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Abstract: In recommendation systems, representing user-item interactions as a bipartite network is a
fundamental approach that provides a structured way to model relationships between users and items,
allowing for efficient predictions via network science. Collaborative filtering is one of the most widely
used and actively researched techniques for recommendation systems, its rationale is to predict user
preferences based on shared patterns in user interactions, and vice versa. Memory-based collaborative
filtering relies on directly analyzing user-item interactions to provide recommendations using similarity
measures, and differs from model-based collaborative filtering which builds a predictive model using
machine learning techniques such as neural networks. With the rise of machine learning, memory-
based collaborative filtering has often been overshadowed by model-based approaches. However,
the recent success of SSCF, a newly proposed memory-based method, has renewed interest in the
potential of memory-based approaches. In this paper, we propose Network Shape Automata (NSA),
a memory-based collaborative filtering method grounded in the connectivity shape of the bipartite
network topology. NSA leverages the Cannistraci-Hebb theory proposed in network science to define
brain-inspired network automata, using this paradigm as the foundation for its similarity measure. We
evaluate NSA against a range of advanced collaborative filtering methods, both memory-based and
model-based, across 13 bipartite network datasets spanning complex systems domains such as social
networks and biological networks. Results show that NSA consistently achieves strong performance
across diverse datasets and evaluation metrics, ranking most often first on average. Notably, NSA
demonstrates strong robustness to network sparsity, while preserving the simplicity, interpretability,
and training-free nature of memory-based methods. As a pioneering effort to bridge link prediction and
recommendation tasks, NSA not only highlights the untapped potential of memory-based collaborative
filtering but also demonstrates the effectiveness of the Cannistraci-Hebb theory in modeling network
evolution within recommendation systems.

Keywords: collaborative filtering; recommendation systems; bipartite network; link prediction

1. Introduction
In many real-world scenarios, relationships between entities can be modeled as bipartite networks,

where edges only exist between two disjoint sets of nodes, such as users and items [1–4]. Predicting
new links in these networks, often framed as recommendation, is a crucial task for improving user
experience and system efficiency [5]. Collaborative filtering (CF) is one of the most widely used
approaches in recommendation systems [6,7], with memory-based and model-based methods as two
major branches [8]. While memory-based CF methods are simple and highly interpretable, they
have long been considered less competitive in performance compared to more complex model-based
methods.

However, recent advance, Sapling Similarity Collaborative Filtering (SSCF), has shown that
memory-based approaches still hold significant promise [9]. SSCF leverages a new similarity measure
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and achieves state-of-the-art performance on benchmark datasets, outperforming all the other models.
This suggests that the full potential of memory-based methods has yet to be realized, particularly if
better ways of capturing structural information in networks can be found.

Most traditional memory-based CF methods rely on basic node similarity measures, often limited
to shared neighbors, which overlook deeper topological insights. In contrast, network science offers rich
theoretical foundations for understanding link formation. The Cannistraci-Hebb (CH) theory [10,11],
inspired by brain connectivity, emphasizes the importance of local community structures [12] rather
than just node-level features. CH-based methods are network automata rules that have shown strong
performance in various link prediction tasks and have even been used to sparsify neural networks
while preserving accuracy [13,14].

Motivated by the theoretical and empirical strength of CH theory, we propose Network Shape
Automata (NSA), a novel memory-based collaborative filtering method that fully leverages network
topology for recommendation. NSA adheres to the classical architecture of memory-based CF, yet
redefines similarity computation based on local topological features derived from CH theory. We
evaluate NSA on various benchmark datasets from both the recommendation and link prediction
domains. Results demonstrate that NSA consistently achieves competitive, and in some cases superior,
performance compared to state-of-the-art models, while preserving the simplicity and transparency
of memory-based systems. Our work highlights the overlooked potential of structural information
in network-based recommendations and presents NSA as a bridge between interpretable design and
high recommendation accuracy.

Here, we present our main contribution in this work as follows:

• Introduction of Network Shape Automata (NSA): We propose NSA, a novel memory-based
collaborative filtering method that, for the first time, integrates CH theory into similarity compu-
tation by leveraging local topological features of the network.

• Comprehensive Hyperparameter Learning and Evaluation Across Domains: NSA was eval-
uated on 13 datasets across both recommendation and link prediction domains, consistently
demonstrating stable and often superior performance compared to state-of-the-art models. Rather
than relying on a single perspective, we innovatively examined both sides of the bipartite network
structure. By incorporating a broader range of datasets and application scenarios, as detailed in
Table 1, our evaluation provides a more comprehensive and rigorous assessment of model per-
formance. Notably, we conducted extensive and systematic hyperparameter learning, involving
over 105300 model assessments. This ensured unbiased and automated hyperparameter selection,
enabling fair and reproducible comparisons across all evaluated methods.

• Revealing the Power of Structural Information: This work underscores the often-overlooked
potential of structural information in recommendation tasks and shows how NSA effectively
bridges the gap between interpretability and accuracy. NSA demonstrates that tools from network
science can be effectively used to uncover intrinsic patterns in user-item interactions, providing a
principled way to model real-world information. By exploiting network structural properties,
NSA can capture meaningful relationships even when user-item interactions are extremely limited.

• Unified Perspective on Recommendation and Link Prediction: This work is among the most
recent efforts to systematically bridge the tasks of link prediction and recommendation through
the lens of network science. By viewing recommendation as a dynamic network evolution
process, we provide a unified framework that captures the underlying mechanisms of real-world
information systems.
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Table 1. Number of real-world network datasets tested by different methods. For NSA, considering the
recommendation is made from both views of two sets of nodes, the number of datasets is multiplied by 2.

