

1 *Original Article*

2 **Does Giant Cell Glioblastoma Have a Better**
3 **Prognosis in Comparison to Glioblastoma**
4 **Multiform? A Secondary Analysis of the SEER**
5 **Database from 1985-2014**

6 Amro K. Bin Abdulrahman MD^{1*}, Yousef R. Bukhari MD¹, Abdulaziz M. Faqihi MD¹,

7 Khalid A. Bin Abdulrahman Prof. Dr. ¹, Juan Gabriel Ruiz Associate Prof.².

8 draka.1416@gmail.com , yousef.bukhary@gmail.com , azoz.mf@hotmail.com,
9 kab@imamu.edu.sa , jruizpel@fiu.edu

10 ¹College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia

11 ²Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA

12 **Correspondence:**

13 Amro Khalid Bin Abdulrahman

14 College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU)

15 P.O. Box: 7544 – Othman Bin Affan Rd. Al-Nada

16 Riyadh 13317 – 4233 - Saudi Arabia

17 Mobile: +966 555902563

18 Email: akabdulrahman@sm.imamu.edu.sa

19 **Abstract:**

20 Brain cancer is the tenth leading cause of death in the U.S. Glioblastoma multiforme (GBM) is the
21 most lethal primary malignant central nervous system tumor in adults. The present study employed
22 samples from 1985-2014 to discover the difference in prognosis among glioblastoma subtypes after
23 the evolution of treatment modalities over the past few years. The current study aims to find the
24 differences between Glioblastoma multiforme (GBM) and giant cell glioblastoma (GCG) in terms of
25 prognosis among adults and elderly patients in the U.S.

26 This study is a historical cohort type of study and is conducted on adults and elderly individuals with
27 GBM or GCG from the years 1985-2014 in the U.S. Data were collected from the Surveillance,
28 Epidemiology, and End Results Program (SEER) database. The study exposure was GBM or GCG
29 and the outcome was mortality. The potential confounders were age, sex, race, ethnicity, year of
30 diagnosis, primary site, and surgery. A chi-square test was used for categorical data. A univariate
31 analysis was used for variables having a p-value < 0.05. Potential confounders were selected and
32 evaluated using multivariate logistic regression models to calculate the odds ratio with stepwise
33 selection.

34 The study sample was 25,117. The incidences of GBM and GCG were not similar in relation to age
35 group. Also, Spanish-Hispanic ethnicity was independently protective of GBM and GCG as
36 compared to Non-Spanish-Hispanic ethnicity patients with GBM have a higher mortality rate than
37 do GCG patients. The mortality rate was higher among patients diagnosed before 2010.

38 In conclusion, GCG was not statistically significant in association to reduced mortality. Non-Spanish-
39 Hispanics with GBM or GCG had a higher mortality rate than did Spanish-Hispanics. Factors such
40 as being female, being age >59, and having a year of diagnosis before 2010 were independently
41 associated with increased mortality.

42 **Key words:** Brain Cancer, Glioblastoma multiforme, Giant Cell Glioblastoma, Prognosis

43 **1. Introduction**

44 Brain cancer and other nervous system cancers are the tenth leading cause of death in
45 the U.S. Brain cancer is common among adults and elderly individuals [1].

46 Glioblastoma multiforme (GBM) is a common malignant tumor that originates from
47 astrocytes. It is a rapid-growing tumor that affects the nervous system, including the brain
48 and the spinal cord [2].

49 It is estimated that GBM cases in the U.S. account for approximately 20% of all primary CNS
50 tumors in the adult population and almost 75% of all anaplastic gliomas [3]. Glioblastoma
51 multiforme (GBM) is the most lethal primary malignant central nervous system tumor in
52 adults [4-6]. GBM incidence and prognosis have changed over the past few years. This has
53 been explained by several risk factors, such as sex, age group, race, ethnicity, year of

