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Article
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Abstract: The analysis of electrocardiogram (ECG) signals is profoundly affected by the presence of
electromyographic (EMG) noise, which can lead to substantial misinterpretations in healthcare applica-
tions. To address this challenge, we present ECGDnet, an innovative architecture based on Transformer
technology, specifically engineered to denoise multi-channel ECG signals. By leveraging multi-head
self-attention mechanisms, positional embeddings, and an advanced sequence-to-sequence processing
architecture, ECGDnet effectively captures both local and global temporal dependencies inherent in
cardiac signals. Experimental validation on real-world datasets demonstrates ECGDnet’s remarkable
efficacy in noise suppression, achieving a Signal-to-Noise Ratio (SNR) of 19.83, a Normalized Mean
Squared Error (NMSE) of 0.9842, a Reconstruction Error (RE) of 0.0158, and a Pearson Correlation
Coefficient (PCC) of 0.9924. These results represent significant improvements over traditional deep
learning approaches, while maintaining complex signal morphology and effectively mitigating noise
interference.

Keywords: Electrocardiogram; Denoising Signal; Self-Attention; Transformer

1. Introduction
Electrocardiogram (ECG) signals represent the electrical activity of the heart and serve as a

cornerstone in modern cardiac diagnostics. These signals, typically ranging from 0.05 to 100 Hz in
frequency, contain critical morphological features including P waves, QRS complexes, and T waves,[1,2]
each reflecting specific cardiac events. However, in real-world clinical settings, ECG recordings are
invariably contaminated by noise, particularly electromyogram (EMG) artifacts. These EMG artifacts,
generated by skeletal muscle contractions, [3,4] manifest as high-frequency components ranging from
20 Hz to 500 Hz and can exhibit amplitudes comparable to or even exceeding the ECG signal itself.
This interference poses a significant challenge as it can mask subtle ECG features,[5,6] distort important
diagnostic markers like ST segments, and potentially lead to false interpretations of arrhythmias or
other cardiac abnormalities. The denoising of electrocardiogram signals constitutes a pivotal area
of research, tackling the complexities introduced by noise interference within clinical diagnostic
frameworks. Conventional filtering methodologies, as elaborated in [7], emphasize the utilization of
reference datasets such as SimEMG to assess the efficacy of denoising performance. Although these
methodologies demonstrate efficacy in mitigating noise,[8] residual artifacts frequently endure, thereby
impacting diagnostic precision. Adaptive filtering methodologies, exemplified in [9], offer an effective
approach for the real-time removal of cardiogenic oscillations from esophageal pressure signals. This
methodology illustrates a substantial attenuation of noise levels, achieved without the necessity
for supplementary apparatus, thereby rendering it appropriate for clinical application. The iterative
regeneration method (IRM) presented in [10] exemplifies innovative techniques that provide significant
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enhancements compared to conventional wavelet and FIR filters. IRM demonstrates a proficient
equilibrium between the attenuation of noise and the preservation of signal morphology, while also
exhibiting computational efficiency, thereby rendering it particularly suitable for both mobile and
conventional ECG devices. In a comparable manner, hierarchical adaptive filtering, illustrated by the
hierarchical Kalman filter (HKF) in [11], utilizes patient-specific dynamics to attain enhanced denoising
efficacy. The adaptive methodologies highlighted herein emphasize the critical necessity of customizing
noise suppression strategies to align with particular clinical scenarios. The advent of machine learning
and deep learning methodologies has significantly revolutionized the domain, providing effective
solutions for the denoising of electrocardiogram signals. [12] presents an adversarial deep learning
framework aimed at the denoising of fetal ECG signals, which results in a notable enhancement of
the signal-to-noise ratio (SNR) and an increase in the accuracy of QRS complex detection. Methods
based on autoencoders, such as the denoising convolutional autoencoder (DCAE) referenced in [13],
significantly improve ECG signals derived from in-ear recordings, demonstrating exceptional accuracy
in R-peak detection and producing clinically viable waveform reconstructions. Fully convolutional
networks (FCNs), as examined in [14], demonstrate superior performance compared to conventional
techniques in the reconstruction of single-channel ECG signals that have been compromised by noise,
thereby highlighting the capabilities of deep learning across various applications. Emerging generative
models present a compelling avenue for exploration. [15,16] investigate the utilization of diffusion
models in the context of time series data, emphasizing score-based denoising techniques specifically
applied to ECG and sEMG signals. These models demonstrate exceptional capability in preserving
signal fidelity while effectively mitigating noise, thereby establishing an innovative framework for
generative denoising. Furthermore, [17] highlights the significance of noise on heart rate variability
(HRV) metrics, presenting a preprocessing technique that proficiently reduces the impact of artifacts
on essential diagnostic indicators.