Algorithm Year Networks Ref
NGCF 2019 3 [15]
LightGCN 2020 3 [16]
UltraGCN 2021 4 [17]
SimpleX 2021 11 [18]
LT-OCF 2021 3 [19]
BSPM 2022 3 [20]
SSCF 2023 5 [9]
NSA 2025 13 x 2 Ours

2. Related Work
2.1. Bipartite Network Projection

Bipartite networks consist of two disjoint sets of nodes with edges only between nodes of different
sets [21], and are commonly used to represent real-world relationships, for example, users and items
in recommendation systems. In such applications, the two sets typically correspond to users and
items, with edges representing interactions such as purchases, views, or ratings. Depending on the
nature of these interactions, bipartite networks can be divided into two categories: non-unary rating,
where links carry explicit preference scores; and unary rating, where links only indicate the presence or
absence of interaction, without expressing degrees of preference [6]. This paper focuses on the unary
rating scenario, where collaborative filtering methods are widely adopted.

Bipartite network projection, or one-mode projection, transforms a bipartite network into two
monopartite ones by connecting nodes of the same type if they share common neighbors [21]. This
process captures similarity within a single node set and serves as a compressed representation of
the original bipartite structure. However, such compression inevitably loses some relational detail,
making the choice of edge weighting in the projected network critical for preserving meaningful
information [22,23]. Different weighting methods emphasize different aspects of the original network
and are chosen based on the analytical goals of the projection.

2.2. Collaborative Filtering

Recommendation systems are essential tools for delivering personalized content by predicting
user preferences based on historical interactions. To address this task, various approaches have been
proposed, including content-based approach [24], collaborative filtering [25], and hybrid models that
combine multiple strategies. Among them, collaborative filtering (CF) stands out for its effectiveness
and broad adoption, relying on user behavior shared patterns rather than item attributes.

Collaborative filtering can be further classified into memory-based and model-based methods [8,26].
Memory-based approaches predict user preferences by computing similarities between users or

items, with various similarity measures developed to improve recommendation accuracy. The structure
of different memory-based methods is largely the same, with the choice of similarity measure being the
key differentiator. Widely used similarity measures in memory-based approaches include Common
Neighbors [27], Jaccard [28], Resource Allocation Index [29], Cosine Similarity, and Pearson Correlation
Coefficient [30]. Most of these measures estimate similarity based on the common neighbors of two
nodes. Notably, the recently proposed Sapling Similarity Collaborative Filtering (SSCF) introduces a
probabilistic perspective that enables negative similarity modeling, offering improved performance [9].

Model-based approaches, in contrast, learn predictive models from user-item interactions using
machine learning techniques. Recent advancements focus on neural network methods, particularly
Graph Convolutional Networks (GCNs), which capture high-order user-item connectivity [31]. These
include NGCF, an early and influential method that introduced graph-based message passing for
collaborative filtering [15]; LightGCN, which simplified this framework while achieving stronger
performance [16]; SimpleX, which further optimized the model design for efficiency [18]; UltraGCN,
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which avoided explicit graph convolution by modeling global interactions [17]; LT-OCF, which models
user and item embedding evolution over continuous time using neural ODEs with learnable interaction
timestamps, thereby effectively capturing temporal dynamics [19]; and BSPM, which uses a blurring-
sharpening process to perturb and refine interactions, and is regarded as a diffusion-based approach
rather than a conventional neural network method [20].

2.3. Cannistraci-Hebb Theory

CH rules are network automata for estimating the likelihood of a non-observed link to appear in
the network. These rules are classified as network automata because they utilize only local information
to infer the score of a link in the network without need of pre-training of the rule. Note that CH rules
are predictive network automata that differ from generative network automata which are rules created
to generate artificial networks [32–34]. The concept of network automata was originally introduced by
Wolfram [35] and later formally defined by Smith et al. [36] as a general framework for modeling the
evolution of network topology. Given an unweighted and undirected adjacency matrix X(t) at time t,
in a network automaton the states of links evolve over time according to a rule that depends only on
local topological properties computable from a portion of the adjacency matrix X̃(t) ⊂ X(t):

X̃(t + 1) = F(X̃(t)) (1)

Network shape intelligence is an emerging paradigm that tries to perform link prediction by
exploiting the intrinsic topological structure of real-world networks, without relying on training or
external data. The core idea is to treat the network itself as both input and source of knowledge,
enabling unsupervised predictions based solely on local connectivity patterns [13]. A representative
advancement in this area is the Cannistraci-Hebb (CH) theory, which extends Hebbian learning,
originally proposed in neuroscience, to the domain of complex network analysis [37].

Hebbian learning posits that coactivated neurons tend to form connections and was generalized
into the Local-Community Paradigm (LCP) [12]. LCP assumes that new links are more likely to form
within local communities, where nodes are densely connected and related. CH theory formalizes
this through two structural tendencies: maximization of internal local community links (iLCL) and
minimization of external local community links (eLCL) [10,11]. Based on these principles, different
versions of CH indexes have been proposed that focus different properties of networks (CHn). In
addition, multi-scale variants (Ln) are introduced to account for different community sizes, based on
the path length between node pairs.

CH-based link predictors have shown strong empirical performance across different domains.
In particular, Cannistraci et al. demonstrated that a CH-inspired predictor outperformed AlphaFold
in protein-protein interaction prediction [13]. Furthermore, neural networks with CH-based sparse
connectivity, retaining only 1% of original links, achieved comparable or better results than fully
connected models [14], suggesting the potential of biologically-inspired, ultra-sparse architectures.

