
Article Not peer-reviewed version

Modeling of Compound Curves on

Railway Lines

Wladyslaw Koc *

Posted Date: 26 March 2025

doi: 10.20944/preprints202503.1946.v1

Keywords: railway road; compound curve; analytical design method; computational algorithm; sample

geometric layout

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/2611080


 

 

Article 

Modeling of Compound Curves on Railway Lines 

Wladyslaw Koc 

Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 G. Narutowicza Str., 

80-233 Gdansk, Poland; kocwl@pg.edu.pl 

Abstract: This article addresses the issue of designing compound curves, i.e. a geometric system 

consisting of two (or more) circular arcs of different radii, pointing in the same direction and directly 

connected to each other. Nowadays, compound curves are mainly used on tram lines; they also occur 

on railways (e.g. on mountain lines), but new ones are generally no longer being built there. 

Therefore, in relation to railway lines, the aim is to be able to recreate (i.e. model) the existing 

geometric layout with compound curves, so that it is then possible to correct this layout. An analytical 

method for designing track geometric systems was used, adapted to the mobile satellite measurement 

technique, in which calculations are carried out in the appropriate local Cartesian coordinate 

system.The basis of this system is the symmetrically arranged adjacent main directions of the route, 

and the beginning is located at the point of intersection of these directions. A number of detailed 

issues have been clarified and basic characteristic quantities have been determined, and the 

computational algorithm described in the paper leads to the solution of the problem in a sequential 

manner. The obtained possibilities of modeling the compound curves are illustrated by the provided 

calculation example.  

Keywords: railway road; compound curve; analytical design method; computational algorithm; 

sample geometric layout 

 

1. Introduction 

Since for many years the development of design documentation in the field of railways has been 

carried out using commercial computer software [1,2], it has become established that conducting 

research work on the methodology of designing track geometrical systems is now less important. Of 

course, such work is carried out [3–5], but its scope is often limited to detailed issues, such as 

transition curves [6] or railway turnouts [7,8].  

Due to the competitive conditions with other transport systems, new railway lines are usually 

adapted to the increased speed of trains; in fact, a significant part of them are high-speed railways. 

On the other hand, traditional lines (existing, most often built in the 19th century) are disappearing 

from the field of research interest, as they would have to be modified to adapt to contemporary 

requirements. This applies especially to railway lines running in difficult terrain conditions (e.g. in 

mountainous terrain), where there are small radii of horizontal curves, and additionally controversial 

geometric arrangements, such as compound curves and reverse curves. Improving the quality of 

these lines, leading to an increase in travel speed, requires appropriate modernization activities. In 

the case of compound curves and reverse curves, this would consist in introducing transition curves 

between the occurring horizontal curves. 

This article addresses the issue of designing compound curves, i.e. a geometric system consisting 

of two circular arcs of different radii, pointing in the same direction and  directly connected to each 

other. Compound curves are currently used on tram lines; they also occur on railways, but new ones 

are not built there any more. Therefore, in relation to railway lines, the aim is to obtain the possibility 

of reproducing (i.e. modeling) the existing geometric layout with compound curves, so that it is then 

possible to correct the horizontal ordinates in the area where the circular arches connect. For this 

purpose, it was necessary to develop an effective method for designing such a system, which, 
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however, by assumption, will not be used to determine the coordinates of a new compound curve, 

but to model the existing system (with a view to its later modification). 

At this point it should be noted that the analytical method of designing compound curves had 

already been developed and presented in [9]. It concerned a model solution, i.e. creating a geometric 

system from scratch, in which circular arcs of different radii are connected with each other by means 

of an appropriate transition curve. A classic compound curve, in which the transition curve does not 

occur, was a special case in this method. The issue of modifying the existing geometric system was 

not considered. Meanwhile, as it seems, the real problem lies somewhere else. After all, it is not about 

creating new model systems of compound curves (with appropriate transition curves), but 

modernizing the existing systems. In this situation, the classic compound curve becomes the subject 

of interest. 

