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Coarse-Grained Hawkes Processes
Shinsuke Koyama

Department of Interdisciplinary Statistical Mathematics, Institute of Statistical Mathematics, Tokyo 190-8562, Japan;
skoyama@ism.ac.jp

Abstract: When analyzing real-world event data, it is often the case that bin-count processes are
observed instead of precise event time-stamps along a continuous timeline, owing to practical limita-
tions in measurement accuracy. In this work, we propose a modeling framework for aggregated event
data generated by multivariate Hawkes processes. The introduced model, termed the coarse-grained
Hawkes process, effectively captures the second-order statistical characteristics of the bin-count repre-
sentation of the Hawkes process, particularly when the bin size is large relative to the typical support
of the excitation kernel. Building upon this model, we develop a method for inferring the underlying
Hawkes process from bin-count observations, and demonstrate through simulation studies that the
proposed approach performs comparably to, or even surpasses, existing techniques, while maintaining
computational efficiency in parameter estimation.
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1. Introduction
Generally, past events in natural and social systems facilitate the occurrence of future events

through a self-exciting mechanism. The Hawkes process [1,2], a class of self-exciting point processes,
has become a popular tool for modeling such processes continuously. Its defining intensity function,
or instantaneous event rate, is composed of a baseline rate augmented by the cumulative influence of
prior events, thereby capturing the self-exciting mechanism wherein each event elevates the probability
of subsequent occurrences. Owing to the prevalence of self-excitation across diverse domains, the
Hawkes process has been extensively employed in a wide range of disciplines, including seismology
[3,4], neurophysiology [5,6], genomics [7], finance [8,9], social media analytics [10–12], criminology
[13,14], terrorism studies [15], and traffic incident analysis [16].

The Hawkes process is applicable to scenarios wherein individual events are distinguishable, as
it characterizes a series of discrete occurrences along a continuous timeline. Nevertheless, it proves
insufficient for modeling count-based sequences in which the precise timing of events is unobserved
and only their aggregated counts within successive intervals are available. A representative case arises
in epidemiological studies, where individual infection events are not monitored in real time, but rather,
the daily incidence rates are recorded. Consequently, there is a need to develop a count-based time
series model that retains the salient features of the Hawkes process for such contexts.

Multiple methodologies have been proposed for fitting the Hawkes process to bin-count data.
Kirchner demonstrated that the distribution of bin-count sequences generated by Hawkes processes can
be effectively approximated using an integer-valued autoregressive (INAR) model, wherein conditional
least squares estimation is employed to infer the underlying Hawkes process [17,18]. Shlomovich
et al. introduced a Monte Carlo expectation-maximization (MC-EM) framework, which integrates
an efficient sampling algorithm for the latent event times with an EM procedure to maximize the
likelihood function [19,20]. Similarly, Chen et al. developed a Pseudo-Marginal Metropolis-Hastings
(PMMH) algorithm for maximum likelihood estimation, wherein the likelihood is approximated via
a sequential Monte Carlo approach [21]. Alternatively, Cheysson and Lang advocated for a spectral
estimation technique grounded in the Whittle likelihood within the univariate context [22].
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Although Kirchner’s approach provides consistent and asymptotically normal estimators for the
underlying Hawkes process as the bin width approaches zero, it introduces bias when the bin size
exceeds the typical support of the excitation function, due to the INAR model’s neglect of intra-bin
excitation dynamics. In contrast, the MC-EM, PMMH and spectral estimation methods yield less
biased results by accounting for excitation effects occurring within each bin. Nonetheless, the MC-EM
and PMMH techniques are computationally intensive, whereas the spectral method is validated only
in the univariate setting.

Accordingly, the objective of this study is to develop a computationally efficient methodology
that extends naturally to the multivariate setting. Our proposed approach involves constructing
a count-based time series model that approximates the bin-count sequence generated by Hawkes
processes, upon which an estimation procedure is built. Unlike Kirchner’s method, which relies on
a straightforward discretization, namely, evaluating the intensity function at discrete time points,
to relate the Hawkes and INAR processes [17], our model is derived through a coarse graining
procedure. The resulting framework, termed the coarse-grained Hawkes process, is defined in a
conceptually simple and analytically tractable form, while effectively preserving the second-order
statistical characteristics of the bin-count Hawkes process, even in regimes where the bin size is large
relative to the excitation function’s effective range.

The structure of this paper is as follows. Section 2 provides a concise overview of Hawkes
processes. Section 3 introduces the coarse-grained Hawkes process along with the proposed estimation
methodology. In Section 4, we assess the approximation accuracy of the coarse-grained Hawkes
process in representing the bin-count Hawkes process. Additionally, a simulation study is conducted
to benchmark the performance of the proposed estimation technique against existing approaches.
Section 5 concludes with a discussion of the findings.

2. Review of Hawkes Processes
In this section, we present a brief review of Hawkes processes. Let {ti}i∈N denote a sequence of

non-negative random variables representing the occurrence times of events on R+, satisfying ti < ti+1

for i ∈ N. Define the associated counting process by N(t) = ∑i∈N 1ti≤t, and let Ht = {N(u) : u < t}
denote the history of events up to, but not including, time t. We consider a point process such that

P(N(t + δt)− N(t) = 1 | Ht) = λ(t)δt + o(δt),

P(N(t + δt)− N(t) > 1 | Ht) = o(δt),

as δt → 0, where λ(t) is the conditional intensity function that uniquely characterizes the point process.
A univariate Hawkes process is then defined by the conditional intensity function

λ(t) = µ +
∫ t

0
ϕ(t − u)dN(u),

where µ ≥ 0 is the baseline intensity and ϕ(·) is a non-negative excitation kernel satisfying ϕ(t) = 0
for t < 0 [1]. This formulation captures the self-exciting nature of the process, wherein the intensity at
any given time depends on the historical sequence of events. The branching ratio is defined as

α :=
∫ ∞

0
ϕ(t)dt,

which quantifies the expected number of subsequent events triggered by a single occurrence. The
process admits a stationary distribution provided that α < 1.
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The univariate Hawkes process naturally generalizes to the multivariate case [1,2]. For d ∈ N, a
d-dimensional Hawkes process N(t) = (N1(t), . . . , Nd(t))T comprises d jointly defined point processes
on R+. The corresponding vector-valued conditional intensity function is given by

