
  

Article 

Entanglement Monotones and Measures: An 
Overview 
Volkan Erol 

Okan University Computer Engineering Department, Istanbul, Turkey; volkan.erol@gmail.com 

Abstract: Quantum information theory and quantum computing are theoritical basis of quantum 
computers. Thanks to entanglement, quantum mechanical systems are provisioned to realize many 
information processing problems faster than classical counterparts. For example, Shor’s 
factorization algorithm, Grover’s search algorithm, quantum Fourrier transformation, etc. 
Entanglement, is the theoretical basis providing the expected speedups. It can be view in bipartite 
or multipartite forms. In order to quantify entanglement, some measures are defined. On the other 
hand, a general and accepted criterion, which can measure the amount of entanglement of 
multilateral systems, has not yet been found. In this work, we make a short review of recent research 
on the topic entanglement monotones/measures with an analitical approach. 
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1. Introduction 

Quantum Information is a way to prove the validity of challenging physical experiments. How 
should computer scientists benefit from the concept of quantum computing until quantum 
computers are invented? In fact, Quantum Computing alone is not interested in making new 
Computing Devices. It is becoming a radical Scientific Industry revolutionary journalist to change 
our point of view of real problems in the world and to find solutions much faster than the present. 

However, since it must be used in many information processing tasks, the production and 
processing of multilateral quantum entangled systems is at the top of the hot topics of recent years 
[1-8]. Much of the work in the basic quantum technologies, such as quantum cryptography, 
communications, and computers, requires multi-partite entangled systems such as GHZ, W [9,10]. It 
can be suggested that the quantum entanglement criteria reflects the different properties of the 
systems. Many recent research has been done in entanglement and its related disciplines like entanglement 
measures and majorization, etc. [11-20]. 

Some swarm-based solutions are included in the current work to speed up machine learning 
procedures. An example of these studies is entitled "Entanglement-Based Machine Learning on a 
Quantum" by Cai et al., [21]. 

Yamomoto and his group have also carried out various studies on the implementation of 
artificial neural networks in the perspective of Quantum Information Theory [22]. 

Some of the problems listed above are concepts introduced by the predictions of quantum 
computers of the last of the contemporary classical cryptography concepts. For example: Quantum 
Cryptography. The concept of post-quantum cryptograhy has also been introduced along with the 
opening of the quantum age in the field of cryptography. The basis of this theoretical background is 
the concept of linear algebraic lattice. According to the current assumptions, a quantitative solution 
algorithm of lattice-based encryption algorithms has not yet been found. If one of these algorithms 
can be broken in a quantum way, the post-quantum cryptography concept will be among the dusty 
shelves of science history. 

As it turns out, there are studies using the Quantum Information Theory infrastructure that are 
closely related to many current fields of Computer Science and Engineering, or it is foreseen that they 
can be done in a perspective of 10 years. According to the reports of US-based research institutes, 
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which make a respectable trend analysis like Gartner, it is possible to enter the life of a general 
commercial Quantum Computer in 10 years technological perspective.  

2. History of Quantum Information Theory 

In the past centuries, since the world has been viewed as a deterministic view, real-world 
problems have been dealt with as if to solve a large clock-like system. Along with the spread of 
computers in our lives, our understanding of science, mathematics, and collecting has also changed. 
We are no longer using computers to solve problems, we are building, programming and using 
computers. 

For example, for different types of problems, such as DNA analysis, language processing, and 
cognitive science, data needs to be transformed to optimize concepts such as compression and error 
correction of information. It is important to consider concepts such as calculation efficiency, game 
theory and economic problems. Computer Science has also changed the aims of these and similar 
fields. In mathematical research, more emphasis is given to efficiency and studies in computer-related 
fields such as Information Theory, Graph Theory and Statistics have been accelerated. The question 
of defining P or NP problems defined between Clay Millenium problems is trying to explain the 
oldest puzzle in mathematics: what makes it difficult to find a proof? 