In this paper, the solution to the problem is obtained analytically. The standard procedure of the 

analytical design method in its previous versions [10–12] requires operating in the local coordinate 

system and is characterized – in its initial phase – by the lack of knowledge of the location of the 

origin of this system in relation to the appropriate global system (in Poland – in relation to flat 

coordinates – it is the national spatial reference system PL-2000 [13]). Full integration of both of these 

systems requires carrying out the design procedure in the local system until the very end. The 

location of the origin of this system in relation to the appropriate main point of the route and its 

resulting coordinates in the global system are determined only in the final phase of the procedure. 

This may constitute the basic methodological reservation to the discussed design method. For this 

reason, certain interpretation problems may also arise. 

As it turns out, these difficulties can be avoided by locating the origin of the local coordinate 

system at the point of intersection of both main directions of the route, whose Cartesian coordinates 

in the global system are known. Such a version of the analytical design method was presented in [14]; 

it is universal in nature and covers the areas of connection of adjacent main directions of the railway 

route (both symmetrical and asymmetrical). In this paper, an analogous approach was used in the 

design of classic compound curves. 

2. Local Coordinate System 

Similarly to other variants of the analytical design method, when designing classic compound 

curves (in which horizontal arcs of different radii are directly connected to each other), it was 

assumed that the design of a given area of route direction change will be carried out in the 

appropriate local Cartesian coordinate system x, y (marked as LCS). The basis of this system is the 

symmetrically set adjacent main directions. In order to obtain such a setting of the main directions, 

an appropriate transformation (i.e. shift and rotation) of the global system must be performed. 

Design activities carried out in the global rectangular coordinate system, i.e. creating a polygon 

of the main directions of the route and determining the mathematical equations of these directions, 

the coordinates of their intersection points (i.e. main points) and the angles of return, were presented 

in [14]. This work also explains the method of creating a local coordinate system for a given area of 

changing the route direction, consisting in shifting the origin of the global system to the point of 

intersection of two adjacent main directions (i.e. to point W), and then rotating the shifted system YP, 

XP by such an angle β as to obtain a symmetrical setting of the main directions in the local coordinate 

system x, y. Examples of this operation are shown in Figures 1 and 2. 
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Figure 1. (a) Local coordinate system x, y against the background of the intersecting main directions of the route 

in the shifted PL-2000 system (with the kilometer running from left to right); (b) System x, y after the 

transformation. 

It should be noted that the setting of the main directions of the route in the PL-2000 system can 

be very diverse; Figures 1a and 2a show only two selected cases. However, after the transformation 

to the local coordinate system (as shown in Figures 1b and 2b), there are only two possibilities for 

locating the designed geometric system: under the x axis, with negative ordinates and the convexity 

of the curvilinear elements directed upwards, and above the x axis, with positive ordinates and the 

convexity of the curvilinear elements directed downwards. Therefore, when considering the 

procedure in detail, it is necessary to present the computational algorithms related to these two 

situations. This means that when determining the formulas for the coordinates of characteristic points 

in the local coordinate system, two possible cases should be taken into account: 

• Case I – for a geometric system located below the W vertex and resulting negative ordinates (as 

in Figure 1b), and 

• Case II – for a geometric system located above the W vertex and resulting positive ordinates (as 

in Figure 2b). 
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Figure 2. (a) Local coordinate system x, y against the background of the intersecting main directions of the route 

in the shifted PL-2000 system (with the kilometer running from right to left); (b) System x, y after the 

transformation. 

The paper presents the procedure for creating a geometric system covering Case I. The design 

of the geometric system is carried out in several stages, which are presented later in the article.  

3. Determination of Basic Calculation Quantities 

In order to be able to operate in the local coordinate system, it is necessary to first perform an 

auxiliary procedure, which aims to determine the basic calculation quantities. These quantities refer 

to the regions of the geometric system connecting the ends of the extreme straight segments (i.e. the 

beginnings of the transition curves) with the connection point of both circular arcs. This refers to the 

lengths of the projections of the transition curve ( TCx ) and the circular arc ( CAx ) on the horizontal 

axis, as well as the lengths of the projections of the transition curve ( TCy ) and the circular arc ( CAy

) on the vertical axis. The calculations of the searched parameters, separately for both occurring 

horizontal arcs, are carried out in the system shown in Figure 3. 

