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Abstract 

Although Gulf war illness (GWI), fibromyalgia (FM), myalgic encephalitis/chronic fatigue syndrome 

(ME/CFS) and long COVID have distinct origins, in this article we have reviewed evidence that these 

disorders comprise a group of so-called low-energy associated syndromes with common symptoms 

and underlying pathology. In particular, evidence for mitochondrial dysfunction, oxidative stress, 

inflammation, immune dysregulation, neuroendocrine dysfunction, disrupted brain-gut-microbiome 

axis, apoptosis/ferroptosis and telomere shortening as common features in the pathogenesis of these 

disorders has been identified. Given the role of coenzyme Q10 (CoQ10) in promoting normal 

mitochondrial function, as an antioxidant, antiinflammatory and antiapoptotic and antiferroptotic 

agent, there is a rationale for supplementary CoQ10 in the management of these disorders. The 

reported benefits of supplementary CoQ10 administration in GWI, FM, ME/CFS and long COVID 

have been reviewed; the potential benefit of supplementary CoQ10 in reducing telomere shortening 

and improving the efficiency of stem cell transfer relevant has also been identified as promising 

therapeutic strategies in these conditions. 

Keywords: Gulf war illness; myalgic encephalomyelitis/chronic fatigue syndrome; fibromyalgia; 

long COVID; coenzyme Q10; mitochondrial dysfunction; oxidative stress; apoptosis/ferroptosis; 

neuroinflammation; immune dysregulation 

 

1. Introduction 

Gulf war illness (GWI), fibromyalgia (FM), myalgic encephalomyelitis/chronic fatigue syndrome 

(ME/CFS), and long COVID are chronic, multifaceted, and poorly understood disabling conditions 

affecting millions of patients worldwide. The increasing prevalence of these conditions in the general 

population has been estimated as 2-6% for FM, 0.5-1% for ME/CFS, 6-10% for long COVID, with 25-

35% of Gulf war veterans affected by GWI. These conditions share significant overlapping common 

symptoms, underlying biological pathomechanisms, and impacts on daily life, often resulting in 

similar management strategies [1–3]. These disorders present challenges in medical practice with 
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regard to clinical diagnosis; whilst there are some diagnostic criteria (the Kansas case criteria, 

together with the less-restrictive CDC definition), the diagnostic objectivity requires improvement 

[4,5]. 

In addition, there are no clear objective case criteria or specific biomarkers, nor any effective 

FDA-approved treatments, with the exception of three medications currently available for treating 

FM (duloxetine, milnacipran and pregabalin). The above issues lead to variability in diagnosis, in 

monitoring illness severity, in predicting treatment response and in developing targeted therapies 

for these conditions, in turn highlighting a significant unmet medical need [1–3]. 

All of these conditions are characterized by common symptoms [2,6–8]; in particular persistent 

fatigue, disabling post-exertional malaise as a hallmark symptom that is not alleviated by rest, that 

often severely influences daily functioning. Other common symptoms include: (i) cognitive 

dysfunction (commonly referred to as brain fog), including problems with memory and concentration, 

and mental clarity, is prevalent in all four conditions; (ii) musculoskeletal pain, defined as chronic 

pain especially in muscles and joints, is a hallmark symptom of FM and is commonly seen also in 

patients with GWI, ME/CFS and long COVID; (iii) sleep disturbance, including difficulty sleeping, 

unrefreshing sleep, and disrupted sleep patterns are seen in all these conditions; (iv) autonomic 

dysfunction occurs in many of these conditions, including dysregulation of the autonomic nervous 

system, leading to autonomic symptoms such as dizziness, light-headedness, orthostatic intolerance, 

and tachycardia; and (v) muscle weakness, particularly in FM, ME/CFS, and long COVID, is reported 

frequently, along with a general feeling of exhaustion that is disproportionate to physical and mental 

activity. 

A growing body of literature has reported overlapping potential biological mechanisms in these 

conditions [9,10]. The pathophysiology of these conditions is still being explored, but recent research 

points to several shared biological mechanisms that may underlie the clinical symptoms. In terms of 

pathology, these disorders all show evidence of immune dysfunction, and at the cellular level there 

is evidence for an impaired mitochondrial function, increased oxidative stress, inflammation, 

apoptosis/ferroptosis and telomere shortening, as discussed in subsequent sections of this article 

[10,11]. Thus GWI, FM, ME/CFS and long COVID comprise a group of so-called low-energy disorders 

with overlapping common symptoms and underlying pathophysiological mechanisms. 