When computers came out for the first time, it was hard to imagine that anyone but a few would 
turn out to be such a big commercial success. This commercial success also led to an intellectual 
revolution. For example, the invention of the concept of entropy, which is the theoretical basis for 
data compression or error correction, has been possible with this revolution. This concept was used 
for the understanding of thermodynamics and steam machines in the 19th century. Claude Shannon 
is II. He used the concept of entropy in practice during his work on cryptography in Bell Laboratories 
during World War II. This situation has not only occurred in computer science problems. For 
example, Einstein used the concept of clock synchronization in his experiments. The problem of clock 
synchronization was conceived as one of the major industrial problems for that period in terms of 
automating the movements of trains. In some instances, science has followed technological 
developments and changed the point of view of the problems after these discoveries. 

The story of Quantum Informatics is similar. Quantum mechanics was invented at the beginning 
of the 20th century and the modern form currently used is known since 1930. However, the idea that 
quantum mechanics can provide a computational advantage has been put forward much later. This 
idea emerged when physicists attempted to simulate the quantum mechanics on computers. When 
they tried it, they faced another problem. A single system (photon polarization) can be described by 
two complex numbers (the amplitude values of the vertical and horizontal components of 
polarization), whereas for n systems the number is represented by 2n rather than 2n complex 
numbers, and additionally the measurement only reveals n bits. Physicists have developed closed-
form solutions to overcome this problem and need a variety of estimation techniques in cases where 
the number of examined states increases. 

The exponential system state space of quantum mechanics has helped them to realize how large 
and interesting environments nature actually has in terms of computing science. Until then, the 
concepts of quantum mechanics that were difficult to explain were seen as restrictive items and 
deficiencies. For example, the Heisenberg Uncertainty Principle was often seen as a restriction on 
measures. The concept of entanglement as "quantum-based" or philosophy of quantum mechanics 
has not been studied in detail in terms of operation as much as quantum computation and quantum 
cryptography concepts were invented in the 1970s and 1980s. 

In 1982, Richard Feynman introduced the concept of quantum information, or in other words, 
the use of quantum mechanical concepts in the field of computational science. The idea is that even 
if a quantum computer can be invented, it can simulate quantum mechanics much more effectively 
than conventional computers. This model was formalized by David Deutsch in 1985. It has also been 
shown for the first time by Deutsch (a computation of two-bit XOR values) that a quantum 
mechanical computer will run faster than a conventional computer. Similar studies have been shown 
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to accelerate over time, for example, by Peter Shor in 1994 when the problem of integers division into 
multipliers can be done at polynomial time. 

In the 1970s, it was suggested by Stephen Wiesner, then a Ph.D. student at that time, that 
Heisenberg's restrictions on measurement could be used to prevent the learning of confidential 
messages, but the important scientific journals at that time rejected this work. This issue was first 
published in 1984 by Charles Bennett and Gilles Brassard as a quantum cryptographic structure. Until 
1991, this study was not taken seriously in the scientific mosque until it was realized by them again. 

The most important discovery at this point is the formation of the infrastructure of quantum 
mechanics and quantum cryptography, which are described in the 1950s. It has also been shown that 
many problems related to the theory of information can be solved much faster by quantum 
mechanical concepts. Example, Grover's search algorithm, etc. [1] 

Today, studies such as Google, Nasa, and many other prestigious universities and research 
institutes around the world are at full speed. Work on how to physically generate quantum 
computers has also accelerated in recent years. Historical developments in these areas and 
explanations of the models used are shared with detailed information in the following sections. 

3. Definitions About Entanglement Monotones and Measures 

In this section, definitions related to the concept of Entanglement are given and after these 
definitions, explanations about Entanglement Measures are made. Next, the conditions for defining 
a process as an Entanglement Measure are defined. In the following subsections, detailed 
explanations were made with the Entanglement Measures, which has been frequently studied in the 
literature. 

3.1. Entanglement 

One of the starting parts of a study on entanglement measures should be to define the concept 
of entanglement. It is important to explain how this concept is used. The usefulness of the concept of 
entanglement is that we say the Local Operation Classical Communication (LOCC) constraint, and then 
we elaborate on a path that we will detail. This constraint makes both our technological and 
fundamental motivation important because it directly affects the long-distance quantum 
communication over the systems we examine. 