λ(t) = µ +
∫ t

0
Φ(t − s)dN(s),

where µ = (µ1, . . . , µd)
T ∈ Rd

≥0 is the baseline intensity vector, and the excitation kernel Φ =

(ϕij)1≤i,j≤d is a matrix-valued function with non-negative entries satisfying ϕij(t) = 0 for t < 0. Each
entry ϕij(·) describes the influence of process j on the intensity of process i, thus capturing both
self-excitation and mutual excitation among the components. The multivariate Hawkes process is
asymptotically stationary if the spectral radius of the branching matrix

A :=
∫ ∞

0
Φ(t)dt

is strictly less than one.
Finally, we briefly recall the martingale properties of point processes that are instrumental for

our methodological developments. For a comprehensive treatment, see [23]. Define the process
M(t) = N(t)− Λ(t), where Λ(t) =

∫ t
0 λ(u)du. Then M(t) is a martingale with respect to the filtration

Ht, satisfying the property that the conditional expectation of its increment is zero:

E[M(t)− M(s) | Hs] = 0, t > s.

Moreover, the conditional covariance matrix of the martingale increment is given by

E
[
(M(t)− M(s))(M(t)− M(s))T | Hs

]
= diag(E[Λ(t)− Λ(s) | Hs]), t > s,

which follows from the quadratic variation of the martingale.

3. Coarse-Grained Hawkes Process
3.1. Motivation

We consider a scenario wherein the exact timing of individual events is unobserved; instead, we
observe an aggregated count of these latent continuous-time events within discrete time intervals. We
define

Xn = N(n∆t)− N((n − 1)∆t), n ∈ N,

as the bin-wise event counts over intervals of size ∆t. When {N(t) : t ∈ R+} constitutes a Hawkes
process, the corresponding discrete-time vector process {Xn : n ∈ N} is referred to as the binned
Hawkes process [19,20].

Although a closed-form representation of the probability distribution of binned Hawkes processes
is not available, an approximate formulation can be derived by discretizing the conditional intensity
function as follows:

λn = (λ1n, . . . , λdn)
T = µ∆t +

n−1

∑
k=1

Φ(k∆t)∆tXk, (1)

and assuming that the bin counts follow Poisson distributions:

Xn | X1, . . . , Xn−1 ∼
d

∏
j=1

Poisson(λjn). (2)

This method, known as the binned Poisson approximation, converges in distribution to the true
Hawkes process as ∆ → 0. However, its accuracy degrades with larger ∆t due to discretization errors
in (1) and the conditional independence assumption in (2), which neglects the intra-bin excitation
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effect. Nonetheless, it facilitates a tractable estimation procedure: the log-likelihood of the sequence
X1, . . . , Xn is given by

log P(X1, . . . , Xn) =
n

∑
k=1

d

∑
j=1

(
Xjk log λjk − λjk

)
.

Parameter estimation is then performed via maximization of this log-likelihood function [19,20,24].
In light of the limitations of this approximation for larger ∆t, we propose an alternative count

time series model that more accurately approximates the binned Hawkes process while retaining
computational simplicity for inference. We elucidate the underlying heuristic in the univariate setting.

The central idea is to replace the crude discretization with the expected value of the conditional
intensity integrated over each time bin. The expected count within the nth bin is

∫ n∆t
(n−1)∆t λ(t)dt,

which depends on the trajectory {N(u) : 0 < u ≤ n∆t}. Consequently, we consider the conditional
expectation, given the bin counts {X1, . . . , Xn}:

λn = E
[∫ n∆t

(n−1)∆t
λ(t)dt | X1, . . . , Xn

]
=

n−1

∑
k=1

E
[∫ n∆t

(n−1)∆t

(∫ k∆t

(k−1)∆t
ϕ(t − u)dN(u)

)
dt | Xk

]
+ E

[∫ n∆t

(n−1)∆t

(∫ t

(n−1)∆t
ϕ(t − u)dN(u)

)
dt | Xn

]
. (3)

As these conditional expectations do not admit closed-form expressions, we approximate them under
the assumption that event times are uniformly distributed within each bin. Accordingly, the first term
on the right-hand side of (3) is approximated as

E
[∫ n∆t

(n−1)∆t

(∫ k∆t

(k−1)∆t
ϕ(t − u)dN(u)

)
dt | Xk

]
≈
∫ k∆t

(k−1)∆t
· · ·

∫ k∆t

(k−1)∆t

1
∆tXk

(
Xk

∑
i=1

∫ n∆t

(n−1)∆t
ϕ(t − ti)dt

)
dt1 · · · dtXk

= ϕn−kXk,

where ϕn−k denotes the coarse-grained kernel, defined as

ϕn−k =
1

∆t

∫ k∆t

(k−1)∆t

∫ n∆t

(n−1)∆t
ϕ(t − u)dudt. (4)

Similarly, the second term on the right-hand side of (3) is approximated by

E
[∫ n∆t

(n−1)∆t

(∫ t

(n−1)∆t
ϕ(t − u)dN(u)

)
dt | Xn

]
= E

[∫ n∆t

(n−1)∆t

(∫ n∆t

(n−1)∆t
ϕ(t − u)dN(u)

)
dt | Xn

]
≈ ϕ0Xn,

where we have utilized the causal property ϕ(t) = 0 for t < 0. Substituting these approximations back
into (3) yields

λn ≈ µ∆t +
n

∑
k=1

ϕn−kXk. (5)

In contrast to the formulation in (1), equation (5) incorporates the coarse-grained kernel, capturing
both inter-bin excitation and the intra-bin self-excitation effect through the term ϕ0Xn. Building upon
this approximation, we will formally define the coarse-grained Hawkes process in the subsequent
section.
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3.2. Definition

Firstly, we formally define the coarse-grained kernel, previously derived heuristically in (4).

Definition 1. Let ϕ(t) be a nonnegative excitation kernel defined on the real line, satisfying ϕ(t) = 0 for t < 0.
The coarse-grained kernel {ϕk}k∈N0 with bin size ∆t > 0 is defined by

ϕk =

ψ0, k = 0,

ψk − ψk−1, k = 1, 2, . . . ,
(6)

where

ψk =
1

∆t

∫ (k+1)∆t

k∆t

(∫ t

0
ϕ(u)du

)
dt. (7)

It can be readily verified that the formulation (6)–(7) coincides with the expression in (4).

