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Article

Modeling of Compound Curves on Railway Lines

Wladyslaw Koc

Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 G. Narutowicza Str.,
80-233 Gdansk, Poland; kocwl@pg.edu.pl

Abstract: This article addresses the issue of designing compound curves, i.e. a geometric system
consisting of two (or more) circular arcs of different radii, pointing in the same direction and directly
connected to each other. Nowadays, compound curves are mainly used on tram lines; they also occur
on railways (e.g. on mountain lines), but new ones are generally no longer being built there.
Therefore, in relation to railway lines, the aim is to be able to recreate (i.e. model) the existing
geometric layout with compound curves, so that it is then possible to correct this layout. An analytical
method for designing track geometric systems was used, adapted to the mobile satellite measurement
technique, in which calculations are carried out in the appropriate local Cartesian coordinate
system.The basis of this system is the symmetrically arranged adjacent main directions of the route,
and the beginning is located at the point of intersection of these directions. A number of detailed
issues have been clarified and basic characteristic quantities have been determined, and the
computational algorithm described in the paper leads to the solution of the problem in a sequential
manner. The obtained possibilities of modeling the compound curves are illustrated by the provided
calculation example.

Keywords: railway road; compound curve; analytical design method; computational algorithm;
sample geometric layout

1. Introduction

Since for many years the development of design documentation in the field of railways has been
carried out using commercial computer software [1,2], it has become established that conducting
research work on the methodology of designing track geometrical systems is now less important. Of
course, such work is carried out [3-5], but its scope is often limited to detailed issues, such as
transition curves [6] or railway turnouts [7,8].

Due to the competitive conditions with other transport systems, new railway lines are usually
adapted to the increased speed of trains; in fact, a significant part of them are high-speed railways.
On the other hand, traditional lines (existing, most often built in the 19th century) are disappearing
from the field of research interest, as they would have to be modified to adapt to contemporary
requirements. This applies especially to railway lines running in difficult terrain conditions (e.g. in
mountainous terrain), where there are small radii of horizontal curves, and additionally controversial
geometric arrangements, such as compound curves and reverse curves. Improving the quality of
these lines, leading to an increase in travel speed, requires appropriate modernization activities. In
the case of compound curves and reverse curves, this would consist in introducing transition curves
between the occurring horizontal curves.

This article addresses the issue of designing compound curves, i.e. a geometric system consisting
of two circular arcs of different radii, pointing in the same direction and directly connected to each
other. Compound curves are currently used on tram lines; they also occur on railways, but new ones
are not built there any more. Therefore, in relation to railway lines, the aim is to obtain the possibility
of reproducing (i.e. modeling) the existing geometric layout with compound curves, so that it is then
possible to correct the horizontal ordinates in the area where the circular arches connect. For this
purpose, it was necessary to develop an effective method for designing such a system, which,
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however, by assumption, will not be used to determine the coordinates of a new compound curve,
but to model the existing system (with a view to its later modification).

At this point it should be noted that the analytical method of designing compound curves had
already been developed and presented in [9]. It concerned a model solution, i.e. creating a geometric
system from scratch, in which circular arcs of different radii are connected with each other by means
of an appropriate transition curve. A classic compound curve, in which the transition curve does not
occur, was a special case in this method. The issue of modifying the existing geometric system was
not considered. Meanwhile, as it seems, the real problem lies somewhere else. After all, it is not about
creating new model systems of compound curves (with appropriate transition curves), but
modernizing the existing systems. In this situation, the classic compound curve becomes the subject
of interest.

In this paper, the solution to the problem is obtained analytically. The standard procedure of the
analytical design method in its previous versions [10-12] requires operating in the local coordinate
system and is characterized — in its initial phase — by the lack of knowledge of the location of the
origin of this system in relation to the appropriate global system (in Poland — in relation to flat
coordinates — it is the national spatial reference system PL-2000 [13]). Full integration of both of these
systems requires carrying out the design procedure in the local system until the very end. The
location of the origin of this system in relation to the appropriate main point of the route and its
resulting coordinates in the global system are determined only in the final phase of the procedure.
This may constitute the basic methodological reservation to the discussed design method. For this
reason, certain interpretation problems may also arise.