In any quantum communication experiment, we would like to distribute quantum particles 
among remote laboratories. Perfect entanglement distribution is required for perfect quantum 
communication [23]. If we can distribute it without a qubit decoherence, we can also perfectly 
distribute the entanglement it shares. On the contrary, if we can perfectly distribute the circulating 
system states, we can use teleportation in order to be able to publish quantum system states with 
fewer classical communications. However, in feasible experiments where we can apply these 
processes, the noisy effect will prevent us from sending quantum system states over long distances. 

To solve this problem, the distribution of the quantum systems must be made over already 
existing noisy quantum channels; Then it would be appropriate to perform local quantum processes 
at higher levels in laboratories that are located at distant distances from each other in order to avoid 
the effects of noise. Because these local quantum operations ('Local Operations-LO') are made in 
multi-control environments, they are close to the ideal situation and thus the effects of long-distance 
communication are prevented. It is often not appropriate to run these systems in completely 
independent environments. In this case, the existing classical communication (CC) can be realized 
with the existing standard communication technologies. As shown in Figure 1, we can use this 
communication to coordinate operations in different laboratories. 
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Figure 1. Local Operation (LO) Representation of Classical Communication (CC) method illustration [23] 

In many Quantum Information Theory studies it is of vital importance that classical 
communication can be used, for example quantum teleportation. At present, the assumptions we 
make are related to the present technological situation, and LOCC is a concept that is important in 
teleportation studies [23]. 

Entanglement can be defined as quantum correlations between multiple quantum systems. In 
this case, the question posed is what does quantum correlation look like and what is different from 
classical correlation? The discussion on 'quantum' and 'classical' effects is a hot topic. We can define 
classical correlations in the context of quantum information as those arising from the use of LOCC. If 
we look at a quantum system and can not simulate them classically, we generally have quantum 
correlations. Suppose we have a noisy quantum system and we are working on it on LOCC. In this 
process we can obtain such a system state that we can do some things we can not achieve with 
classical correlations, such as violating Bell inequality. In this case, we can obtain these effects by 
quantum correlations in the initial system state that are already present at the source location (even 
if it is a very noisy system state), not after the LOCC operations. This is the most important point of 
the entanglement studies. 

The limitation of LOCC operations is to raise the status of the source system to entangled state. 
Another definition of entanglement may be that there may not be only a correlation generated by 
LOCC because operations can be performed on non-local binary or multiple quantum systems. In 
order to be able to understand LOCC processes in more detail, Quantum Operations is also described 
with an entanglement perspective. 

3.2. Quantum Operations 

The studies on quantum information theory generally use 'generalized measurements'. These 
generalized measures mentioned do not go beyond the standard quantum mechanics. In the general 
approach to quantum operations, a system changes with respect to a unitary operations, or with 
projective measurements. We can describe in three steps how a system interacts with other quantum 
systems in three steps: (1) first we add additional particles (2) then we perform simultaneous unitary 
and measurement operations on both the system and the particle, and finally (3) we ignore some 
particles based on the measurement results. 

If the additional particles in this process are not originally concerned with the mentioned system, 
this interaction can be explained by Kraus operators. To calculate the total information resulting from 
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any measurement, the measurement result with the probability ߩ௜ =  is calculated as 	{௜றܣ௜௡ߩ௜ܣ}ݎݐ	
follows: ߩ௜ = {௜றܣ௜௡ߩ௜ܣ}ݎݐ௜றܣ௜௡ߩ௜ܣ  

(1)

Here, ߩ௜௡ represents the first system state and ܣ௜ matrices known as A_i Kraus operators. 
The normalization of the probabilities requires that the Kraus operators should have the 

condition: ∑ ௜௜ܣ௜றܣ =1 (2)

In some cases, for example, if a system interacts with the environment, some or all of the 
measurement results may not be reached. In the extreme case in this context, the additional particles 
will trace out.  

In this case, the map is given by the following formula: ߪ = ∑ ݅݅†ܣ௜௡ߩ݅	ܣ  and is shown in Figure 
2 b. This is called the quantum operation which preserves the trace of the map and is often called the 
measuring quantum operation. 