Lemma 1. The coarse-grained kernel satisfies

∞

∑
k=0

ϕk =
∫ ∞

0
ϕ(u)du =: α.

Moreover, it holds that ϕ0 < α.

Proof. See Appendix A.1.

Lemma 1 guarantees that the total mass of the coarse-grained kernel equals the integral of the
excitation kernel, i.e., the branching ratio. Furthermore, it ensures that the kernel does not collapse to
the degenerate case ϕ0 = α as long as ∆t < ∞.

Based on the coarse-grained kernel, we introduce the coarse-grained Hawkes process. Consider a
probability space equipped with a sequence of d-dimensional, integer-valued random vectors {Xk}k∈Z.
Define the history up to bin k as Hk = {Xj : j ≤ k}. We consider the d-variate extension of the
coarse-grained process given in (5):

λn = µ∆t + ∑
k≤n

Φn−kXk, n ∈ Z, (8)

where µ ∈ Rd
≥0 is the baseline intensity vector, and each Φn−k ∈ Rd×d is a matrix whose elements are

given by the coarse-grained kernels for bin size ∆t. Define the residual process as

∆Mn = Xn − λn, n ∈ Z, (9)

and impose the following conditional moment properties, analogous to the martingale conditions in
point process theory:

E[∆Mn | Hn−1] = 0, (10)

E[∆Mn∆MT
n | Hn−1] = diag(E[λn | Hn−1]). (11)

The coarse-grained Hawkes process is then defined as a sequence {Xk} satisfying (8)–(11). Importantly,
this definition does not fully specify the probability law of the process, but constrains its behavior
through second-order statistical structure.

The term Φ0Xn on the right-hand side of (8) encapsulates the effect of intra-bin excitation, which
induces both cross-correlations and overdispersion in the count statistics. Assuming that the spectral
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radius of Φ0 is strictly less than one, the conditional expectation and covariance matrix of Xn given
Hn−1 are respectively

E[Xn | Hn−1] = (I − Φ0)
−1

(
µ∆t + ∑

k≤n−1
Φn−kXk

)
=: λ∗

n, (12)

Var(Xn | Hn−1) = (I − Φ0)
−1diag(λ∗

n)(I − ΦT
0 )

−1, (13)

where I denotes the d × d identity matrix. Derivations of these expressions are provided in Ap-
pendix A.2. Due to the presence of the matrix factor (I − Φ0)

−1, the conditional covariance matrix is
generally non-diagonal, capturing cross-correlations, and its diagonal elements exceed those of λ∗

n,
reflecting overdispersion. When Φ0 is the zero matrix, implying the absence of intra-bin excitation,
the conditional variance reduces to Var(Xn | Hn−1) = diag(λ∗

n), corresponding to the conditional
independence of Poisson-distributed counts.

3.3. Stationary Process

We investigate the coarse-grained Hawkes process under the assumption of stationarity and
derive its second-order statistical properties. Assuming stationarity, equations (8) and (10) yield

λ = E[Xn] = (I − A)−1µ∆t, n ∈ Z, (14)

where

A :=
∞

∑
n=0

Φn

denotes the branching ratio matrix. Consequently, the spectral radius of A must be strictly less than
one.

To derive the second-order moment of the stationary coarse-grained Hawkes process, we first
establish a white noise property of the residual process.

Lemma 2. Let {Xn} denote a coarse-grained Hawkes process whose branching ratio matrix has a spectral radius
less than one. Then the residual process (9) forms a stationary sequence satisfying E[∆Mn] = 0, n ∈ Z, and

E[∆Mn∆MT
n′ ] = δnn′diag(λ), n, n′ ∈ Z, (15)

where δnn′ denotes the Kronecker delta.

Proof. See Appendix A.3.

As a consequence of the white noise structure of the residual process, the stationary coarse-grained
Hawkes process admits a moving average representation of infinite order,

Xn − λ =
∞

∑
k=0

Ψk∆Mn−k, (16)

where the kernel matrices Ψk are defined by

Ψk =
∞

∑
j=0

(Φ(∗j))k,

with Φ(∗j) denoting the j-fold convolution of Φ, and (Φ(∗0))k = δk0 I. The derivation is provided in
Appendix A.4. Using this representation, the autocovariance structure is obtained analogously to
linear time series models.
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Theorem 1. Let {Xn} be a coarse-grained Hawkes process with a branching ratio matrix whose spectral radius
is less than one. Then the autocovariance matrix of {Xn} is given by

Rj := Cov(Xn, Xn+j) =
∞

∑
l=0

Ψl−jdiag(λ)ΨT
l , j ∈ Z.

Proof. See Appendix A.5.

The spectral density matrix of the stationary coarse-grained Hawkes process is obtained by taking
the Fourier transform of the autocovariance sequence:

F(cg)
∆t (ω) =

1
2π

∞

∑
n=−∞

Rne−iωn =
1

2π
Ψ̂(−ω)diag(λ)Ψ̂T(ω),

where Ψ̂(ω) = ∑∞
n=0 Ψne−iωn is the Fourier transform of the effective kernel. Alternatively, it can be

expressed via the Fourier transform of the coarse-grained kernel matrix, Φ̂(ω) = ∑∞
n=0 Φne−iωn, as

F(cg)
∆t (ω) =

1
2π

(I − Φ̂(−ω))−1diag(λ)(I − Φ̂T(ω))−1, (17)

utilizing the identity Ψ̂(ω) = (I − Φ̂(ω))−1.
In summary, under the condition that the spectral radius of the branching ratio matrix is less than

one, the expected value of the process remains constant over time, and its autocovariance depends
solely on the lag between observations, not their absolute positions in time. Accordingly, the coarse-
grained Hawkes process is weakly stationary.

3.4. Approximation to Hawkes Process

We now establish a rigorous connection between the original Hawkes process and its coarse-
grained counterpart. Specifically, we examine the second-order statistical properties of both processes
under the assumption of stationarity. A summary of the statistical properties of the stationary Hawkes
process is provided in Appendix B.

Since the sum of the coarse-grained kernel coincides with the integral of the excitation kernel (see
Lemma 1), the branching ratio matrices, and consequently, the conditions for stationarity, are identical
for both processes. Under stationarity, the expected event counts of the coarse-grained Hawkes process
(14) coincide with those of the original Hawkes process (A6).

