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Abstract 

Background/Objectives: In recent years, the use of compression garments has expanded into sports 

contexts to enhance performance and optimize post-exercise recovery. One of the most investigated 

physiological variables for evaluating their effectiveness has been peripheral muscle oxygenation, a 

crucial indicator of physical performance. However, studies regarding the effects of compression on 

the upper limbs remain limited and insufficiently explored. Therefore, the aim of this study was to 

analyze the effects of compression garments on muscle oxygen saturation (SmO₂) recovery in the 

biceps brachii after brief maximal isometric contractions. Specifically, physiological responses were 

compared between two conditions (with and without compression garments), hypothesizing that 

compression would promote faster and more efficient muscle reoxygenation compared to traditional 

clothing. Methods: Fourteen male participants (mean age: 24.4 years; mean height: 176.75 cm; mean 

body mass: 73 kg) performed three 10-second isometric contractions separated by 180-second passive 

recovery periods under compression (CG) and non-compression (noCG) conditions. SmO₂ was 

monitored using near-infrared spectroscopy (NIRS), assessing Half-Recovery Time (HRT), Overshoot 

Amplitude, Initial Slope, and the time constant τ. Results: The compression garment significantly 

reduced HRT (CG 8.52 s vs. noCG 10.21 s; p=0.035), significantly increased Overshoot Amplitude (CG 

21.40% vs. noCG 7.92%; p=0.0014), resulted in a greater Initial Slope (CG 2.43 %/s vs. noCG 2.09 %/s; 

p=0.027), and significantly reduced the time constant τ (CG 11.68 s vs. noCG 21.04 s; p<0.001). 

Conclusions: The use of compression garments demonstrated significant improvements in post-

exercise muscle oxygen saturation, suggesting potential advantages for muscle recovery and positive 

implications for athletic performance. 

Keywords: biceps brachii; compression garments; isometric contraction; post-exercise recovery; 

sportswear 

 

1. Introduction 

Compression garments are clothing items designed to exert controlled mechanical pressure on 

body tissues, with pressure levels varying according to material characteristics and garment fit [1]. 

Historically employed in medical settings to improve venous return, facilitate lymphatic circulation, 

and reduce edema [2–5], these garments have been extensively studied and clinically applied [6–10]. 

In recent years, the use of compression garments has progressively expanded into sports contexts, 

aiming to enhance performance, optimize post-exercise recovery [11–21] and reduce perceived 

exertion during intense physical activities [22]. However, scientific evidence supporting their 

effectiveness remains controversial. Some meta-analyses and review studies have reported positive 
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effects on recovery, including reductions in creatine kinase, delayed-onset muscle soreness (DOMS), 

and blood lactate levels [23–28]. Conversely, other studies have found no significant differences in 

performance or physiological responses compared to traditional sportswear [29–31]. Most research 

in this area has focused on the long-term effects (beyond 5 minutes) of compression garments, 

predominantly examining the lower limbs [26,32]. Consequently, findings cannot be unreservedly 

generalized to the upper limbs. Peripheral muscle oxygenation is among the most studied 

physiological variables related to compression, considered a key indicator of physical performance. 

During exercise, the balance between oxygen availability and muscular demand is crucial to delay 

fatigue onset [33]. To date, only two randomized studies have investigated graduated compression 

garments for the upper limbs, involving continuous grip activities in climbing and competitive 

gaming, both showing increased SmO₂ during recovery [34,35]. Thanks to advancements in non-

invasive technologies, such as near-infrared spectroscopy (NIRS), it is now possible to monitor 

muscle oxygen saturation (SmO₂), expressed as a percentage, in real-time during various types of 

exercise [36–40]. Specifically, analyzing SmO₂ values during isometric contractions allows 

investigation of the relationship between metabolic demand and muscle oxygen availability [41]. This 

study aimed to analyze the effects of compression garment use on muscle oxygen saturation (SmO₂) 

recovery in the biceps brachii following brief maximal isometric contractions. In particular, 

physiological responses post-exercise were compared between two conditions (with and without 

compression garments). It was hypothesized that compression garments would promote faster and 

more efficient post-exercise muscle reoxygenation, thereby enhancing oxidative recovery compared 

to traditional clothing. 

2. Materials and Methods 

2.1. Participants 

The sample consisted of 14 male adults, with a mean age of 24.4 years (± 2.68), mean height of 

176.75 cm (± 6.96), body mass of 73 kg (± 7.34), and average biceps brachii circumference of 30.5 cm 

(± 2.6). Thirteen participants were right-arm dominant, and one participant was left-arm dominant. 

