
Article Not peer-reviewed version

An Educational Software Tool for

Critiquing and Supporting Software

Design Courses

John Fajinmi * and Joseph Oloyede

Posted Date: 15 January 2025

doi: 10.20944/preprints202501.1130.v1

Keywords: Software design education; Automated; critique tool; Interactive learning; Personalized

feedback; Design principles; UML diagrams; Machine learning in education; Software engineering pedagogy

Scalable educational tools

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/3880319
https://sciprofiles.com/profile/3422975

Article

An Educational Software Tool for Critiquing and

Supporting Software Design Courses

John Fajinmi

Affiliation 1

Abstract: This paper introduces an innovative educational software tool designed to critique and

support students in software design courses. The tool aims to provide constructive feedback on

various aspects of software design, focusing on key principles such as functionality, usability and

architectural coherence. By automating the critique process, it offers students real-time insights into

their design choices, fostering deeper learning and enhancing the quality of their work. The tool

includes features such as error detection, design pattern identification, and suggestions for

improvements, making it an invaluable resource for both students and instructors. Additionally, the

tool promotes an interactive learning environment by encouraging iterative design, collaboration,

and self-assessment. This approach not only strengthens students’ understanding of software design

but also supports the development of critical thinking skills essential for the industry. Through this

paper, we explore the design, implementation, and potential impact of the tool in improving

educational outcomes in software design courses.

Keywords: software design education; Automated; critique tool; Interactive learning; personalized

feedback; design principles; UML diagrams; machine learning in education; software engineering

pedagogy; scalable educational tools

1. Introduction

A. Background and Context

Software design is a core component of computer science education, where students are tasked

with learning both theoretical and practical aspects of creating robust, efficient, and user-friendly

systems. Despite the emphasis on project-based learning and real-world problem-solving, students

often struggle with making design decisions that align with best practices and industry standards.

This challenge is exacerbated in large classrooms, where individualized feedback is difficult to

provide. The rapid evolution of software development methodologies further complicates the ability

to keep up with current trends, tools, and techniques.

B. Need for an Educational Software Tool

Given the complexities of software design and the constraints in traditional educational settings,

there is an increasing need for an educational tool that can assist students in their design process.

Such a tool would provide timely, constructive feedback on design choices, highlight common

mistakes, and suggest improvements. It would serve not only as a critique mechanism but also as a

learning aid that supports the development of critical thinking and problem-solving skills.

Additionally, this tool could help bridge the gap between theoretical concepts and practical

application, ensuring that students gain a solid foundation in software design.

C. Objective of the Tool

The primary objective of this tool is to provide students with a comprehensive, interactive

platform that critiques and supports their software design work throughout the learning process. By

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 doi:10.20944/preprints202501.1130.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202501.1130.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 11

leveraging automated design analysis, the tool aims to offer real-time feedback on a student's design,

focusing on essential design elements such as structure, functionality, usability, and adherence to

design patterns. Furthermore, it will encourage self-assessment, enable iterative design, and foster

collaboration among students. The tool's ultimate goal is to enhance the learning experience, improve

design skills, and better prepare students for professional software development tasks.

2. Literature Review

A. Existing Educational Tools for Software Design

Over the years, various educational tools have been developed to assist students in learning

software design. Many of these tools focus on specific aspects of the design process, such as code

generation, architecture modeling, or user interface design. For instance, tools like Visual Paradigm

and Lucidchart provide students with platforms for creating UML diagrams and visual models,

helping them understand and represent the structural aspects of a software system. Additionally,

some learning management systems (LMS) integrate feedback mechanisms that allow instructors to

evaluate students' work and provide suggestions for improvement.

Despite these advances, many existing tools lack comprehensive critique capabilities or fail to

provide timely, personalized feedback. Tools like CodeCombat and Scratch, while excellent for

learning basic programming concepts, do not specifically target the higher-level design skills

required in software engineering courses. Moreover, most tools are either too simplistic or too

focused on coding rather than on holistic design evaluation. This gap underscores the need for an

integrated tool that critiques design decisions, guides students in aligning with best practices, and

provides actionable suggestions for improvement.