We proceed to compare the spectral density matrices of the two processes, focusing in particular
on the convergence behavior of the spectral density of the coarse-grained process toward that of the
original Hawkes process.

Theorem 2. The spectral density matrix of the coarse-grained Hawkes process satisfies

F(cg)
∆t (ν∆t) = F(hw)(ν)∆t + O(∆t3), (18)

as ∆t → 0, where F(hw)(ν) denotes the spectral density matrix (A5) of the original Hawkes process.

Proof. See Appendix A.6.

Considering the binned Hawkes process, its spectral density matrix F(hw)
∆t (ω) behaves as (see

Appendix B)
F(hw)

∆t (ν∆t) = F(hw)(ν)∆t + O(∆t3),

as ∆t → 0, which matches the expansion in (18) up to second-order terms in ∆t. This leads to the
following corollary.
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Corollary 1. The spectral density matrix of the coarse-grained Hawkes process approximates that of the binned
Hawkes process to third-order accuracy as

F(cg)
∆t (ω) = F(hw)

∆t (ω) + O(∆t3),

as ∆t → 0.

For comparative purposes, consider the binned Poisson approximation defined by equations
(1)–(2). Its spectral density matrix F(po)

∆t (ω) behaves as (see Appendix A.6)

F(po)
∆t (ω) = F(hw)

∆t (ω) + O(∆t2).

Therefore, the coarse-grained Hawkes process yields a spectral approximation to the binned Hawkes
process that is accurate to a higher order than the binned Poisson approximation.

3.5. Parameter Estimation Method

We address the problem of estimating the parameters of a Hawkes process from binned count
data. Assume that we observe a sequence of binned event counts {X1, . . . , Xn} of length n generated
by a d-dimensional Hawkes process, whose excitation kernel matrix Φ(θ) is specified by a parametric
form with an unknown parameter vector θ. We propose a parameter estimation method for θ based on
the coarse-grained Hawkes process framework.

To this end, we utilize the AR(∞) representation of the coarse-grained Hawkes process (see
Appendix A.4),

Xn − λ =
∞

∑
k=1

Φ∗
k (θ)(Xn−k − λ) + ∆M∗

n(θ),

where Φ∗
k (θ) = (I − Φ0(θ))

−1Φk(θ), and ∆M∗
n(θ) = (I − Φ0(θ))

−1∆Mn(θ) is a zero-mean, cross-
correlated white noise sequence satisfying

E[∆M∗
n(θ)∆M∗

n′(θ)
T] = δnn′(I − Φ0(θ))

−1diag(λ)(I − Φ0(θ)
T)−1

=: δnn′Λ∗(θ), n, n′ ∈ Z.

Based on this representation, we define a loss function in quadratic form, whose minimizer yields an
estimator of the parameter vector:

Ln(θ) =
n

∑
k=1

(
Yk −

k−1

∑
j=1

Φ∗
j (θ)Yk−j

)T

Λ∗−1(θ)

(
Yk −

k−1

∑
j=1

Φ∗
j (θ)Yk−j

)
+ n log |Λ∗(θ)|, (19)

where Yk = Xk − λ. In practice, the unknown mean vector λ is replaced by the empirical mean
λ̂ = n−1 ∑n

k=1 Xk. The loss function then simplifies to

Ln(θ) =
n

∑
k=1

(
Yk −

k−1

∑
j=0

Φj(θ)Yk−j

)T

diag(λ̂)−1

(
Yk −

k−1

∑
j=0

Φj(θ)Yk−j

)
− 2n log |I − Φ0(θ)|, (20)

where the constant term log diag(λ̂) has been omitted. The first term on the right-hand side of (20)
corresponds to a weighted quadratic loss, while the second term serves as a regularization component
that discourages trivial solutions of the form Φk(θ) = δk0 I. The optimal parameter estimate is obtained
by minimizing the loss function with respect to θ.

The estimation procedure is summarized as follows:
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Algorithm 1 Estimation procedure for Hawkes processes

1: Given the observed bin-count sequence {X1, . . . , Xn}, compute the empirical mean λ̂ =

n−1 ∑n
k=1 Xk and center the data as Yk = Xk − λ̂ for k = 1, . . . , n.

2: Determine the parameter estimate θ̂ by minimizing the loss function (20).
3: Using the estimated parameter vector θ̂, compute the estimate of the baseline intensity as

µ̂ = (I − Â)λ̂/∆,

where Â = ∑∞
n=0 Φn(θ̂) denotes the estimated branching ratio matrix.

4. Numerical Experiments
4.1. Assessment of Second-Order Characteristics

As established in Corollary 1, the coarse-grained Hawkes process asymptotically approximates
the spectral density matrix of the binned Hawkes process as the bin size ∆t → 0. In this section, we
conduct numerical investigations to evaluate the validity and robustness of this approximation for
increasing values of ∆t. To this end, we consider a bivariate Hawkes process (d = 2), where each
component of the excitation kernel matrix is defined as

ϕij(t) = αijgij(t), t ≥ 0,

with gij(t) denoting a normalized kernel satisfying
∫ ∞

0 gij(t)dt = 1. The coefficient αij specifies the
branching ratio from component j to component i, and gij(t) characterizes the distribution of waiting
times for event excitation. We specifically focus on a symmetric bivariate Hawkes process where the
parameters satisfy µ1 = µ2 = µ, gij(t) = g(t) (1 ≤ i, j ≤ 2), and the excitation kernel matrix takes the
form (

α11 α12

α21 α22

)
=

(
α(s) α(c)

α(c) α(s)

)
.

The stationarity condition for the process holds if α(s) + α(c) < 1. Under this constraint, the second-
order statistical structure of the symmetric Hawkes process is described by the power spectral density
(PSD) of each component (the diagonal elements of the spectral density matrix) and the cross-spectral
density (CSD) between them (the off-diagonal elements).

We illustrate our findings using an exponential kernel defined as

g(t) = βe−βt, t ≥ 0,

where β−1 denotes the expected waiting time before excitation. Figure 1 presents the PSD and CSD,
along with the auto- and cross-covariance functions, of the binned Hawkes process with parameters
α(s) = 0.4, α(c) = 0.3, and β = 1, for bin sizes ∆t = 0.1 (a), 1 (b), and 2 (c). These are depicted using
blue dotted lines.