As it turns out, these difficulties can be avoided by locating the origin of the local coordinate
system at the point of intersection of both main directions of the route, whose Cartesian coordinates
in the global system are known. Such a version of the analytical design method was presented in [14];
it is universal in nature and covers the areas of connection of adjacent main directions of the railway
route (both symmetrical and asymmetrical). In this paper, an analogous approach was used in the
design of classic compound curves.

2. Local Coordinate System

Similarly to other variants of the analytical design method, when designing classic compound
curves (in which horizontal arcs of different radii are directly connected to each other), it was
assumed that the design of a given area of route direction change will be carried out in the
appropriate local Cartesian coordinate system x, y (marked as LCS). The basis of this system is the
symmetrically set adjacent main directions. In order to obtain such a setting of the main directions,
an appropriate transformation (i.e. shift and rotation) of the global system must be performed.

Design activities carried out in the global rectangular coordinate system, i.e. creating a polygon
of the main directions of the route and determining the mathematical equations of these directions,
the coordinates of their intersection points (i.e. main points) and the angles of return, were presented
in [14]. This work also explains the method of creating a local coordinate system for a given area of
changing the route direction, consisting in shifting the origin of the global system to the point of
intersection of two adjacent main directions (i.e. to point W), and then rotating the shifted system Y>,
Xr by such an angle f§ as to obtain a symmetrical setting of the main directions in the local coordinate
system x, y. Examples of this operation are shown in Figures 1 and 2.
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Figure 1. (a) Local coordinate system x, y against the background of the intersecting main directions of the route
in the shifted PL-2000 system (with the kilometer running from left to right); (b) System x, y after the

transformation.

It should be noted that the setting of the main directions of the route in the PL-2000 system can
be very diverse; Figures 1a and 2a show only two selected cases. However, after the transformation
to the local coordinate system (as shown in Figures 1b and 2b), there are only two possibilities for
locating the designed geometric system: under the x axis, with negative ordinates and the convexity
of the curvilinear elements directed upwards, and above the x axis, with positive ordinates and the
convexity of the curvilinear elements directed downwards. Therefore, when considering the
procedure in detail, it is necessary to present the computational algorithms related to these two
situations. This means that when determining the formulas for the coordinates of characteristic points
in the local coordinate system, two possible cases should be taken into account:

e  Casel - for a geometric system located below the W vertex and resulting negative ordinates (as
in Figure 1b), and

e  Case Il - for a geometric system located above the W vertex and resulting positive ordinates (as
in Figure 2b).
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Figure 2. (a) Local coordinate system x, y against the background of the intersecting main directions of the route
in the shifted PL-2000 system (with the kilometer running from right to left); (b) System x, y after the

transformation.

The paper presents the procedure for creating a geometric system covering Case 1. The design
of the geometric system is carried out in several stages, which are presented later in the article.

3. Determination of Basic Calculation Quantities

In order to be able to operate in the local coordinate system, it is necessary to first perform an
auxiliary procedure, which aims to determine the basic calculation quantities. These quantities refer
to the regions of the geometric system connecting the ends of the extreme straight segments (i.e. the
beginnings of the transition curves) with the connection point of both circular arcs. This refers to the
lengths of the projections of the transition curve ( A, ) and the circular arc ( AX, ) on the horizontal
axis, as well as the lengths of the projections of the transition curve ( Ay;. ) and the circular arc ( Ay,

) on the vertical axis. The calculations of the searched parameters, separately for both occurring
horizontal arcs, are carried out in the system shown in Figure 3.