These insights underscore the predictive power of topology alone and provide theoretical support
for applying CH theory to recommendation systems, especially in settings where data sparsity or lack
of supervision poses significant challenges.
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3. Network Shape Automata
To formally present our approach, we begin by introducing the fundamental definitions. Consider

a bipartite network representing the recommendation system, where the set of user nodes is denoted
by U and the set of item nodes by Γ. The cardinalities |U| and |Γ| indicate the total number of users and
items, respectively. The network structure is encoded by an adjacency matrix M ∈ R|U|×|Γ|, where each
entry Muγ = 1 if user u is connected to item γ, and 0 otherwise. As we focus on unary rating scenarios,

the network is assumed to be unweighted. The degree of a user node u is defined as du =
|Γ|
∑

γ=1
Muγ,

while the degree of an item node γ is denoted by dγ. The set of common neighbors between users i
and j is denoted CNij, and similarly, the common neighbors between items α and β are denoted CNαβ.

Then, we introduce Network Shape Automata (NSA) which can be treated as memory-based
collaborative filtering in a topological way. Specifically, NSA follows the steps described in the
subsections 3.1 to 3.4 below, illustrated in Figure 1.
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Figure 1. Workflow of NSA. This figure illustrates how NSA computes the prediction score for a target link
through four stages: (1) CH Scoring, assigning similarity using the CH index; (2) Monopartite Projection, mapping
topology and weights from the bipartite graph to two monopartite networks; (3) Bipartite Scoring, aggregating
similarity into single-view recommendation scores; (4) Mixing Item and User Scores, combining single-view scores
into the final prediction. *Core functions are shown in each stage block, with surrounding gray boxes indicating
configurable options.

3.1. CH Scoring

As the core component of NSA, we calculate the similarity between different pairs of nodes based
on CH theory.

CH index

Inspired by CH theory [10], the basis of the similarity is CH indexes, including CH3-L2 [11] and
CH3.1-L2. CH3-L2 is the version based on local community for path of length 2 and takes into account
only the minimization of external links, of which the formula is

CH3-L2(i, j) = ∑
k∈L2

1
dek + 1

(2)
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The formula of CH3.1-L2 is

CH3.1-L2(i, j) = ∑
k∈L2

dik + 1

(1 + dek)
1+

dek
1+dek

(3)

For clarification, i and j represent two nodes of the same kind in the bipartite network, L2 denotes
the set of nodes on the path of length 2 between nodes i and j (specifically, in the case of a path of
length 2, this can be understood as the set of common neighbors between i and j). dek represents the
number of external community links for node k (i.e., the number of neighbors of node k that are not in
the L2 set and are not i or j). dik represents the number of internal community links for node k (i.e., the
number of neighbors of node k that are also in the L2 set).

Denominator

Inspired by the weighting methods used in bipartite network projection, we introduce a scaling
factor as the denominator of the CH index to reduce the weight of links connecting two nodes with
many neighbors. We adopt three options as denominator with different topological meaning, including:

• sum of degree: the sum of the degrees of the two seed nodes

Dij = di + dj (4)

• union of neighbors: the total number of neighbor nodes of the two seed nodes

Dij = di + dj − CNij (5)

• sum of nlcl: the number of non local community links (nlcl) of the two seed nodes (i.e., the
number of neighbors of the two seed nodes that are not in the l2 set)

Dij = di + dj − 2CNij (6)

Exponent

To further control the impact of the scaling factor, we introduce a new exponent variable for the
denominator. As the name suggests, the exponent serves as the power of the denominator base that
ranges from 1 to 2.

The similarity between a pair of nodes can be represented as

Bij =
CH-index(i, j)

Dexp
i,j

(7)

3.2. Monopartite Projection

The CH-scoring process is based on the local community defined by paths of length two. This
naturally gives rise to two projected monopartite networks, one for users and one for items, where a
link exists between two nodes of the same type only if they share at least one common neighbor. We
employed bipartite network projection to transform both the topology and the assigned weights into
two separate monopartite networks.

3.3. Bipartite Scoring

Based on two monopartite networks respectively, we can weight all the non-existing links inside
the original bipartite network based on simple aggregation. Here, we adopted two options for the
aggregation:
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• sum

Suser
uγ =

|U|

∑
i=1

Bui Miγ, Sitem
uγ =

|Γ|

∑
α=1

Bγα Muα (8)

• normalization

Suser
uγ =

|U|
∑

i=1
Bui Miγ

|U|
∑

i=1
Bui

, Sitem
uγ =

|Γ|
∑

α=1
Bγα Muα

|Γ|
∑

α=1
Buα

(9)

3.4. Mixing Item and User Scores

Based on the item-based score and user-based score we draw from two monopartite networks,
take the weighted average of item-based score and user-based score controlled by parameter λ as the
weight of item-based score, which is ranged from 0 to 1 step by 0.1. The final recommendation score
can be represented as:

Suγ = (1 − λ)Suser
uγ + λSitem

uγ (10)

4. Experiments
We’ve conducted quite a lot of experiments to prove that our method is of superiority compared

to both traditional memory-based methods and the advanced model-based methods.

4.1. Baselines

The baselines adopted in our study span from traditional memory-based approaches to state-of-
the-art model-based methods.

Memory-based methods follow a standard pipeline and the key distinction among various
memory-based approaches lies in the choice of similarity metric. Our implementation of memory-
based collaborative filtering strictly follows the framework introduced in previous work [9]. We
selected two representative similarity measures to construct memory-based baselines: the state-of-
the-art Sapling Similarity and the widely-used Jaccard Similarity, with the memory-based method
built upon called SSCF and JCF respectively. We select a series of representative and state-of-the-art
model-based methods as baselines, including NGCF [15], LightGCN [18], SimpleX [18], UltraGCN [17],
LT-OCF [19] and BSPM [20] . For BSPM, to be specific, we utilized the variant BSPM-EM which offers
better performance [20].

