Pre prints.org

Article Not peer-reviewed version

An Educational Software Tool for
Critiguing and Supporting Software
Design Courses

John Fajinmi “ and Joseph Oloyede

Posted Date: 15 January 2025
doi: 10.20944/preprints202501.1130.v1
Keywords: Software design education; Automated; critique tool; Interactive learning; Personalized

feedback; Design principles; UML diagrams; Machine learning in education; Software engineering pedagogy
Scalable educational tools

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/3880319
https://sciprofiles.com/profile/3422975

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 d0i:10.20944/preprints202501.1130.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

An Educational Software Tool for Critiquing and
Supporting Software Design Courses

John Fajinmi

Affiliation 1

Abstract: This paper introduces an innovative educational software tool designed to critique and
support students in software design courses. The tool aims to provide constructive feedback on
various aspects of software design, focusing on key principles such as functionality, usability and
architectural coherence. By automating the critique process, it offers students real-time insights into
their design choices, fostering deeper learning and enhancing the quality of their work. The tool
includes features such as error detection, design pattern identification, and suggestions for
improvements, making it an invaluable resource for both students and instructors. Additionally, the
tool promotes an interactive learning environment by encouraging iterative design, collaboration,
and self-assessment. This approach not only strengthens students” understanding of software design
but also supports the development of critical thinking skills essential for the industry. Through this
paper, we explore the design, implementation, and potential impact of the tool in improving
educational outcomes in software design courses.

Keywords: software design education; Automated; critique tool; Interactive learning; personalized
feedback; design principles; UML diagrams; machine learning in education; software engineering
pedagogy; scalable educational tools

1. Introduction

A. Background and Context

Software design is a core component of computer science education, where students are tasked
with learning both theoretical and practical aspects of creating robust, efficient, and user-friendly
systems. Despite the emphasis on project-based learning and real-world problem-solving, students
often struggle with making design decisions that align with best practices and industry standards.
This challenge is exacerbated in large classrooms, where individualized feedback is difficult to
provide. The rapid evolution of software development methodologies further complicates the ability
to keep up with current trends, tools, and techniques.

B. Need for an Educational Software Tool

Given the complexities of software design and the constraints in traditional educational settings,
there is an increasing need for an educational tool that can assist students in their design process.
Such a tool would provide timely, constructive feedback on design choices, highlight common
mistakes, and suggest improvements. It would serve not only as a critique mechanism but also as a
learning aid that supports the development of critical thinking and problem-solving skills.
Additionally, this tool could help bridge the gap between theoretical concepts and practical
application, ensuring that students gain a solid foundation in software design.

C. Objective of the Tool

The primary objective of this tool is to provide students with a comprehensive, interactive
platform that critiques and supports their software design work throughout the learning process. By

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202501.1130.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 d0i:10.20944/preprints202501.1130.v1

2 of 11

leveraging automated design analysis, the tool aims to offer real-time feedback on a student's design,
focusing on essential design elements such as structure, functionality, usability, and adherence to
design patterns. Furthermore, it will encourage self-assessment, enable iterative design, and foster
collaboration among students. The tool's ultimate goal is to enhance the learning experience, improve
design skills, and better prepare students for professional software development tasks.

2. Literature Review

A. Existing Educational Tools for Software Design

Over the years, various educational tools have been developed to assist students in learning
software design. Many of these tools focus on specific aspects of the design process, such as code
generation, architecture modeling, or user interface design. For instance, tools like Visual Paradigm
and Lucidchart provide students with platforms for creating UML diagrams and visual models,
helping them understand and represent the structural aspects of a software system. Additionally,
some learning management systems (LMS) integrate feedback mechanisms that allow instructors to
evaluate students' work and provide suggestions for improvement.

Despite these advances, many existing tools lack comprehensive critique capabilities or fail to
provide timely, personalized feedback. Tools like CodeCombat and Scratch, while excellent for
learning basic programming concepts, do not specifically target the higher-level design skills
required in software engineering courses. Moreover, most tools are either too simplistic or too
focused on coding rather than on holistic design evaluation. This gap underscores the need for an
integrated tool that critiques design decisions, guides students in aligning with best practices, and
provides actionable suggestions for improvement.