B. Theoretical Foundations

The development of an educational software tool for critiquing and supporting software design

courses draws from several theoretical foundations related to learning, cognitive development, and

educational technology. One of the key theories is constructivism, particularly the work of Piaget and

Vygotsky, which emphasizes the importance of active learning, hands-on problem-solving, and

social interaction in the learning process. According to this framework, students learn best when they

engage in authentic tasks, receive feedback, and are encouraged to reflect on their learning journey.

The tool proposed in this study aligns with these principles by offering iterative feedback, promoting

critical thinking, and fostering a deeper understanding of software design through practice.

Another foundational theory is cognitive load theory (Sweller, 1988), which focuses on how

instructional design can optimize the use of working memory. By automating design critiques, the

tool aims to reduce the cognitive load of students by providing structured, digestible feedback that

allows them to focus on solving complex design problems without being overwhelmed by excessive

information. Additionally, the tool integrates principles from scaffolding, which involves providing

temporary support to students until they can independently perform tasks. This allows the tool to

assist students at different stages of their design process and to gradually reduce the level of support

as their skills improve.

Furthermore, feedback intervention theory (Kluger & DeNisi, 1996) supports the idea that

effective feedback can significantly improve performance, especially when it is specific, timely, and

actionable. The educational software tool will leverage this theory to deliver constructive critiques

that guide students toward improving their design solutions while encouraging continuous learning

and refinement.

By combining these theories, the proposed tool is grounded in a robust pedagogical framework

aimed at enhancing software design education and empowering students to develop the skills

needed to succeed in the field.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 doi:10.20944/preprints202501.1130.v1

https://doi.org/10.20944/preprints202501.1130.v1

 3 of 11

3. Tool Design and Development

A. Requirements and Features

The educational software tool for critiquing and supporting software design courses is designed

to meet several essential requirements to ensure its effectiveness in a learning environment. These

requirements can be categorized into functional, non-functional, and pedagogical aspects.

Functional Requirements:

⚫ Automated Design Feedback: The tool must analyze students' design submissions (e.g., UML

diagrams, class structures, design patterns) and provide immediate, automated feedback

highlighting strengths, weaknesses, and areas for improvement.

⚫ Design Pattern Recognition: It should be capable of identifying common design patterns (e.g.,

Singleton, Factory, Observer) used or misused in student submissions.

⚫ Error Detection: The tool should detect structural issues such as incomplete designs, improper

relationships between components, or violations of established design principles.

⚫ Interactive Interface: The tool must offer an intuitive, user-friendly interface that allows

students to easily input their designs and view feedback, along with suggestions for

improvement.

⚫ Real-Time Feedback: Immediate feedback will be given as students submit their designs,

allowing for continuous learning without long delays.

⚫ Iterative Design Support: The tool should encourage iterative improvement by allowing

students to refine their designs based on critiques and resubmit them for further analysis.

Non-Functional Requirements:

⚫ Scalability: The tool should handle multiple simultaneous users, especially in large classroom

settings.

⚫ Cross-Platform Compatibility: It should function on various operating systems and devices

(e.g., web-based, mobile).

⚫ Security and Privacy: The system must ensure that student data, such as design submissions

and feedback, are securely stored and handled in compliance with privacy standards.

⚫ Performance: The tool must deliver feedback with minimal delay, ensuring a seamless user

experience.

Pedagogical Features:

⚫ Guided Learning Path: The tool should provide scaffolding, helping students learn

progressively by offering different levels of critique based on their expertise.

⚫ Collaboration and Peer Review: Encourage peer interaction by allowing students to share their

designs with peers for feedback and collaborative improvement.

⚫ Self-Assessment Capabilities: The tool should help students assess their progress by reflecting

on past critiques and identifying areas where improvement is needed.

B. System Architecture

The system architecture of the tool is designed to support scalability, flexibility, and ease of use.

It consists of three main components: the front-end interface, the back-end analysis engine, and the

database.

Front-End Interface:

⚫ The front-end will be a web-based platform that provides a clean, intuitive user interface for

students to interact with the tool. Students can upload their design submissions, view critiques,

and track their progress. This interface will also provide a dashboard for instructors to monitor

student performance and provide additional input if needed.

Back-End Analysis Engine:

⚫ The core functionality of the tool lies in its back-end engine, which will use predefined

algorithms to analyze the design submissions. The engine will evaluate UML diagrams, class

relationships, and design patterns to provide relevant feedback. It will leverage machine

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 doi:10.20944/preprints202501.1130.v1

https://doi.org/10.20944/preprints202501.1130.v1

 4 of 11

learning techniques to improve its feedback accuracy over time, based on patterns of past

student submissions.