4.2. Datasets

We employed 13 datasets from different filed ranging from drug-target network in biological field
to typical recommendation datasets in social system [9,38–46]. The statistics of all the datasets are
listed in Appendix B, where we reported the source, number and type of nodes and the density.

It is important to note that, for some datasets, there is no explicit distinction between users
and items. For example, in drug-target networks, recommendations can be made from either the
drug perspective or the target perspective, both of which are meaningful in real-world applications.
Therefore, we conducted experiments from both perspectives, treating different sets of nodes as the
"user" side.

4.3. Hyperparameter Learning and Evaluation

In this section, we introduce the way we split the datasets as train and test set, the metric we used
for evaluation, and the evaluation process. For clarity, the entire procedure is also illustrated in a figure
provided in Appendix E.
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Metrics

To better evaluate the performance of models, we utilized widely used metrics in recommendation
system field: Recall@10, Recall@20, NDCG@10, NDCG@20.

Train-Test Split

We follow the widely used way to split each dataset to train set and test set. For all the datasets, the
train set retains 80% links for each user randomly. The rest links would become test set which is used to
evaluate the performance of models. We repeat the split several times which can be called as different
realizations in case that the randomness of segmentation influences the evaluation of performance.

Hyperparameter Learning

We adopted multiple validation samplings to learn the most appropriate hyperparameter setting
for each realization automatically. To be specific, we’ll further split the train set to two parts. 10%
links of each user would be randomly removed to verify the performance of different hyperparameter
settings. Also, to avoid randomness, we repeat this procedure 10 times and the hyperparameter
setting with highest average performance would be the one used for test. It needs attention that, when
evaluated by different metrics, the best hyperparameter setting can be different. To ensure the fairness
of comparison, we conducted the same hyperparameter choosing strategy on all baseline methods
mentioned above strictly and carefully. The concrete hyperparameter setting under search for each
baseline method are reported in Appendix D.

Evaluation Process

Each model would give a ranking of all the non-existing links for all the users based on the
existing links in the train set, then the links with highest ranking would become the result of prediction.
For each user, we would compute metrics Recall@20, Recall@10, NDCG@20 and NDCG@10. For each
metric, the final performance is the average among all the users. Results reported are the average
across all realizations.

5. Results
In this section, we present a comprehensive summary, comparison, and analysis of the perfor-

mance of NSA and selected baseline methods across 13 datasets. Specifically, experiments were
conducted using 10 realizations under the default ViewA, and 5 realizations under the alternative
ViewB. For the latter, we selected the top-performing method from each category based on the results
in ViewA: NSA for memory-based methods; LT-OCF for neural network-based methods, which are
considered a subset of model-based approaches; and BSPM for diffusion-based methods, which has
shown competitive performance in prior work [9]. Due to space limitations, additional results are
provided in the Appendix.

ViewA Results

We present results for all methods based on individual network from ViewA in Appendix F,
where NSA consistently outperforming most methods on the majority of datasets compared to a
comprehensive set of baselines. To provide a comprehensive comparison, we further compute the
average ranking of each method across all datasets. As shown in Figure 2 , NSA consistently ranks
first or second across various metrics, highlighting its overall superiority. This consistent top-tier
performance not only reflects NSA’s high accuracy but also underscores its robustness and adaptability
across different domains and evaluation criteria.
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ViewB Results

NSA achieves the best average ranking across three evaluation metrics, outperforming BSPM and
LT-OCF, as shown in Figure 3. The results for ViewB organized by individual networks are provided
in Appendix G. These results further demonstrate the effectiveness and robustness of NSA.

of different hyperparameter settings. Also, to avoid randomness, we repeat this procedure 10 times
and the hyperparameter setting with highest average performance would be the one used for test.
It needs attention that, when evaluated by different metrics, the best hyperparameter setting can be
different. To ensure the fairness of comparison, we conducted the same hyperparameter choosing
strategy on all baseline methods mentioned above strictly and carefully. The concrete hyperparame-
ter setting under search for each baseline method are reported in Appendix D.

Evaluation Process Each model would give a ranking of all the non-existing links for all the users
based on the existing links in the train set, then the links with highest ranking would become the
result of prediction. For each user, we would compute metrics Recall@20, Recall@10, NDCG@20
and NDCG@10. For each metric, the final performance is the average among all the users. Results
reported are the average across all realizations.

5 Results

In this section, we present a comprehensive summary, comparison, and analysis of the performance
of NSA and selected baseline methods across 13 datasets. Specifically, experiments were conducted
using 10 realizations under the default ViewA, and 5 realizations under the alternative ViewB. For
the latter, we selected the top-performing method from each category based on the results in ViewA:
NSA for memory-based methods; LT-OCF for neural network-based methods, which are considered
a subset of model-based approaches; and BSPM for diffusion-based methods, which has shown
competitive performance in prior work [2]. Due to space limitations, additional results are provided
in the Appendix.
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Figure 2: ViewA: Average ranking across 13 datasets evaluated by different metrics. To better dis-
tinguish between memory-based and model-based methods, all bars corresponding to model-based
approaches are overlaid with white hatching. *ViewA means that these experiments are conducted
treating nodes in set A as users.

ViewA Results We present results for all methods based on individual network from ViewA in
Appendix F, where NSA consistently outperforming most methods on the majority of datasets com-

8

Figure 2. ViewA: Average ranking across 13 datasets evaluated by different metrics. To better distinguish between
memory-based and model-based methods, all bars corresponding to model-based approaches are overlaid with
white hatching. *ViewA means that these experiments are conducted treating nodes in set A as users.

