The structure of a single Xception block is shown in Figure A9. In the main processing
path, a depthwise convolution is first applied. It is a spatial convolution performed independently on
each input channel. This is followed by a pointwise convolution 1 × 1, which combines the output
channels. Additionally, skip connections are employed between blocks, in a manner similar to ResNet.

Xception extends the Inception architecture by using depthwise separable convolutions which generalize
the parallel convolutional paths used in Inception. It also incorporates skip connections, as introduced in
ResNet.

The presented methods are widely applied in the histopathological diagnosis of leukaemias. A
summary of selected scientific publications demonstrating the practical application of these methods
is provided in Table 3.

Table 3. Overview of existing AI models in leukemia diagnostics.

Reference Material Diagnose Use of the
model Dataset size Segmentation

method Classifier Results

[96]
blood smear,

bone
marrow

AML detection of
AML 330

pattern
recognition-

based
SVM 96%

accuracy

[62] blood smear AML

telling
reactive

lymphoid
cells from
myeloid

and
lymphoid

blasts

696
pattern

recognition-
based

SVM 82%
accuracy

[57] blood smear AML

AML
detection +
classifica-
tion into
subtypes

80 (40 ALM
and 40

non-ALM)

k-means
(k=3) SVM 98%

accuracy

[97] blood smear ALL, AML classification

15,000
images

(80/20 split,
10-fold CV

for ML)

None;
image

resizing

DenseNet121
(DL); SVM,
KNN, RF,
DT (ML)

DenseNet121
→ Acc:

98.7%, Prec:
98.9%, Rec:
98.3%, F1:

98.6%; SVM
→ Acc:
96.2%

[53] blood smear ALL, AML
classification
of leukemia

types

ALL-IDB
(260) + LISC

(257)

HSV color
space +

k-means
clustering

Hybrid
CNN +
Vision

Transformer
(HCVT)

ALL-IDB:
99.12%,

accuracy
LISC:

97.28%
accuracy

[98] blood smear AML, ALL
classification
of AML vs

ALL

15,684
images (104

AML, 86
ALL

patients)

no segmen-
tation

(weakly
supervised
learning on
full smear
images)

EfficientNet-
B4 (transfer

learning)

AUC =
0.981,

accuracy =
95.3%

[99]
bone

marrow
smear

AML, ALL detection

15,719
images from

83 APL
patients +

118 control
samples

Color-based
segmenta-

tion of
karyocytes

CNN with
attention
modules

(CELLSEE);
backbones:
ResNet18,
ResNet34,
ResNet50

AUC =
0.9708

(CELLSEE50);
Accuracy =

93.8%;
Recall =
90.8%

[100] blood smear AML, ALL X 4394 X

Naive
Bayes,

K-NN, RF,
SVM

85,8%
accuracy

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 August 2025 doi:10.20944/preprints202508.0193.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.0193.v1
http://creativecommons.org/licenses/by/4.0/


19 of 34

Table 3. Cont.

Reference Material Diagnose Use of the
model Dataset size Segmentation

method Classifier Results

[48] bone
marrow ALL/AML

classification
into 21 mor-
phological
categories

17152 manual seg-
mentation

CNN
(ResNeXt)

91.7%
accuracy,

avg F1-score
87.3%

[43] blood smear
AML, CLL,
MDS, CML,

etc.

differential
cell classifi-

cation

10,082
patients /

4.9M
images

(training:
8,425)

automatic
cell

cropping
using

scanning
system

Xception

96%
accuracy;
91% blast
detection;

95% concor-
dance for

pathogenic
cases

[101]
blood smear,

bone
marrow

ALL, AML,
CML, CLL

leukemia
diagnosis X

various
(threshold-

ing,
morphologi-

cal ops,
clustering)

SVM, k-NN,
ANN, CNN,
DT, Naive
Bayes, RF

accuracy
ranges from
85% to >99%
depending
on study

[69] bone
marrow

AML, MM
(tested),

nonneoplas-
tic (trained)

detection
and classifi-
cation tasks,

using a
two-stage

system

10,000
annotated
cells (9269

nonneoplas-
tic, plus

AML, MM
cases)