We start by drawing a straight line simulating the main direction i through point A(0, 0) in the
coordinate system £, §; it is described by the equation

)7=tan%-)”(. Q)
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Figure 3. Scheme for determining the basic characteristic quantities of a geometric system.

This straight line is the abscissa axis of the coordinate system x, y., associated with the transition
curve of length I, which is connected to a circular arc of radius R. We are interested in the coordinates
of the end point of the curve in this system, which result from the corresponding parametric
equations x«(I) and y«(I) for I = I . In the case of using the transition curve in the form of a clothoid,
these coordinates are as follows:

12 19
X (1) =1, ——t— + — 2
L=k =0 R aase R @
12 1! 1?
)=t 3
V0= "6 R "R  a2200F ©)

while the angle Oc(l) of inclination at the end of the curve is determined from the dependence

IC

®C(IC)=_2'R .

(4)

The transformation of the transition curve to the X,§ coordinate system is performed by
rotating the reference system by an angle of a/2. The appropriate formulas depend on the direction
of rotation. As a result of this operation, the required value of the projection of the transition curve
onto the horizontal and vertical axes is obtained. In the case of a right rotation of the x, y. system (as
in Figure 3), the following values are obtained:

Ay = 9(1,) = Xc(|c)'3in%+yc(lc)~cos%

©)
. a a
AV =90 =x (1)-sin%+v (1)-cos&
yTC y(c) Xc(c) sin 2 +yc(c) Ccos 2 ) (6)
The value of the tangent at the end is described by the formula
STC = tan |:®c (Ic) + %:l . (7)

Knowing the position of the transition curve, we can inscribe a circular arc of radius R in the
geometric system. The center of this arc (point S) lies on the line perpendicular to the tangent at the
end of the transition curve (i.e. at point B), at a distance R from this point. The coordinates of point S
are as follows:

pald
w

|

>
x
o

+

N (8)
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1+t

Ys = AYrc = R. 9)

A circular arc is described by the equation

§=7 +\/R2 ~(%-%)", (10)

and the value of the tangent to the geometric system is

g X5 — X
- : 11
JRE = (% - %)’ (1)
The important characteristic point is point H, where the slope of the tangent to the geometric
system is zero (i.e. ¥'=0). Its coordinates are as follows: X, = %, §,, = ¥ + R. The connection of both

circular arcs (i.e. point C) should be located to the left or right of point H. The condition
% € (A, 2%, —AX ) must be met.
The value of the abscissa of point C results from the arbitrarily assumed difference Ax,,,

relating to a circular arc of radius Ry; it is
Ko = MXgeq + AXey - (12)

The ordinate of this point is determined based on equation (10).

Ve = s +\/ R12 _()N(s —X )2 . (13)

The difference Ay.,, for the circular arc CAI, associated with the first transition curve (TC1), is

determined from the formula
AYon = Yo = A¥res - (14)

The key quantity for further actions is the slope of the tangent at point C, which is the same for
both connected arcs. It is

TRy )

When constructing the entire circular arc, the differences Ax;.; and Ay;, for the transition curve
TC1 (determined using formulas (5) and (6)) should be used, as well as the arbitrarily assumed
difference Ax., and difference Ay,,, (determined by formula (14)) for the circular arc CA1. After
entering the radius Re, the differences Ax;., and Ay;, for the transition curve TC2 are obtained.
Determining the values Ax,, and Ay,, for the circular arc CA2 requires an additional calculation
procedure.