The literature reviewed indicates a transition from traditional filtering techniques to more so-
phisticated machine learning and hybrid methodologies. Traditional filters establish a fundamental
basis for the attenuation of noise; however, contemporary methodologies emphasize the importance
of computational efficiency and adaptive functionalities. Subsequent investigations ought to focus
on the amalgamation of these methodologies, thereby guaranteeing maximal noise attenuation while
preserving signal integrity to the greatest extent possible. The advancements observed in this domain
present considerable promise for the enhancement of ECG signal quality, which, in turn, could lead to
improved diagnostic outcomes within healthcare environments. Recent advances in deep learning
have shown promise in signal processing tasks, yet existing neural network architectures for ECG
denoising have limitations in capturing long-range dependencies and complex temporal relationships
within the signal. This is particularly crucial when dealing with EMG artifacts, which can occur at
various time scales and intensities. To address these challenges, we present ECGDnet, a novel denois-
ing network that leverages transformer architecture to effectively remove EMG artifacts from ECG
signals. Our approach exploits the transformer’s superior ability to model long-range dependencies
and its self-attention mechanism to identify and preserve crucial ECG morphological features while
selectively removing muscle-related noise. The paper is structured in the following way: in the next
section, we present ECGDnet, elaborating on its architecture and its innovative methodology for
ECG signal denoising. The datasets employed for training and validation are detailed, along with
the preprocessing methods implemented to incorporate EMG noise into the data. Subsequently, we
delineate the performance metrics employed to assess the denoising efficacy of the proposed approach.
The "Results and Discussion" section emphasizes a comparative analysis of ECGDnet against other
leading models, highlighting its performance and computational efficiency. In conclusion, the paper
offers valuable insights and recommendations for future research avenues in the realm of ECG signal
processing and its implementation in environments with limited resources.
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2. Materials and Methods
2.1. Data for Training and Validation
2.1.1. MIT-BIH

This study utilized the widely recognized MIT-BIH dataset [18], which comprises ECG record-
ings provided by the Massachusetts Institute of Technology and meticulously annotated by medical
experts in accordance with international standards. The MIT-BIH database has been extensively
utilized within the academic community for research aimed at the recognition and classification of
arrhythmic heartbeats. The MIT-BIH dataset comprises 48 ECG recordings, each with a duration of
30 minutes. The recordings comprised two leads per record and were sampled at a frequency of 360
Hz, thereby providing comprehensive data for the investigation. Expert annotations were assigned
to the ECG recordings to ensure the accuracy and reliability of the dataset. The MIT-BIH database
employs optimization methodologies and actively solicits contributions from the research community
to facilitate future advancements. This enables the dataset to benefit from ongoing advancements and
self-optimization methodologies aimed at enhancing its quality and usability.

2.1.2. sEMG

The dataset [7] is a collection of four-channel surface electromyography signals from 40 partici-
pants, aimed at studying human-computer interaction. The data includes various hand gestures, such
as rest, wrist extension, flexion, and grip. The data was collected from four forearm muscles during
ten distinct hand gestures simulations using the BIOPAC MP36 device and Ag/AgCl surface bipolar
electrodes. The dataset is useful for research into recognition, classification, and predictive modeling
in EMG-based hand movement control systems. It also serves as a reference for artificial intelligence
models, particularly deep learning, detecting gesture-related electromyography signals. The dataset is
recommended for benchmarking existing datasets and validating machine learning and deep learning
models.

Table 1. Comprehensive comparison of MIT-BIH and sEMG databases.

Feature MIT-BIH Database sEMG Database

Database Purpose Study of cardiac arrhythmias and other
ECG-related conditions.

Study of human-computer interaction
via hand gesture recognition and
EMG-based movement control.

Records 48 records, each lasting 30 minutes. Data from 40 participants with an
equal gender distribution.

Leads 2 leads (bipolar limb leads). 4 leads (surface electrodes placed on
forearm muscles).

Sample Rate (Hz) 360 512
Signal Type ECG EMG

Equipment Used Holter monitor or standard ECG
equipment.

BIOPAC MP36 device with Ag/AgCl
surface bipolar electrodes.

Participants Various individuals (patients and
healthy individuals) with arrhythmias.

40 participants, balanced gender
distribution, simulating various hand
gestures.

Recording Setup Continuous 30-minute ECG recordings
of heart electrical activity.

Hand gestures recorded from forearm
muscles during simulation of 10
distinct gestures.

Data Collected
Includes normal heart rhythms,
arrhythmias, and noise due to
movement or electrode issues.

Resting state and various hand
gestures (e.g., wrist extension, flexion,
grip).

Data Accessibility Widely available for benchmarking
ECG analysis algorithms.