Database:

⚫ The database will store student profiles, design submissions, feedback logs, and other relevant

information. It will track students’ progress, providing instructors with data on individual and

group performance. The database will also store predefined templates for design patterns, best

practices, and guidelines to facilitate critique generation.

C. Critique Methodology

The critique methodology adopted by the tool is built on a combination of rule-based analysis,

pattern recognition, and machine learning. The goal is to provide constructive, actionable feedback

that enhances student learning.

Rule-Based Analysis:

The tool will initially rely on a rule-based system to analyze design elements. For example, it

will check for the correct usage of design patterns, such as verifying whether the correct classes are

instantiated in the correct contexts, or if dependencies are properly managed. If an error is detected,

the system will provide specific feedback (e.g., “The Factory pattern is incorrectly applied in the class

X. You should instantiate the product interface in the client class instead”).

Pattern Recognition:

The tool will recognize common design patterns based on predefined templates and structures.

If a student successfully implements a design pattern (e.g., MVC), the tool will acknowledge this and

suggest possible improvements, such as optimizing the design for scalability or ensuring that the

pattern adheres to SOLID principles.

Machine Learning (Advanced Feedback):

Over time, the tool will incorporate machine learning techniques to analyze past critiques and

refine its feedback. By learning from common mistakes and successful designs submitted by students,

the tool will provide increasingly personalized and accurate feedback. It will also identify trends,

such as specific design weaknesses in a cohort of students, and tailor suggestions accordingly.

Feedback Types:

⚫ Descriptive Feedback: Offers explanations on why a particular design choice may or may not

be appropriate, encouraging understanding and learning.

⚫ Corrective Feedback: Suggests alternative approaches or corrections to improve the design.

⚫ Comparative Feedback: Provides examples of better design approaches or references from

industry best practices to encourage continuous improvement.

This feedback methodology is intended to foster critical thinking, self-reflection, and a deeper

understanding of software design principles, ultimately guiding students to create better, more

efficient software systems.

4. Evaluation and Testing

A. Pilot Study or User Testing

To assess the effectiveness of the educational software tool, a pilot study will be conducted

involving a sample of students enrolled in software design courses. The pilot study aims to evaluate

the tool’s usability, accuracy of feedback, and impact on student learning. The testing process will

consist of the following steps:

Selection of Participants:

A group of students, ideally from different skill levels (beginner, intermediate, and advanced),

will be selected to participate in the pilot study. This diverse group will allow for a comprehensive

evaluation of how well the tool meets the needs of various learners.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 doi:10.20944/preprints202501.1130.v1

https://doi.org/10.20944/preprints202501.1130.v1

 5 of 11

Training and Onboarding:

Students will be provided with a brief introduction to the tool, including a demonstration of its

features and functionalities. This will ensure they understand how to use the platform and its

feedback features effectively.

Design Task Completion:

Participants will be tasked with submitting their software design projects (e.g., UML diagrams,

system architectures) through the tool. They will be encouraged to apply their existing knowledge

and use the tool iteratively for design revisions.

Feedback Collection:

After submitting their designs, students will receive real-time critiques from the tool.

Participants will be asked to reflect on the feedback, make revisions, and submit updated versions of

their designs. They will also be encouraged to interact with the tool to receive multiple rounds of

feedback.

Interviews and Surveys:

At the end of the study, students will complete a survey and participate in interviews to gather

qualitative and quantitative data on their experiences. These surveys will address aspects such as

usability, effectiveness of the feedback, usefulness of design suggestions, and overall satisfaction.

Instructors may also be interviewed to gather their perspectives on how the tool supports their

teaching objectives.

Data Analysis:

The collected data will be analyzed to determine the effectiveness of the tool. Key metrics, such

as improvement in student design quality, engagement with the tool, and the perceived usefulness

of feedback, will be examined to assess its impact on learning.

B. Metrics for Success

To evaluate the success of the tool, both qualitative and quantitative metrics will be used. These

metrics will provide insights into the tool’s effectiveness in enhancing student learning and

improving design outcomes.