Participants were recruited based on specific inclusion criteria: regular participation in sports 

activities (at least three weekly sessions at moderate intensity, totaling at least 5 hours per week), and 

having a biceps brachii circumference between 25 and 35 cm. Subjects with a positive medical history 

or reported cardiovascular diseases, injuries, or physical conditions potentially influencing test 

performance, as well as those taking medications capable of altering performance or physiological 

responses, were excluded from the sample. 

2.2. Procedures 

Participants were instructed to abstain from alcohol consumption and intense training, and to 

maintain their usual dietary and consumption habits during the 24 hours prior to each experimental 

session. All subjects were informed about the study’s purpose and potential risks and provided 

written informed consent. The study was conducted in accordance with the principles outlined in the 

Declaration of Helsinki and was approved by the Ethical Committee of the Department of the 

Department of Human, Philosophical, and Educational Sciences at the University of Salerno (Protocol 

Number: 0186309). The entire experimental protocol was designed and supervised by the staff of the 

Laboratory for Innovative Teaching and Sports Performance Analysis at the Universi-ty of Salerno 

(Unisa). The tests were conducted in the gymnasium of the University Sports Center (CUS), under 

controlled environmental conditions (temperature: 22±2°C; relative humidity: 60%±2%) and between 

9:00 AM and 2:00 PM. Each participant performed the different experimental conditions 48 hours 

apart, with environmental conditions and test times kept constant. The aim of the study was to 

analyze changes in muscle oxygen saturation (SmO₂) in response to the use of compression garments 

during isometric exercises targeting the biceps brachii. A crossover experimental design was adopted 

with two conditions (Compression Garment, CG; Control, noCG), separated by a 48-hour wash-out 
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period. The order of conditions was randomized using balanced blocks (1:1 ratio). Therefore, each 

participant participated in two experimental sessions. In the first condition (noCG), exercises were 

performed while wearing traditional sportswear without compression effects (Figure 1a), whereas in 

the second condition (CG), the same protocol was carried out using a graduated compression 

garment provided by LB9 (® LB9 BRAND S.R.L. Founded & Endorsed) (Figure 1b). In the noCG 

condition, participants wore a placebo (“sham”) garment similar in fabric, color, and general 

appearance to the compression garment but without significant compression. Subjects were not 

informed about the actual difference between the two garments, thus limiting potential expectancy 

effects. The measurement of arm circumference was performed with the subject standing upright 

with the arm relaxed at the side, at the midpoint between the acromion and olecranon processes [42]. 

  
(a) (b) 

Figure 1. Experimental setup noCG and CG. 

Legend: (a) Performance of maximal isometric contraction of the biceps brachii in the no CG 

condition. (b) Performance of maximal isometric contraction of the biceps brachii in the CG condition. 

Before each session, participants performed a standardized warm-up consisting of three sets of 

unilateral bicep curls with six repetitions at 50% of 1RM, separated by one minute of rest between 

sets, according to the protocol described by Zhao, Nishioka, and Okada [43]. During each 

experimental condition, participants performed three maximal bilateral isometric bicep curl 

contractions, maintaining an elbow flexion angle of 90°, each lasting 10 seconds at 100% of maximum 

voluntary contraction [44]. A passive recovery period of 180 seconds was provided between each trial 

[45]. Muscle oxygen saturation (SmO₂) was monitored in real-time during each trial using a near-

infrared spectroscopy (NIRS) sensor positioned over the biceps brachii muscle. 

2.3. Materials 

To analyze the effects of compression garments on muscle oxygen saturation (SmO₂), a 

compression garment (® LB9 BRAND S.R.L. Founded & Endorsed) was used. The garment, made 

from 60% Nylon and 40% Spandex, size M, was designed to apply graduated compression along the 

upper limb. Specifically, the pressure recorded at the wrist was 24 mmHg, gradually decreasing along 

the forearm and subsequently increasing at the biceps brachii muscle, reaching 22.7 mmHg. These 

data were provided by the manufacturer of the compression garment. These values referred to an 

arm circumference of approximately 30 cm, corresponding to the average measurement within the 

analyzed sample, to ensure functional and homogeneous garment adaptation to arm morphology. 