Faster R-
CNN–based

detection

VGG16 con-
volutional
network

97%
accuracy

AML

[102] blood smear ALL

segmentation
and classifi-

cation of
blast cells

ALL-IDB:
559 k-means

custom
CNN

(8 layers)

accuracy:
100% ALL
detection;

99%
subtypes
classifica-

tion

[54] peripheral
blood smear

Acute
leukemia,

MDS, CML

Automated
blast

detection

114 patient
samples;

100
leukocytes
per smear

automated
image

capture and
classifica-
tion; no

manual seg-
mentation

CellaVision
DM96

(proprietary
pattern

recognition
system)

Sens: 93.3%,
Spec: 86.8%,
PPV: 87.9%,
NPV: 92.6%,
Acc: 90.4%

[103] bone
marrow ALL

diagnosis of
ALL, classi-
fication of
ALL into
subtypes

633
Pattern-

recognition
based

KNN, RF,
SL, SVM,

RC

94%
accuracy,
92% AML

vs ALL

[37] blood smear ALL
classification
of full smear

image

520 images;
80/20

train/test
split

None;
resized and
normalized
full images

Custom
CNN (4

conv layers
+ dense
layers)

Acc: 96.37%,
Prec:

96.00%, Rec:
97.00%, F1:

96.48%
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Table 3. Cont.

Reference Material Diagnose Use of the
model Dataset size Segmentation

method Classifier Results

[49] blood smear ALL classification

392 cells
(236 ALL,

156 normal),
108 images;
70/10/20

split

Manual
cropping of

WBC
patches

(224×224);
no segmen-

tation
network

Vision
Transformer

(ViT);
ViT-FF
variant

Acc: 98.72%,
Prec:

98.81%, Rec:
98.73%, F1:

98.72%

[40] blood smear ALL classification 20,000
images

Pre-
segmented
single-cell

images;
DERS aug-
mentation

ViT +
EfficientNet-

b0
(ensemble,
weighted

sum
0.7/0.3)

Accuracy:
99.03%,

Precision:
99.14%

[41] blood smear ALL
localization
+ classifica-

tion

392 cells
(236 blast,

156 normal),
108 images

UNet
(integrated

in
end-to-end

model)

UNet +
ResNet18

(ALL-NET
architec-

ture)

Acc: 98.68%,
Prec:

98.70%, Rec:
98.80%, F1:

98.75%

[51] blood smear ALL

classification
of leukemic
vs normal

cells

260 cell
images

manual
cropping

custom
CNN +

k-NN, SVM,
RF

up to
99.61%

accuracy

[52] blood smear ALL
detection

and classifi-
cation

260 cell
images

manual
cropping

VGG16,
ResNet50,

InceptionV3
+ GLCM +

SVM, k-NN

up to
99.17%

accuracy

[33] blood smear ALL

feature
extraction

and classifi-
cation of
leukemic

cells

234 cell
images

manual
cropping

VGG16,
ResNet50,

DenseNet121
+ SVM,

k-NN, RF,
DT

up to
99.14%

accuracy

[35] blood smear ALL

detection
and classifi-

cation of
ALL

ALL-IDB1:
108 images
(59 ALL, 49

healthy)

HSV color
space +

color thresh-
olding

VGG16,
ResNet50,
AlexNet +
SVM, RF,

KNN

ResNet50+SVM:
99.12%

accuracy,
100%

sensitivity,
98.1%

specificity

[33] blood smear ALL

feature
extraction

and classifi-
cation of
leukemic

cells

234 cell
images

manual
cropping

VGG16,
ResNet50,

DenseNet121
+ SVM,

k-NN, RF,
DT

up to
99.14%

accuracy
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Table 3. Cont.

Reference Material Diagnose Use of the
model Dataset size Segmentation

method Classifier Results

[29] blood smear ALL

detection
and classifi-

cation of
ALL

ALL-IDB:
260 images
(150 ALL,

110 healthy)

adaptive
histogram
equaliza-

tion +
Gaussian
filtering

custom
CNN

99.3%
accuracy,

98.7%
sensitivity,

100%
specificity

[45] blood smear ALL

detection
and classifi-

cation of
ALL

ALL-IDB1:
108 images
(59 ALL, 49

healthy)

HSV color
space +

threshold-
ing +

morphologi-
cal

operations

VGG16 +
SVM, KNN,

ensemble
(bagged

trees)