Usability Metrics:

⚫ Ease of Use: Based on survey responses, students will rate how easy it was to navigate the tool

and use its features.

⚫ User Engagement: The frequency with which students use the tool and interact with its

feedback features will be tracked. Higher engagement suggests the tool’s value in the learning

process.

⚫ Feedback Interaction: The number of iterations a student completes (i.e., submitting a design,

receiving feedback, making revisions) will be measured. More iterations indicate a more

engaged and reflective learning process.

Learning Outcomes:

⚫ Improvement in Design Quality: A pre- and post-test analysis will be conducted by comparing

the initial and revised designs. Metrics such as adherence to best practices, correct application

of design patterns, and overall design structure will be evaluated to gauge how well the tool

improves students’ design skills.

⚫ Test Scores: If applicable, students' performance on relevant exams or assignments related to

software design (such as conceptual tests on design patterns and principles) will be compared

before and after using the tool.

Feedback Effectiveness:

⚫ Perceived Usefulness of Feedback: Students will rate the usefulness of the feedback provided

by the tool, including how actionable the critiques were and whether they helped improve

their designs. This will be collected through surveys and interviews.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 doi:10.20944/preprints202501.1130.v1

https://doi.org/10.20944/preprints202501.1130.v1

 6 of 11

⚫ Accuracy of Feedback: Instructors or experts in software design will evaluate a sample of

student submissions and their corresponding feedback. This will assess whether the tool

provides accurate, relevant, and helpful suggestions for improvement.

User Satisfaction:

⚫ Student Satisfaction: The level of satisfaction will be measured using Likert-scale questions in

surveys, focusing on students’ overall satisfaction with the tool and its impact on their learning

experience.

⚫ Instructor Satisfaction: Instructors’ feedback will be gathered to evaluate how well the tool

aligns with course goals, its potential to reduce their workload in providing individualized

feedback, and its effectiveness in aiding students’ learning.

Long-Term Impact on Learning:

⚫ Retention of Knowledge: After a set period, a follow-up test or assessment will be given to

participants to determine whether the tool has had a lasting impact on their understanding of

software design principles.

⚫ Application of Skills in Future Projects: In subsequent assignments or courses, students will be

asked to apply the skills they developed using the tool. This can help evaluate the long-term

benefits of using the tool in practical settings.

By gathering data on these metrics, the evaluation will provide a comprehensive understanding

of the tool's effectiveness, identify areas for improvement, and guide future iterations of the system

to ensure it meets the needs of students and instructors alike.

5. Challenges and Limitations

A. Technical Challenges

Complexity of Design Critique Algorithms:

Developing an automated critique system capable of accurately evaluating complex software

designs is technically challenging. The tool must understand and interpret different types of design

artifacts (e.g., UML diagrams, class structures, design patterns) and provide context-sensitive

feedback. Ensuring the feedback is both relevant and accurate across various design approaches,

while accounting for the diverse ways students might represent their designs, can be difficult.

Scalability and Performance:

As the tool is expected to handle multiple simultaneous users, especially in large educational

settings, ensuring scalability and maintaining performance across many users is a key technical

challenge. Optimizing the system for speed and responsiveness while providing real-time feedback

will require careful design and the use of efficient algorithms.

Integration with Existing Tools:

In many educational environments, instructors and students may already be using other

software tools for design, such as Visual Studio, Eclipse, or online collaboration platforms. Ensuring

the new critique tool integrates seamlessly with these existing tools, while allowing for easy

import/export of design files and maintaining compatibility with various file formats, presents an

additional technical challenge.

Machine Learning Model Accuracy:

Incorporating machine learning into the feedback system is intended to improve the accuracy of

critiques over time. However, ensuring that the model is trained on a sufficiently large and diverse

dataset of student submissions to avoid biases or errors in feedback is an ongoing challenge.

Additionally, the system must be continuously monitored and updated to maintain its relevance to

evolving software design trends and methodologies.

B. Pedagogical Limitations

Over-Reliance on Automated Feedback:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 doi:10.20944/preprints202501.1130.v1

https://doi.org/10.20944/preprints202501.1130.v1

 7 of 11

While automated feedback can be helpful, students may become overly reliant on the tool,

potentially neglecting their ability to critically assess their own designs without external assistance.