54 diagnosis, primary site, and surgical removal of the tumor [7-8]. It has been found that the
55 overall prognosis of patients with GBM is poor, with a median survival of 14.6 months and
56 a five-year survival rate of <5% [4,9]. A review of the relevant literature, which included a
57 well-conducted systematic review [10], provided evidence of an association between survival
58 in cases of glioblastoma and several prognostic factors, including age at diagnosis, sex,
59 race/ethnicity, primary site, and treatment (including surgery). However, no information was
60 available about the effect of subtypes of glioblastoma and prognosis, particularly in terms of
61 whether survival in cases of giant cell glioblastoma was different from that in cases of other
62 subtypes of glioblastoma multiforme. Kozak and Moody conducted a study using the
63 Surveillance, Epidemiology, and End Results (SEER) database from 1988-2004, with which
64 they made a comparison between GCG and GBM and found that GCG had a better prognosis
65 [11]. The present study included samples from 1985-2014 to discover the difference in
66 prognosis between glioblastoma subtypes after the evolution of treatment modalities over the
67 past few years. Therefore, the current study aimed to find the differences between GBM and
68 GCG regarding prognosis among adults and elderly patients in the U.S.

69 **2. Materials and Methods**

70 **2.1 Study strategy and data source:**

71 A historical cohort was assembled using data from the Surveillance, Epidemiology, and
72 End Results (SEER) database in July 2017 (<http://www.seer.cancer.gov/>). The data was
73 collected via SEER*Stat software from 1985-2014. The SEER program was established in
74 1973 by the U.S. NCI and collects incidences and survival records of patients with malignant
75 tumors from 18 population-based cancer registries in the U.S. [12]. The registries represent

76 approximately 28% of the population of the U.S.; registries were selected, in part, for their
77 diverse population subgroups. These surveys have multi-stage sampling and are considered
78 to be complex, overestimated, and not representative of the entire U.S. population. However,
79 SEER does its own modeling through extrapolation.

80

81 **2.2 Study population:**

82 Patients aged younger than 20 years have a lower incidence rate; frequency
83 rapidly increases starting in the fifth decade of life [13]. Therefore, the inclusion criteria for
84 the analysis were patients with a confirmed diagnosis of GBM or GCG at age 18 or older
85 from the years 1985-2014. The exclusion criteria included insurance, grading, and tumor size,
86 due to a high percentage (over 25%) of missing data in the SEER database. The SEER
87 database included patients' insurance data from the years 2007 and onwards. Also, in terms
88 of tumor size, 65% of data was missing in the database. However, glioblastoma has no clear
89 grading system, as it is a type of glioma and is considered the most malignant type (type 4).
90 Therefore, grading was also excluded [14].

91 **2.3. Ethical Considerations**

92 Ethical approval was waived, since the analysis was considered nonhuman
93 subjects research by the Florida International University Health Science Institutional
94 Review Board.