B. Theoretical Foundations

The development of an educational software tool for critiquing and supporting software design
courses draws from several theoretical foundations related to learning, cognitive development, and
educational technology. One of the key theories is constructivism, particularly the work of Piaget and
Vygotsky, which emphasizes the importance of active learning, hands-on problem-solving, and
social interaction in the learning process. According to this framework, students learn best when they
engage in authentic tasks, receive feedback, and are encouraged to reflect on their learning journey.
The tool proposed in this study aligns with these principles by offering iterative feedback, promoting
critical thinking, and fostering a deeper understanding of software design through practice.

Another foundational theory is cognitive load theory (Sweller, 1988), which focuses on how
instructional design can optimize the use of working memory. By automating design critiques, the
tool aims to reduce the cognitive load of students by providing structured, digestible feedback that
allows them to focus on solving complex design problems without being overwhelmed by excessive
information. Additionally, the tool integrates principles from scaffolding, which involves providing
temporary support to students until they can independently perform tasks. This allows the tool to
assist students at different stages of their design process and to gradually reduce the level of support
as their skills improve.

Furthermore, feedback intervention theory (Kluger & DeNisi, 1996) supports the idea that
effective feedback can significantly improve performance, especially when it is specific, timely, and
actionable. The educational software tool will leverage this theory to deliver constructive critiques
that guide students toward improving their design solutions while encouraging continuous learning
and refinement.

By combining these theories, the proposed tool is grounded in a robust pedagogical framework
aimed at enhancing software design education and empowering students to develop the skills
needed to succeed in the field.

https://doi.org/10.20944/preprints202501.1130.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 d0i:10.20944/preprints202501.1130.v1

3 of 11

3. Tool Design and Development

A. Requirements and Features

The educational software tool for critiquing and supporting software design courses is designed
to meet several essential requirements to ensure its effectiveness in a learning environment. These
requirements can be categorized into functional, non-functional, and pedagogical aspects.
Functional Requirements:

e Automated Design Feedback: The tool must analyze students' design submissions (e.g., UML
diagrams, class structures, design patterns) and provide immediate, automated feedback
highlighting strengths, weaknesses, and areas for improvement.

® Design Pattern Recognition: It should be capable of identifying common design patterns (e.g.,
Singleton, Factory, Observer) used or misused in student submissions.

Error Detection: The tool should detect structural issues such as incomplete designs, improper
relationships between components, or violations of established design principles.

® Interactive Interface: The tool must offer an intuitive, user-friendly interface that allows
students to easily input their designs and view feedback, along with suggestions for
improvement.

Real-Time Feedback: Immediate feedback will be given as students submit their designs,
allowing for continuous learning without long delays.

e Iterative Design Support: The tool should encourage iterative improvement by allowing
students to refine their designs based on critiques and resubmit them for further analysis.

Non-Functional Requirements:

® Scalability: The tool should handle multiple simultaneous users, especially in large classroom
settings.

e Cross-Platform Compatibility: It should function on various operating systems and devices
(e.g., web-based, mobile).

® Security and Privacy: The system must ensure that student data, such as design submissions
and feedback, are securely stored and handled in compliance with privacy standards.

e Performance: The tool must deliver feedback with minimal delay, ensuring a seamless user
experience.

Pedagogical Features:

® Guided Learning Path: The tool should provide scaffolding, helping students learn
progressively by offering different levels of critique based on their expertise.

e Collaboration and Peer Review: Encourage peer interaction by allowing students to share their
designs with peers for feedback and collaborative improvement.

® Self-Assessment Capabilities: The tool should help students assess their progress by reflecting
on past critiques and identifying areas where improvement is needed.

B. System Architecture

The system architecture of the tool is designed to support scalability, flexibility, and ease of use.
It consists of three main components: the front-end interface, the back-end analysis engine, and the
database.

Front-End Interface:

e The front-end will be a web-based platform that provides a clean, intuitive user interface for
students to interact with the tool. Students can upload their design submissions, view critiques,
and track their progress. This interface will also provide a dashboard for instructors to monitor
student performance and provide additional input if needed.