This may reduce the development of independent problem-solving and critical thinking skills, which

are essential for professional software engineers. To mitigate this, the tool should encourage students

to engage with feedback actively and think critically about suggested changes rather than simply

accepting the tool’s critique.

Contextual Understanding of Design Choices:

Software design is a highly context-dependent process, and a design that may not adhere to

conventional best practices could still be appropriate for a particular problem or project. The tool may

struggle to capture this nuance, potentially offering critiques that do not fully account for the specific

goals or constraints of a given design task. As a result, the tool’s feedback might be perceived as rigid

or lacking in flexibility, which could discourage students from experimenting with novel or

unconventional design approaches.

Limited Support for Complex Design Decisions:

While the tool can provide feedback on standard design patterns and principles, it may not be

equipped to evaluate more complex design decisions that involve multiple systems or cutting-edge

technologies. Students working on more advanced or research-oriented projects may find that the

tool's critique is insufficient for addressing specialized needs, leaving gaps in the support it provides.

Instructor Role and Customization:

The tool’s feedback may not fully align with the instructor’s teaching approach, course objectives,

or personal preferences in grading and critique. Instructors may find that the tool’s automated

feedback does not adequately reflect the nuances of their expectations. The challenge, therefore, lies

in offering instructors enough flexibility to tailor the feedback system and integrate it with their

pedagogical goals.

C. User Adoption

Resistance to New Technology:

Some students and instructors may be resistant to adopting new educational technology.

Students may feel overwhelmed or skeptical about the usefulness of an automated critique tool,

especially if they are accustomed to traditional feedback methods from instructors. Instructors may

also hesitate to rely on the tool, fearing that it will replace their own judgment or result in less

personalized feedback. Overcoming this resistance requires clear communication about the tool’s

benefits and its role in complementing, rather than replacing, the learning process.

Technological Familiarity:

The tool may require a certain level of technical proficiency, both in terms of software usage and

understanding of the underlying design principles. Students with limited experience in using such

tools or unfamiliar with the particular design concepts the tool evaluates may find it difficult to use

the tool effectively. To overcome this, onboarding materials, tutorials, and user support should be

provided to ensure smooth adoption, particularly for those with varying levels of experience.

Student Motivation:

Some students may not be intrinsically motivated to engage with the feedback provided by the

tool, particularly if they perceive it as a secondary form of feedback compared to instructor evaluation.

If students view the tool as an additional, time-consuming task rather than an integral part of their

learning process, they may not make full use of its features. Encouraging active participation through

incentives, integration with course assessments, or providing personalized feedback on tool usage

could help boost student motivation.

Instructor Buy-In and Training:

Successful adoption of the tool also depends on instructor engagement. Instructors may need

training on how to use the tool effectively, incorporate it into their teaching strategy, and integrate it

into their existing course structures. Without proper support and alignment with teaching goals,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 doi:10.20944/preprints202501.1130.v1

https://doi.org/10.20944/preprints202501.1130.v1

 8 of 11

instructors may not fully embrace the tool, limiting its widespread adoption and impact on student

learning.

In conclusion, while the educational software tool holds significant potential to improve student

learning in software design courses, its success depends on addressing these technical, pedagogical,

and adoption-related challenges. Continuous evaluation and refinement will be essential to overcome

these limitations and ensure the tool meets the needs of both students and instructors.

6. Future Directions

A. Enhancements to the Tool

⚫ Advanced Feedback Mechanisms: Future versions of the tool can incorporate more

sophisticated feedback mechanisms, such as natural language processing (NLP) to provide

more context-sensitive, detailed, and personalized critiques. This could include suggestions for

improvement framed in clearer language, explanations of why a particular design approach

may be beneficial or detrimental, and tailored recommendations for further study.

Additionally, the system could integrate more advanced machine learning models to provide

predictive analysis based on past trends, further improving the accuracy and usefulness of the

feedback.

⚫ Integration of Collaborative Features: Enhancements could include adding collaborative

features, allowing students to work in teams and receive feedback on group designs. This

would encourage peer learning and improve communication skills, as students would be able

to critique each other’s designs. Additionally, real-time collaboration features could be

integrated to enable students to work on design projects together within the tool, making it

easier to share ideas and engage in collective problem-solving.

⚫ Support for Diverse Design Models: The tool could be extended to support a wider variety of

design models, such as flowcharts, entity-relationship diagrams, and architectural diagrams.