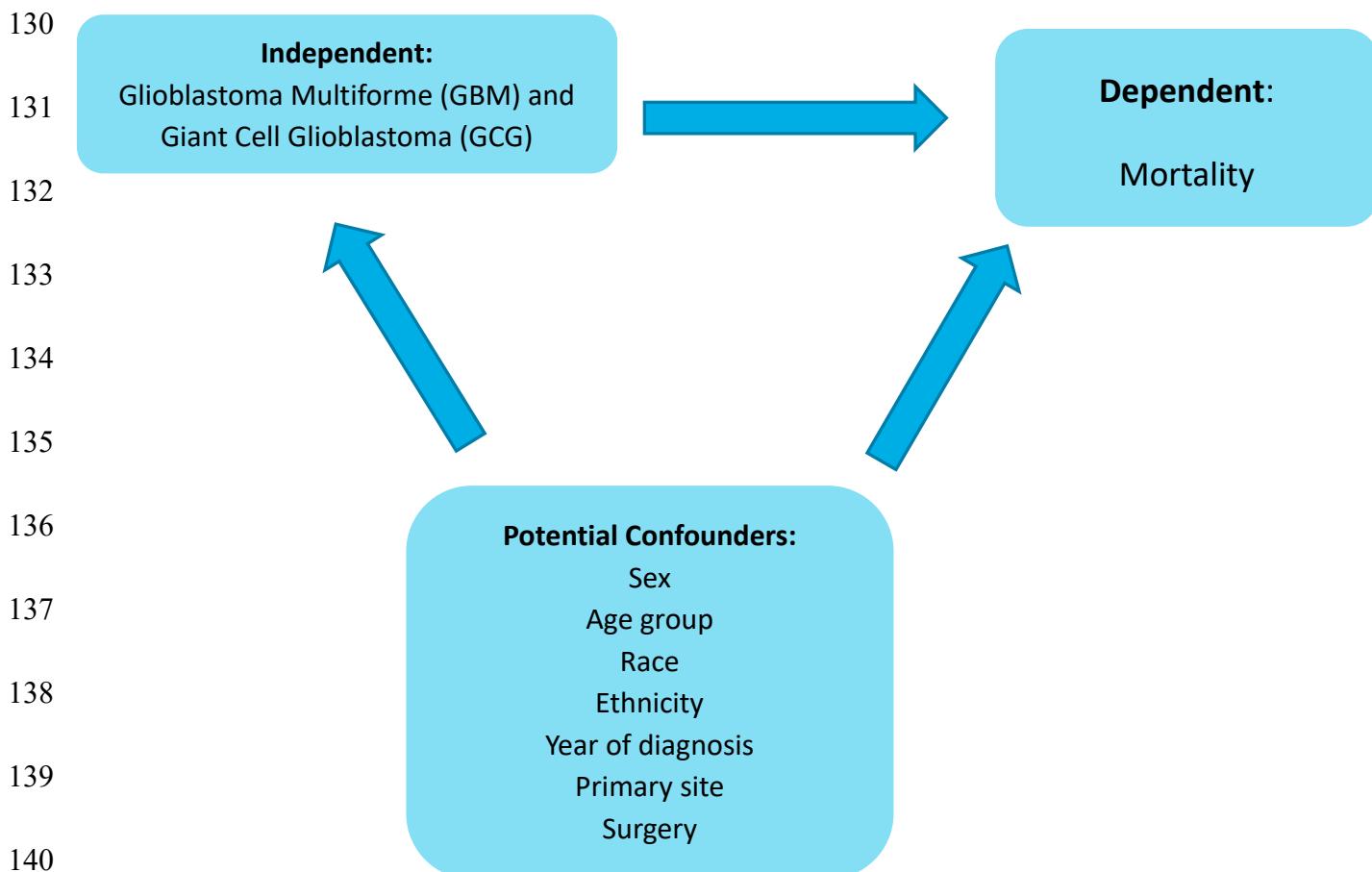
95 **2.4 Study variables:**

96 The study variables included data of GBM patients (histology codes: ICD-O-3:9440/3,
97 9441/3) with tumors located in several locations: supratentorial (cerebrum, frontal lobe,
98 temporal lobe, parietal lobe, occipital lobe), brain overlap, and infratentorial (cerebellum,

99 ventricle, and brainstem). In addition, primary site codes (C71.0-C72.0) were extracted from
100 the SEER database. Diagram 1 shows the variables that were analyzed.
101 In addition, the SEER research data record description was used to categorize other variables
102 such as race, which was categorized into White, Black, and Others. Ethnicity was also
103 categorized into Non-Spanish Hispanic-Latino and Spanish-Hispanic-Latino. Year of
104 diagnosis was categorized into years before 2010 and years 2010-2014 due to the approval
105 of Bevacizumab for recurrent glioblastoma in 2010 [15].

106 **2.5 Statistical analysis:**

107 First, the population was selected from the SEER database. Then, the characteristics of the
108 population were described. After that, the general distribution of the data was examined.
109 Next, some variables were transformed into appropriate categories (e.g. age group was
110 categorized into adults from 18-59 years old and elderly individuals >59 years old) [16]. The
111 primary site was categorized into supratentorial, brain overlap (including the brain ventricles
112 and other unspecified brain locations), and infratentorial regions.
113 The alpha level was set at 0.2 due to the small sample size of GCG incidences in the SEER
114 database.