Recommended for benchmarking
gesture-related datasets and validating
machine learning models.

Risks/Limitations May include artifacts due to motion or
poor electrode contact.

Variability in muscle activity between
participants; EMG noise may interfere
with model training.

2.2. Data Preprocessing

In the preprocessing stage, we implemented an advanced signal integration methodology com-
bining the MIT-BIH ECG data with sEMG noise data collected from chest muscle recordings. The
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preprocessing workflow consisted of several key steps. First, the EMG noise data was carefully resam-
pled to match the temporal length of the ECG signal, ensuring dimensional compatibility and precise
alignment. This resampling process employed interpolation techniques to preserve the integrity of the
signal while adjusting its temporal resolution. Next, the resampled EMG noise was blended with the
clean ECG data using the formula:

ĉ = x̂ + n̂ (1)

where ĉ represents the noisy signal, x̂ is the clean ECG signal, n̂ is the EMG noise signal, This summation
approach enabled the creation of a realistic noise-contaminated signal, effectively simulating real-world
physiological recording conditions. By strategically combining clean ECG data with EMG-derived
noise, this preprocessing method generated a robust dataset that captures the inherent variability of
physiological signals and noise characteristics. Such a dataset enhances the realism of signal variability
and provides a valuable foundation for subsequent signal processing tasks and deep learning model
training, as illustrated in Figure 1.

Figure 1. Time Series of Clean ECG signal, Combined, and EMG Artifact Signals.

In order to enhance the reliability of the produced dataset and effectively replicate clinical scenar-
ios, the noise parameters undergo calibration via a methodical preprocessing strategy that harmonizes
realism, variability, and signal fidelity. The calibration process initiates with the normalization of
EMG noise levels, thereby ensuring that their amplitude aligns with the physiological noise inten-
sities documented in authentic clinical recordings. The normalization process is executed utilizing
statistical metrics, including the standard deviation and peak amplitude of the pristine ECG signals,
thereby mitigating the occurrence of implausible signal distortions. Furthermore, dynamic noise
scaling is implemented to introduce regulated fluctuations in the signal-to-noise ratio (SNR), thereby
simulating various degrees of contamination encountered in both ambulatory and intensive care
environments. The intensity of noise is modulated through a scaling coefficient that is established
based on predetermined SNR levels, such as 10 dB, 20 dB, or 30 dB. This is represented by the equation:

n̂ = α · n (2)

where α denotes the scaling factor that is applied to the noise signal n. This approach ensures
that the contaminated ECG preserves clinically relevant characteristics, despite fluctuations in the
severity of noise introduced. In order to ensure temporal alignment, the EMG noise is subjected to
resampling procedures that correspond to the sampling rate of the ECG signals. This approach is
crucial for preserving the intrinsic morphology of the signals and mitigating the risk of unintended
distortions. Interpolation methodologies are utilized to enhance temporal resolution and achieve
synchronization between the electrocardiogram and noise signals. Furthermore, the implementation
of randomized noise injection serves to encapsulate inter-patient variability, thereby mitigating the
risk of model overfitting to particular noise patterns. This is accomplished via Gaussian-distributed
noise variations, facilitating a broad spectrum of contamination scenarios within the dataset.
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3. Methodology
Our methodology seeks to develop a neural network capable of denoising severely corrupted

ECG signals through the utilization of a dual dataset [19]. One dataset comprises ECG signals, while
the other encompasses the artifact sources, specifically the EMG signals, which serve as the noise
component in our investigation. Given a paired signal training dataset c and n , where n represented
the noisy version of the clean ECG signal c for a given sample, our goal is to learn the right parameter
values of a neural network so that the network can map the noisy signal N to the clean signal C. With
these optimized parameters, the neural network can be used to denoise all ECG signals, including
those not available in the training database.

The overall framework shown in Figure 2 illustrated the overview of the proposed approach at
training and inference time. The inference section of the figure illustrates the workflow of ECGNet, a
model designed to denoise ECG signals by removing noise such as EMG interference. The process starts
with two inputs: the clean ECG signal (x̂) and the noise signal (n̂) , the degradation process of acquired
ECG can be represented as mentioned in Eq [1]. This noisy signal is fed into ECGNet, which processes
it to produce a denoised output signal

(
d̂
)

, The objective of the model is to accurately reconstruct the
clean ECG signal (x̂) by separating it from the noise, ensuring the output is a noise-free representation
of the original signal. The training part outlines the training process of a transformer based model
M(d; θ) for denoising signals by leveraging both training and validation datasets. The process begins
by initializing the model parameters θ with random values. The training dataset consists of noisy
signals Cs = {ci

s}n
i=1 and their corresponding ground-truth clean signals Xs = {xi

s}n
i=1 , while the

validation dataset comprises Ct = {Ci
t}m

i=1 and Xt = {xi
t}m

i=1 . During each training iteration, the model
processes the noisy training signals Cs to estimate the corresponding noise-free output x̂s = M(ds; θ)