This approach maintained consistent pressure levels among subjects and standardized the 

compressive effect on the target muscle. The detailed description of the compression garment and 

fabric characteristics, in accordance with recommendations by MacRae et al., facilitates replicability 

and comparison with previous studies, indirectly contributing to standardizing applied pressure 

during exercise. Non-invasive measurement of muscle oxygen saturation (SmO₂) was performed 

using the MOXY®  device (Fortiori Design LLC, Hutchinson, MN, USA), based on continuous-wave 

near-infrared spectroscopy (NIRS). The sensor was applied to the biceps brachii muscle of the 

dominant side, consistent with scientific literature highlighting its sensitivity in reflecting oxygen 
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consumption during muscular contractions [46]. Positioning followed SENIAM guidelines [47], as 

recommended by the sensor manufacturer, aligning the emitter and detectors parallel to muscle 

fibers. The sensor was secured using adhesive materials provided by the manufacturer. The device 

operates at four wavelengths (680, 720, 760, and 800 nm) to measure tissue light absorbance, 

calculating, through an adaptation of the Beer-Lambert law, the ratio of oxygenated hemoglobin and 

myoglobin to their total concentration [38,40]. This value is multiplied by 100 and expressed as a 

percentage, providing the SmO₂ value within a range of 0 to 100% [48,49]. The parameter enables 

real-time monitoring of skeletal muscle oxidative metabolism during exercise [50,51]. In addition to 

SmO₂, the device also measures total hemoglobin concentration (Thb), reflecting changes in local 

blood volume [52]. The default sampling frequency is 0.5 Hz, allowing data acquisition at the four 

wavelengths for 80 consecutive cycles, producing an average output every 2 seconds [38,53]. The 

distances between the emitter and detectors are 12.5 mm and 25 mm, respectively, ensuring an 

estimated penetration depth of approximately 12.5 mm [38,54]. Adipose tissue thickness (ATT) at the 

biceps brachii was measured using skinfold calipers [55]. Data were saved in the device’s internal 

memory and subsequently exported via the “Moxy Monitor Settings” application (version 1.5.5) for 

processing and analysis. default filter, automatically applied by the device manufacturer, was used 

to reduce signal noise. 

2.4. Data Analysis 

All SmO₂ values were normalized relative to baseline, defined as the stable value recorded 

during the rest period following the warm-up [56]. Specifically, the mean of stable values recorded 

within a one-minute post-warm-up window was calculated. The recovery phase was defined as the 

3-minute period following the peak desaturation. To analyze muscle oxygen saturation (SmO₂) trends 

during the post-maximal isometric contraction recovery phase, five distinct metrics were applied. 

First, the Half-Recovery Time (HRT) was calculated, defined as the time required for SmO₂ to rise 

from the peak desaturation to 50% of the total amplitude between that point and baseline [57–59]. 

Subsequently, the initial recovery slope was analyzed, calculated using ordinary least squares (OLS) 

linear regression applied to the first 25 seconds of post-contraction resaturation [60,61]. The time 

constant (τ) was estimated by fitting a mono-exponential model to the resaturation curve. This 

parameter describes the overall recovery speed [62] and reflects muscle oxidative capacity [63]. 

Additionally, the overshoot amplitude was determined, defined as the difference between the 

maximum SmO₂ peak reached post-contraction and the baseline pre-exercise level [59,64] parameters 

were calculated separately for each participant, obtaining a single representative average value for 

each of the two experimental conditions. For each subject, the individual difference (Δ) between the 

means of the two conditions was calculated. The Shapiro-Wilk test was used to verify that differences 

between experimental conditions met the assumption of normality, necessary for using parametric 

tests. For parameters meeting the normality assumption (p>0.05 on the Shapiro-Wilk test), the paired 

Student’s t-test was used, while the Wilcoxon signed-rank test was employed for parameters that did 

not meet this assumption, to compare the two conditions. The magnitude of effects observed with 

parametric tests was quantified using Cohen’s d index, interpreted as follows: 0.2 indicates a small 

effect, 0.5 a moderate effect, and 0.8 or greater a large effect. For the Wilcoxon test, the effect size 

index r (matched-pairs rank biserial correlation) was reported, with reference values of 0.1 for a small 

effect, 0.3 for a moderate effect, and 0.5 for a large effect. Finally, to ensure precise and robust 

evaluation of results, the mean difference (Δ) between the two conditions (No compression - 

Compression) was calculated. For variables exhibiting a normal distribution, the mean difference and 

the corresponding 95% confidence interval (95% CI) were calculated using the parametric method 

based on the paired t-test. For variables not meeting the normality assumption, the median difference 

and 95% confidence interval were calculated using the exact Hodges-Lehmann method, consistent 

with the non-parametric Wilcoxon test. Additionally, the 95% confidence interval for the effect size 

indices (Cohen’s d or r) was calculated. Specifically, for calculating the confidence interval of index 

r, bootstrap resampling with 5000 iterations was employed, providing a precise and robust estimate 
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of the non-parametric effect size, given the non-normal distribution of the analyzed variable. This 

analysis clearly highlighted the precision of observed effect estimates and thoroughly evaluated 

individual variability in response to compression. All statistical results were considered significant 

at p-values lower than 0.05. All analyses were performed using MATLAB-R2025a (Version 25.1, 

MathWorks Inc., Natick, MA, USA) 

3. Results 

The measurement of the athlete’s skinfold thickness revealed a value below 12 mm, the accepted 

limit for using the NIRS device [48], confirming the validity of obtained data and reliability of muscle 

oxygen saturation (SmO₂) measurements. 