By accommodating various design paradigms, the tool would become more versatile and

applicable to a broader range of software design tasks. Additionally, incorporating support for

newer or emerging design frameworks (e.g., microservices architecture) would make the tool

more future-proof.

⚫ Gamification and Adaptive Learning: Introducing elements of gamification, such as design

challenges, leaderboards, and rewards for improvement, could enhance student engagement

and motivation. The tool could also adapt to the student's learning pace and proficiency,

offering progressively more complex tasks and feedback as the student improves. This

adaptive learning feature would ensure that students of all skill levels benefit from the tool in a

way that is tailored to their individual progress.

⚫ Integration with Version Control Systems: Future versions of the tool could integrate with

version control systems (e.g., Git), allowing students to track the evolution of their designs

over time and receive feedback on their design iterations. This integration would also help

instructors monitor student progress and provide more targeted guidance.

B. Expanding to Other Areas

⚫ Broader Application to Software Development Lifecycles: In the future, the tool could expand

to cover more phases of the software development lifecycle, beyond just design. For example,

it could include features for evaluating code quality, implementation correctness, and system

testing. This would provide a comprehensive support system for students throughout their

entire software development process, from initial design through to final deployment.

⚫ Support for Different Programming Languages and Frameworks: Expanding the tool to

support various programming languages and frameworks (e.g., Java, Python, C++, JavaScript,

or emerging technologies like Flutter or Rust) would make the tool relevant for a broader set of

students. Additionally, incorporating the evaluation of code structure and best practices for

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 doi:10.20944/preprints202501.1130.v1

https://doi.org/10.20944/preprints202501.1130.v1

 9 of 11

different languages would allow students to receive feedback that is both specific and relevant

to the technologies they are using.

⚫ Extension to Other Design Disciplines: While the current focus is on software design, the tool’s

core principles could be adapted for use in other design disciplines, such as web development,

UX/UI design, or even hardware architecture. By expanding the tool’s functionality to

accommodate different types of design, it could support a wide range of courses related to

design thinking and systems thinking across various disciplines.

⚫ Artificial Intelligence and Algorithm Design: The tool could be extended to help students in

fields such as artificial intelligence, machine learning, and algorithm design. By offering

critiques on algorithmic efficiency, structure, and optimization, the tool would help students

grasp key concepts related to designing and implementing algorithms. Feedback could be

based on factors such as time complexity, space complexity, and correctness, thus supporting

advanced coursework.

C. Collaboration with Educational Institutions

⚫ Partnerships with Universities and Colleges: Establishing partnerships with universities and

colleges would allow the tool to be integrated into software design curricula, making it a

valuable asset for instructors and students. Collaboration could lead to a more comprehensive

understanding of the tool’s effectiveness in real-world teaching environments and provide an

opportunity for ongoing feedback and development based on the needs of academic

institutions.

⚫ Faculty Training and Support: To ensure the tool’s adoption and successful implementation, it

would be essential to offer faculty training programs. These programs would help instructors

understand how to incorporate the tool into their teaching methods, provide guidance on how

to use its features effectively, and discuss best practices for leveraging the tool to enhance

student learning. Instructors could also be provided with data and reports generated by the

tool to guide their teaching and help identify common design weaknesses among students.

⚫ Integration into Online Learning Platforms: Collaborating with online learning platforms (e.g.,

Coursera, Udemy, edX) could expand the tool’s reach to students in remote or non-traditional

educational settings. This would allow the tool to support students worldwide, promoting its

use in a variety of course formats, such as self-paced, blended, or fully online courses.

Integration with Learning Management Systems (LMS) like Moodle or Canvas would further

streamline the adoption process.

⚫ Research and Development Collaboration: Collaboration with research institutions or

academic researchers in the field of software engineering education could foster continuous

improvement and innovation in the tool. Research partnerships would allow for studies on the

effectiveness of the tool in diverse educational settings, helping refine its features and better

understand its impact on student learning outcomes. These collaborations could also lead to

the development of new features based on cutting-edge research in software design education.

By exploring these future directions, the tool can evolve to become a more comprehensive,

adaptive, and versatile platform that not only improves student learning in software design but also

expands its applicability to broader educational contexts, supporting students and instructors in

various disciplines and settings.