. The quality of this estimation is evaluated using a loss function ∆(xs, x̂s) , which computes the
difference between the estimated output x̂s and the ground-truth signal xs. The parameters θ are
then updated using the Adam optimization algorithm to minimize this training loss. In parallel,
the model’s performance on the validation dataset is assessed to ensure generalization. The noisy
validation signals Ct are input into the model to generate estimated noise-free outputs x̂t = M(dt; θ).
The validation loss ∆(xt, x̂t) is calculated to measure the discrepancy between the estimated outputs
and the ground-truth signals Xt. The training process iterates between these steps until the validation
loss converges, indicating that the model has achieved optimal performance without overfitting. Upon
convergence, the final set of optimized parameters θ defines the trained model M(d; θ), which is then
ready for deployment in denoising tasks. This iterative approach ensures that the model learns to
accurately separate clean signals from noise while maintaining generalization to unseen data.

Figure 2. Training and inference schemes of the proposed approach for ECG denoising.
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Figure 3 depicts the architecture of the ECGDnet. The figure illustrates a Transformer-based
architecture emphasizing self-attention mechanisms. The combined signal ĉ is initially reshaped into a
matrix of dimensions (k,q) and augmented with positional encodings to incorporate sequence-order
information, a crucial component for capturing temporal relationships. The architecture includes
multiple stacked layers, each comprising a normalization layer, a self-attention module, and a feed-
forward network, interconnected via residual connections to ensure gradient flow and improve training
stability. The self-attention mechanism computes contextual dependencies between sequence elements
using scaled dot-product attention, where the query (Q), key (K), and value (V) matrices are projected
through linear transformations. The attention weights are derived by scaling the dot product of Q
and K, followed by a softmax operation, and applied to V to generate attention outputs. To enhance
representational capacity, the model employs multi-head attention, allowing the learning of diverse
relationships across the input sequence. The sequence representations are processed iteratively across
four stacked layers before being reshaped into a final 1D vector d̂ ,encapsulating the learned features.
This design is widely utilized in sequence-based tasks, including natural language processing and
time-series data analysis, owing to its ability to capture long-range dependencies efficiently.

Figure 3. Hierarchical Architecture of ECGDnet: End-to-End Transformer Pipeline with Cross-Layer Self-Attention
and Dynamic Residual Pathways for Advanced ECG Signal Processing.
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Table 2. Comprehensive Architecture of ECGDnet: Layer Configurations, Output Dimensions, and Computational
Parameters for ECG Signal Analysis.

Network Part Layer Output Shape Kernel Size Parameters

Input Position
Embedding [1, 20, 18] - 360

Transformer Block 1

Layer Norm 1 [20, 18] 1×1 36
Self-Attention
QKV [20, 3, 18] 1×1 (3 linear

proj.) 972

Self-Attention
Proj [20, 18] 1×1 342

Layer Norm 2 [20, 18] 1×1 36
MLP Linear 1 [20, 576] 1×1 10,944
MLP Linear 2 [20, 18] 1×1 10,386

Transformer Block 2

Layer Norm 1 [20, 18] 1×1 36
Self-Attention
QKV [20, 3, 18] 1×1 (3 linear

proj.) 972

Self-Attention
Proj [20, 18] 1×1 342

Layer Norm 2 [20, 18] 1×1 36
MLP Linear 1 [20, 576] 1×1 10,944
MLP Linear 2 [20, 18] 1×1 10,386

Transformer Block 3

Layer Norm 1 [20, 18] 1×1 36
Self-Attention
QKV [20, 3, 18] 1×1 (3 linear

proj.) 972

Self-Attention
Proj [20, 18] 1×1 342

Layer Norm 2 [20, 18] 1×1 36
MLP Linear 1 [20, 576] 1×1 10,944
MLP Linear 2 [20, 18] 1×1 10,386

Transformer Block 4

Layer Norm 1 [20, 18] 1×1 36
Self-Attention
QKV [20, 3, 18] 1×1 (3 linear

proj.) 972

Self-Attention
Proj [20, 18] 1×1 342

Layer Norm 2 [20, 18] 1×1 36
MLP Linear 1 [20, 576] 1×1 10,944
MLP Linear 2 [20, 18] 1×1 10,386