The comparison of Half-Recovery Time between the compression condition (8.52 ± 2.89 s) and 

the no compression control condition (10.21 ± 2.85 s) showed a mean difference of +1.69 ± 2.68 s (No 

compression – Compression), with a 95% confidence interval between +0.14 s and +3.24 s. This result 

robustly highlights an improved muscle recovery facilitated by compression garment use. The 

distribution of differences confirmed normality via the Shapiro–Wilk test (p = 0.182). Consequently, 

a paired t-test was applied, showing a statistically significant difference between conditions (p = 

0.035) (Figure 2A). The effect size, measured by Cohen’s d, was moderate (d = 0.63), with a 95% 

confidence interval ranging from 0.05 to 1.21, indicating individual variability in muscular response 

to compression. 

The initial recovery slope of muscle oxygen saturation (SmO₂) under the compression condition 

(2.43 ± 0.73 %/s) compared to the no compression condition (2.09 ± 0.57 %/s) demonstrated a mean 

difference of –0.34 ± 0.51 %/s (No compression – Compression), with a 95% confidence interval 

between –0.64 and –0.05 %/s, indicating a significant increase in the initial recovery speed favored by 

the compression garment. Again, the distribution confirmed normality (p = 0.207) and the paired t-

test revealed a statistically significant difference (p = 0.027) (Figure 2B). The effect size, measured by 

Cohen’s d, was moderate (d = 0.67), with a 95% confidence interval ranging from 0.09 to 1.24. 

Overshoot Amplitude under the compression condition (21.40 ± 10.91%) compared to the no 

compression condition (7.92 ± 13.49%) showed a mean difference of –13.48 ± 12.50% (No compression 

– Compression), with a 95% confidence interval between –20.70% and –6.27%, robustly confirming 

the positive effect of the compression garment in increasing peak muscle oxygen saturation. This 

difference was normally distributed (p = 0.058). The paired t-test indicated a statistically significant 

difference between conditions (p = 0.0014) (Figure 2C). The effect size, assessed via Cohen’s d, was 

large (d = 1.08), with a 95% confidence interval between 0.50 and 1.66. 

The time constant τ under the compression condition (11.68 ± 5.41 s) compared to the no 

compression condition (21.04 ± 9.96 s) showed differences that did not meet the assumption of 

normality (p = 0.044). Consequently, the Hodges–Lehmann estimator (median of differences) was 

+6.90 s, with a 95% confidence interval between 4.22 and 11.65 s. A Wilcoxon signed-rank test was 

applied, showing a statistically significant difference (p < 0.001) (Figure 2D). The effect size was 

expressed via rank-biserial correlation (r = 0.864); the related 95% CI was estimated through bootstrap 

resampling with 5000 iterations (0.780–0.881), ensuring a robust estimate of precision. 
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Figure 2. Comparison of muscle oxygen saturation (SmO₂) recovery parameters between No compression 

(noCG) and Compression (CG) conditions. (A) Half-Recovery Time, defined as the time required to reach 50% 

recovery of SmO₂ starting from the minimum desaturation value; (B) Initial Slope, corresponding to the initial 

slope of the resaturation curve within the first 25 seconds; (C) Overshoot Amplitude, indicating the maximum 

reoxygenation amplitude relative to the pre-exercise baseline; and (D) τ, the time constant of the mono-

exponential model, indicative of muscular oxidative capacity. The black line within each box represents the 

median value. The lower and upper edges of the boxes correspond to the 25th and 75th percentiles (interquartile 

range), respectively, while the dashed vertical lines (whiskers) extend to the minimum and maximum values. 

4. Discussion 

The results obtained in this study show that the application of compression garments during 

maximal isometric exercises may have significant beneficial effects on several parameters related to 

muscle oxygen saturation (SmO₂) recovery. 

The significant reduction in Half-Recovery Time with compression garments (p=0.035, d=-0.63) 

suggests a faster muscle capability to restore baseline oxygenation levels. Physiologically, this can be 

attributed to improved efficiency of venous return and local blood flow, facilitating metabolite 

clearance and energy replenishment [12,65,66]. 