Figure 3. ViewB: Average ranking across 13 datasets evaluated by different metrics. Bars corresponding to
model-based approaches are overlaid with white hatching. *ViewB means that these experiments are conducted
treating nodes in set B as users.
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Effectiveness of a Simplified NSA Variant

To further evaluate the flexibility and robustness of NSA, we conducted an ablation study in
which the exponent parameter was fixed to a constant value of 1 without tuning in the validation stage.
Interestingly, it still achieved impressive results from ViewA, ranking first on average evaluated by
multiple metrics. The detailed results are provided in Appendix H. This finding demonstrates the
strong performance of NSA even under a more constrained configuration.

Training-Free Robustness of NSA

While NSA achieves strong overall performance, we observe that it performs slightly less compet-
itively than certain model-based methods specifically on Recall@20. This discrepancy may stem from
the epoch selection strategies commonly employed by model-based approaches. In contrast, NSA is a
non-training method and thus does not involve such metric-specific tuning so that it avoids potential
bias introduced by overfitting and maintains consistently strong performance across other key metrics.
This distinction highlights NSA’s ability to preserve ranking fidelity and generalize effectively across
evaluation settings, without the need for iterative optimization or metric-dependent parameter tuning.

High Sparsity Robustness of NSA

Especially on datasets under high sparsity level, NSA demonstrates strong performance compared
to other methods. This indicates that NSA is more robust to networks with higher sparsity. Its
advantage may stem from the incorporation of CH theory from network science, which enables it to
extract more informative signals from the inherently sparse structures found in real-world networks.

6. Conclusion and Discussion
In this paper, we propose Network Shape Automata (NSA), a novel memory-based collaborative

filtering method that leverages bipartite network topology for recommendation. Building on recent
progress in memory-based methods, NSA further explores the potential of this class of approaches,
emphasizing simplicity, interpretability, and strong performance. NSA introduces the Cannistraci-Hebb
(CH) theory from network science as the foundation for its similarity measure. This theory, inspired by
the evolution of brain neural networks, enables NSA to utilizing local community structures based on
topological features of real-world networks, without requiring any training. We evaluate NSA on 13
real-world bipartite datasets across multiple domains and compare it against both memory-based and
model-based collaborative filtering methods. We conducted experiments on networks with up to 9865
nodes and 172206 edges, making it difficult to scale to larger networks due to the extensive experimental
setup: for ViewA alone, we performed thorough hyperparameter learning and evaluation on 13
networks using 9 methods, each with 3 hyperparameters (averaging 9 settings), across 10 realizations
with 10 validation samplings, resulted in a total of 105300 model assessments. Experimental results
show that NSA consistently outperforms strong baselines across multiple evaluation metrics. It also
demonstrates notable robustness under high sparsity, while preserving the desirable traits of memory-
based approaches. Overall, NSA highlights the overlooked potential of memory-based collaborative
filtering in modern recommendation systems and validates the effectiveness of the Cannistraci-Hebb
theory in modeling network evolution for link prediction and recommendation tasks.
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University (to CVC), the National High- Level Talent Program of the Ministry of Science and Technology of China
(grant number 20241710001, to CVC).
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Appendix A. Classification of Collaborative Filtering
In Figure A1, we illustrate that collaborative filtering can be further divided into memory-based

and model-based method. NSA can be classified as a memory-based approach.

Figure A1. The classification of Collaborative Filtering.

Appendix B. Statistics of Datasets
In this section, we present the detailed statistics of all the datasets we used for test. In Table A1,

we summarized the source, number of nodes, type of nodes and density of each dataset. For clarity,
we give each dataset an index in descending order considering network density.

Table A1. Statistics of Datasets.

Index Name Field TypeA #NodeA TypeB #NodeB #Link Density

D1 aidorganizations_issues [38] Social orgnization 151 issue 34 1889 36.79%
D2 export [42] Social country 169 item 4957 120377 14.37%
D3 industries_educationfields_IPUMS [39] Social industry 267 education 513 18088 13.21%
D4 congressmen_topics_US [40] Social congressmen 525 topic 970 56215 11.04%
D5 users_movies_movielens100k Social user 943 movie 1574 82520 5.56%
D6 drug_target_ionchannel_2009 [41] Biological drug 210 target 204 1476 3.45%
D7 drug_target_GPCR_2009 [41] Biological drug 223 target 95 635 3.00%
D8 occupations_tasks_ONET [40] Social occupation 428 task 1691 16936 2.34%
D9 tfs_genes_regulation_ecoli Biological protein 212 gene 1856 4496 1.14%
D10 amazon-product [45,46] Social user 6121 item 2744 172206 1.03%
D11 drug_target_enzyme_2009 [41] Biological drug 445 target 664 2926 0.99%
D12 drug_target_HQ_2014 [43] Biological drug 518 target 358 1666 0.90%
D13 drug_target_moesm4_esm [44] Biological drug 4428 target 2256 15051 0.15%

Appendix C. Experimental Environment
The NSA experiments are conducted in a CPU-based computing environment equipped with an

AMD processor featuring 64 cores, using MATLAB and C++. The number of CPU cores employed
during execution is configurable, allowing flexible adaptation to the available computational resources.

Appendix D. Hyperparameter Setting
For all the baseline methods we’re using, we listed all the hyperparameters we used for experi-

ments in Table A2 (the rows with yellow background refer to the tuned parameters). For memory-based
methods, there’s limited range for hyperparameters to tune. For model-based methods, we chose
the appropriate range of hyperprameter based on what mentioned in literature and preliminary
experiments for each dataset.
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Table A2. Hyperparameters For Different Methods.