Ensemble:
99.1%

accuracy,
100% recall;
SVM: 98.1%

accuracy

[67] blood smear ALL

detection
and classifi-

cation of
ALL

ALL-IDB1:
108 images

thresholding
+ morpho-

logical
operations +

K-means

SVM,
compared

with k-NN,
Naive
Bayes,

Decision
Tree

94.23%
accuracy,
92.13%

precision,
95.55%
recall

[42] blood smear ALL

detection
and classifi-

cation of
ALL

ALL-IDB1:
108 images,
ALL-IDB2:

260 cells

thresholding
+ morpho-

logical
operations

CNN (13
layers)

99.1–99.33%
accuracy;

>98%
sensitivity

and
specificity

[35] blood smear ALL

detection
and classifi-

cation of
ALL

ALL-IDB1:
108 images
(59 ALL, 49

healthy)

HSV color
space +

color thresh-
olding

VGG16,
ResNet50,
AlexNet +
SVM, RF,

KNN

ResNet50+SVM:
99.12%

accuracy,
100%

sensitivity,
98.1%

specificity

[59] blood smear ALL

ALL
detection,
classifica-
tion into
subtypes

180
pattern

recognition-
based

MLP, SVM,
EC

97%
accuracy

[104] blood smear ALL

diagnosis of
ALL and
classifica-
tion into
subtypes
(L1, L2)

14692

Lab color
space +

k-means
clustering +

morphol-
ogy

CNN 0,99 AUC

[63] blood smear ALL
classification

into
subtypes

260 threshold-
based

SVM, SSVM,
KNN,

ANFIS,
PNN

99%
accuracy
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Table 3. Cont.

Reference Material Diagnose Use of the
model Dataset size Segmentation

method Classifier Results

[44] blood smear ALL

detection +
classifica-
tion ALL

into
subtypes

180

SDM-based
clustering +
simple mor-
phological
operations

MLP, SVM,
Dempster-

Shafer
ensemble

96,67%
accuracy

SVM,
96,72%

accuracy
Dempster-

Shafer

[60] blood smear ALL ALL
detection 130 threshold-

based SVM 90%
accuracy

[66] blood smear ALL

detection of
ALL, classi-
fication into

subtypes

760 X DCNN

accuracy for
detection
99,50%,

accuracy for
classifica-

tion 96,06%

[65] bone
marrow ALL

classification
of ALL into

subtypes
330 Threshold-

based CNN 97,78 %
accuracy

[58] blood smear ALL ALL
detection 33 threshold-

based SVM 92%
accuracy

[105] blood smear ALL ALL
detection 45

pattern
recognition-

based

ANN, KNN,
k-means,

SVM

100%
specific, 95%

sensitive

[36] blood smear

Leukemia
(via blast
detection

among
WBCs)

localization
+ Classifica-

tion

400 WBCs
from 260
images

Manual
cropping

using
ground

truth; pre-
processing:
histogram
equaliza-

tion,
morphol-

ogy

AlexNet +
LBP + HOG

→ SVM

Acc: 97.5%,
Prec: 96.8%,
Rec: 95.3%,
F1: 96.0%

6. Discussion on Biases and Limiations of AI Used in Histopathology
The diagnostic process in pathology is a certain sequence of events that need to occur before we