Back-End Analysis Engine:

® The core functionality of the tool lies in its back-end engine, which will use predefined
algorithms to analyze the design submissions. The engine will evaluate UML diagrams, class
relationships, and design patterns to provide relevant feedback. It will leverage machine

https://doi.org/10.20944/preprints202501.1130.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 d0i:10.20944/preprints202501.1130.v1

4 of 11

learning techniques to improve its feedback accuracy over time, based on patterns of past
student submissions.

Database:

® The database will store student profiles, design submissions, feedback logs, and other relevant
information. It will track students” progress, providing instructors with data on individual and
group performance. The database will also store predefined templates for design patterns, best
practices, and guidelines to facilitate critique generation.

C. Critique Methodology

The critique methodology adopted by the tool is built on a combination of rule-based analysis,
pattern recognition, and machine learning. The goal is to provide constructive, actionable feedback
that enhances student learning.

Rule-Based Analysis:

The tool will initially rely on a rule-based system to analyze design elements. For example, it
will check for the correct usage of design patterns, such as verifying whether the correct classes are
instantiated in the correct contexts, or if dependencies are properly managed. If an error is detected,
the system will provide specific feedback (e.g., “The Factory pattern is incorrectly applied in the class
X. You should instantiate the product interface in the client class instead”).

Pattern Recognition:

The tool will recognize common design patterns based on predefined templates and structures.
If a student successfully implements a design pattern (e.g., MVC), the tool will acknowledge this and
suggest possible improvements, such as optimizing the design for scalability or ensuring that the
pattern adheres to SOLID principles.

Machine Learning (Advanced Feedback):

Over time, the tool will incorporate machine learning techniques to analyze past critiques and
refine its feedback. By learning from common mistakes and successful designs submitted by students,
the tool will provide increasingly personalized and accurate feedback. It will also identify trends,
such as specific design weaknesses in a cohort of students, and tailor suggestions accordingly.

Feedback Types:

® Descriptive Feedback: Offers explanations on why a particular design choice may or may not
be appropriate, encouraging understanding and learning.
Corrective Feedback: Suggests alternative approaches or corrections to improve the design.
Comparative Feedback: Provides examples of better design approaches or references from
industry best practices to encourage continuous improvement.

This feedback methodology is intended to foster critical thinking, self-reflection, and a deeper
understanding of software design principles, ultimately guiding students to create better, more

efficient software systems.

4. Evaluation and Testing

A. Pilot Study or User Testing

To assess the effectiveness of the educational software tool, a pilot study will be conducted
involving a sample of students enrolled in software design courses. The pilot study aims to evaluate
the tool’s usability, accuracy of feedback, and impact on student learning. The testing process will
consist of the following steps:

Selection of Participants:

A group of students, ideally from different skill levels (beginner, intermediate, and advanced),
will be selected to participate in the pilot study. This diverse group will allow for a comprehensive
evaluation of how well the tool meets the needs of various learners.

https://doi.org/10.20944/preprints202501.1130.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 d0i:10.20944/preprints202501.1130.v1

5 of 11

Training and Onboarding;:

Students will be provided with a brief introduction to the tool, including a demonstration of its
features and functionalities. This will ensure they understand how to use the platform and its
feedback features effectively.

Design Task Completion:

Participants will be tasked with submitting their software design projects (e.g., UML diagrams,
system architectures) through the tool. They will be encouraged to apply their existing knowledge
and use the tool iteratively for design revisions.

Feedback Collection:
After submitting their designs, students will receive real-time critiques from the tool.
Participants will be asked to reflect on the feedback, make revisions, and submit updated versions of

their designs. They will also be encouraged to interact with the tool to receive multiple rounds of
feedback.

Interviews and Surveys:

At the end of the study, students will complete a survey and participate in interviews to gather
qualitative and quantitative data on their experiences. These surveys will address aspects such as
usability, effectiveness of the feedback, usefulness of design suggestions, and overall satisfaction.
Instructors may also be interviewed to gather their perspectives on how the tool supports their
teaching objectives.

Data Analysis:

The collected data will be analyzed to determine the effectiveness of the tool. Key metrics, such
as improvement in student design quality, engagement with the tool, and the perceived usefulness
of feedback, will be examined to assess its impact on learning.

B. Metrics for Success

To evaluate the success of the tool, both qualitative and quantitative metrics will be used. These
metrics will provide insights into the tool’s effectiveness in enhancing student learning and
improving design outcomes.