Output Linear [360] 1×1 129,960

3.1. Training Parameters

The Table 3 provides a detailed description of the training hyperparameters used for the proposed
ECGDnet denoising model. For training, a batch size of 128 was selected, with an initial learning
rate of 1.0 × 10−4, optimized using the Adam optimizer configured with β1 = 0.9, β2 = 0.999, and
ϵ = 1.0 × 10−8. The model was trained for 50 epochs, utilizing a cosine annealing learning rate
schedule with a warm-up phase spanning 5 epochs. The loss function combines a primary loss of
Mean Squared Error (MSE) and a secondary loss of L1, weighted at 1.0 and 0.1, respectively. To prevent
overfitting and improve generalization, regularization techniques such as weight decay (1.0 × 10−4),
gradient clipping (threshold of 1.0), and a dropout rate of 0.1 were applied. Early stopping was
incorporated, monitoring the validation loss with a patience of 10 epochs and a minimum delta of
1.0 × 10−4 to terminate training when improvements stagnated. These hyperparameters collectively
aim to balance training stability, efficiency, and performance. The proposed neural network architecture
was implemented using the PyTorch deep learning framework and trained for 50 epochs on an NVIDIA
A100 GPU with 80GB of memory. Leveraging the high-performance computing capabilities of the state-
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of-the-art A100 accelerator, the extensive 50 epoch training regimen allowed the model to thoroughly
optimize its parameters and capture complex relationships within the sequential data. This rigorous
experimental setup, combining the flexibility of PyTorch with the parallel processing power of the
GPU, ensures the reliability and reproducibility of the research findings, enabling future applications
of the self-attention-based architecture.

Table 3. Detailed training hyperparameters of the proposed ECGDnet denoising model.

Category Hyperparameter Value

Training

Batch Size 128
Initial Learning Rate 1.00E-04
Optimizer Adam
β1 0.9
β2 0.999
ϵ 1.00E-08
Epochs 50
LR Schedule CosineAnnealingLR
Warmup Epochs 5

Loss Function
Primary Loss MSE
Secondary Loss L1
Loss Weights [1.0, 0.1]

Regularization
Weight Decay 1.00E-04
Gradient Clipping 1.0
Dropout Rate 0.1

Early Stopping
Patience 10
Monitor val_loss
Min Delta 1.00E-04

3.2. Performance Metrics

In this study, three sets of performance measures were used to evaluate the proposed approach
and provide a robust evaluation framework for ECG denoising, ensuring the reconstructed signals are
clinically relevant and diagnostically accurate [20–22]. These metrics include the signal-to-noise ratio
(SNRdB), the Pearson correlation coefficient (PCC), and the normalized mean squared error (NMSE).

Signal-to-Noise Ratio (SNRdB) quantifies the strength of the clean signal (X) relative to the noise
(N = X − Y) introduced during the denoising process. SNR is typically expressed in decibels (dB) and
is defined as:

SNRdB = 10 log10

(
X2

2
N2

2

)
(3)

Where:

• X2
2 = ∑n

i=1 x2
i is the signal power

• N2
2 = ∑n

i=1(xi − yi)
2 is the noise power

In expanded form:

SNRdB = 10 log10

(
∑n

i=1 x2
i

∑n
i=1(xi − yi)2

)
(4)

A higher SNRdB indicates that the noise introduced by the denoising algorithm is minimal,
preserving the integrity of the original ECG signal. Conversely, a low SNRdB indicates that the
denoising process has introduced significant distortions.
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Normalized Mean Squared Error (NMSE) quantifies the deviation between the clean signal (X)
and the denoised signal (Y), normalized by the energy (squared norm) of the clean signal. The NMSE
is given by:

NMSE =
||X − Y||2
||X||2 =

∑n
i=1(xi − yi)

2

∑n
i=1 x2

i
(5)

NMSE penalizes larger deviations more significantly than smaller ones. A lower NMSE value
indicates that the denoised signal closely approximates the clean signal. For normalization and
interpretability, a complementary metric can be defined:

Reconstruction Score = 1 − NMSE (6)

This score ranges from 0 to 1, where:

• 1: Perfect reconstruction (denoised signal is identical to the clean signal)
• 0: Maximum error (denoised signal completely deviates from the clean signal)

Pearson Correlation Coefficient (PCC) measures the degree of linear association between the
clean ECG signal (X) and the denoised ECG signal (Y). It evaluates how well the variations in one
signal correspond to variations in the other. PCC is computed as:

PCC =
Cov(X, Y)

σXσY
(7)

Where:

• Cov(X, Y) = 1
n ∑n

i=1(xi − x̄)(yi − ȳ) is the covariance
• σX and σY are the standard deviations of X and Y, respectively

The covariance is defined as:

Cov(X, Y) =
1
n

n

∑
i=1

(yi − ȳ)(xi − x̄) (8)

Where:

• xi and yi are the individual samples of X and Y
• x̄ = 1

n ∑n
i=1 xi and ȳ = 1

n ∑n
i=1 yi are the means of X and Y

• n is the number of data points

Substituting the covariance into the PCC formula:

PCC =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

(9)

The PCC ranges between:

• PCC = 1: A perfect positive linear relationship
• PCC = 0: No linear relationship
• PCC = -1: A perfect negative linear relationship

In the context of ECG denoising, PCC quantifies how closely the reconstructed (denoised) signal
aligns with the clean reference signal in terms of waveform similarity.