We start by drawing a straight line simulating the main direction i through point  A(0, 0) in the 

coordinate system ,x y ; it is described by the equation 

tan
2

y x


=  . (1) 
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Figure 3. Scheme for determining the basic characteristic quantities of a geometric system.  

This straight line is the abscissa axis of the coordinate system xc, yc , associated with the transition 

curve of length lc, which is connected to a circular arc of radius R. We are interested in the coordinates 

of the end point of the curve in this system, which result from the corresponding parametric 

equations xc(l) and yc(l) for l = lc . In the case of using the transition curve in the form of a clothoid, 

these coordinates are as follows: 

3 5

2 4
( )

40 3456

c c

c c c

l l
x l l

R R
= − +

 
, (2) 

2 4 6

3 5
( )

6 336 42240

c c c

c c

l l l
y l

R R R
= − + −

  
, (3) 

while the angle Θc(lc) of inclination at the end of the curve is determined from the dependence 

( )
2

c

c c

l
l

R
 = −


. (4) 

The transformation of the transition curve to the ,x y  coordinate system is performed by 

rotating the reference system by an angle of α/2. The appropriate formulas depend on the direction 

of rotation. As a result of this operation, the required value of the projection of the transition curve 

onto the horizontal and vertical axes is obtained. In the case of a right rotation of the xc, yc system (as 

in Figure 3), the following values are obtained: 

( ) ( ) sin ( ) cos
2 2

TC c c c c cy y l x l y l
 

 = =  + 
, (5) 

( ) ( ) sin ( ) cos
2 2

TC c c c c cy y l x l y l
 

 = =  + 
. (6) 

The value of the tangent at the end is described by the formula 

tan ( )
2

TC c cs l
 

=  + 
 

. (7) 

Knowing the position of the transition curve, we can inscribe a circular arc of radius R in the 

geometric system. The center of this arc (point S) lies on the line perpendicular to the tangent at the 

end of the transition curve (i.e. at point B), at a distance R from this point. The coordinates of point S 

are as follows: 

21

KP

S TC

TC

s
x x R

s
=  +

+
, (8) 
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2

1

1
S TC

TC

y y R
s

=  −
+

. (9) 

A circular arc is described by the equation  

( )
22

S Sy y R x x= + − − , (10) 

and the value of the tangent to the geometric system is  

( )
22

' S

S

x x
y

R x x

−
=

− −

. (11) 

The important characteristic point is point H, where the slope of the tangent to the geometric 

system is zero (i.e. 'y = 0). Its coordinates are as follows: H Sx x= , H Sy y R= + . The connection of both 

circular arcs (i.e. point C) should be located to the left or right of point H. The condition 

( ),2C TC H TCx x x x  −  must be met. 

The value of the abscissa of point C results from the arbitrarily assumed difference 1CAx , 

relating to a circular arc of radius R1; it is  

1 1C TC CAx x x=  +  . (12) 

The ordinate of this point is determined based on equation (10). 

( )
22

1C S S Cy y R x x= + − − . (13) 

The difference 1CAy  for the circular arc CA1, associated with the first transition curve (TC1), is 

determined from the formula 

1 1CA C TCy y y = − . (14) 

The key quantity for further actions is the slope of the tangent at point C, which is the same for 

both connected arcs. It is  

( )

'

22

1

S C

C C

S C

x x
y s

R x x

−
= =

− −

. (15) 

When constructing the entire circular arc, the differences 1TCx and 1TCy for the transition curve 

TC1 (determined using formulas (5) and (6)) should be used, as well as the arbitrarily assumed 

difference 1CAx and difference 1CAy (determined by formula (14)) for the circular arc CA1. After 

entering the radius R2, the differences 2TCx and 2TCy for the transition curve TC2 are obtained. 

Determining the values 2CAx and 2CAy for the circular arc CA2 requires an additional calculation 

procedure. 

Knowing the position of the transition curve TC2 in the ,x y  system shown in Figure 3, we can 

inscribe a circular arc of radius R2 in the geometric system. The coordinates of the center of this arc 

(i.e. point S2) result from equations (8) and (9). In the ,x y  coordinate system, the second circular arc 

is also described by equation (10), and the value of the tangent at its end by equation (11). 