Usability Metrics:

e Ease of Use: Based on survey responses, students will rate how easy it was to navigate the tool
and use its features.

e User Engagement: The frequency with which students use the tool and interact with its
feedback features will be tracked. Higher engagement suggests the tool’s value in the learning
process.

e Feedback Interaction: The number of iterations a student completes (i.e., submitting a design,
receiving feedback, making revisions) will be measured. More iterations indicate a more
engaged and reflective learning process.

Learning Outcomes:

e Improvement in Design Quality: A pre- and post-test analysis will be conducted by comparing
the initial and revised designs. Metrics such as adherence to best practices, correct application
of design patterns, and overall design structure will be evaluated to gauge how well the tool
improves students” design skills.

e Test Scores: If applicable, students’ performance on relevant exams or assignments related to
software design (such as conceptual tests on design patterns and principles) will be compared
before and after using the tool.

Feedback Effectiveness:

e Perceived Usefulness of Feedback: Students will rate the usefulness of the feedback provided
by the tool, including how actionable the critiques were and whether they helped improve
their designs. This will be collected through surveys and interviews.

https://doi.org/10.20944/preprints202501.1130.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 d0i:10.20944/preprints202501.1130.v1

6 of 11

® Accuracy of Feedback: Instructors or experts in software design will evaluate a sample of
student submissions and their corresponding feedback. This will assess whether the tool
provides accurate, relevant, and helpful suggestions for improvement.

User Satisfaction:

e Student Satisfaction: The level of satisfaction will be measured using Likert-scale questions in
surveys, focusing on students’ overall satisfaction with the tool and its impact on their learning
experience.

e Instructor Satisfaction: Instructors’ feedback will be gathered to evaluate how well the tool
aligns with course goals, its potential to reduce their workload in providing individualized
feedback, and its effectiveness in aiding students’ learning.

Long-Term Impact on Learning;:

e Retention of Knowledge: After a set period, a follow-up test or assessment will be given to
participants to determine whether the tool has had a lasting impact on their understanding of
software design principles.

e Application of Skills in Future Projects: In subsequent assignments or courses, students will be
asked to apply the skills they developed using the tool. This can help evaluate the long-term
benefits of using the tool in practical settings.

By gathering data on these metrics, the evaluation will provide a comprehensive understanding
of the tool's effectiveness, identify areas for improvement, and guide future iterations of the system
to ensure it meets the needs of students and instructors alike.

5. Challenges and Limitations

A. Technical Challenges

Complexity of Design Critique Algorithms:

Developing an automated critique system capable of accurately evaluating complex software
designs is technically challenging. The tool must understand and interpret different types of design
artifacts (e.g.,, UML diagrams, class structures, design patterns) and provide context-sensitive
feedback. Ensuring the feedback is both relevant and accurate across various design approaches,
while accounting for the diverse ways students might represent their designs, can be difficult.
Scalability and Performance:

As the tool is expected to handle multiple simultaneous users, especially in large educational
settings, ensuring scalability and maintaining performance across many users is a key technical
challenge. Optimizing the system for speed and responsiveness while providing real-time feedback
will require careful design and the use of efficient algorithms.

Integration with Existing Tools:

In many educational environments, instructors and students may already be using other
software tools for design, such as Visual Studio, Eclipse, or online collaboration platforms. Ensuring
the new critique tool integrates seamlessly with these existing tools, while allowing for easy
import/export of design files and maintaining compatibility with various file formats, presents an
additional technical challenge.

Machine Learning Model Accuracy:

Incorporating machine learning into the feedback system is intended to improve the accuracy of
critiques over time. However, ensuring that the model is trained on a sufficiently large and diverse
dataset of student submissions to avoid biases or errors in feedback is an ongoing challenge.
Additionally, the system must be continuously monitored and updated to maintain its relevance to
evolving software design trends and methodologies.

B. Pedagogical Limitations

Over-Reliance on Automated Feedback:

https://doi.org/10.20944/preprints202501.1130.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 d0i:10.20944/preprints202501.1130.v1

7 of 11

While automated feedback can be helpful, students may become overly reliant on the tool,
potentially neglecting their ability to critically assess their own designs without external assistance.
This may reduce the development of independent problem-solving and critical thinking skills, which
are essential for professional software engineers. To mitigate this, the tool should encourage students
to engage with feedback actively and think critically about suggested changes rather than simply
accepting the tool’s critique.