115 A chi-square test was used for categorical data. Categorical data were expressed by numbers
116 (n) and percentage (%). A univariate analysis was used for variables having a p-value < 0.05,
117 while potential confounders (patient's sex, age group, race, ethnicity, year of diagnosis,
118 primary site, and surgery) were selected and evaluated by multivariate logistic regression
119 models to calculate the odds ratio with stepwise selection. A collinearity model was used to

120 determine the relationship between each of the confounders for the exclusion of dependent
121 variables. However, no significant relationship between the confounders was excluded.

122 **2.6 Data Availability**

123 The Surveillance, Epidemiology, and End Results (SEER) data used to support the findings
124 of this study were supplied by the National Cancer Institute under license and so cannot be
125 made freely available. Requests for access to these data should be made to the National
126 Cancer Institute (<http://www.seer.cancer.gov/>).

127
128
129

141 Diagram 1: Variables were analyzed using the SEER database and Stata software

142

143

144 **3. Results**

145 The study sample was 25,117. It included 24,909 patients with GBM and 208 with GCG.
146 However, 88.3% of patients with GBM died within a few years, while 84.1% of GCG patients
147 also died from the tumor. The baseline characteristics of the study sample are explained in
148 table 1, which shows that gender has a slight variation in GBM and GCG incidences. Males
149 are more likely to develop GBM than GCG; conversely, females are more likely to develop
150 GCG. Table 1 also shows that the incidence of GBM and GCG is not similar in relation to
151 age group. Hence, it is statistically significant that adults have a higher predisposition to
152 developing GCG than GBM.

153

Table 1: Baseline characteristics of GBM and GCG patients from 1985-2014 in the U.S.

Characteristics	Type of Glioblastoma		P-value
	GBM ¹ NOS ² N(%)	GCG ³ N(%)	
Sex			0.481
Male	14,375 (57.7)	115 (55.3)	
Female	10,534 (42.3)	93 (44.7)	
Age group			<0.001
Adults (18-59)	10,221 (41.0)	120 (57.7)	
Elderly (>60)	14,686 (59.0)	88 (42.3)	
Race			0.318
White	22,700 (91.3)	184 (88.5)	
Black	1,169 (4.7)	12 (5.8)	
Other	994 (4.0)	12 (5.8)	
Ethnicity			0.027
Non-Spanish-Hispanic-Latino	23,791 (95.5)	192 (92.3)	
Spanish-Hispanic-Latino	1,118 (4.5)	16 (8)	
Year of diagnosis			0.71
Before 2010	20,719 (83.3)	171 (82.2)	
2010-2014	4,190 (16.8)	37 (17.8)	
Primary Site			<0.001
Supratentorial	17,828 (71.6)	168 (80.8)	
Brain overlap	6,767 (27.2)	33 (15.9)	
Infratentorial	314 (1.3)	7 (3.4)	
Surgery			<0.001
None	3,287 (26.1)	13 (11.4)	
No GTR ⁴	5,719 (45.5)	50 (43.9)	
GTR	3,574 (28.4)	51 (44.7)	

¹ GBM = Glioblastoma Multiforme.

² NOS = Not Otherwise Specified, 2GBM = Glioblastoma Multiforme, 3GCG= Giant Cell Glioblastoma.

154 Race also reveals some variations in terms of the two subtypes of glioblastoma, with
155 individuals who have a white racial background being more prone to GBM, while individuals
156 of other races being more prone to GCG. The Non-Spanish-Hispanic-Latino ethnicity has a
157 slightly higher incidence of GBM than GCG, while, inversely, Spanish-Hispanic-Latinos

159 have fewer incidences of GBM than GCG. The incidence of GBM was slightly higher than
160 the incidence of GCG before 2010; after 2010, the incidence of GCG was higher. However,
161 incidences of both tumors have decreased considerably since 2010.

162 The study reveals some statistically significant differences in terms of tumor primary
163 site, with high statistical significance. Both subtypes of tumors originate more often in the
164 supratentorial part of the brain than elsewhere in the central nervous system. However, GCG
165 tumors originate more from the supratentorial site than do GBM tumors. It is also statistically
166 significant that GBM risk is higher in patients with no surgery or no gross total resection,
167 while patients with gross total resection (GTR) have an elevated GCG risk. Table 2 shows
168 that patients with GBM have a higher mortality rate than do GCG patients. Table 3 shows
169 that GCG has an odds ratio [OR] of 0.56 with a confidence interval of 0.53-1.44, which is
170 independently associated with reduced mortality.