Classification Algorithm Parameter Tuning value
CH index CH3-L2, CH3.1-L2

denominator sum of degree, sum of nlcl, union of neighbours
exponent 1, 2

bipartite scoring sum, normalization
NSA

mixing parameter 0-1, interval 0.1
SSCF mixing parameter 0-1, interval 0.1

Memory-based

JCF mixing parameter 0-1, interval 0.1
lr 1e-3, 1e-4, 1e-5

reg 1e-4, 1e-5, 1e-6
embed_size 64

layer size [64, 64, 64]
batch size 1024

node dropout 0.1

NGCF

mess dropout [0.1, 0.1, 0.1]
lr 1e-2, 1e-3, 1e-4

decay 1e-3, 1e-4, 1e-5
recdim 64

dropout 0
layer 3

LightGCN

bpr_batch 2048
lr 1e-3, 1e-4, 1e-5

gamma 0.8, 0.5
negative weight 250, 10
embedding_dim 64

num neg 1000
margin 0.9

net_dropout 0.1

SimpleX

batch size 1024
lr 1e-2, 1e-1

gamma 1e-3, 1e-4, 1e-5
lambda 5e-4, 1e-5

batch size 512
negative weight 300

UltraGCN

embedding dim 64
lr 1e-2, 1e-3, 1e-4
k 4, 2

decay 1e-4LT-OCF

lrt 1e-5
lr 1e-3, 1e-2

idl_betas 0.2, 0.3
factor_dims 12, 50

decay 1e-4
dropout 0

Model-based

BSPM

layer 3

Appendix E. Hyperparameter Learning and Evaluation Process
To better illustrates the evaluation process, we present the whole procedure by a figure. Note

that, for time reason, ViewA results are the average among 10 realizations, while ViewB results are
based on 5 realizations. For each realization, we conducted 10 validation samplings to find the best
hyperparameter setting. Also, for different metrics, the best hyperparameter settings can be different.
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Figure A2. Hyperparameter Learning and Evaluation procedure. We conducted thorough hyperparameter
learning and evaluation for each method according to this to get the final performance: (1) split the original
dataset for different realizations; (2) for each realization, conduct 10 validation samplings to determine the best
setting and then utilized it for evaluation; (3) report the final average performance across all realizations.

Appendix F. ViewA Results on Individual Network
For page limit, results from ViewA evaluated by different metics on each network are reported

here. Since the scale of some datasets can be small, it is of significance to evaluate the performance
based on both top 20 and top 10 performance. Here we can find that NSA is competitive across
different metrics.
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For page limit, results from ViewA evaluated by different metics on each network are reported here.
Since the scale of some datasets can be small, it is of significance to evaluate the performance based
on both top 20 and top 10 performance. Here we can find that NSA is competitive across different
metrics.
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Figure 6: ViewA: Performance evaluated by NDCG on individual dataset. Bars corresponding
to model-based approaches are overlaid with white hatching. *ViewA means that these experiments
are conducted treating nodes in set A as users. Error bars represent sample standard deviation (with
degrees of freedom = 1).
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Figure A3. ViewA: Performance evaluated by NDCG on individual dataset. Bars corresponding to model-based
approaches are overlaid with white hatching. *ViewA means that these experiments are conducted treating nodes
in set A as users. Error bars represent sample standard deviation (with degrees of freedom = 1).
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Figure 7: ViewA: Performance evaluated by Recall on individual dataset. Bars corresponding
to model-based approaches are overlaid with white hatching. *ViewA means that these experiments
are conducted treating nodes in set A as users.
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Figure A4. ViewA: Performance evaluated by Recall on individual dataset. Bars corresponding to model-based
approaches are overlaid with white hatching. *ViewA means that these experiments are conducted treating nodes
in set A as users.

Appendix G. ViewB Results on Individual Network
In this section, we present the results from ViewB. For time reason, only BSPM and LT-OCF which

are the two model-based methods shows the most potential from ViewA. With 5 tests repeated, NSA
remains competitive on different metrics.
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Figure 8: ViewB: Performance evaluated by NDCG on individual dataset. Bars corresponding
to model-based approaches are overlaid with white hatching. *ViewB means that these experiments
are conducted treating nodes in set B as users. Error bars represent sample standard deviation (with
degrees of freedom = 1).
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Figure A5. ViewB: Performance evaluated by NDCG on individual dataset. Bars corresponding to model-based
approaches are overlaid with white hatching. *ViewB means that these experiments are conducted treating nodes
in set B as users. Error bars represent sample standard deviation (with degrees of freedom = 1).
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Figure 9: ViewB: Performance evaluated by Recall on individual dataset. Bars corresponding
to model-based approaches are overlaid with white hatching. *ViewB means that these experiments
are conducted treating nodes in set B as users. Error bars represent sample standard deviation (with
degrees of freedom = 1).
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Figure A6. ViewB: Performance evaluated by Recall on individual dataset. Bars corresponding to model-based
approaches are overlaid with white hatching. *ViewB means that these experiments are conducted treating nodes
in set B as users. Error bars represent sample standard deviation (with degrees of freedom = 1).

Appendix H. NSA with Fixed Exponent 1 Results from ViewA
In this section, we reported the results of simplified version NSA, with its configurable exponent

being fixed to 1. Surprisingly we found that it performs quite well, with its average ranking consistently
being the first across all the metrics we test.
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Figure 10: ViewA: NSA(exp=1) Performance evaluated by NDCG on individual dataset. Bars
corresponding to model-based approaches are overlaid with white hatching. *ViewA means that
these experiments are conducted treating nodes in set A as users. Error bars represent sample stan-
dard deviation (with degrees of freedom = 1).