Conversely, we can find an operation consisting of the additional particles, equal unitary operation 

and van Neumann measurement for any ܣ௜  linear operation set that yields ∑ ௜	௜ܣ௜றܣ =1. For 

operations that preserve traces, all matrices ܣ௜ must be of the same size but ܣ௜ may have different 
sizes if the result information is preserved. Once we have identified the basic building blocks for 
general quantum operations, we can now define which operations are applicable under LOCC. The 
LOCC constraint is visualized in Figure 4.2. In general, this kind of process is very complicated. Alice 
and Bob can communicate classically before or after a certain number of local movements, in which 
case any post-lag movements will depend on the results of previous measurements. As a result of 
this complexity, there is no simple explanation of LOCC operations. This motivates the development 
of easier-to-explain and larger operation classes and remains an integral part of the LOCC 
implementation. One of these important classes is separable operations. Such operations can be 
written as a product representation in the form of Kraus operations: ߩ௞ =  †௞ܤ⨂†௞ܣ௜௡ߩ௞ܤ⨂௞ܣݎݐ†௞ܤ⨂†௞ܣ௜௡ߩ௞ܤ⨂௞ܣ

(3)

Here ∑ 	௞ܣ௞றܣ ⨂௞ 	௞ܤ௞றܤ =1⨂1 should be satisfied. 

 
Figure 2. Schematic representation of Quantum Operations in Forms (a) and (b) with sub-selection [23] 

Clearly, any LOCC operation can be transformed into a separable operation, such that the 
concatenation operation corresponds to an operation consisting of the multiplications of Alice and 
Bob's individual local Kraus processes. However, the opposite is not true. A separable operation may 
not be achieved using LOCC operations. 
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When separable operations are examined from a mathematical point of view, they can be 
optimized using separable operations, even though a given task encounters severe limitations using 
LOCC. In some cases, this process can lead to some difficult results: It should be noted that in the case 
of symmetries, optimally allocable operations can also be achieved with LOCC. The general operation 
classes that support positive partial transpose (PPT) preserving operations create a highly 
advantageous mathematical model for understanding entanglement. 

3.3. Definitions for Entanglement 

In this section, we define basic definitions about entanglement.  

1. Separable states are not entangled:  

A state ߩ஺஻஼  consisting of subparts A, B, C and which can be defined as follows are defined as 
separable ߩ஺஻஼… = 	෍݌௜ߩ஺௜ ஻௜ߩ⨂ ஼௜ߩ⨂ ⨂…௜  (4)

Here ݌௜ is a probability distribution. These system states can easily be created with LOCC. Those 
located in other parts of Alice ݌௜ share the information about the result of users i and the user X in 
each part locally calculates the value of ݌௑௜  and ignores the information that comes at the end of i. 
Since this system provides states with LOCC from the model of local hidden variables, it can be 
created directly and all correlations of them can be explained classically. In this way, we can arrive 
at the conclusion that the logically separable system states are not entangled. 

2. Non-separable states allow some tasks to be performed better than LOCC, in which case all non-
separable system states are entangled: 

For any non-separable system state ρ, another such σ system state can be found, which is the 
result of teleportation fidelity, which can be improved if ρ is present. This interesting result has 
enabled us to achieve a positive result not in separable system conditions. This also supports the use 
of non-separable and entanglement terms as synonyms of each other. 

3. System states entanglement does not increase under LOCC transformations 

4. Entanglement does not change under local unitary operations  

5. There are some maximally entangled states: 

The notion that a system state is entangled allows us to identify in some cases the fact that a 
system state is more entangled than the other. This leads to the question of the existence of a maximally 
entangled state. The maximally entangled system is more entangled than the others. In this case there 
could be two-particle two-level systems, or two d-dimensional-level sub-systems called qudit. For a 
pure system case, the following equation defines the maximally entangled system state: |߰ௗା⟩ = 	 |0, 0⟩ + |1, 1⟩ + ⋯+ |݀ − 1, ݀ − 1⟩√݀  (5)

By going all the way out of these definitions; Questions such as "Is the system state ordering 
possible?" Or "Is the system state ordering problem a partial ordering or is it a complete ordering?". 
In order to be able to query the answers of these questions, one system state needs to be transformed 
under another LOCC procedure and the question must be answered. 