171 Table 2 also shows a slight difference in mortality between age groups in relation to the
172 two glioblastoma subtypes; this difference is statistically significant. It indicates that elderly
173 patients have a worse prognosis than do adults. Glioblastoma patients with a white racial
174 background also face a slightly increased risk of death. The Spanish-Hispanic-Latino
175 ethnicity has a lower mortality rate than do Non-Spanish-Hispanic-Latinos, as explained in
176 table 3. The Spanish-Hispanic-Latino ethnicity is independently protective from GBM and
177 GCG (OR 0.63, CI=0.52-0.77). GBM and GCG tumors with brain overlap have a statistically
178 significant worse outcome than do other primary tumor sites, as shown in table 2.

Table 2: Mortality rate of GBM and GCG patients from 1985-2014 in the U.S.

Characteristics	Mortality		P-value
	Alive	Dead	
	N (%)	N (%)	
Glioblastoma			0.064
GBM ¹	2,916 (11.7)	21,993 (88.3)	
GC ²	33 (15.9)	175 (84.1)	
Sex			<0.001
Male	1,778 (12.3)	12,703 (87.7)	
Female	1,162 (10.9)	9,465 (89.1)	
Age group			<0.001
Adults	1,464 (14.2)	8,877 (85.8)	
Elderly	1,483 (10.0)	13,291 (90.0)	
Race			<0.001
White	2,534 (11.1)	20,350 (88.9)	
Black	200 (16.9)	981 (83.1)	
Others	198 (19.7)	808 (80.3)	
Ethnicity			<0.001
Non-Spanish-Hispanic	2,741 (11.4)	21,242 (88.6)	
Spanish-Hispanic-Latino	208 (18.3)	926 (81.7)	

¹ GBM = Glioblastoma Multiforme.

² GCG = Giant Cell Glioblastoma.

179 Surgery also plays a role in patients' outcomes. The mortality rate increases in patients with
180 no tumor resection. As shown in table 3, the factors independently associated with
181 increased mortality are: being female ([OR] 1.12, CI =1.01-1.25), being age >59 years (OR
182 1.64, CI =1.48-1.82), and being diagnosed earlier than 2010 (OR 5.26, CI =4.74 - 5.84). Table
183 4 shows some of the incidental findings.

185

186

187

Table 3: Odds ratio of GBM and GCG patients from 1985-2014 in the U.S.

Characteristics	Unadjusted		¹ Adjusted	
	² OR (95% CI)	N	OR (95% CI)	N
Glioblastoma				
⁴ GBM	Reference			
⁵ GCG	0.70 (0.5-1.02)	25,117	0.88 (0.53-1.44)	12,694

¹ Adjusted for age, sex, race, ethnicity, year of diagnosis, and primary site surgery.

² OR = Odds Ratio.

³ CI = Confidence Interval.

⁴ GBM = Glioblastoma Multiforme.

⁵ GCG = Giant Cell Glioblastoma.

188

Table 4: Incidental findings of race/ethnicity and the year of diagnosis.

Characteristics	Unadjusted		Adjusted	
	¹ OR (95% CI)	P-value	OR (95% CI)	P-value
Race				
White	REF			
Black	0.61 (0.52-0.71)	<0.001	0.64 (0.52-0.79)	<0.001
Others	0.50 (0.43-0.60)	<0.001	0.61 (0.50-0.75)	<0.001
Ethnicity				
Non-Spanish-Hispanic	REF			
Spanish-Hispanic-Latino	0.57 (0.49-0.67)	<0.001	0.63 (0.52-0.77)	<0.001
Year of Diagnosis				
Before 2010	5.44 (5.01-5.91)	<0.001	5.26 (4.74 - 5.84)	<0.001
2010-2014	REF			

¹ OR =Odds Ratio.