Knowing the position of the transition curve TC2 in the X,§ system shown in Figure 3, we can

inscribe a circular arc of radius R: in the geometric system. The coordinates of the center of this arc

(i.e. point S2) result from equations (8) and (9). Inthe X,§ coordinate system, the second circular arc

is also described by equation (10), and the value of the tangent at its end by equation (11).
In the target geometric system (i.e. in a compound curve), this arc will be mirrored relative to
the abscissa X, so the tangent at its end point must satisfy the condition

ylc:Sc: st_y(c - _ X51_)~(c .
\/R22_()~(52_)?c)2 \/Rlz_()zm_ic)z

After taking into account formula (12) we get
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st _(AXTCZ +AXCA2) __ )~(s1 _(AX’TC1 +AXCA1) ]
\/Rzz - I:y(sz - (AXTCZ + AXCAz )]2 \/R12 - |:X31 - (AXTCI + AXCAI )]2

The right hand side of the above expression is already known at this stage, as it results from
equation (15). Therefore, we need to solve the following equation with the unknown AX,, :

)N(sz - (AXTCZ + AX(:Az )

=-5;.
o 2
\/RzZ - [st - (AXTCZ + AXCAZ ):|
As a result of this operation we get
- S
AXcpp = K5y = AXgy + = 2 R,. (16)
1+sc

The coordinates of the end of the second circular arc are as follows:

Koo = Ay + MXepp,s 17)

ycz = YS2+\' Rzz_()zsz_f(cz)2 . (18)
The difference Ay,,, is determined by the formula
AYepo = Yoo = A¥res - 19)
The position of a circular arc of radius Rzin the X, § system, with marked the differences Axg,,
and Ay.,,, is shown in Figure 3.
4. Connection of Both Horizontal Arcs

The construction of a compound curve, i.e. connecting the existing horizontal arcs with radii R:
and R:, will be performed in the auxiliary X,y coordinate system shown in Figure 4. The case of a

geometric system located below the vertex W (i.e. shown in Figure 1) was considered.

y
e s :
By ché ! IAyuu -
i Byrey E T 5‘ ;';c-z- I ------ E A
' : L o ——
Ali‘ A"Tm;i Ax ey L Dxcpy EAX S

Figure 4. Geometric system created as a result of mirror reflection of TC2 and CA2 with respect to the abscissa

Xc .

For the transition curve TC1 and the circular arc CA1, this system is identical to the system X, ¥

; this means that X=X and ¥ =§. Therefore, the coordinates of the characteristic points are:

_A:L =0 s VA;L =0 ’
Xg1 = AXpey, Vo1 = AYrcr,
Xo1 = Xo = Aoy + AXepy, Ver = Ve =AVrc; +AYep -

For the TC2 curve and the CA2 arc it will be necessary to perform an appropriate transformation,
consisting in performing a mirror reflection with respect to the abscissa X . The characteristic points
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A), B, and C,, obtained as a result of this operation do not yet occupy their final position and will

require correction. Their coordinates are as follows:

Xpge = AXgey + AXepy + AXepy + DXy, Vo =0,
Xgoe = AXgey + AXcpy + AXcpy Voo = AYrca,
Xogx = MXpcp + MXepy Yeor = AYrey +AYcp; -

As can be seen in Figure 4, at the assumed connection point of both arcs there is a difference in
ordinates Ay, which is

AYe =V, = Ve = (Achz +AYcn, ) - (Ami + Aycm) . (20)

In order to obtain a smooth connection of both parts of the geometric system, the ordinates of
this system related to the arc of radius Rz should be corrected (while maintaining the abscissa X
values). For Case I, we obtain

Va2 = Yaor =AVc, Voo = Ve — AV, Veo = Ve = Ve —AVe -

Figure 5 shows the geometric system of the corresponding compound curve in the X,y

coordinate system.

y

)
F—
D L]
=
] 1
=3 n
1
(]
. TR N
>
>
=
[a]
[ ]
[V .

Dy -

Figure 5. Geometric system for Case I created after correcting the TC2 and CA2 ordinates from Figure 4.

For the geometric system located above the vertex W (Case II in Figure 2b), the same formulas
for the abscissa values apply, but the ordinates take negative values. This means that

Yu =0, Yar =AY,
Vo1 = —AYrc1s Vo2 = —(AYrc, —AY:),
Yo =Yc = _(Ami + AyCAl) 7 Vo =Yc = _(Achz +AYen, — AVC) .