3.4. Entanglement Measures Postulates 

In this section, we will describe a few basic axioms that any entanglement measure should 
provide. What are the preconditions for a good entanglement measure? A entanglement measure is 
such a mathematical magnitude that it should provide the fundamental properties associated with 
the entanglement and should ideally work according to some operational procedures. According to 
our purposes, this situation allows us to identify some possible desired features. The following list 
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describes the postulates that must be met by the entanglement criteria [45]. Not all of these features 
are available in many cases: 

1- A two-sided (bipartite) entanglement measure E(ρ) is a mapping of positive numbers from 

system density matrices: ߩ 				→ (ߩ)ܧ ∈ ℝା 

This measure can be defined for the status of any bipartite system. A normalization factor is 
usually used, for example, for two qudit maximally entangled state |߰ௗା⟩ = 	 |0, 0⟩ + |1, 1⟩ + ⋯+ |݀ − 1, ݀ − 1⟩√݀  (6)

This value is ܧ(|߰ௗା⟩) = 	 log ݀ . 

2- Is the state is separable than (ߩ)ܧ = 0. 

3- E does not increase in mean under LOCC , in other words 

(ߩ)ܧ ≥෍݌௜ܧ( ௜(݅†ܣߩ௜ܣݎݐ݅†ܣߩ௜ܣ  
(7)

Here ܣ௜ represents the Kraus operators that define some LOCC protocol, and the probability of 

i can be calculated with the following equation: ݌௜ =   ݅†ܣߩ௜ܣݎݐ

4- For pure system state |߰⟩߰ۦ| measure decreases to entropy of entanglement (|߰ۦ⟨߰|)ܧ = (ܵ ∘ (8) (|߰ۦ⟨߰|)(஻ݎݐ

 

Any function E providing first 3 contions are defined as an entanglement monotone. Functions 
conforming conditions 1, 2 and 4 are defined as entanglement measures. In litterature, both terms are 
used as synonymes. There are some additional prerequisites in order to define entanglement 
measures:    

• Convexity 

In order for an entanglement measure to provide convexity, it is necessary to provide the 
following inequality:  ܧ(෍݌௜ߩ௜௜ ) ≤෍݌௜ܧ(ߩ௜)௜  (9)

• Additivity 

This measure is called additive if ܧ(ߪ⨂௡) =  equality is provided for every n integers (ߪ)ܧ݊
when an entanglement measure and σ system state are defined. This property can not be defined as 
an essential feature for entanglement measures because there are many entanglement measures that 
do not provide this property. The more regularized or asymptotic version of this equation can be 
defined as: ܧஶ(ߪ) ∶= lim௡→ஶܧ(ߪ⨂௡)݊  

(10)

In this case, a measure automatically provides it. As a stronger requirement, we call full additive 
for this measure if we have (ߩ⨂ߪ)ܧ = (ߪ)ܧ +  .for any σ and ρ system state pair (ߩ)ܧ

• Continuity 

If an entanglement monotone L is additive for pure states, it conforms the following inequality: ݊(ܮ(|߶⟩) = (௡⨂⟨߶|)ܮ ≥ (11) (௡ߩ)ܮ
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This inequality can be written for the entanglement monotones from the third condition. If this 
equation for L monotone exists ܮ(ߩ௡) = ൫|߰ି⟩⨂௡ா(థ⟩)൯ܮ + (߳)ߜ = (⟨߶)ܧ݊ + (12) (߳)ߜ

L can be considered "sufficiently continuous". Here δ(ε) is a small value and we get the following 
equation: ܮ(|߶⟩) ≥ (⟨߶|)ܧ + ݊(߳)ߜ  

(13)

The asymptotic continuous term is defined by the following property: ܮ(|߶⟩௡) − 1(௡⟨߰|)ܮ + log(݀݅݉ܪ௡) →0 (14)

In this case, the two system state flows are the trace norms between |߶⟩௡	, |߰⟩௡	 ۦ⟨߶||ݎݐ߶|௡ ݊ ௡| when|߮ۦ⟨߮||− 	→0. It is observed that the pure state conditions of L are sufficient and necessary 
constraints. 