In the target geometric system (i.e. in a compound curve), this arc will be mirrored relative to 

the abscissa Cx , so the tangent at its end point must satisfy the condition 

( ) ( )

' 2 1

2 22 2

2 2 1 1

S C S C

C C

S C S C

x x x x
y s

R x x R x x

− −
= = = −

− − − −

. 

After taking into account formula (12) we get 
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( )

( )

( )

( )

2 2 2 1 1 1

2 22 2

2 2 2 2 1 1 1 1

S TC CA S TC CA

S TC CA S TC CA

x x x x x x

R x x x R x x x

−  + −  +
= −

− −  + − −  +      

. 

The right hand side of the above expression is already known at this stage, as it results from 

equation (15). Therefore, we need to solve the following equation with the unknown 2CAx : 

( )

( )

2 2 2

22

2 2 2 2

S TC CA

C

S TC CA

x x x
s

R x x x

−  +
= −

− −  +  

. 

As a result of this operation we get 

2 2 2 2
21

C

CA S TC

C

s
x x x R

s
 = − +

+
. (16) 

The coordinates of the end of the second circular arc are as follows: 

2 2 2C TC CAx x x=  +  , (17) 

( )
22

2 2 2 2 2C S S Cy y R x x= + − − . (18) 

The difference 2CAy  is determined by the formula 

2 2 2CA C TCy y y = − . (19) 

The position of a circular arc of radius R2 in the ,x y  system, with marked the differences 2CAx

and 2CAy , is shown in Figure 3. 

4. Connection of Both Horizontal Arcs 

The construction of a compound curve, i.e. connecting the existing horizontal arcs with radii R1 

and R2 , will be performed in the auxiliary ,x y  coordinate system shown in Figure 4. The case of a 

geometric system located below the vertex W (i.e. shown in Figure 1) was considered. 

 

Figure 4. Geometric system created as a result of mirror reflection of TC2 and CA2 with respect to the abscissa 

Cx . 

For the transition curve TC1 and the circular arc CA1, this system is identical to the system ,x y

; this means that x x=  and y y= . Therefore, the coordinates of the characteristic points are: 

1 0Ax = ,      1 0Ay = , 

1 1B TCx x=  ,     1 1B TCy y=  , 

1 1 1C C TC CAx x x x= =  +  ,   1 1 1C C TC CAy y y y= =  +  . 

For the TC2 curve and the CA2 arc it will be necessary to perform an appropriate transformation, 

consisting in performing a mirror reflection with respect to the abscissa Cx . The characteristic points 
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*

2A , *

2B  and *

2C , obtained as a result of this operation do not yet occupy their final position and will 

require correction. Their coordinates are as follows: 

2* 1 1 2 2A TC CA CA TCx x x x x=  +  +  +  ,   2* 0Ay = , 

2* 1 1 2B TC CA CAx x x x=  +  +  ,    2* 2B TCy y=  , 

2* 2 2C TC CAx x x=  +  ,     2* 2 2C TC CAy y y=  +  . 

As can be seen in Figure 4, at the assumed connection point of both arcs there is a difference in 

ordinates Cy , which is 

( ) ( )2 2 2 1 1C C C TC CA TC CAy y y y y y y = − =  + −  + . (20) 

In order to obtain a smooth connection of both parts of the geometric system, the ordinates of 

this system related to the arc of radius R2 should be corrected (while maintaining the abscissa x  

values). For Case I, we obtain 

2 2*A A Cy y y= − ,  2 2*B B Cy y y= − ,  2 2*C C C CCy y y y= = − . 

Figure 5 shows the geometric system of the corresponding compound curve in the ,x y  

coordinate system. 

 

Figure 5. Geometric system for Case I created after correcting the TC2 and CA2 ordinates from Figure 4. 

For the geometric system located above the vertex W (Case II in Figure 2b), the same formulas 

for the abscissa values apply, but the ordinates take negative values. This means that 

1 0Ay = ,      2A Cy y=  , 

1 1B TCy y= − ,     2 2( )B TC Cy y y= −  − , 

1 1 1( )C C TC CAy y y y= = −  +  ,   2 2 2( )C C TC CA Cy y y y y= = −  +  − . 