5. Transferring the Solution to the Local Coordinate System

Knowing the coordinates of the extreme points of the geometric system A1(0,0) and A, (X,,,Va,)

, we can transfer the obtained solution to the local coordinate system x, y (shown in the given case in
Figure 1b). To do this, we need to derive from these points two tangent lines inclined at an angle a/2
— positive from point A: and negative from point Az (Fig. 6). The equations of these lines are as follows:

y:tan%-i, 1)

yzyAZ_tan%'(i_iAZ)' (22)

The intersection point of lines (21) and (22) is the origin of the local coordinate system. Its
coordinates in the X,y system are as follows:
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a
~ yAzﬁLtanE-xAZ
o 2-tan% , *)
2
_ 1(_ a _
Yw = E Ya, +1an E Xa2 |- (24)
In Case II, the coordinates of point W are described by the formulas:
p y
_ a _
o Vettano Xy,
" 2-tan% , =)
2
_ 1/(_ a _
Yw = E Yoo — tan E Xaz |- (26)

Thanks to their knowledge, it is possible to transform the points of the geometric system into the
local coordinate system using the formulas:

X=X—-%, 7)

Y=Y - (28)

Figure 7 shows the geometric system of the compound curve from Figure 6 transferred to the
local coordinate system.

i
w
O —
Bll i ‘E“_IAYCAI IAyCAz 8
A, N i T5 N
Ber i, o Ao """".793425}\’?

Figure 6. Geometric system of the compound curve against the background of the introduced main directions

of the route.

V]

Figure 7. Geometric system of the compound curve in the local coordinate system.
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Knowing the assumed values of the radii R: and R: of the compound curve and the lengths [1
and [z of the transition curves, one must first determine — using the appropriate formulas — the values
AXpe; and AXe,, AYie, and Ayi.,, S, and Sy,, AXey and AXe,, and Ay, and Ay,,. In the
local coordinate system x, y, the beginning of the transition curve TC1 (point A:) is located in the main
direction (i), and the beginning of the curve TC2 (point A:) is located in the main direction (i+1). The
list of formulas for the coordinates of all characteristic points is provided in Table 1.

Table 1. List of formulas for the coordinates of characteristic points.

Point Abscissa x Ordinate y (CaseI)  Ordinate y (Case II)
Ai Xy —Yw Yw
B: AXrey = Xy AXrey = Xy AYrer + Yu
C AXTCl + Ao — Xy AYTcz - Ayc —Yu AYrer —AYc + Y
B> AXrey + AXepy + AXepp =Xy AYrc, —=AYc = Yu AYre, =AY + Y
A2 AXTCl + AXCA1 + AXCAZ + AXTC1 - XN _Ayc - yw _AVC + Vw

The values X, and ¥, appearing in Table 1 result from formulas (23-26), and Ay, from formula
(20).

6. Computational Algorithms

After determining the coordinates of the characteristic points, the design process should be
finalized by determining the course of the route sections located between these points. The
differentiation of calculation algorithms related to the directions of rotation of the coordinate systems
related to the transition curves must be taken into account. In practice, this involves separate
determination of coordinates in the x, y system for the geometric system located below the W vertex
(i.e. for Case I) and above the W vertex (i.e. for Case II). In Case I, the situation is shown in Figure 8,
while in Case II - the situation is shown in Figure 9.

To determine the computational algorithms, we must first determine the coordinates of the
centers of both connected arcs in the local coordinate system. This is done using the knowledge of
the computational parameters of point C — the abscissa xc, the ordinate yc and the slope of the tangent
sc. The centers of both arcs (points S: and Sz) lie on the line perpendicular to the tangent at point C,
at distances R: and R: from this point. The corresponding formulas are presented in Table 2. In the
formulas for the abscissa values, the sign of the slope of the tangent sc plays an important role.