² CI = Confidence Interval.

189

190

191

192 **4. Discussion**

193 To the best of our knowledge, this study is one of the few that address the association of
194 subtype of glioblastoma and mortality in adults in the U.S. after 2010 and that involve a large
195 sample size in GCG and GBM with the utilization of ICD-0-3 codes. GBM is more common
196 than GCG and has a higher mortality rate. On the other hand, the current study provides
197 statistically significant data about ethnicity, explaining that the Spanish-Hispanic-Latino
198 ethnicity is independently protective from both glioblastoma subtypes as compared to the
199 Non-Spanish-Hispanic ethnicity. Furthermore, factors like being female, being age >59, and
200 having a year of diagnosis before 2010 are independently associated with increased mortality.

201 This study found that elderly individuals have the highest mortality rate among GBM
202 and GCG patients in comparison to adults ($p<0.001$). Some studies were consistent with the
203 previous findings [17-20]. Therefore, age is considered a significant predictor of survival
204 time [21]. This study also demonstrates that elderly individuals are more prone to having
205 GBM than GCG, which explains the rarity of GCG. This finding may indicate that the elderly
206 population is more susceptible to GBM due to an increased chance that cells will mutate into
207 cancer cells. The current study demonstrated that more males are afflicted with GBM than
208 with GCG, while more females are afflicted with GCG ($P=0.481$), consistent with [3,22-26].
209 Another study, conducted on Black patients with GBM, showed that Black males were
210 affected by GBM more than were Black females [27]. Therefore, GCG, an uncommon type
211 of glioblastoma multiform, more often affects females. However, GBM affects males more
212 than females, regardless of race. The previous findings may be explained by genetic factors.

213 The present study stated that the mortality rate is higher among GBM and GCG patients
214 diagnosed before 2010 ($P<0.001$). Also, one study showed that the prognosis for elderly
215 patients with glioblastoma has improved since the introduction of the Stupp regimen (i.e.,
216 radiotherapy plus concomitant and adjuvant temozolomide) in 2005 [21]. This indicates that
217 year of diagnosis has a significant impact on the prognosis of glioblastoma patients. However,
218 the proportion of patients with GBM is slightly higher than the proportion of GCG patients
219 before 2010. On the other hand, the proportion of GCG incidences is slightly higher than the
220 proportion of GBM incidences after 2010 ($P=0.71$).

221 Patients who didn't have a Gross Total Resection (GTR) have a higher mortality rate
222 ($P<0.001$). Moreover, patients who hadn't undergone surgery or GTR developed GBM more
223 often than they did GCG ($P<0.001$).

224 Studies like [28,29] had similar findings, stating that GTR has a better survival rate than does
225 partial resection or biopsy. Brain overlap GBM and GCG tumors are associated with higher
226 mortality rates than are supratentorial and infratentorial tumors ($P<0.001$). This finding was
227 similar in one study [3].

228 However, another study showed that the median survival time for both cerebellar GBM
229 (cGBM) and supratentorial GBM (sGBM) patients is eight months, though sGBM had a
230 worse prognosis as the study progressed [30]. Also, patients with brain overlap tumors have
231 a higher tendency to develop GBM than GCG ($P<0.001$). Because GBM is more common
232 than GCG, it affects brain overlap regions more than supra- and infratentorial regions (which
233 are affected more by GCG, $P<0.001$). This accounts for the higher mortality rate. Non-
234 Spanish-Hispanic people have a higher mortality rate from GBM (88.6%, $P<0.001$). In

235 addition, a study done on Americans with glioblastoma suggested that Latinos tend to have
236 a lower incidence of GBM and present slightly younger than non-Latino Whites [31].

237 However, white people were found to have the highest incidence of death from GBM
238 and GCG as compared to individuals of other races (P<0.001).

239 .

240 **5. Conclusions**

241 GCG was not statistically significant in terms of its association with reduced mortality.
242 Factors such as being female, being age >59, and having a year of diagnosis before 2010
243 were independently associated with increased mortality. The Spanish-Hispanic ethnicity was
244 independently protective from GBM and GCG as compared to the Non-Spanish-Hispanic
245 ethnicity. Additional studies should be conducted on GBM and GCG patients with the
246 inclusion of important factors such as tumor size and insurance.