are able to reach diagnosis. The tissue samples need to be collected, processed, fixated, transported
onto slides and stained before we can watch them under our microscope [106]. These steps are
necessary, but they also introduce errors (artifacts) in our slides, making their interpretation harder
[107]. If we were to apply digital solutions, the process must also include scanning the slides so
that they can be stored on computer and analysed by it. The scanning needs to keep the resolution
good, the colours sufficiently preserved and the technical parameters of scanning device need to be of
good quality. There is a wide selection of such scanning devices in the market [108], but their price
might be a serious obstacle to availability of AI-related diagnostic technologies in smaller/poorly
funded laboratories. While scanning, we cannot remove or correct the slides as to get rid of artifacts -
they are all preserved on scanned image [109], making it analysis by AI harder. The resolution and
magnification of slides undergoes changes when the slide is scanned and displayed on monitor rather
than under the microscope[110]. Difference in resolution might mean that some tiny, yet diagnostically
important parts of the slide might no longer be seen on the slide version seen by the AI. Another
diagnostic problem is that some tissue samples are only small pieces (biopsies) or are fragmented and
their architecture is lost (e.g. many polyps obtained by endoscopy arrive fragmented) - fragmentation
is another challenge which AI would have to overcome. While tissue fragmentation is not a problem
in cytological specimen this phenomenon has utmost importance while diagnosing solid tumours or
e.g. lymphomas.
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The AI models do not guarantee 100% perfection. An old Polish saying goes "only those who don’t
do, don’t err". In medicine, errors are an unavoidable part of medical practice in every specialisation
including pathology. The sources of errors in diagnostics can be multifarious, including swapping
the specimens or wrong storage/preparation [111]. Some of the errors are a consqeuence of simple
clerical errors like mislabelling the slides [112]. Unfortunately, some wrong diagnoses are inevitably
on the pathologists side. A study by Packer et al. [113] found out that from 134 analysed cases, 37
(27,6 %) were diagnosed with a wrong entity. Nevertheless, trained pathologists can reach very high
rates of success. A study by Dehan et al. [114] showed a remarkable rate of correct diagnoses in frozen
intraoperative specimens (which due to their processing abound in artifacts and are more difficult
for a pathologist to diagnose) - only 2,9 percent of errors in over 6000 samples. The use of artificial
intelligence in diagnosing of leukemias brought similar rates of success, with some models [63,65,66]
reaching similar rates of accuracy in answering the given problem.

Even after a successful diagnosis in spite of the aforementioned error sources has been reached,
not all problems are solved. According to the law, all pathology specimens need to be stored for a fixed
amount of time to ensure the possibility of reviewing the diagnosis or solving eventual claims and
disputes. In Poland, this obligatory storage period is 10 years in case of cytological specimens and
20 years in case of histopathology specimens [115]. The same requirement would obviuosly concern
samples in virtual/digital form. If we realize that a single slide scanned occupies from 1 to 3 GBs [116],
many cases consist of multiple slides from the same patient, and the demand for histopatological
examinations is on the rise [117], one can easily imagine how high storage ability would be required
from the laboratories to store all required by law data for such a long period. Such a large amount of
data requires a lot of time to scan it - some slides may require 1000 seconds to be scanned [116].

Potential benefits of applying deep learning technologies in pathology are not limited to leukemias.
A lot of models were already created for AI to help diagnosing kidney pathologies [118], colorectal
cancer [119], and prostate cancer [120]. Some of the models reached good results enough to be
approved by relevant regulatory authorities (e.g. FDA in case of the United States) and can be routinely
employed to diagnose patients, the first of such algorithms accepted in 2021 [120]. Currently, the list of
AI-based solutions approved by FDA in various domains of medicine has 1247 entries; over 900 of
them are from radiology domain, with haematology having 19 entries and pathology 6 [121]. Since
radiology is predominantly image analysis, technologies connected to it (similar to those presented
in our review) are dominating the market of medical services. It seems that pathology, with only 6
registered entries up to date still has many potential solutions to develop yet.

A serious limitation of all AI-based models is that they cannot solve problems other than those
for which they were created. Where a human pathologist can effortlessly switch between diagnosing
cases from different systems of the human body in just a few minutes, such a change in case of AI
would require creating an entirely new model or a lot of training. Before fully replacing humans, AI
would also need to learn integrating information from different diagnostic methods (flow cytometry,
genetic methods), ordering and interpreting additional immunohistochemistry staining and keeping
eyes open for artifacts and dust which often distort the image to be seen on slides. Pathology cannot be
reduced to black-white IT-like binary distinctions - it is the ability to see all shades of grey in between
that enables us to reach accurate diagnoses. Time leaves open the question, whether AI will ever be
able to supplant human pathologists and, if yes, when will this happen.
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validation, M.C., P.K.; formal analysis, M.C., P.K., P.T., G.R., A.Z., A.S.; investigation, M.C., P.K., P.T., G.R., A.Z.,
A.S.; resources, M.C., P.K., P.T., G.R., A.Z., A.S.; data curation, M.C., P.K., P.T., G.R., A.Z., A.S.; writing—original
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Abbreviations
The following abbreviations are used in this manuscript:
WHO World Health Organisation
AI Artificial Intelligence
HTLV-1 Human T-cell Lymphotropic Virus type 1
ALL Acute Lymphoblastic Leukemia
AML Acute Myeloid Leukemia
CLL Chronic Lymphocytic Leukemia
CML Chronic Myeloid Leukemia
HCL Hairy-Cell Leukemia
PLL Prolymphocytic Leukemia
LGLL Large Granular Lymphocytic Leukemia
MPAL Mixed-phenotype Acute Leukemia
MM Multiple Myeloma
FAB French-American-British Classification
DIC Disseminated Intravascular Coagulation
KNN k-Nearest Neighbour
DT Decision Tree
RF Random Forest
GB Gradient Boosting
LR Logistic Regression
SVM Support Vector Machine
RC Ridge Classifier
MLP Multilayer Perception
ANN Artificial Neural Network
FC Fully Connected
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
WCSS Within-Cluster Sum of Squares
FPR False Positive Rate
FNR False Negative Rate
FDA Food and Drugs Administration
VGG Visual Geometry Group
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Appendix A
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Figure A1. A schematic diagram of the single neuron in MLP.
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Figure A2. A schematic diagram of MLP .