Contextual Understanding of Design Choices:

Software design is a highly context-dependent process, and a design that may not adhere to
conventional best practices could still be appropriate for a particular problem or project. The tool may
struggle to capture this nuance, potentially offering critiques that do not fully account for the specific
goals or constraints of a given design task. As a result, the tool’s feedback might be perceived as rigid
or lacking in flexibility, which could discourage students from experimenting with novel or
unconventional design approaches.

Limited Support for Complex Design Decisions:

While the tool can provide feedback on standard design patterns and principles, it may not be
equipped to evaluate more complex design decisions that involve multiple systems or cutting-edge
technologies. Students working on more advanced or research-oriented projects may find that the
tool's critique is insufficient for addressing specialized needs, leaving gaps in the support it provides.
Instructor Role and Customization:

The tool’s feedback may not fully align with the instructor’s teaching approach, course objectives,
or personal preferences in grading and critique. Instructors may find that the tool’s automated
feedback does not adequately reflect the nuances of their expectations. The challenge, therefore, lies
in offering instructors enough flexibility to tailor the feedback system and integrate it with their
pedagogical goals.

C. User Adoption

Resistance to New Technology:

Some students and instructors may be resistant to adopting new educational technology.
Students may feel overwhelmed or skeptical about the usefulness of an automated critique tool,
especially if they are accustomed to traditional feedback methods from instructors. Instructors may
also hesitate to rely on the tool, fearing that it will replace their own judgment or result in less
personalized feedback. Overcoming this resistance requires clear communication about the tool’s
benefits and its role in complementing, rather than replacing, the learning process.

Technological Familiarity:

The tool may require a certain level of technical proficiency, both in terms of software usage and
understanding of the underlying design principles. Students with limited experience in using such
tools or unfamiliar with the particular design concepts the tool evaluates may find it difficult to use
the tool effectively. To overcome this, onboarding materials, tutorials, and user support should be
provided to ensure smooth adoption, particularly for those with varying levels of experience.
Student Motivation:

Some students may not be intrinsically motivated to engage with the feedback provided by the
tool, particularly if they perceive it as a secondary form of feedback compared to instructor evaluation.
If students view the tool as an additional, time-consuming task rather than an integral part of their
learning process, they may not make full use of its features. Encouraging active participation through
incentives, integration with course assessments, or providing personalized feedback on tool usage
could help boost student motivation.

Instructor Buy-In and Training;:

Successful adoption of the tool also depends on instructor engagement. Instructors may need
training on how to use the tool effectively, incorporate it into their teaching strategy, and integrate it
into their existing course structures. Without proper support and alignment with teaching goals,

https://doi.org/10.20944/preprints202501.1130.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 d0i:10.20944/preprints202501.1130.v1

8 of 11

instructors may not fully embrace the tool, limiting its widespread adoption and impact on student
learning.

In conclusion, while the educational software tool holds significant potential to improve student
learning in software design courses, its success depends on addressing these technical, pedagogical,
and adoption-related challenges. Continuous evaluation and refinement will be essential to overcome
these limitations and ensure the tool meets the needs of both students and instructors.

6. Future Directions

A. Enhancements to the Tool

e Advanced Feedback Mechanisms: Future versions of the tool can incorporate more
sophisticated feedback mechanisms, such as natural language processing (NLP) to provide
more context-sensitive, detailed, and personalized critiques. This could include suggestions for
improvement framed in clearer language, explanations of why a particular design approach
may be beneficial or detrimental, and tailored recommendations for further study.
Additionally, the system could integrate more advanced machine learning models to provide
predictive analysis based on past trends, further improving the accuracy and usefulness of the
feedback.

e Integration of Collaborative Features: Enhancements could include adding collaborative
features, allowing students to work in teams and receive feedback on group designs. This
would encourage peer learning and improve communication skills, as students would be able
to critique each other’s designs. Additionally, real-time collaboration features could be
integrated to enable students to work on design projects together within the tool, making it
easier to share ideas and engage in collective problem-solving.