Figure 8. Designed compound curve in the local coordinate system for the case of the geometric system located

below the W vertex.
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Figure 9. Designed compound curve in the local coordinate system for the case of the geometric system located

above the W vertex.

Table 2. List of formulas for the coordinates of the centers of connected circular arcs.

Tangent Case I Case Il
SC SC
Xo; = X + R, X = X ———=—=R,
o 1+ N J1+5s¢
Yor =Y. L R, Yo1=VYc + L R,
> _—— =
sc>0 s1 c \/R s1 c 1+Sé
Xe, = X + S R Xe, = X. — S R
S2 C 1+S(2: 2 S2 C \/R 2
1 1
Ys2 = Ye > R Yso =Y F 2 Rz
1+s¢ 1+sg
SC SC
X =X ———=—=R, Xeq = X~ + R,
S1 C '_l+5(2: S1 C '_1+Sé
1 1
sc<0 Ys1=Ye _—Ri Ysi =Y t R1
2 2
1+sg 1+sg
SC _ SC
XSZ - XC l+sé RZ XSZ - XC + \/R RZ
1 1
Ys2 = Yc _—ZRZ Yso =Y F 2 Rz
,f1+ Se 1+sg

Table 3 presents a list of formulas necessary to determine the coordinates of individual elements

of the designed geometric system. It includes:

e  parametric equations of the transition curve TC1I in the auxiliary xi, y1 coordinate system (for

1(0,1,)),

e equation of the angle of inclination of the tangent in the x1, y1 auxiliary coordinate system (for

1e(0,1,)),

e parametric equations of the transition curve TC1 in the local coordinate system x, y (for 1 €(0,1,)

),

° formula for the tangent value at the end of the transition curve TCI,

e  equation of a circular arc CA1 with radius Ry,

e  equation of a circular arc CA2 with radius Ro,
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e  parametric equations of the transition curve TC2 in the auxiliary x2, y2 coordinate system (for

I e(-1,,0)),

e  equation of the angle of inclination of the tangent in the auxiliary x2, y2 coordinate system (for

I e(-1,,0)),

e  parametric equations of the transition curve TC2 in the local coordinate system x, y (for

I e(-1,,0)),

e formula of the tangent value at the end of the transition curve TC2.

Table 3. List of formulas for determining the coordinates of a geometric system.

Geometric Casel Case II
element
1 1 1 1
iti D=I1- 1°+ I° D=I1- 1°+ 1°
Transition curve TC1 X% (I) 20-R 12 3456 R -1 x (1) 40-RZ 12 3456 R’ 1!
1 1 1 1
X €(Xpy, X N=- I° + 7 1) = 3 7
€ (X Xar) W= T W= 2w
1<(0,l,) —% " +% "
42240-R} - 42240-R} -
o, (l " o, "
1()__2~R1-|1 1()_2.|.‘\)1.|1
x(l)=xA1+x1(|)-cos%—y1(|).sin% x(|)=xA1+x1(|).cos%+y1(|)-sin%
y(l):yAl+x1(|)-sin%+y1(|)-cos% y(I):ym—xl(l)~sin%+y1(l)-cos%
o [04
Ster = tan |:®1(I1) + E:| Srer = tan |:®1(|1) _E:|
Circular arc CA1 y(x):y31+4/Rf—(x—xSl)2 y(X) =y, — Rf—(x—xSI)2
X € (Xgy, Xe )
Circular arc CA2 y(X) = Ys, +~/R22 —(x=%g,)° y(X) =Y, —.’Rzz ~(x=x%g, )"
X € (Xe 1 Xgz)