5. Transferring the Solution to the Local Coordinate System 

Knowing the coordinates of the extreme points of the geometric system A1(0,0) and ( )2 2 2,A AA x y

, we can transfer the obtained solution to the local coordinate system x, y (shown in the given case in 

Figure 1b). To do this, we need to derive from these points two tangent lines inclined at an angle α/2 

– positive from point A1 and negative from point A2 (Fig. 6). The equations of these lines are as follows: 

tan
2

y x


=  , (21) 

( )2 2tan
2

A Ay y x x


= −  − . (22) 

The intersection point of lines (21) and (22) is the origin of the local coordinate system. Its 

coordinates in the ,x y  system are as follows: 
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2 2tan
2

2 tan
2

A A

W

y x

x





+ 

=



, (23) 

2 2

1
tan

2 2
W A Ay y x

 
=  +  

 
. (24) 

In Case II, the coordinates of point W are described by the formulas: 

2 2tan
2

2 tan
2

A A

W

y x

x





− + 

=



, (25) 

2 2

1
tan

2 2
W A Ay y x

 
=  −  

 
. (26) 

Thanks to their knowledge, it is possible to transform the points of the geometric system into the 

local coordinate system using the formulas: 

Wx x x= − , (27) 

Wy y y= − . (28) 

Figure 7 shows the geometric system of the compound curve from Figure 6 transferred to the 

local coordinate system. 

 

Figure 6. Geometric system of the compound curve against the background of the introduced main directions 

of the route. 

 

Figure 7. Geometric system of the compound curve in the local coordinate system. 
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Knowing the assumed values of the radii R1 and R2 of the compound curve and the lengths l1 

and l2 of the transition curves, one must first determine – using the appropriate formulas – the values 

1TCx  and 2TCx , 1TCy  and 2TCy , 1TCs  and 2TCs , 1CAx  and 2CAx , and 1CAy  and 2CAy . In the 

local coordinate system x, y, the beginning of the transition curve TC1 (point A1) is located in the main 

direction (i), and the beginning of the curve TC2 (point A2) is located in the main direction (i+1). The 

list of formulas for the coordinates of all characteristic points is provided in Table 1. 

Table 1. List of formulas for the coordinates of characteristic points. 

Point Abscissa x Ordinate y (Case I) Ordinate y (Case II) 

A1 Wx−  Wy−  Wy  

B1 1TC Wx x −  1TC Wx x −  1TC Wy y +  

C 1 1TC CA Wx x x +  −  2TC C Wy y y − −  2TC C Wy y y − +  

B2 1 1 2TC CA CA Wx x x x +  +  −  2TC C Wy y y − −  2TC C Wy y y − +  

A2 1 1 2 1TC CA CA TC Wx x x x x +  +  +  −  C Wy y− −  C Wy y− +  

The values Wx and Wy appearing in Table 1 result from formulas (23-26), and Cy  from formula 

(20).  

6. Computational Algorithms  

After determining the coordinates of the characteristic points, the design process should be 

finalized by determining the course of the route sections located between these points. The 

differentiation of calculation algorithms related to the directions of rotation of the coordinate systems 

related to the transition curves must be taken into account. In practice, this involves separate 

determination of coordinates in the x, y system for the geometric system located below the W vertex 

(i.e. for Case I) and above the W vertex (i.e. for Case II). In Case I, the situation is shown in Figure 8, 

while in Case II – the situation is shown in Figure 9. 

To determine the computational algorithms, we must first determine the coordinates of the 

centers of both connected arcs in the local coordinate system. This is done using the knowledge of 

the computational parameters of point C – the abscissa xC, the ordinate yC and the slope of the tangent 

sC. The centers of both arcs (points S1 and S2) lie on the line perpendicular to the tangent at point C, 

at distances R1 and R2 from this point. The corresponding formulas are presented in Table 2. In the 

formulas for the abscissa values, the sign of the slope of the tangent sC plays an important role. 

 

Figure 8. Designed compound curve in the local coordinate system for the case of the geometric system located 

below the W vertex. 
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Figure 9. Designed compound curve in the local coordinate system for the case of the geometric system located 

above the W vertex. 

Table 2. List of formulas for the coordinates of the centers of connected circular arcs. 