The associated coarse-grained Hawkes process is constructed using the coarse-grained kernel
derived from the exponential function:

gk =

1 − (1 − e−β∆t)/β∆t, k = 0,

(eβ∆t + e−β∆t − 2)e−βk∆t/β∆t, k = 1, 2, . . .

In the same figures, the four second-order statistics of the coarse-grained process are represented by
red lines, while those corresponding to the binned Poisson approximation are shown in green.

From these comparisons, we observe that for small bin sizes (∆t = 0.1 < β−1), both the coarse-
grained Hawkes process and the binned Poisson approximation closely reproduce the second-order
behavior of the binned Hawkes process (Figure 1a). However, for ∆t = 1, which is comparable to
the mean waiting time, the Poisson approximation significantly deteriorates (Figure 1b), whereas the
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coarse-grained Hawkes process continues to provide a high-fidelity approximation. Even for a larger
bin size ∆t = 2, exceeding the characteristic time scale β−1, the coarse-grained model remains accurate
(Figure 1c).
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Figure 1. Power spectral density (PSD), cross-spectral density (CSD), auto-covariance, and cross-covariance
functions for the three processes at bin sizes ∆t = 0.1 (a), 1 (b), and 2 (c). The blue dotted line corresponds to the
binned Hawkes process, while the red and green lines depict the coarse-grained Hawkes process and the binned
Poisson approximation, respectively. The parameters of the Hawkes process are set as µ = 1, α(s) = 0.4, α(c) = 0.3,
and β = 1. The coarse-grained Hawkes process provides a close approximation to the binned Hawkes process,
whereas the binned Poisson approximation exhibits noticeable degradation for ∆t = 1 and 2.

To quantitatively assess the fidelity of the approximations, we introduce a divergence measure
based on the log-determinant of the spectral density matrices. Specifically, let F(••)

∆t (ω) denote the
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spectral density matrix of the approximating process, where ‘••’ indicates either the coarse-grained
(cg) or Poisson (po) approximation. Then, the information loss relative to the binned Hawkes process
F(hw)

∆t (ω) is defined as

∆h(••) =
1

4π

∫ π

−π
log

|F(hw)
∆t (ω)|

|F(••)
∆t (ω)|

dω,

which corresponds to the gap in maximum entropy rates under spectral constraints.
Figure 2 plots the information loss for both approximations as a function of ∆t, across varying

values of α(s) and α(c). The results clearly indicate that the coarse-grained Hawkes process incurs
minimal information loss across a wide range of parameter settings. In contrast, the accuracy of the
binned Poisson approximation degrades with increasing ∆t, with the loss exacerbated further as α(s)

and α(c) increase.
We additionally examined the case where the excitation kernel follows a power-law distribution

instead of an exponential decay. The qualitative behavior remained consistent (see Appendix C).
These findings collectively demonstrate that the coarse-grained Hawkes process offers a substantially
improved approximation of the second-order dynamics of the binned Hawkes process, particularly for
larger bin widths.
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Figure 2. Information loss as a function of ∆t for the coarse-grained Hawkes process (red line) and the binned
Poisson approximation (green line). The parameters are set to µ = 1 and β = 1. The information loss associated
with the binned Poisson approximation increases with larger values of ∆t, α(s), and α(c), whereas the information
loss incurred by the coarse-grained Hawkes process remains negligible across all configurations.

4.2. Parameter Estimation

We now investigate the efficacy of the proposed estimation method in inferring the parameters
of a Hawkes process from bin-count data. Specifically, we consider an asymmetric bivariate Hawkes
process with exponential excitation kernels given by gij(t) = βije

−βijt (1 ≤ i, j ≤ 2). The parameters of
the Hawkes process are set as follows:(

µ1

µ2

)
=

(
1
1

)
,

(
α11 α12

α21 α22

)
=

(
0.4 0.5
0.3 0.2

)
,

(
β11 β12

β21 β22

)
=

(
0.5 0.7
0.3 1.0

)
.

The numerical experiments were conducted as follows. First, realizations of the Hawkes process were
generated over the interval [0, T] and subsequently discretized into bin-count sequences using bin size
∆t. The ten model parameters {µi, αij, βij}1≤i,j≤2 were then estimated from these sequences.

To assess the performance of our proposed method, we compare it against three established
approaches. The first is the MC-EM algorithm proposed in [20], for which we employed the publicly
available implementation [25]. The second method is maximum likelihood estimation (MLE) applied
to the binned Poisson approximation. The third method involves conditional least squares estimation
for the INAR(p) process, as introduced in [18]. Since the INAR(p) framework yields nonparametric
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estimates of the excitation kernels, we obtained the corresponding parametric kernel parameters by
fitting an exponential function to the nonparametric estimates [19,20].

Figure 3 presents boxplots of the estimated values for each of the ten parameters across 500
simulated realizations of the binned Hawkes process, using T = 1000 and ∆t = 2. It is apparent that
both the binned Poisson MLE and the INAR(p) method produce significantly biased estimates, which
is expected given that these approaches disregard excitation effects within each bin. Furthermore, we
observe a substantial number of outliers in the estimates of βij across all four methods, indicating that
estimation of the kernel scales exhibits higher variance than estimation of the baseline intensities or
branching ratios. For instance, our method yielded estimates of β22 that deviated by a factor of 100
from the true value in 16 out of the 500 trials, highlighting the challenges in accurately estimating βij

when the bin size is large relative to the kernel time scale.
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Figure 3. Boxplots of the estimated values for each of the ten model parameters. The green solid line indicates
the ground truth values. Note that the INAR(p) method may yield negative values, which are omitted when
log-scaled axes are used.
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Figure 4 displays the root mean squared error (RMSE) of the parameter estimates across various
bin sizes. For the RMSE of β̂ij, extreme outliers with values exceeding 100 were excluded to mitigate
their undue influence. Overall, the proposed method demonstrates superior performance compared to
both the binned Poisson MLE and the INAR(p) approach, and achieves accuracy comparable to the
MC-EM algorithm. Additionally, both the MC-EM and the proposed methods consistently maintain
low RMSE values across different bin sizes, whereas the RMSEs for the binned Poisson MLE and the
INAR(p) approach increase with larger bin sizes. A similar trend is observed for β̂ij, albeit with more
fluctuation due to outliers.
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Figure 4. Root mean squared error (RMSE) of the parameter estimates. Overall, the RMSE of the proposed
method is comparable to that of the MC-EM algorithm, and significantly lower than that of the binned Poisson
approximation and the INAR(p) method.