Input image 32 × 32 × 1 → Output: 32 × 32 × 1

Conv1: 6 kernels of size 5 × 5, stride 1, activation: tanh → Output: 28 × 28 × 6

Average Pooling 1: 2 × 2 filter, stride 2 → Output: 14 × 14 × 6

Conv2: 16 kernels of size 5 × 5, selective connections, activation: tanh → Output: 10 × 10 × 16

Average Pooling 2: 2 × 2 filter, stride 2 → Output: 5 × 5 × 16

Flatten: reshape to 1D vector → Output: 400

Fully Connected Layer 1: 120 neurons, activation: tanh → Output: 120

Fully Connected Layer 2: 84 neurons, activation: tanh → Output: 84

Fully Connected Layer 3: 10 neurons, activation: softmax → Output: 10

Figure A3. A schematic diagram of the LeNet-5 architecture.
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Input image 224 × 224 × 3 → Output: 224 × 224 × 3

Conv1: 96 kernels of size 11 × 11 × 3, stride 4, activation: ReLU → Output: 55 × 55 × 96

Response Normalization 1 → Output: 55 × 55 × 96

MaxPool1: 3 × 3 filter, stride 2 → Output: 27 × 27 × 96

Conv2: 256 kernels of size 5 × 5 × 48, activation: ReLU → Output: 27 × 27 × 256

Response Normalization 2 → Output: 27 × 27 × 256

MaxPool2: 3 × 3 filter, stride 2 → Output: 13 × 13 × 256

Conv3: 384 kernels of size 3 × 3 × 256, activation: ReLU → Output: 13 × 13 × 384

Conv4: 384 kernels of size 3 × 3 × 192, activation: ReLU → Output: 13 × 13 × 384

Conv5: 256 kernels of size 3 × 3 × 192, activation: ReLU → Output: 13 × 13 × 256

MaxPool3: 3 × 3 filter, stride 2 → Output: 6 × 6 × 256

Flatten: reshape to 1D vector → Output: 9216

Fully Connected Layer 6: 4096 neurons, activation: ReLU → Output: 4096

Fully Connected Layer 7: 4096 neurons, activation: ReLU → Output: 4096

Fully Connected Layer 8: 1000 neurons (output classes), activation: softmax → Output: 1000

Figure A4. A schematic diagram of the AlexNet architecture.

Conv layer: 64 filters of size 3 × 3, padding=same, activation: ReLU

Conv layer: 64 filters of size 3 × 3, padding=same, activation: ReLU

Conv layer: 64 filters of size 3 × 3, padding=same, activation: ReLU

Max pooling: 2 × 2, stride 2

Figure A5. A schematic diagram of the basic VGG architecture module.
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Figure A6. A schematic diagram of the basic residual block in the ResNet architecture with skip connection.
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Figure A7. A schematic diagram of the ResNeXt block: aggregated residual block with multiple parallel convolu-
tional paths.

Input x
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Conv 3 × 3
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Conv 5 × 5

Max pooling 3 × 3

Conv 1 × 1

Conv 1 × 1

Concatenation

Figure A8. A schematic diagram of the Inception module [94].
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Pointwise Conv (1 × 1)

+

Figure A9. A schematic diagram of the Xnception module.
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