247 **Author Contributions:** conceptualization, A.K.B and J.G.R.; methodology, A.K.B ;
248 formal analysis, A.K.B ; Y.R.B ; A.M.F ; Supervision, K.A.B and J.G.R ; X.X ; writing—
249 original draft preparation, A.K.B ; Y.R.B ; A.M.F, J.G.R; K.A.B writing—review and
250 editing, A.K.B and K.A.B

251 **Funding:**

252 This research received no external funding.

253 **Acknowledgments**

254 We acknowledge Pura Rodríguez for her support in data analysis.

255 **Conflicts of Interest:**

256 The authors declare no conflict of interest.

257 **References:**

258 1. Surveillance, Epidemiology, and End Results Program. Cancer of the Brain and Other
259 Nervous System - Cancer Stat Facts. Available online:
260 <https://seer.cancer.gov/statfacts/html/brain.html> Accessed on July 8, 2017.

261 2. American Brain Tumor Association | Glioblastoma (GBM). Available online:
262 <http://www.abta.org/brain-tumor-information/types-of-tumors/glioblastoma.html> Accessed
263 on July 8, 2017.

264 3. Nizamutdinov D, Stock EM, Dandashi JA, et al. Prognostication of Survival Outcomes in
265 Patients Diagnosed with Glioblastoma. World Neurosurg 2018;109:67-74.

266 4. Stupp R, Mason W, van den Bent M. "Radiotherapy plus Concomitant and Adjuvant
267 Temozolomide for Glioblastoma". Oncology Times. 2005;27(9):15-16.

268 5. Li R, Li H, Yan W et al. Genetic and clinical characteristics of primary and secondary
269 glioblastoma is associated with differential molecular subtype distribution. Oncotarget.
270 2015;6(9):7318–7324.

272 6. Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol.
273 2005;109(1):93-108.

274 7. Pietschmann S, von Bueren A, Kerber M, Baumert B, Kortmann R, Müller K. An Individual
275 Patient Data Meta-Analysis on Characteristics, Treatments and Outcomes of Glioblastoma/
276 Gliosarcoma Patients with Metastases Outside of the Central Nervous System. PLoS ONE.
277 2015;10(4):e0121592.

279 8. Stummer W, Reulen H, Meinel T et al. Extent of Resection and Survival in Glioblastoma
280 Multiforme. Neurosurgery. 2008;62(3):564-576.

282 9. Ostrom Q, Gittleman H, Farah P et al. CBTRUS Statistical Report: Primary Brain and Central
283 Nervous System Tumors Diagnosed in the United States in 2006-2010. *Neuro-oncology*.
284 2013;15(suppl 2):ii1-ii56.

285 10. Beyer S, von Bueren A, Klautke G et al. A Systematic Review on the Characteristics,
286 Treatments and Outcomes of the Patients with Primary Spinal Glioblastomas or
287 Gliosarcomas Reported in Literature until March 2015. *PLoS ONE*. 2016;11(2):e0148312.

288 11. Kozak K, Moody J. Giant cell glioblastoma: A glioblastoma subtype with distinct
289 epidemiology and superior prognosis. *Neuro-oncology*. 2009;11(6):833-841.

290 12. Surveillance, Epidemiology, and End Results Program. Available online:
291 <https://seer.cancer.gov/>. Accessed on July 15, 2017.

292 13. Furnari F, Fenton T, Bachoo R et al. Malignant astrocytic glioma: genetics, biology, and paths
293 to treatment. *Genes Dev*. 2007;21(21):2683-2710.

294

295 14. http://www.brainlife.org/abstract/2017/Mesfin_F170715.pdf. Accessed on November 30,
296 2018. Available online:
297 https://www.ncbi.nlm.nih.gov/books/NBK441874/#_NBK441874_pubdet

298 15. Johnson D, Leeper H, Uhm J. Glioblastoma survival in the United States improved after
299 Food and Drug Administration approval of bevacizumab: A population-based analysis.
300 *Cancer*. 2013;119(19):3489-3495.