The significant increase in Overshoot Amplitude (p = 0.0014, d = 1.08) observed with 

compression garments is particularly physiologically relevant, potentially reflecting enhanced 

peripheral vascular responses [34,66]. This phenomenon indicates a greater capacity of the vascular 

system to temporarily enhance oxygen availability, potentially improving local metabolic conditions 

post-exercise [67]. This observation aligns with literature findings commonly reporting increased 

muscle saturation above resting levels after vigorous exercise. Compression use seems to amplify this 

effect. DiFrancisco-Donoghue et al. [34], for example, documented that after 15 minutes of recovery 

with compression sleeves, forearm SmO₂ increased by about 9% above baseline values, an effect not 

observed without compression. 

The higher initial recovery slope (initial slope, 0-25 s) of the SmO₂ recovery curve with 

compression (p=0.027, d=0.67) indicates increased initial speed in SmO₂ recovery, further supporting 

the notion that compression may facilitate immediate reperfusion of muscle tissue, offering potential 

advantages in muscle management and recovery post-intense activity. The close relationship 

between muscle reoxygenation and factors such as blood flow, metaboreflex response, and capillary 

dynamics may explain this finding. Specifically, enhanced blood flow and optimal oxidative enzyme 

activity in muscles are associated with improved post-exercise reoxygenation capability [68,69]. 

These results are consistent with findings from a previous study conducted on the lower limbs, which 

indicated a greater recovery slope of SmO₂ in the quadriceps using compression garments (t-test = 

2.69, p = 0.021) compared to the control condition, suggesting enhanced O₂ delivery in the initial 

recovery seconds [67]. 

The significantly lower time constant τ observed under compression garment conditions (p < 

0.001, r = 0.864) further strengthens the interpretation related to faster metabolic recovery, suggesting 

that compression improves the speed at which muscles regain oxidative equilibrium post-exercise. 

This aligns with evidence indicating higher τ values correlate with reduced muscle oxidative capacity 

[63]. 

Overall, these findings support the strategic use of compression garments in sports contexts, 

suggesting potential benefits for improving recovery between intense exercise sessions by facilitating 

more efficient muscle reoxygenation, potentially enhancing performance during physical activities 

[23,24]. The data from this study align with previous evidence documenting improved muscle 

reoxygenation following compression garment use during or after exercise [34,67]. However, other 

studies did not observe significantly different effects compared to conventional sportswear use [70–

73]. Such discrepancies might be attributed to various factors, including sample characteristics, 

exercise modalities employed, and differing compression intensities [1,13,74,75]. 
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The possible influence of the placebo effect in studies on compression garments should also be 

considered, as awareness of their potential benefits can shape participants’ expectations and 

consequently affect outcomes. Since compression garments exert noticeable pressure on the body, 

conducting blinded experiments with such clothing is challenging [1,17]. However, in the present 

study, a tight-fitting sports shirt was used as a control to reduce the placebo effect, potentially 

strengthening the reliability of the obtained results. 

4.1. Limitations and Future Perspectives 

A limitation of the present study is the small sample size (n=14), exclusively composed of male 

subjects, which restricts the generalizability of the conclusions to the broader population, particularly 

women, whose muscle tissue, body composition, and physiological responses to compression may 

differ significantly. 

Future studies should therefore include larger and more diverse samples in terms of gender, 

age, and training levels to enhance the representativeness of findings. Additionally, investigating the 

effects of varying compression gradients and materials through dose-response analysis will be 

beneficial for better understanding the interaction between compression intensity and physiological 

adaptations. 

5. Conclusion 

The use of near-infrared spectroscopy (NIRS) enabled precise, non-invasive measurement of 

muscle oxygen saturation (SmO₂), providing insights into the immediate effects of compression 

garment usage following intense isometric exercises. The results obtained from this study 

significantly support the initial hypothesis, demonstrating that compression garments may enhance 

physiological parameters related to muscular oxidative recovery. Specifically, significant reductions 

in Half-Recovery Time, substantial increases in Overshoot Amplitude, greater initial recovery slope, 

and decreased time constant τ were observed, collectively suggesting more effective and rapid 

muscle reoxygenation. These physiological benefits could primarily stem from improved venous 

return efficiency and enhanced local metabolic response, thereby facilitating accelerated clearance of 

metabolites produced during intense muscular activity. In conclusion, the data suggest that 

compression garment usage may promote faster recovery and improved muscle reoxygenation 

efficiency following isometric contractions in the upper limbs. 
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