4. Results and Discussion
Table ?? presents the performance evaluation of four methods [17–19,23]: Sym4, 1D-ResCNN,

IC-U-Net, and ECGDnet, using four metrics: Signal-to-Noise Ratio (SNR), Normalized Mean Squared
Error (NMSE), Relative Error (RE), and Pearson Correlation Coefficient (PCC). These metrics assess
the quality of denoising, with higher SNR and PCC values and lower NMSE and RE values indicating
better performance. The results show that ECGDnet outperforms all other methods, achieving the
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highest SNR value (19.83 dB), the lowest NMSE (0.9842), the smallest RE (0.0158), and the strongest
PCC (0.9924). IC-U-Net follows closely, while Sym4 and 1D-ResCNN show comparatively lower
performance. This analysis underscores the effectiveness of modern deep learning architectures such
as ECGDnet in achieving superior denoising performance for medical signals like ECG, surpassing
traditional and earlier neural network-based methods.

Table 4. Comparative analysis of ECG denoising methods. The best results for each metric are highlighted in bold.

Model SNR NMSE RE PCC

Sym4 [23] 18.91 0.9699 0.0191 0.9809
1D-ResCNN 18.51 0.9779 0.0221 0.9893
IC-U-Net 19.33 0.9823 0.0177 0.9921
ECGDnet 19.83 0.9842 0.0158 0.9924

Among the models, ECGDnet demonstrates great performance across all metrics. It achieves the
highest SNR of 19.83, indicating its ability to produce the cleanest reconstructed signals. Furthermore,
it records the highest NMSE of 0.9842, reflecting the model’s capability to preserve the original signal
structure with high fidelity. The RE for ECGDnet is the lowest (0.0158), signifying minimal reconstruc-
tion error, while the PCC of 0.9924 confirms a near-perfect correlation between the reconstructed and
original signals. Comparatively, IC-U-Net and 1D-ResCNN show slightly lower performance, with
IC-U-Net having an SNR of 19.33 and PCC of 0.9921, while 1D-ResCNN lags behind with an SNR of
18.51 and PCC of 0.9893.

The results suggest that the design of ECGDnet, incorporating a multi-head attention mechanism,
positional embeddings, and Transformer-inspired blocks, significantly enhances its ability to capture
temporal dependencies and denoise ECG signals effectively [24]. In contrast, IC-U-Net, with its
U-Net-inspired structure, and 1D-ResCNN, relying on residual CNN blocks, provide competitive
but less optimal results. This performance comparison underscores the potential of ECGDnet as a
state-of-the-art solution for ECG signal denoising tasks [9,20,25,26].

The experimental findings indicate that ECGDnet exhibits superior performance compared to
IC-U-Net and 1D-ResCNN in the context of ECG denoising, particularly in its ability to capture
long-range temporal dependencies and reduce the impact of EMG noise. The enhanced temporal
feature extraction and noise suppression capabilities of ECGDnet contribute to its superiority. In
contrast to IC-U-Net, which is primarily designed for spatial representation in medical imaging
tasks, ECGDnet is specifically engineered for sequential signal processing, integrating architectures
that proficiently capture long-term dependencies. The documented improvements in performance
are largely attributed to its multi-scale feature extraction mechanism, which allows the network to
differentiate ECG components from high-frequency EMG artifacts.

Moreover, ECGDnet likely utilizes dilated convolutions alongside residual connections, enhancing
the receptive field while preserving signal integrity. This design enables efficient noise filtering
without compromising the fidelity of clinically significant waveforms. In contrast, IC-U-Net, despite its
hierarchical feature extraction capability, may struggle to capture the sequential dependencies inherent
in one-dimensional ECG signals, leading to suboptimal noise suppression. Similarly, 1D-ResCNN,
while leveraging residual learning to improve feature propagation, lacks explicit mechanisms for
addressing transient noise components, which diminishes its effectiveness against EMG artifacts.