4. A Short Survey of Commonly Used Entanglement Monotones and Entanglement Measures 

In this section, we will describe a number of entanglement measures and monotones defined in 
the literature for bipartite systems. Some of the measures described here are more physically 
significant than others. First we will start by defining the concept of distilable entanglement: 

• Entanglement of Formation:  

The entanglement of formation ܧி of a mixed state ρ, according to Bennett et al. [24,25], is the 
minimized average entanglement of any ensemble of pure states |߮௜⟩ realizing ρ: ܧி(ߩ) = ݂݅݊෍ܧ(|߮௜⟩߮ۦ௜|)௜  (15)

where infimum is taken over all pure-state decompositions   ߩ =෍݌௜|߮௜⟩߮ۦ௜|௜  (16)

and ܧ(|߮௜⟩߮ۦ௜|) is the entropy of entanglement easily determined by the von Neumann entropy. 
For the special case of two qubits, it is proven by Wootters [26] that the entanglement of formation of 
a state ρ is given by the formula: ܧி(ߩ) = 12)ܪ ቂ1 + ඥ1 − ቃ) (17)(ߩ)ଶܥ

where H is the binary entropy, (ݔ)ܪ = −xlogଶ ݔ − (1 − (ݔ logଶ(1 − (ݔ  , with the argument 
related to the Wootters concurence which is defined by [26] : (ߩ)ܥ = max{0, ଵߣ − ଶߣ − ଷߣ − ସ} (18)ߣ

where ߣ௜’s are the square roots of the eigenvalues of ߩ(ߪ௬⨂ߪ௬)ߩ∗(ߪ௬⨂ߪ௬) (19)
which are in decreasing order and ߪ௬  is the Pauli spin matrix and complex conjugation is 

denoted by *. Both ܧி(ߩ) and C(ρ) range from 0 for a separable state to 1 for a maximally entangled 
state. 

• Relative Entropy of Entanglement: 

Relative Entropy of Entanglement (REE) is a measure based on the distance of the state to the closest 
separable state. Mathematically it can be defined as follows: the minimum of the quantum relative 
entropy S(ρ||σ) = Tr(ρ logρ – ρ logσ) taken over the set D of all separable states σ, namely for each ρ 
in D 
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(ߩ)ܧ = minఘఢ஽ (ߪ||ߩ)ܵ = (20) (ߪ||ߩ)ܵ

where σ' denotes the closest state to ρ. 
For this measure there is no closed formula found for two-level or morelevel systems. For some 
specific and multi-level systems there are some formula suggestions. For two-level systems there are 
some estimations based on semidefinite programming [27]. 

 

Figure 3. Relative Entropy of Entanglement illustration [23]  

• Negativity and Logarithmic Negativity: 

Negativity is a quantitative version of Peres-Horodecki criterion [28,29]. It is defined for two 
particle two level general quantum systems as follows [30-32]: ܰ(ߩ) = max{0,−2ߤ௠௜௡} (21)

Here µmin value is the minimum eigenvalue of ρ’s partial transpose. Negativity, which is defined 
by the equation above is a value between 0 and 1 like Concurrence. Similarly like for concurrence, 1 
means maximal entanglement. Vidal and Werner shown that Negativity is a monotone function for 
entanglement [30]. 

Logarithmic Negativity is calculated with  ܧே(ߩ) = logଶ(2ܰ(ߩ) + 1) [33].  
Negativity and logarithmic negativity measures are frequently used measures in literature 

because they are easily calculated measures. 

4. Conclusion 

Studies about Quantum Information Theory continue actively in many research institutions. 
Algorithms like Shor’s factorization algorithm or Grover’s search algorithm are shown that should 
work quite faster on quantum systems compared to classical systems. Very recently, pratical setups 
of large scale quantum computers are widely studied e.g. quantum repeaters, memories and 
processors. The doors of a revolunary quantum era in Computer Science is to be opened after some 
period of time. Technologies like Quantum Key Distribution were defined and developed since many 
years and they have been daily life products for some sectors like Banking and Military applications.  

In Quantum Computing, Entanglement is used for the base computational infrastructure. 
Entanglement provides us a computational advantage in realization of quantum algorithms. Some 
ways to quantifiying entanglement were defined. The best formal way to quantify it, is the methods 
that we call Entanglement Measures or Entanglement Monotones. In this research area, State 
Ordering Problem is defined and still an open problem especially for multiparticle entangled states.  
Researchers may deal the definitions of new entanglement measures especially for many-body 
systems. 
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