Figures 5 and 6 illustrate, respectively, the bias and standard deviation components of the RMSE
for each of the ten parameters. The proposed method yields the lowest bias among all methods,
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with only a few exceptions (Figure 5); meanwhile, the MC-EM algorithm attains the lowest standard
deviation (Figure 6).
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Figure 5. Bias in the estimated parameters. The proposed method consistently achieves the lowest bias among the
four methods, except for a few isolated cases.

In conclusion, the proposed method matches the performance of the MC-EM algorithm while
outperforming both the binned Poisson MLE and the INAR(p) method, particularly in terms of bias
reduction. It provides robust and stable estimates for the baseline intensities µi and the branching
ratios αij, with estimation accuracy largely unaffected by bin size. Accurate estimation of the kernel
scales βij is feasible when the bin size is smaller than the characteristic kernel scale, but becomes
unreliable as the bin size increases.
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Figure 6. Standard deviation (STD) in the parameter estimates. The MC-EM algorithm generally attains the lowest
standard deviation among the four methods.

5. Discussion
In this study, we introduced the coarse-grained Hawkes process as an analytical approximation to

the binned Hawkes process. Unlike conventional discretization techniques, the proposed framework
incorporates a coarse-grained excitation kernel that systematically accounts for intra-bin excitations.
Consequently, the coarse-grained Hawkes process faithfully reproduces the second-order statistical
properties of the binned Hawkes process, even when the bin size exceeds the characteristic timescale
of the excitation kernel. Moreover, we demonstrated that the proposed approach enables stable
estimation of Hawkes process parameters from bin-count data. In particular, both the branching ratios
and baseline intensities can be reliably inferred, irrespective of the temporal resolution of the bin-count
sequences.

A central distinction between our approach and the Monte Carlo Expectation-Maximization (MC-
EM) algorithm lies in the treatment of latent event times within the bin-count data. Whereas the MC-EM
method necessitates Monte Carlo sampling from the conditional distribution of unobserved events,
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resulting in considerable computational burden, our method employs a parsimonious assumption
that events are uniformly distributed within each bin. This assumption facilitates the analytical
derivation of approximate conditional expectations. Despite its simplicity, the proposed method
achieves estimation accuracy on par with that of the MC-EM algorithm while offering substantial
computational advantages.

We further highlight a theoretical connection between our estimation framework and the spectral
method, previously validated in the univariate setting [22]. Applying the Fourier transform, the loss
function in equation (19) asymptotically approximates a spectral likelihood for large n:

Ln(θ) ≈
n

∑
m=1

(
X̂∗

mF(cg)
∆t (ωm)

−1X̂m + log |F(cg)
∆t (ωm)|

)
,

where ωm = 2πm/n,

X̂m =
1√
2πn

n

∑
k=1

(Xk − λ)e−2πikm/n,

and X̂∗
m denotes the Hermitian transpose. Notably, the spectral likelihood for the multivariate binned

Hawkes process can be obtained by replacing F(cg)
∆t (ωm) with the spectral density matrix of the binned

Hawkes process.
Finally, we emphasize the potential extension of the proposed framework to nonstationary time

series. Owing to its formulation in the time domain, the coarse-grained Hawkes process is amenable to
integration within state-space modeling paradigms [26,27], offering a promising direction for modeling
nonstationary dynamics. We propose this as a compelling avenue for future research.
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Appendix A. Proofs
Appendix A.1. Proof of Lemma 1

It follows from equations (6) and (7) that

∞

∑
k=0

ϕk = lim
n→∞

{ψ0 + (ψ1 − ψ0) + · · ·+ (ψn − ψn−1)} = lim
n→∞

ψn

= lim
n→∞

1
∆t

∫ (n+1)∆t

n∆t

(∫ t

0
ϕ(u)du

)
dt = lim

n→∞

1
∆t

∫ ∆t

0

(∫ n∆t+s

0
ϕ(u)du

)
ds.

Since
∫ n∆t+s

0 ϕ(u)du is nonnegative and monotonically nondecreasing with respect to n, we may
invoke the dominated convergence theorem to interchange the limit and the integral, yielding

∞

∑
k=0

ϕk =
1

∆t

∫ ∆t

0

(
lim

n→∞

∫ n∆t+s

0
ϕ(u)du

)
ds =

1
∆t

∫ ∆t

0

(∫ ∞

0
ϕ(u)du

)
ds = α.

Furthermore, since
∫ t

0 ϕ(u)du is continuous, nonnegative, and monotonically nondecreasing in t, we
obtain

ϕ0 =
1

∆t

∫ ∆t

0

(∫ t

0
ϕ(u)du

)
dt <

1
∆t

∫ ∆t

0

(∫ ∞

0
ϕ(u)du

)
dt = α.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2025 doi:10.20944/preprints202504.2002.v1

https://doi.org/10.20944/preprints202504.2002.v1


17 of 24

Appendix A.2. Derivation of (12) and (13)

From equations (8) and (10), we have

E[Xn | Hn−1] = E

[
µ∆t + ∑

k≤n
Φn−kXk | Hn−1

]
= µ∆t + ∑

k≤n−1
Φn−kXk + Φ0E[Xn | Hn−1].

∴ (I − Φ0)E[Xn | Hn−1] = µ∆t + ∑
k≤n−1

Φn−kXk.

Since the spectral radius of Φ0 is strictly less than one, the matrix (I − Φ0) is invertible, and all entries
of E[Xn | Hn−1] are nonnegative. Hence, the conditional mean vector of Xn is given by expression (12).

To derive (13), observe that

Xn − λ∗
n = (I − Φ0)

−1

(
(I − Φ0)Xn − µ∆t − ∑

k≤n−1
Φn−kXk

)
= (I − Φ0)

−1∆Mn.

Therefore,

Var(Xn | Hn−1) = E
[
(Xn − λ∗

n)(Xn − λ∗
n)

T | Hn−1

]
= (I − Φ0)

−1E
[
∆Mn∆MT

n | Hn−1

]
(I − ΦT

0 )
−1

= (I − Φ0)
−1diag(E[λn | Hn−1])(I − ΦT

0 )
−1,

where the last equality follows from equation (11). Finally, since E[λn | Hn−1] = λ∗
n by (10), we obtain

equation (13).