These performance improvements are further validated through quantitative metrics and visual
analysis. The quantitative assessment illustrated in Figure 4a,b confirms that ECGDnet outperforms al-
ternative models, achieving higher PCC and SNR, while maintaining a lower NMSE. Additionally, the
visual evaluation in Figure 4c,d provides further evidence of ECGDnet’s superiority, demonstrating bet-
ter preservation of the morphology of PQRST complexes and effective suppression of high-frequency
noise, ensuring that the waveform integrity is maintained.
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(a) (b)

(c) (d)

Figure 4. (a) shows the Validation PCC Curves (b) shows the Validation SNRdb Curves (c) shows the Validation
NMSE Curves (d) shows the Validation Loss Curves.

Given these performance advantages, ECGDnet proves to be particularly well-suited for real-time
ECG denoising, a crucial requirement in wearable and remote health monitoring systems. In these
applications, it is essential to minimize signal distortion while effectively eliminating noise to ensure
accurate clinical interpretation. The ability to process signals efficiently and reliably makes ECGDnet
an ideal choice for continuous health monitoring, where robust denoising mechanisms are necessary
to maintain signal quality in dynamic environments.

While ECGDnet is highly effective in ECG denoising, its capabilities extend far beyond this
specific application. Its strengths in capturing long-range temporal dependencies and suppressing
high-frequency noise make it a promising tool for various biomedical signal processing tasks. One
particularly promising application is in electroencephalography (EEG) artifact removal, where EEG
signals frequently suffer from EMG contamination, ocular artifacts (EOG), and power line interference.
The multi-scale feature extraction and temporal modeling capabilities of ECGDnet could significantly
enhance EEG-based brain-computer interfaces (BCIs), improve epilepsy detection, and optimize sleep
monitoring by effectively isolating neural activity from artifacts.

Beyond EEG artifact removal, ECGDnet’s robust noise suppression capabilities can also be lever-
aged in photoplethysmography (PPG) signal enhancement. PPG signals, commonly used in wearable
health devices and pulse oximetry, are particularly susceptible to motion artifacts and ambient light
interference. By applying ECGDnet’s advanced denoising techniques, the accuracy of heart rate vari-
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ability (HRV) analysis, blood oxygen level estimation, and continuous health monitoring could be
significantly improved.

Moreover, ECGDnet presents potential for adaptation in electromyography (EMG) signal process-
ing, particularly in contexts such as neuromuscular disease diagnosis, prosthetic device control, and
rehabilitation monitoring, where precise signal interpretation is crucial. Another significant application
lies in the extraction of fetal electrocardiogram (fECG) from maternal ECG, a challenging task due to
the low amplitude of fetal signals and the dominance of maternal ECG activity. ECGDnet’s deep feature
extraction capabilities offer an opportunity to enhance non-invasive fetal monitoring, contributing to
advancements in prenatal diagnostics.

In addition to these applications, ECGDnet has the potential to improve signal processing in seis-
mocardiography (SCG) and ballistocardiography (BCG), two novel methodologies in cardiovascular
monitoring that are highly affected by motion-induced noise. By refining these signals, ECGDnet can
enhance heart rate estimation, support comprehensive cardiac function analysis, and contribute to the
early detection of cardiovascular diseases.

Given ECGDnet’s broad applicability across multiple biomedical domains, further architectural
optimizations could enhance its effectiveness even further. Future research should explore attention
mechanisms and transformer-based models to improve its ability to generalize across diverse phys-
iological time-series data. By integrating such advancements, ECGDnet could be further optimized
for real-world biomedical applications, ensuring superior performance across a wide range of health
monitoring and diagnostic systems [27–30].

Figures 5–7 provide a comparative visualization of ECG denoising performance using three
different deep learning architectures: IC-U-Net, ECGDnet, and 1D-ResCNN. Each plot includes four
signals: the clean ECG, the noise, the contaminated ECG, and the denoised ECG output from the
respective model.

Figure 5. Comparative Visualization of ECGDnet Denoising Performance Against Ground Truth ECG
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Figure 6. Comparative Visualization of 1D-ResCNN Denoising Performance Against Ground Truth ECG

Figure 7. Comparative Visualization of IC-U-Net Denoising Performance Against Ground Truth ECG

In all visualizations, the models show a strong ability to recover the clean signal from the contam-
inated input, closely approximating the ground truth—particularly in critical regions such as the QRS
complex [23,31,32]. ECGDnet exhibits a smoother and more precise recovery, maintaining waveform
morphology with minimal residual noise. IC-U-Net and 1D-ResCNN also perform effectively, though
with minor differences in noise attenuation and waveform preservation. These comparisons under-
score each model’s capability in managing noise in ECG signals and emphasize ECGDnet’s superior
denoising fidelity.