Tangent Case I Case II 

 1 1
21

C

S C

C

s
x x R

s
= +

+
 1 1

21

C

S C

C

s
x x R

s
= −

+
 

sC > 0 1 1
2

1

1
S C

C

y y R
s

= −
+

 1 1
2

1

1
S C

C

y y R
s

= +
+

 

 2 2
21

C

S C

C

s
x x R

s
= +

+
 2 2

21

C

S C

C

s
x x R

s
= −

+
 

 2 2
2

1

1
S C

C

y y R
s

= −
+

 2 2
2

1

1
S C

C

y y R
s

= +
+

 

 1 1
21

C

S C

C

s
x x R

s
= −

+
 1 1

21

C

S C

C

s
x x R

s
= +

+
 

sC < 0 1 1
2

1

1
S C

C

y y R
s

= −
+

 1 1
2

1

1
S C

C

y y R
s

= +
+

 

 2 2
21

C

S C

C

s
x x R

s
= −

+
 2 2

21

C

S C

C

s
x x R

s
= +

+
 

 2 2
2

1

1
S C

C

y y R
s

= −
+

 2 2
2

1

1
S C

C

y y R
s

= +
+

 

Table 3 presents a list of formulas necessary to determine the coordinates of individual elements 

of the designed geometric system. It includes: 

• parametric equations of the transition curve TC1 in the auxiliary x1, y1 coordinate system (for 

10,l l ), 

• equation of the angle of inclination of the tangent in the x1, y1 auxiliary coordinate system (for 

10,l l ), 

• parametric equations of the transition curve TC1 in the local coordinate system x, y (for 10,l l

), 

• formula for the tangent value at the end of the transition curve TC1, 

• equation of a circular arc CA1 with radius R1, 

• equation of a circular arc CA2 with radius R2, 
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• parametric equations of the transition curve TC2 in the auxiliary x2, y2 coordinate system (for 

2 ,0l l − ), 

• equation of the angle of inclination of the tangent in the auxiliary x2, y2 coordinate system (for 

2 ,0l l − ), 

• parametric equations of the transition curve TC2 in the local coordinate system x, y  (for 

2 ,0l l − ),  

• formula of the tangent value at the end of the transition curve TC2. 

Table 3. List of formulas for determining the coordinates of a geometric system. 

Geometric  

element 
Case I Case II 

Transition curve TC1 
5 9

1 2 2 4 4

1 1 1 1

1 1
( )

40 3456
x l l l l

R l R l
= − +

   
 5 9

1 2 2 4 4

1 1 1 1

1 1
( )

40 3456
x l l l l

R l R l
= − +

   
 

1 1,A Bx x x  3 7

1 3 3

1 1 1 1

1 1
( )

6 336
y l l l

R l R l
= − +

   
 3 7

1 3 3

1 1 1 1

1 1
( )

6 336
y l l l

R l R l
= −

   
 

10,l l  11

5 5

1 1

1

42240
l

R l
−

 
 11

5 5

1 1

1

42240
l

R l
+

 
 

 
2

1

1 1

( )
2

l
l

R l
 = −

 
 

2

1

1 1

( )
2

l
l

R l
 =

 
 

 1 1 1( ) ( ) cos ( ) sin
2 2

Ax l x x l y l
 

= +  −   
1 1 1( ) ( ) cos ( ) sin

2 2
Ax l x x l y l

 
= +  +   

 1 1 1( ) ( ) sin ( ) cos
2 2

Ay l y x l y l
 

= +  +   
1 1 1( ) ( ) sin ( ) cos

2 2
Ay l y x l y l

 
= −  +   

 1 1 1tan ( )
2

TCs l
 

=  + 
 

 1 1 1tan ( )
2

TCs l
 

=  − 
 

 

Circular arc CA1 ( )
22

1 1 1( ) S Sy x y R x x= + − −  ( )
22

1 1 1( ) S Sy x y R x x= − − −  

1,B Cx x x    

Circular arc CA2 ( )
22

2 2 2( ) S Sy x y R x x= + − −  ( )
22

2 2 2( ) S Sy x y R x x= − − −  

2,C Bx x x    

Transition curve TC2 
5 9

2 2 4 4

2 2 2

1 1
( )

40 3456
x l l l l

R R l
= − +

  
 5 9

2 2 4 4

2 2 2

1 1
( )