Appendix A.3. Proof of Lemma 2

From equation (10), it follows that

E[∆Mn] = E[E[∆Mn | Hn−1]] = 0.

To derive equation (15), observe that for n < n′ (and, by symmetry, for n ̸= n′),

E[∆Mn∆MT
n′ ] = E

[
∆MnE[∆MT

n′ | Hn′−1]
]
= 0.

Moreover, applying equation (11), we obtain

E[∆Mn∆MT
n ] = E

[
E[∆Mn∆MT

n | Hn−1]
]
= E[diag(E[λn | Hn−1])] = diag(λ),

which completes the proof.

Appendix A.4. AR(∞) and MA(∞) representations

Using equations (9) and (14), the rate equation (8) can be reformulated as

Xn − λ =
∞

∑
k=0

Φk(Xn−k − λ) + ∆Mn, (A1)

∴ (I − Φ0)(Xn − λ) =
∞

∑
k=1

Φk(Xn−k − λ) + ∆Mn.
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Under the stationarity condition, the inverse (I − Φ0)
−1 exists, yielding the autoregressive representa-

tion

Xn − λ =
∞

∑
k=1

Φ∗
k (Xn−k − λ) + ∆M∗

n ,

where Φ∗
k = (I − Φ0)

−1Φk and ∆M∗
n = (I − Φ0)

−1∆Mn.
To obtain a moving average representation, we apply the formal z-transform to both sides of

equation (A1):
Ŷ(z) = Φ̂(z)Ŷ(z) + ∆M̂(z),

where Ŷ(z) = ∑∞
n=−∞(Xn − λ)z−n, Φ̂(z) = ∑∞

n=−∞ Φnz−n and ∆M̂(z) = ∑∞
n=−∞ ∆Mnz−n. Solving

for Ŷ(z) yields
Ŷ(z) = Ψ̂(z)∆M̂(z),

where the transfer function is defined by

Ψ̂(z) = (I − Φ̂(z))−1 =
∞

∑
j=0

Φ̂j(z).

Applying the inverse z-transform then gives the MA(∞) process:

Xn − λ =
∞

∑
k=0

Ψk∆Mn−k,

where Ψk = ∑∞
j=0(Φ

(∗j))k.

Appendix A.5. Proof of Theorem 1

Using equations (15) and (16), the autocovariance matrix of {Xn} is given by

Cov(Xn, Xn+j) = E[(Xn − λ)(Xn+j − λ)T]

= E

( ∞

∑
k=0

Ψk∆Mn−k

)(
∞

∑
l=0

Ψl∆Mn+j−l

)T


=
∞

∑
k=0

∞

∑
l=0

ΨkE[∆Mn−k∆MT
n+j−l ]Ψ

T
l

=
∞

∑
k=0

∞

∑
l=0

Ψkdiag(λ)δk,l−jΨ
T
l

=
∞

∑
l=0

Ψl−jdiag(λ)ΨT
l ,

which completes the proof.

Appendix A.6. Proof of Theorem 2

We provide a proof of Theorem 2 in the univariate setting. The extension to the multivariate
case follows by applying the same reasoning component-wise to each element of the spectral density
matrix. To begin, we establish the following approximation result for the Fourier transforms of the
excitation kernel and its coarse-grained counterpart.

Lemma A1. Let ϕ̃(ν) =
∫ ∞

0 ϕ(t)e−iνtdt denote the continuous-time Fourier transform of the excitation kernel,
and let ϕ̂(ω) = ∑∞

k=0 ϕke−iωk denote the discrete-time Fourier transform of the corresponding coarse-grained
kernel. Then, in the limit as ∆t → 0, the following approximation holds:

ϕ̂(ν∆t) = ϕ̃(ν) + O(∆t2). (A2)
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Proof. From (6) and (7), we obtain

ϕ̂(ν∆t) =
∞

∑
k=0

ϕke−iνk∆t

= ψ0 + (ψ1 − ψ0)e−iν∆t + (ψ2 − ψ1)e−2iν∆t + · · ·

= lim
n→∞

[
n−1

∑
k=0

ψke−iνk∆t(1 − e−iν∆t) + ψne−iνn∆t

]

= lim
n→∞

[
n−1

∑
k=0

∫ (k+1)∆t

k∆t
φ(t)e−iνk∆tdt · 1 − e−iν∆t

∆t
+ ψne−iνn∆t

]
, (A3)

where φ(t) =
∫ t

0 ϕ(u)du. To evaluate the integral, consider

∫ (k+1)∆t

k∆t
φ(t)e−iνtdt =

∫ (k+1)∆t

k∆t
φ(t)

[
e−iνk∆t − iνe−iνk∆t(t − k∆t) + O(∆t2)

]
dt

=
∫ (k+1)∆t

k∆t
φ(t)e−iνk∆tdt − Qk + O(∆t3), (A4)

where

Qk = iνe−iνk∆t
∫ ∆t

0
φ(t + k∆t)tdt.

By Taylor’s theorem, for each t ∈ [0, ∆t], there exists c ∈ (k∆t, (k + 1)∆t) such that

φ(t + k∆t) = φ(k∆t) + φ̇(c)t = φ(k∆t) + ϕ(c)t.

Note that c generally depends on t. Then Qk is approximated as

Qk = iνe−iνk∆t
∫ ∆t

0
[φ(k∆t) + ϕ(c)t]tdt = iνe−iνk∆t · φ(k∆t)

2
∆t2 + O(∆t3).

Substituting into (A4), we obtain

∫ (k+1)∆t

k∆t
φ(t)e−iνk∆tdt =

∫ (k+1)∆t

k∆t
φ(t)e−iνtdt + iνe−iνk∆t · φ(k∆t)

2
∆t2 + O(∆3).

Therefore, for n ≫ 1 and ∆t ∼ n−1, it follows that

n−1

∑
k=0

∫ (k+1)∆t

k∆t
φ(t)e−iνk∆tdt =

∫ n∆t

0
φ(t)e−iνtdt +

iν∆t
2

n−1

∑
k=0

φ(k∆t)e−iνk∆t∆t + O(∆t2)

=
∫ n∆t

0
φ(t)e−iνtdt +

iν∆t
2

∫ n∆t

0
φ(t)e−iνtdt + O(∆t2).