Transition curve TC2

X € (Xgp1 Xn2 )

| e<—|2,0>

% (1) =1- ! S1°+ 14 1°
40-R?  3456-R; -l
1 1
I — |3_ 7
%) 6-R,-l, 336-R-I
+ 1 — 11
42240-R; -1
[ "
® =
10] 2R L

x(1) = X, +X2(I)-cos%+ yz(l)-sin%
Y1) =VYa, —X2(|)~Sin%+ yz(l)-cos%

a
Stc, = tan |:®2 (1) _E}

x,(1)=1- ! S 14 1°
40-R?  3456-R; -l
1 1
I — |3_ 7
%) 6-R,-l, 336-R:-I:
1 11

+—
42240-RS -1

|2

2R, I,

0,()=-

(24 . a

x(I) = x,, +x2(l)-cosE—y2(I)~smE
.. a (04

y(l) =Yn +X2(|)'S|n5+ yz(l)'COSE

Sic, =tan [@202) +%}

7. Calculation Example

In the presented calculation example, a system of main directions of the route was assumed,
intersecting at point W, whose coordinates in the PL-2000 system are: Yw = 6,751,176.928 m, Xw =
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6,249,641.342 m. We are dealing with a turn of the route to the left, with increasing mileage from right
to left (which corresponds to the situation in Figure 2).

The assumed train speed on the designed compound curve is V =90 km/h. It results from the
smaller radius of the circular arc R2 = 450 m and the cant h: = 125 mm, where the unbalanced
acceleration is am = 0.571 m/s% The length of the corresponding transition curve in the form of a
clothoid is I = 115 m (the wheel lifting speed on the gradient due to cant is f = 27.174 mm/s). The
circular arc radius R: = 600 m and cant h: = 75 mm were assumed, which determines the unbalanced
acceleration am = 0.551 m/s2 The length of the transition curve in the form of a clothoid is I = 75 m
(the wheel lifting speed on the gradient due to cant is f = 25.000 mmy/s). In the PL-2000 system, the
straight line representing the main direction (i) is described by the formula

X =3,982,362.559+0.33583460-Y ,
and the line describing the direction (i +1) by equation
X =-14,625,109.428 +3.09201655-Y .

From the given equations of the main directions it follows that the angles of inclination of the
lines are: @i =0.324 rad and @i = 1.258 rad. On this basis, the angle of return of the route a = i1 — @i
=0.934 rad.

Obtaining the local coordinate system x, y, with symmetrically set adjacent main directions,
requires shifting the origin of the PL-2000 system to point W and rotating it with respect to this point
to the left by an angle f = (pi+ a/2) + @ = 3.284 rad. In the coordinate system x, y, the angles of
inclination of the straight lines will be: ¢, =—a/2=-0.467 rad, ¢,,,=a/2=0.467 rad.

The actual design begins with an auxiliary operation to determine the coordinates of
characteristic points using the formulas given in Chapter 3. The following values were obtained:
AXpe, = 67.646 m, Ay, =32.358 m, S;.,= 0.428108, AX., =300 m (assumed value), Ay, =45.012 m,
AX,e, = 104721 m, Ay,,=47.321 m, S,c,= 0.352862, AXc,, = 101.841 m and Ay,,,= 23.087 m. The

formulas given in Table 1 allowed us to determine the coordinates of points As, Bi, C, B2and A: (Fig.
8). The values of these coordinates (and the tangents) are given in Table 4.

Table 4. The values of the parameters of the characteristic points for the geometric system in the presented

calculation example.

Parameter Point Az Point B: Point C Point B: Point A
Abscissa x [m] -294.007 -226.361 73.639 175.480 280.201
Ordinate y [m] 148.238 115.880 70.868 93.956 141.277

Tangent s —0.50420 —-0.42811 0.10705 0.35286 0.50420

Further design operations are performed in the local coordinate system x, y, using the formulas
given in Table 3. First, an auxiliary coordinate system x1, y1 is assumed, related to the transition curve
TC1. The beginning of this curve (i.e. point A1) is also the beginning of the designed geometric system.
The clothoid coordinates x1(I) and y1(I) were determined for |€(0;75) m. The value of the angle of

inclination of the tangent at the end of the curve was Oi(l1) = — 0.0625 rad. The next stage of the
operations is to rotate the system x1, 1 to the right by an angle a/2. For the parametric equations x(/)
and y(I) of the curve TCI, the condition X €(—294.007;-226.361) m applies. The coordinates of the

circular arc related to the curve TC1 were determined for xe <—226.361; 73.639> m.