20

Figure A7. ViewA: NSA(exp=1) Performance evaluated by NDCG on individual dataset. Bars corresponding to
model-based approaches are overlaid with white hatching. *ViewA means that these experiments are conducted
treating nodes in set A as users. Error bars represent sample standard deviation (with degrees of freedom = 1).
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ViewA: Recall@20 on 20% removal test with 10% cross-validation (%)
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Figure 11: ViewA: NSA(exp=1) Performance evaluated by Recall on individual dataset. Bars
corresponding to model-based approaches are overlaid with white hatching. *ViewA means that
these experiments are conducted treating nodes in set A as users. Error bars represent sample stan-
dard deviation (with degrees of freedom = 1).
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Figure A8. ViewA: NSA(exp=1) Performance evaluated by Recall on individual dataset. Bars corresponding to
model-based approaches are overlaid with white hatching. *ViewA means that these experiments are conducted
treating nodes in set A as users. Error bars represent sample standard deviation (with degrees of freedom = 1).
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Figure 12: ViewA: NSA(exp=1) Average ranking across 13 datasets evaluated by different metrics.
Bars corresponding to model-based approaches are overlaid with white hatching. *ViewB means
that these experiments are conducted treating nodes in set B as users.
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Figure A9. ViewA: NSA(exp=1) Average ranking across 13 datasets evaluated by different metrics. Bars
corresponding to model-based approaches are overlaid with white hatching. *ViewB means that these experiments
are conducted treating nodes in set B as users.

Appendix I. Broader Impact and Future Work
Broader Impact

NSA is a link prediction model applicable to recommendation systems and network modeling
tasks. Its simplicity makes it both interpretable and easy to implement and integrate into existing
infrastructures. Potential real-world applications include personalized content delivery and modeling
social connections (e.g., friend suggestions on social platforms). However, like other link prediction
models, NSA may unintentionally amplify existing biases or propagate misinformation, particularly
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when deployed without proper safeguards. To mitigate such risks, practitioners should regularly
audit model outputs, monitor their downstream impact in live environments, and incorporate human
feedback mechanisms to ensure responsible use.

Future Work

NSA is built upon the principles of memory-based methods, which, while effective and offering
higher interpretability, can be sensitive to network scale, as they often require access to the entire
dataset to aggregate interaction information. In contrast, model-based methods offer better scalability
through iterative processing and compact representations. Future work could focus on combining NSA
with model-based techniques to enhance scalability, exploring sampling strategies to reduce memory
consumption, and developing online or incremental variants of NSA that are suitable for streaming
or dynamically evolving networks. Furthermore, investigating NSA’s robustness and fairness under
adversarial or biased conditions would further strengthen its practical applicability.

Appendix J. Time Complexity of NSA
In this section, we’ll explain the time complexity of our method NSA. We’ll start with the basic

definition and explain the time complexity step by step.

Appendix J.1. Basic Definition

• U: number of users
• I: number of items

Appendix J.2. CH Scoring and Monopartite Projection

CH index

The time complexity of CH index on path of length 2 computation is determined by the cost of
computing iLCL and eLCL statistics for the intermediate nodes along those paths. Here we’ll discuss
the time complexity in a general case, where n and m denote the number of nodes and edges in a
network, respectively. d̄ = 2m/n is the average degree.

• Path count. Each length-2 path u → z → v is defined by an intermediate node z connected to
both u and v. The total number of such paths is given by:

#L2_path =
n

∑
z=1

(
dz

2

)
=

n

∑
z=1

dz(dz − 1)
2

= O
(

n

∑
z=1

d2
z

)

where dz is the degree of node z. This represents the number of unique unordered two-hop paths
in the network.

• Computation per path. For each length-2 path, CHA computes a score based on the iLCL and
eLCL of the intermediate node z. This requires checking the neighbors of z against the local
community associated with the pair (u, v), which takes O(dz) time per path.

• Overall time complexity. Multiplying the path count and per-path cost gives the total time
complexity:

O
(

n

∑
z=1

d2
z · dz

)
= O

(
n

∑
z=1

d3
z

)
We now analyze this quantity under three typical network regimes:

• Sparse, degree-homogeneous: If the graph is Sparse (i.e. d̄ = 2m/n = O(1)) with relatively uniform
degrees (i.e., dz = O(1) for all z), then:

O
(

n

∑
z=1

d3
z

)
= O(n)
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So the overall time complexity of O(n).
• Sparse, degree-heterogeneous: If the graph is sparse (i.e., d̄ = O(1)), but has a skewed degree

distribution (e.g., power law), we can no longer assume dz = O(1) for all nodes. To handle this
case, we apply a relaxation via Hölder’s inequality to upper-bound the root-mean-cube degree(

1
n ∑z d3

z

)1/3
in terms of the average degree:

(
1
n

n

∑
z=1

d3
z

)1/3

≤ n2/3 ·
(

1
n

n

∑
z=1

dz

)
= n2/3 · d̄ = O(n2/3)

This relaxation allows us to express the cubic-degree term in the overall complexity as:

O
(

n

∑
z=1

d3
z

)
= O

(
n ·
(

1
n

n

∑
z=1

d3
z

))
= O

(
n ·
(

n2/3
)3
)
= O(n3)

Thus, the overall time complexity in this case is O(n3).
• Dense graphs: In the worst-case scenario of dense graphs, where dz = O(n) for all nodes, we

obtain:
n

∑
z=1

d3
z = O(n4)

leading to an overall time complexity of O(n4).

We compute CH index on the whole bipartite network, which means that in our case, n = U + L.

Denominator

The computation of denominator is related to common neighbors (CNi,j) between two nodes of
same kind. The computation of common neighbors between two nodes of same kind is implemented
by the dot product of the adjacent matrix and its transpose. This procedure is offline and the results
can be reused always. For user based, it’s of time complexity U2 I, while for item based it’s of time
complexity UI2. Since we want the similarity score on two projected monopartite networks, we only
need to consider U2 + I2 computations of denominator. The final time complexity of denominator
computation can be O(U2 I + UI2 + U2 + I2) = O(U2 I + UI2).