e Support for Diverse Design Models: The tool could be extended to support a wider variety of
design models, such as flowcharts, entity-relationship diagrams, and architectural diagrams.
By accommodating various design paradigms, the tool would become more versatile and
applicable to a broader range of software design tasks. Additionally, incorporating support for
newer or emerging design frameworks (e.g., microservices architecture) would make the tool
more future-proof.

e Gamification and Adaptive Learning: Introducing elements of gamification, such as design
challenges, leaderboards, and rewards for improvement, could enhance student engagement
and motivation. The tool could also adapt to the student's learning pace and proficiency,
offering progressively more complex tasks and feedback as the student improves. This
adaptive learning feature would ensure that students of all skill levels benefit from the tool in a
way that is tailored to their individual progress.

e Integration with Version Control Systems: Future versions of the tool could integrate with
version control systems (e.g., Git), allowing students to track the evolution of their designs
over time and receive feedback on their design iterations. This integration would also help
instructors monitor student progress and provide more targeted guidance.

jes]

. Expanding to Other Areas

e Broader Application to Software Development Lifecycles: In the future, the tool could expand
to cover more phases of the software development lifecycle, beyond just design. For example,
it could include features for evaluating code quality, implementation correctness, and system
testing. This would provide a comprehensive support system for students throughout their
entire software development process, from initial design through to final deployment.

e Support for Different Programming Languages and Frameworks: Expanding the tool to
support various programming languages and frameworks (e.g., Java, Python, C++, JavaScript,
or emerging technologies like Flutter or Rust) would make the tool relevant for a broader set of
students. Additionally, incorporating the evaluation of code structure and best practices for

https://doi.org/10.20944/preprints202501.1130.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 d0i:10.20944/preprints202501.1130.v1

9 of 11

different languages would allow students to receive feedback that is both specific and relevant
to the technologies they are using.

e Extension to Other Design Disciplines: While the current focus is on software design, the tool’s
core principles could be adapted for use in other design disciplines, such as web development,
UX/UI design, or even hardware architecture. By expanding the tool’s functionality to
accommodate different types of design, it could support a wide range of courses related to
design thinking and systems thinking across various disciplines.

e Artificial Intelligence and Algorithm Design: The tool could be extended to help students in
fields such as artificial intelligence, machine learning, and algorithm design. By offering
critiques on algorithmic efficiency, structure, and optimization, the tool would help students
grasp key concepts related to designing and implementing algorithms. Feedback could be
based on factors such as time complexity, space complexity, and correctness, thus supporting
advanced coursework.

C. Collaboration with Educational Institutions

e Partnerships with Universities and Colleges: Establishing partnerships with universities and
colleges would allow the tool to be integrated into software design curricula, making it a
valuable asset for instructors and students. Collaboration could lead to a more comprehensive
understanding of the tool’s effectiveness in real-world teaching environments and provide an
opportunity for ongoing feedback and development based on the needs of academic
institutions.

e Faculty Training and Support: To ensure the tool’s adoption and successful implementation, it
would be essential to offer faculty training programs. These programs would help instructors
understand how to incorporate the tool into their teaching methods, provide guidance on how
to use its features effectively, and discuss best practices for leveraging the tool to enhance
student learning. Instructors could also be provided with data and reports generated by the
tool to guide their teaching and help identify common design weaknesses among students.

e Integration into Online Learning Platforms: Collaborating with online learning platforms (e.g.,
Coursera, Udemy, edX) could expand the tool’s reach to students in remote or non-traditional
educational settings. This would allow the tool to support students worldwide, promoting its
use in a variety of course formats, such as self-paced, blended, or fully online courses.
Integration with Learning Management Systems (LMS) like Moodle or Canvas would further
streamline the adoption process.

® Research and Development Collaboration: Collaboration with research institutions or
academic researchers in the field of software engineering education could foster continuous
improvement and innovation in the tool. Research partnerships would allow for studies on the
effectiveness of the tool in diverse educational settings, helping refine its features and better
understand its impact on student learning outcomes. These collaborations could also lead to
the development of new features based on cutting-edge research in software design education.
By exploring these future directions, the tool can evolve to become a more comprehensive,

adaptive, and versatile platform that not only improves student learning in software design but also

expands its applicability to broader educational contexts, supporting students and instructors in
various disciplines and settings.