7. Conclusion

A. Summary of the Tool’s Impact

The educational software tool for critiquing and supporting software design courses represents

a significant advancement in how software design education can be delivered and experienced. By

automating the critique process, the tool provides students with immediate, actionable feedback on

their design work, helping them identify strengths and areas for improvement. This allows for more

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 doi:10.20944/preprints202501.1130.v1

https://doi.org/10.20944/preprints202501.1130.v1

 10 of 11

iterative learning, where students can refine their designs continuously, leading to a deeper

understanding of design principles and better design outcomes.

Moreover, the tool helps bridge the gap between theoretical knowledge and practical application,

providing an interactive platform where students can apply and test their skills in real-world contexts.

It supports diverse learning styles and accommodates different levels of expertise, offering

personalized feedback that encourages active learning and self-reflection. The system’s potential to

integrate with existing course structures, adapt to different software design methodologies, and

provide scalable feedback for large numbers of students makes it an invaluable asset in modern

educational environments.

Instructors, too, benefit from the tool’s ability to automate time-consuming feedback tasks,

allowing them to focus more on higher-level teaching activities, such as mentoring and personalized

guidance. The tool can be easily integrated into various learning management systems, making it

adaptable for a wide range of educational institutions. Additionally, by using the tool, instructors can

gain insights into common student misconceptions, design weaknesses, and areas requiring more

focus, further enhancing their teaching strategies.

B. Call to Action

As educational institutions continue to adapt to technological advancements, it is essential to

embrace tools that not only improve the learning experience but also foster creativity, critical thinking,

and problem-solving skills in students. We encourage educators, administrators, and software design

curriculum developers to consider integrating this tool into their teaching frameworks, as it has the

potential to transform how students engage with design concepts and improve their practical skills.

Furthermore, we urge developers to continue refining the tool, incorporating user feedback, and

exploring new features that can expand its utility. Collaboration with educational institutions, faculty

members, and students will be vital in ensuring the tool evolves to meet the diverse needs of both

students and instructors, and to guarantee its continued relevance in a rapidly changing technological

landscape.

Finally, as we continue to explore innovative approaches to software design education, we call

for increased investment in tools that support the learning journey in meaningful ways. Whether

through partnerships, further research, or direct engagement with educational communities, the

future of software design education is bright, and this tool can play a key role in shaping that future.

References

1. Abdulkareem, S. M., Ali, N. M., Admodisastro, N., & Sultan, A. B. M. (2017). Class Diagram Critic: A design

critic tool for UML class diagram. Advanced Science Letters, 23(11), 11567–11571.

https://doi.org/10.1166/asl.2017.10330

2. Ali, N. M., Admodisastro, N., & Abdulkareem, S. M. (2013). An educational software design critiquing tool

to support software design course. International Conference on Advanced Computer Science Applications and

Technologies, 31–36. https://doi.org/10.1109/acsat.2013.14

3. N. M. Ali, N. Admodisastro and S. M. Abdulkareem, "An Educational Software Design Critiquing Tool to

Support Software Design Course," 2013 International Conference on Advanced Computer Science Applications

and Technologies, Kuching, Malaysia, 2013, pp. 31-36, doi: 10.1109/ACSAT.2013.14.

4. Ali, N. M., Admodisastro, N., & Abdulkareem, S. M. (2013, December). An educational software design

critiquing tool to support software design course. In 2013 International Conference on Advanced Computer

Science Applications and Technologies (pp. 31-36). IEEE.

5. Abdulkareem, S. M., Ali, N. M., Admodisastro, N., & Sultan, A. B. M. (2017). Class Diagram Critic: A Design

Critic Tool for UML Class Diagram. Advanced Science Letters, 23(11), 11567-11571.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 doi:10.20944/preprints202501.1130.v1

https://doi.org/10.20944/preprints202501.1130.v1

 11 of 11

6. ABDULKAREEM, S. M. (2015). CRITIC-BASED AND COLLABORATIVE APPROACH FOR UML CLASS

DIAGRAM.

7. ABDULKAREEM, SORAN MAHMOOD. "CRITIC-BASED AND COLLABORATIVE APPROACH FOR

UML CLASS DIAGRAM." (2015).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2025 doi:10.20944/preprints202501.1130.v1

https://doi.org/10.20944/preprints202501.1130.v1