The performance metrics shown in Figure 8 highlight the advantages of ECGDnet in the field of
TinyML [33,34], showcasing its suitability for deployment in resource-constrained environments. In
terms of CPU utilization, ECGDnet demonstrates consistently lower usage compared to IC-U-Net and
1D-ResCNN, indicating reduced energy consumption—an essential factor for edge devices operating
on limited power [35–37].
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Furthermore, ECGDnet exhibits minimal GPU utilization, unlike IC-U-Net, which relies heavily
on GPUs. This makes ECGDnet highly compatible with low-power devices that typically lack GPU
capabilities [3,38]. Memory efficiency is another standout feature: ECGDnet maintains the lowest and
most stable memory usage throughout runtime. This characteristic is particularly beneficial for TinyML
applications, where devices are often constrained by limited RAM. Overall, ECGDnet’s low resource
requirements, energy efficiency, and real-time inference capability make it a highly advantageous
choice for deploying health-monitoring models on edge devices.

(a) (b)

(c)

Figure 8. Resource Utilization Comparison of IC-U-Net, ECGDnet, and 1D-ResCNN (a) shows the Process CPU
utilization (b) shows the GPU utilization (c) shows the Process memory in use (MB) .

The computational efficiency of ECGDnet is a pivotal consideration in its relevance to large-scale
datasets and real-time biomedical signal processing. As illustrated in Figure ??, ECGDnet exhibits a
moderate yet steady level of CPU utilization, suggesting optimization for parallel computation and
minimal processing bottlenecks. In contrast, IC-U-Net shows fluctuating and elevated GPU usage,
indicating a greater reliance on GPU acceleration.

ECGDnet’s consistently low GPU usage implies either a smaller number of trainable parameters
or reliance on computationally efficient operations, making it lightweight even for GPU-enabled envi-
ronments. An analysis of memory consumption further reveals that ECGDnet has significantly lower
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memory demands compared to IC-U-Net, positioning it as a preferable option for memory-constrained
applications, including wearable devices and real-time remote health monitoring systems [28,30,39–42].

Thanks to its minimal memory requirements and optimized CPU utilization, ECGDnet exhibits
strong scalability for deployment across large datasets without incurring substantial computational
costs. The model’s efficiency promotes feasibility for extended ECG analysis over large patient popula-
tions. Additionally, the consistent computational footprint suggests that real-time ECG denoising on
edge computing platforms is achievable.

Nevertheless, the limited GPU usage highlights opportunities for further optimization. Techniques
such as hardware-aware quantization, network pruning, or tensor decomposition could enhance
inference speed and energy efficiency. Future research should focus on improving GPU parallelism and
advancing deep learning acceleration strategies. Such developments are crucial for reducing latency
and enhancing the practical deployment of ECGDnet in real-time clinical environments, particularly
for ambulatory ECG monitoring and continuous patient surveillance.

5. Conclusion
This study assessed four techniques for ECG signal denoising: a traditional method, Sym4,

alongside three deep learning models—1D-ResCNN, IC-U-Net, and ECGDnet—emphasizing their
effectiveness in reconstructing clean signals from contaminated data. The comparative analysis,
utilizing essential performance metrics including Signal-to-Noise Ratio (SNR), Normalized Mean
Squared Error (NMSE), Relative Error (RE), and Pearson Correlation Coefficient (PCC), revealed that
ECGDnet surpassed the other methods across all evaluated criteria. Specifically, ECGDnet achieved the
highest SNR (19.83), lowest NMSE (0.9842), lowest RE (0.0158), and highest PCC (0.9924), underscoring
its superior capability to reduce noise while preserving the physiological fidelity of ECG signals.

Sym4, a wavelet-based technique, demonstrated the least effective performance, showing limited
ability to capture the intricate, non-linear dynamics characteristic of ECG signals—particularly when
compared to data-driven deep learning approaches. The superior performance of ECGDnet is attributed
to its novel architecture, which incorporates multi-head attention mechanisms and Transformer-
inspired positional embeddings to effectively capture long-range temporal dependencies. This makes
ECGDnet particularly adept at managing the complex structure of ECG waveforms.

In contrast, IC-U-Net and 1D-ResCNN, although still effective, showed comparatively lower
performance. These limitations are likely tied to the inherent constraints of their U-Net-based and
convolutional structures, which may not fully exploit long-range dependencies. While Sym4 maintains
the advantage of computational efficiency, it falls short when tasked with the denoising of complex
biomedical signals, reaffirming the advantages of deep learning-based, attention-driven architectures.

In summary, this research underscores the promise of sophisticated attention-based frameworks
like ECGDnet for ECG signal denoising and broader biomedical signal processing applications. Future
work should focus on optimizing computational efficiency for real-time and resource-constrained
deployments, as well as expanding the model’s scope to include other physiological signals, multi-
modal datasets, or hybrid methodologies that integrate traditional signal processing with modern
deep learning techniques.
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