Substituting back into (A3) yields

ϕ̂(ν∆t) = lim
n→∞

[(∫ n∆t

0
φ(t)e−iνtdt +

iν∆t
2

∫ n∆t

0
φ(t)e−iνtdt + O(∆t2)

)

×
(

iν +
ν2∆t

2
+ O(∆t2)

)
+ ψne−iνn∆t

]

= lim
n→∞

(
iν
∫ n∆t

0
φ(t)e−iνtdt + ψne−iνn∆t

)
+ O(∆t2).
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The first term on the right-hand side can be further simplified as

iν
∫ n∆t

0
φ(t)e−iνtdt = −

[
φ(t)e−iνt

]n∆t

0
+
∫ n∆t

0
φ̇(t)e−iνtdt

= −φ(n∆t)e−iνn∆t +
∫ n∆t

0
ϕ(t)e−iνtdt.

Consequently,

ϕ̂(ν∆t) = lim
n→∞

(∫ n∆t

0
ϕ(t)e−iνtdt − φ(n∆t)e−iνn∆t + ψne−iνn∆t

)
+ O(∆t2)

=
∫ ∞

0
ϕ(t)e−iνtdt + O(∆t2),

where we have used the identity limn→∞ ψn = φ(∞).

Now we complete a proof of Theorem 2. According to equation (17), the spectral density of the
univariate coarse-grained Hawkes process is expressed as

f (cg)
∆t (ω) =

λ∆t
2π

1
|1 − ϕ̂(ω)|2

.

Substituting equation (A2) into the expression above yields

f (cg)
∆t (ν∆t) =

λ∆t
2π

1
|1 − ϕ̃(ν) + O(∆t2)|2

=
λ∆t
2π

(
1

|1 − ϕ̃(ν)|2
+ O(∆t2)

)
= f (hw)(ν)∆t + O(∆t3),

thereby completing the proof of Theorem 2 in the univariate setting.

For comparison, consider the binned Poisson approximation introduced in equations (1)–(2),
wherein the discretized excitation kernel is defined by ϕk = ϕ(k∆t)∆t for k = 1, 2, . . .. The discrete-
time Fourier transform of this kernel is given by

ϕ̂(ν∆t) =
∞

∑
k=1

ϕ(k∆t)e−iνk∆t∆t = ϕ̃(ν) + O(∆t),

as ∆ → 0. Observe that the approximation order is lower than that of equation (A2). Consequently, the
spectral density of the binned Poisson approximation is asymptotically given by

f (po)
∆t (ν∆t) = f (hw)(ν)∆t + O(∆t2).

Appendix B. Second-order properties of the stationary Hawkes process
This appendix provides a concise summary of the second-order statistical characteristics of the

stationary Hawkes process. We present only those results pertinent to the analysis in this paper, and
refer the reader to [22,28,29] for detailed derivations.

• Spectral Density Matrix of the Stationary Hawkes Process:

F(hw)(ν) =
1

2π
(I − Φ̃(ν))−1diag(λ)(I − Φ̃T(ν))−1, ν ∈ (−∞, ∞), (A5)
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where Φ̃(ν) =
∫ ∞

0 Φ(t)e−iνtdt denotes the Fourier transform of the excitation kernel matrix, and

λ = E[λ(t)] = (I − A)−1µ,

represents the stationary (mean) intensity.
• Expected Value of the Binned Stationary Hawkes Process:

E[Xk] = λ∆t = (I − A)−1µ∆t. (A6)

• Spectral Density Matrix of the Binned Stationary Hawkes Process:

F(hw)
∆t (ω) = ∆t

∞

∑
k=−∞

sinc2
(ω + 2πk

2

)
F(hw)

(ω + 2πk
∆t

)
, ω ∈ [−π, π). (A7)

To evaluate (A7) in the limit as ∆t → 0, we employ the following asymptotic expansion:

sinc
(

ν∆t + 2πk
2

)
=

1 − ν2∆t2

12 + O(∆t4), k = 0,
ν2∆t2

4π2k2 + O(∆t3), k ̸= 0.

Substituting into (A7) yields the approximation:

F(hw)
∆t (ν∆t) =

(
1 − ν2∆t2

12
+ O(∆t4)

)
F(hw)(ν)∆t

+ ∑
k ̸=0

(
ν2∆t2

4π2k2 + O(∆t3)

)
F(hw)

(
ν +

2πk
∆t

)
∆t

= F(hw)(ν)∆t + O(∆t3).

Appendix C. Power-Law Distribution
A power-law distribution for waiting times is defined as

g(t) =
βγ

(1 + βt)1+γ
, t ≥ 0,

for β > 0 and γ > 0. It is well-known that the moments of a power-law distribution exist and are finite
for all orders strictly less than the exponent γ. In particular, the expected waiting time is finite if γ > 1,
and is given by ∫ ∞

0
tg(t)dt =

1
β(γ − 1)

.

The corresponding coarse-grained kernel is given by

gk =

1 −
[
(1 + β∆)1−γ − 1

]
/β(1 − γ)∆, k = 0,

−
[
{1 + β(k + 1)∆}1−γ − 2{1 + βk∆}1−γ + {1 + β(k − 1)∆}1−γ

]
/β(1 − γ)∆, k = 1, 2, . . . ,

for γ ̸= 1, and

gk =

1 − log(1 + β∆)/β∆, k = 0,

−[log{1 + β(k + 1)∆} − 2 log{1 + βk∆}+ log{1 + β(k − 1)∆}]/β∆, k = 1, 2, . . . ,

for γ = 1.
Figure A1 illustrates the power spectral density (PSD), cross-spectral density (CSD), auto-

covariance, and cross-covariance of the binned Hawkes process (blue dotted lines), the coarse-grained
Hawkes process (red lines), and the binned Poisson approximation (green lines), respectively. Fig-
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ure A2 presents the information loss associated with the coarse-grained Hawkes process (red lines) and
the binned Poisson approximation (green lines), respectively. These results are qualitatively consistent
with those obtained using the exponential kernel, as shown in Figures 1–2.
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Figure A1. Same as Figure 1, but for the power-law kernel. Parameters of the Hawkes process are set to µ = 1,
α(s) = 0.4, α(c) = 0.3, β = 1, and γ = 2.
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Figure A2. Same as Figure 2, but for the power-law kernel. Parameters are set to µ = 1, β = 1, and γ = 2.
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