40 3456
x l l l l

R R l
= − +

  
 

2 2,B Ax x x  3 7

2 3 3

2 2 2 2

1 1
( )

6 336
y l l l

R l R l
= −

   
 3 7

2 3 3

2 2 2 2

1 1
( )

6 336
y l l l

R l R l
= −

   
 

2 ,0l l −  11

5 5

2 2

1

42240
l

R l
+

 
 11

5 5

2 2

1

42240
l

R l
+

 
 

 
2

2

2 2

( )
2

l
l

R l
 =

 
 

2

2

2 2

( )
2

l
l

R l
 = −

 
 

 2 2 2( ) ( ) cos ( ) sin
2 2

Ax l x x l y l
 

= +  +   
2 2 2( ) ( ) cos ( ) sin

2 2
Ax l x x l y l

 
= +  −   

 2 2 2( ) ( ) sin ( ) cos
2 2

Ay l y x l y l
 

= −  +   
2 2 2( ) ( ) sin ( ) cos

2 2
Ay l y x l y l

 
= +  +   

 2 2 2tan ( )
2

TCs l
 

=  − 
 

 2 2 2tan ( )
2

TCs l
 

=  + 
 

 

7. Calculation Example 

In the presented calculation example, a system of main directions of the route was assumed, 

intersecting at point W, whose coordinates in the PL-2000 system are: YW = 6,751,176.928 m, XW = 
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6,249,641.342 m. We are dealing with a turn of the route to the left, with increasing mileage from right 

to left (which corresponds to the situation in Figure 2). 

The assumed train speed on the designed compound curve is V = 90 km/h. It results from the 

smaller radius of the circular arc R2 = 450 m and the cant h2 = 125 mm, where the unbalanced 

acceleration is am = 0.571 m/s2. The length of the corresponding transition curve in the form of a 

clothoid is l2 = 115 m (the wheel lifting speed on the gradient due to cant is f = 27.174 mm/s). The 

circular arc radius R1 = 600 m and cant h1 = 75 mm were assumed, which determines the unbalanced 

acceleration am = 0.551 m/s2. The length of the transition curve in the form of a clothoid is l1 = 75 m 

(the wheel lifting speed on the gradient due to cant is f = 25.000 mm/s). In the PL-2000 system, the 

straight line representing the main direction (i) is described by the formula 

3,982,362.559 0.33583460X Y= +  , 

and the line describing the direction (i +1) by equation 

14,625,109.428 3.09201655X Y= − +  . 

From the given equations of the main directions it follows that the angles of inclination of the 

lines are: φi = 0.324 rad and φi+1 = 1.258 rad. On this basis, the angle of return of the route α = φi+1 – φi 

= 0.934 rad. 

Obtaining the local coordinate system x, y, with symmetrically set adjacent main directions, 

requires shifting the origin of the PL-2000 system to point W and rotating it with respect to this point 

to the left by an angle β = (φi + α/2) + π = 3.284 rad. In the coordinate system x, y, the angles of 

inclination of the straight lines will be: i = – α/2 = – 0.467 rad, 1i + = α/2 = 0.467 rad. 

The actual design begins with an auxiliary operation to determine the coordinates of 

characteristic points using the formulas given in Chapter 3. The following values were obtained: 

1TCx = 67.646 m, 1TCy = 32.358 m, 1TCs = 0.428108, 1CAx = 300 m (assumed value), 1CAy = 45.012 m, 

2TCx  = 104.721 m, 2TCy = 47.321 m, 2TCs = 0.352862, 2CAx = 101.841 m and 2CAy = 23.087 m. The 

formulas given in Table 1 allowed us to determine the coordinates of points A1, B1, C, B2 and A2 (Fig. 

8). The values of these coordinates (and the tangents) are given in Table 4. 

Table 4. The values of the parameters of the characteristic points for the geometric system in the presented 

calculation example. 

Parameter Point A1 Point B1 Point C  Point B2 Point A2 

Abscissa x [m] – 294.007 – 226.361 73.639  175.480 280.201 

Ordinate y [m] 148.238 115.880 70.868  93.956 141.277 

Tangent s – 0.50420 – 0.42811 0.10705  0.35286 0.50420 

Further design operations are performed in the local coordinate system x, y, using the formulas 

given in Table 3. First, an auxiliary coordinate system x1, y1 is assumed, related to the transition curve 

TC1. The beginning of this curve (i.e. point A1) is also the beginning of the designed geometric system. 