Then, the auxiliary coordinate system x2, 12, related to the transition curve TC2, was used. The
beginning of this curve (i.e. point A2) is the end of the designed geometric system. The clothoid
coordinates x2(I) and y(I) were determined for |e(-115;0) m. The value of the angle of inclination

of the tangent at the end of the curve was ©2(l2) = - 0.12778 rad. As a result of rotating the system x2,
y2 to the left by an angle «/2, the parametric equations x(I) and y(I) of the curve TC2 were obtained,
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and the condition X e(175.480;280.201) m is valid. The coordinates of the circular arc related to the
curve TC2 were determined for x €(73.639;175.480) m.

The length of the projection of the entire system on the abscissa axis was 574.208 m. Figure 10
shows the modeled geometric system in the local coordinate system. The green color indicates the
circular arc CA1, the red color indicates the arc CA2, the blue color indicates the transition curves,
and the purple color indicates the straight sections.

y [m}l

e, o)

156
AN B,

100

Figure 10. Geometric system of the compound curve modeled using the analytical method in the local coordinate

system.

Finally, the obtained solution was transformed to the PL-2000 system, performing the reverse
operation than was done when creating the LCS. Therefore, in the formulas used [15]

Y =Y, +x-cos(—f)+y-sin(-4), (29)

X =X, —X-sin(=B)+y-cos(-p) (30)

there is a negative value of the angle . The final form of the geometric system is presented in Figure
11 (the colors of the markings are as in Figure 10).
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Figure 11. Geometric system of the compound curve modeled using the analytical method in the PL-2000

system.
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8. Conclusions

This article addresses the issue of designing classic compound curves, i.e. a geometric system
consisting of two circular arcs of different radii, pointing in the same direction and connected
directly to each other. Compound curves are currently used on tram lines; they also occur on
railways, but new ones are not built there any more. Therefore, in relation to railway lines, the aim is
to obtain the possibility of reproducing (i.e. modeling) the existing geometric layout with compound
curves, so that it is then possible to correct the horizontal ordinates in the area where the circular
arches connect. For this purpose, it was necessary to develop an effective method for designing such
a system, which, however, by assumption, will not be used to determine the coordinates of a new
compound curves, but to model the existing system (with a view to its later modification).

To solve the problem, an analytical design method was used, in which individual elements of
these geometric systems are described by mathematical equations. The design itself is carried out in
the appropriate local Cartesian coordinate system, the basis of which are the symmetrically set
adjacent main directions of the route. The origin of the local coordinate system is located at the
intersection point of the adjacent main directions, the coordinates of which in the global system are
known.

In order to be able to operate in the local coordinate system, one must first perform an auxiliary
procedure aimed at determining the basic computational quantities. These quantities refer to the
regions of the geometric system connecting the ends of the extreme straight segments (i.e. the
beginnings of transition curves) with the connection point of both circular arcs. This refers to the
lengths of the projections of transition curves and circular arcs on the horizontal and vertical axes.

The construction of a compound curve, i.e. the connection of the existing horizontal arcs with
radii R: and Ry, is carried out in the auxiliary coordinate system and then transferred to the local
coordinate system. The formulas for the coordinates of characteristic points are presented, in order
to then finalize the design process by determining the course of the route sections located between
these points. The obtained possibilities of modeling the compound curve are illustrated by the
included calculation example.
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Abbreviations

The following abbreviations are used in this manuscript:

PL-2000  The Polish national spatial reference system

LCS Local coordinate system
CA Circular arc

TC Transition curve
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