301

302 16. Li X, Li Y, Cao Y et al. Risk of Subsequent Cancer among Pediatric, Adult and Elderly
303 Patients Following a Primary diagnosis of glioblastoma multiforme: a Population-based
304 Study of the SEER Database. *International Journal of Neuroscience*. 2017;127(11):1005-
305 1011.

306

307 17. Lin Q, Wagner W. Epigenetic Aging Signatures Are Coherently Modified in Cancer. *PLoS*
308 *Genet*. 2015;11(6):e1005334.

309

310

311 18. Hartmann C, Hentschel B, Wick W et al. Patients with IDH1 Wild Type Anaplastic
312 Astrocytomas Exhibit Worse Prognosis than IDH1-mutated Glioblastomas, and IDH1
313 Mutation Status Accounts for the Unfavorable Prognostic Effect of Higher Age:
314 Implications for Classification of Gliomas. *Acta Neuropathol.* 2010;120(6):707-718.

315 19. Murthy V, Krumholz H, Gross C. Participation in Cancer Clinical Trials. *JAMA*.
316 2004;291(22):2720.

317 20. Rong X, Yang W, Garzon-Muvdi T et al. Influence of Insurance Status on Survival of
318 Adults with Glioblastoma Multiforme: A Population-based Study. *Cancer*.
319 2016;122(20):3157-3165.

320 21. Shah B, Bista A, Sharma S. Survival Trends in Elderly Patients with Glioblastoma in the
321 United States: A Population-based Study. *Anticancer Res.* 2016;36(9):4883-4886.

322 22. Verger E, Valduvieco I, Caral L et al. Does gender matter in glioblastoma? *Clinical and*
323 *Translational Oncology.* 2011;13(10):737-741.

324 23. Ohgaki H, Dessen P, Jourde B et al. Genetic Pathways to Glioblastoma. *Cancer Res.*
325 2004;64(19):6892-6899.

326 24. Matsuda M, Yamamoto T, Ishikawa E et al. Prognostic Factors in Glioblastoma Multiforme
327 Patients Receiving High-dose Particle Radiotherapy or Conventional Radiotherapy. *Br J*
328 *Radiol.* 2011;84(1):S54-S60.

329 25. Colen R, Wang J, Singh S, Gutman D, Zinn P. Glioblastoma: Imaging Genomic Mapping
330 Reveals Sex-specific Oncogenic Associations of Cell Death. *Radiology.* 2015;275(1):215-
331 227.

332 26. Shinojima N, Kochi M, Hamada J et al. The Influence of Sex and the Presence of Giant

333 Cells on Postoperative Long-term Survival in Adult Patients with Supratentorial

334 Glioblastoma Multiforme. *J Neurosurg.* 2004;101(2):219-226.

335 27. Loukas M. Adult Brain Cancer in the U.S. Black Population: A Surveillance,

336 Epidemiology, and End Results (SEER) Analysis of Incidence, Survival, and Trends.

337 *Medical Science Monitor.* 2014;20:1510-1517

338 28. R Koul, A Dubey, V Torri, A Kakumanu, K Goyal. Glioblastoma Multiforme In Elderly

339 Population. *The Internet Journal of Neurosurgery.* 2012;8(1):1-7.

340 29. Pan I, Ferguson S, Lam S. Patient and Treatment Factors Associated with Survival among

341 Adult Glioblastoma Patients: A USA Population-based Study from 2000–2010. *Journal of*

342 *Clinical Neuroscience.* 2015;22(10):1575-1581.

343 30. Jeswani S, Nuño M, Folkerts V, Mukherjee D, Black K, Patil C. Comparison of Survival

344 Between Cerebellar and Supratentorial Glioblastoma Patients. *Neurosurgery.*

345 2013;73(2):240-246.

346 31. Shabikhani M, Telesca D, Movassaghi M et al. Incidence, Survival, Pathology, and

347 Genetics of Adult Latino Americans with Glioblastoma. *J Neurooncol.* 2017;132(2):351-

348 358.