The clothoid coordinates x1(l) and y1(l) were determined for 0;75l  m. The value of the angle of 

inclination of the tangent at the end of the curve was Θ1(l1) = – 0.0625 rad. The next stage of the 

operations is to rotate the system x1, y1 to the right by an angle α/2. For the parametric equations x(l) 

and y(l) of the curve TC1, the condition 294.007; 226.361x − −  m applies. The coordinates of the 

circular arc related to the curve TC1 were determined for 226.361;73.639x −  m.   

Then, the auxiliary coordinate system x2, y2, related to the transition curve TC2, was used. The 

beginning of this curve (i.e. point A2) is the end of the designed geometric system. The clothoid 

coordinates x2(l) and y2(l) were determined for 115;0l −  m. The value of the angle of inclination 

of the tangent at the end of the curve was Θ2(l2) = – 0.12778 rad. As a result of rotating the system x2, 

y2 to the left by an angle α/2, the parametric equations x(l) and y(l) of the curve TC2 were obtained, 
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and the condition 175.480;280.201x  m is valid. The coordinates of the circular arc related to the 

curve TC2 were determined for 73.639;175.480x  m.   

The length of the projection of the entire system on the abscissa axis was 574.208 m. Figure 10 

shows the modeled geometric system in the local coordinate system. The green color indicates the 

circular arc CA1, the red color indicates the arc CA2, the blue color indicates the transition curves, 

and the purple color indicates the straight sections. 

 

Figure 10. Geometric system of the compound curve modeled using the analytical method in the local coordinate 

system.  

Finally, the obtained solution was transformed to the PL-2000 system, performing the reverse 

operation than was done when creating the LCS.  Therefore, in the formulas used [15] 

( ) ( )cos sinWY Y x y = +  − +  − , (29) 

( ) ( )sin cosWX X x y = −  − +  −  (30) 

there is a negative value of the angle β. The final form of the geometric system is presented in Figure 

11 (the colors of the markings are as in Figure 10). 

 

Figure 11. Geometric system of the compound curve modeled using the analytical method in the PL-2000 

system. 
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8. Conclusions 

This article addresses the issue of designing classic compound curves, i.e. a geometric system 

consisting of two circular arcs of different radii, pointing in the same direction and  connected 

directly to each other. Compound curves are currently used on tram lines; they also occur on 

railways, but new ones are not built there any more. Therefore, in relation to railway lines, the aim is 

to obtain the possibility of reproducing (i.e. modeling) the existing geometric layout with compound 

curves, so that it is then possible to correct the horizontal ordinates in the area where the circular 

arches connect. For this purpose, it was necessary to develop an effective method for designing such 

a system, which, however, by assumption, will not be used to determine the coordinates of a new 

compound curves, but to model the existing system (with a view to its later modification). 

To solve the problem, an analytical design method was used, in which individual elements of 

these geometric systems are described by mathematical equations. The design itself is carried out in 

the appropriate local Cartesian coordinate system, the basis of which are the symmetrically set 

adjacent main directions of the route. The origin of the local coordinate system is located at the 

intersection point of the adjacent main directions, the coordinates of which in the global system are 

known.  

In order to be able to operate in the local coordinate system, one must first perform an auxiliary 

procedure aimed at determining the basic computational quantities. These quantities refer to the 

regions of the geometric system connecting the ends of the extreme straight segments (i.e. the 

beginnings of transition curves) with the connection point of both circular arcs. This refers to the 

lengths of the projections of transition curves and circular arcs on the horizontal and vertical axes.  

The construction of a compound curve, i.e. the connection of the existing horizontal arcs with 

radii R1 and R2, is carried out in the auxiliary coordinate system and then transferred to the local 

coordinate system. The formulas for the coordinates of characteristic points are presented, in order 

to then finalize the design process by determining the course of the route sections located between 

these points. The obtained possibilities of modeling the compound curve are illustrated by the 

included calculation example. 
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