7. Conclusion

A. Summary of the Tool’s Impact

The educational software tool for critiquing and supporting software design courses represents
a significant advancement in how software design education can be delivered and experienced. By
automating the critique process, the tool provides students with immediate, actionable feedback on
their design work, helping them identify strengths and areas for improvement. This allows for more

https://doi.org/10.20944/preprints202501.1130.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 d0i:10.20944/preprints202501.1130.v1

10 of 11

iterative learning, where students can refine their designs continuously, leading to a deeper
understanding of design principles and better design outcomes.

Moreover, the tool helps bridge the gap between theoretical knowledge and practical application,
providing an interactive platform where students can apply and test their skills in real-world contexts.
It supports diverse learning styles and accommodates different levels of expertise, offering
personalized feedback that encourages active learning and self-reflection. The system’s potential to
integrate with existing course structures, adapt to different software design methodologies, and
provide scalable feedback for large numbers of students makes it an invaluable asset in modern
educational environments.

Instructors, too, benefit from the tool’s ability to automate time-consuming feedback tasks,
allowing them to focus more on higher-level teaching activities, such as mentoring and personalized
guidance. The tool can be easily integrated into various learning management systems, making it
adaptable for a wide range of educational institutions. Additionally, by using the tool, instructors can
gain insights into common student misconceptions, design weaknesses, and areas requiring more
focus, further enhancing their teaching strategies.

B. Call to Action

As educational institutions continue to adapt to technological advancements, it is essential to
embrace tools that not only improve the learning experience but also foster creativity, critical thinking,
and problem-solving skills in students. We encourage educators, administrators, and software design
curriculum developers to consider integrating this tool into their teaching frameworks, as it has the
potential to transform how students engage with design concepts and improve their practical skills.

Furthermore, we urge developers to continue refining the tool, incorporating user feedback, and
exploring new features that can expand its utility. Collaboration with educational institutions, faculty
members, and students will be vital in ensuring the tool evolves to meet the diverse needs of both
students and instructors, and to guarantee its continued relevance in a rapidly changing technological
landscape.

Finally, as we continue to explore innovative approaches to software design education, we call
for increased investment in tools that support the learning journey in meaningful ways. Whether
through partnerships, further research, or direct engagement with educational communities, the
future of software design education is bright, and this tool can play a key role in shaping that future.

References

1. Abdulkareem, S. M., Ali, N. M., Admodisastro, N., & Sultan, A. B. M. (2017). Class Diagram Critic: A design
critic tool for UML class diagram. Advanced Science Letters, 23(11), 11567-11571.
https://doi.org/10.1166/as1.2017.10330

2. Ali, N.M,, Admodisastro, N., & Abdulkareem, S. M. (2013). An educational software design critiquing tool
to support software design course. International Conference on Advanced Computer Science Applications and
Technologies, 31-36. https://doi.org/10.1109/acsat.2013.14

3. N.M. Ali, N. Admodisastro and S. M. Abdulkareem, "An Educational Software Design Critiquing Tool to
Support Software Design Course," 2013 International Conference on Advanced Computer Science Applications
and Technologies, Kuching, Malaysia, 2013, pp. 31-36, doi: 10.1109/ACSAT.2013.14.

4. Ali, N. M., Admodisastro, N., & Abdulkareem, S. M. (2013, December). An educational software design
critiquing tool to support software design course. In 2013 International Conference on Advanced Computer
Science Applications and Technologies (pp. 31-36). IEEE.

5. Abdulkareem, S. M., Ali, N. M., Admodisastro, N., & Sultan, A. B. M. (2017). Class Diagram Critic: A Design
Critic Tool for UML Class Diagram. Advanced Science Letters, 23(11), 11567-11571.

https://doi.org/10.20944/preprints202501.1130.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 d0i:10.20944/preprints202501.1130.v1

11 of 11

6. ABDULKAREEM, S. M. (2015). CRITIC-BASED AND COLLABORATIVE APPROACH FOR UML CLASS
DIAGRAM.

7. ABDULKAREEM, SORAN MAHMOOD. "CRITIC-BASED AND COLLABORATIVE APPROACH FOR
UML CLASS DIAGRAM." (2015).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

https://doi.org/10.20944/preprints202501.1130.v1