Appendix J.3. Bipartite Scoring

In this step, we aggregate the similarity scores on two monopartite networks separately to the link
prediction scores. For instance, when we compute the user-based link prediction score, we utilized the
user similarity matrix of size U × U and adjacent matrix of size U × I utilizing sum or normalization
method. For each user-item pair, we compute the score using all the user’s similarity corresponding
to our target user so that the complexity can be U exactly. Hence, the user based link prediction
complexity should be multiplied with all pairs of user-item pair and result in time complexity of
O(U2 I). Correspondingly the item based link prediction score time complexity can be of O(UI2). The
total time complexity in this step can be O(U2 I + UI2).

Appendix J.4. Mix Item and User Scores

For each user-item pair, we aggregate user and item score, so that the time complexity is O(UI)

Appendix J.5. Summary

Corresponding the different network regime mentioned in section J.2, we summarize here the
overall time complexity of NSA.

• Sparse, degree-homogeneous: The dominant component of the time complexity is the collaborative
filtering mechanism, result in overall complexity of O(U2 I + UI2).
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• Sparse, degree-heterogeneous: The dominant component of the time complexity is CH score compu-
tation, result in overall complexity of O((U + I)3).

• Dense graphs: The dominant component of the time complexity is CH score computation, result in
overall complexity of O((U + I)4) which is rare for recommendation system tasks.

Appendix K. Experimental Time
In this section, we listed the running time of each method on different datasets with one hyperpa-

rameter setting in Table A3.

Table A3. Summary of Running Time. All reported times are averaged over three runs. Experiments for
memory-based methods were conducted on an AMD Ryzen Threadripper PRO 3995WX CPU with 64 physical
cores, while other methods were conducted on an NVIDIA RTX A6000 GPU. All time values are expressed in
seconds (s).

Dataset NSA SSCF JCF NGCF LightGCN UltraGCN SimpleX LT-OCF BSPM
aidorganizations_issues 0.06± 0.00 0.06± 0.00 0.06± 0.00 28.90± 1.52 11.30± 0.07 35.80± 0.74 22.39± 0.42 13.41± 0.09 17.31± 0.27

export 5.40± 0.01 1.55± 0.00 1.20± 0.00 1129.81± 8.55 435.42± 3.44 277.43± 2.16 267.52± 0.63 617.89± 31.94 22.75± 0.03
industries_eductionfields_IPUMS 0.35± 0.00 0.34± 0.00 0.40± 0.00 150.53± 2.49 67.50± 0.54 75.34± 0.37 34.17± 0.94 96.63± 0.85 17.99± 0.13

congressmen_topics_US 1.21± 0.01 1.24± 0.00 1.41± 0.02 340.44± 1.96 209.35± 2.30 157.58± 1.26 113.68± 3.61 269.45± 4.39 18.97± 0.20
users_movies_movielens100k 2.90± 0.00 3.15± 0.01 3.65± 0.01 477.04± 5.27 288.40± 0.68 205.45± 2.18 132.38± 2.65 402.87± 2.50 19.33± 0.07
drug_target_ionchannel_2009 0.13± 0.00 0.13± 0.00 0.12± 0.00 70.05± 2.24 9.85± 0.37 35.58± 0.70 12.84± 0.41 11.10± 0.27 17.71± 0.04

drug_target_GPCR_2009 0.09± 0.00 0.09± 0.00 0.09± 0.00 39.53± 1.36 6.98± 0.06 34.92± 1.14 13.85± 0.95 8.58± 0.13 17.87± 0.13
occupations_tasks_ONET 1.32± 0.00 1.51± 0.00 1.76± 0.01 141.58± 0.41 61.06± 0.37 76.30± 0.47 63.22± 2.62 83.36± 0.36 17.91± 0.12
tfs_genes_regulation_ecoli 0.65± 0.00 1.00± 0.00 0.57± 0.01 82.75± 0.23 19.40± 0.13 41.33± 0.54 24.49± 0.93 23.85± 0.11 18.04± 0.05

amazon-product 26.81± 0.12 25.67± 0.05 25.25± 0.14 924.45± 6.48 600.66± 1.88 385.63± 1.44 394.01± 2.27 836.37± 4.80 22.19± 0.05
drug_target_enzyme_2009 0.37± 0.00 0.54± 0.00 0.30± 0.00 64.72± 0.05 14.46± 0.20 39.43± 1.12 12.96± 0.24 19.76± 0.14 17.70± 0.11

drug_target_HQ_2014 0.32± 0.00 0.43± 0.00 0.30± 0.00 67.52± 0.36 10.33± 0.12 35.92± 1.32 18.43± 0.59 12.29± 0.27 17.83± 0.09
drug_target_moesm4_esm 12.30± 0.10 16.36± 0.04 11.66± 0.01 135.00± 2.90 60.33± 0.11 74.57± 0.37 58.64± 1.48 85.20± 0.63 18.85± 0.07

Appendix L. Time Complexity of Baselines
Appendix L.1. Definition

For clarification, all the mathematical symbol mentioned below are defined here.

• U: number of users
• I: number of items
• E: number of edges in the network
• L: number of layers for neural-network based methods
• D: dimension of embedding in model-based methods
• N: number of negative samples
• K: number of sampling similar neighbors
• T: number of epochs for neural-network based methods

Appendix L.2. Time Complexity

We list below the time complexities of the baseline methods, based on their respective descriptions
in the original papers.

• NGCF: O
(

T × L × E × D2
)

• LightGCN: Not declared

• UltraGCN: O
(

T × E × (1 + K + N)× D2
)

• SimpleX: Not declared
• LT-OCF: Not declared
• BSPM: Not declared
• SSCF: O(U2 I + UI2)

• JCF: O(U2 I + UI2)
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