Given the key role of CoQ10 in promoting normal mitochondrial function, as an antioxidant, 

anti-inflammatory and anti-apoptotic and ferroptotic agent, in this article we have reviewed the 

potential role of supplemental CoQ10 in the therapeutic management of these disorders. A potential 

role for supplemental CoQ10 in reducing telomere shortening, and in improving the efficiency of 

stem cell therapy of relevance to these disorders [12–14] has also been reviewed. 

2. Common Symptoms in Low-Energy Associated Disorders 

2.1. Fatigue and Post-Exertional Malaise 

Debilitating fatigue and post-exertional malaise (PEM) are not the same, although they share 

some similarities. Debilitating fatigue is a broad term for extreme and severe tiredness that can be a 

symptom of many chronic illnesses, while PEM, also known as post-exertional symptom 

exacerbation (PESE) is a hallmark symptom of ME/CFS and sometimes GWI and long COVID, 

involving a worsening of symptoms following even minimal physical, and/or mental activity 

[3,15,16]. 

Post-exertional malaise can exacerbate a wide range of core symptoms, including fatigue, 

cognitive difficulties (brain fog), pain, sleep impairments and sensitivity to light and sound in these 

disorders. It can severely limit a person’s ability to participate in daily activities, making it difficult 

to work, attend school, or engage in social activities. The key is that the severity of symptoms is often 

disproportionate to the exertion that triggered it, and can be delayed, sometimes appearing 24-72 

hours after exertion, and may persist for months. Recovery from PEM can be slow and prolonged, 

potentially lasting for days, weeks, or even months [17,18]. 
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Managing PEM often involves pacing, which is a strategy of balancing activity and rest to avoid 

triggering PEM episodes. PEM management is highly individualized, and what works for one person 

may not work for another [15,19]. 

In summary, PEM is a more specific symptom of fatigue, often described as a crash or flare that 

is a hallmark feature of GWI, ME/CFS and long COVID and is distinct from general fatigue. Effective 

management involves pacing and personalized specific symptom-based strategies to minimize its 

impact on daily life is urgently warranted. 

2.2. Autonomic Dysfunction 

Autonomic dysfunction (dysautonomia) results from damage to nerves of the autonomic 

nervous system, which controls automatic body functions. As noted in the Introduction, autonomic 

dysfunction has been increasingly recognized as a shared clinical feature across GWI, FM, ME/CFS, 

and long COVID [20–23]. 

While each of these conditions has a distinct origin, they converge in exhibiting abnormalities in 

autonomic nervous system regulation, particularly involving the sympathetic and parasympathetic 

balance, orthostatic intolerance, heart rate variability, and blood pressure regulation [20,22]. In Gulf 

war veterans, autonomic dysfunction (particularly affecting cholinergic pathways) manifesting as 

dizziness, postural orthostatic tachycardia and gastrointestinal dysfunction has been reported [24–

26]. 

Dysautonomia is a common feature of ME/CFS, particularly with regard to orthostatic 

intolerance, gastrointestinal problems, and body thermoregulation [27,28]. Patients with 

fibromyalgia also experience dysautonomia related symptoms of orthostatic intolerance, 

gastrointestinal dysfunction and problems with temperature regulation [29–32]. In long COVID 

patients, dysautonomia related symptoms including orthostatic intolerance, breathlessness and 

palpitations have been described, resulting from virus induced disruption of the autonomic nervous 

system [33–35]. In GWI and ME/CFS, autonomic dysfunction contributes to orthostatic hypotension 

syndrome and postural orthostatic tachycardia syndrome (POTS) [36]. It should be noted that in 

addition to autonomic dysfunction, symptoms such as palpitations, breathlessness, arrhythmia, 

and/or thermoregulation alterations (i.e., cold extremities) could result from mitochondrial 

dysfunction [37]. 

2.3. Cognitive Impairment 

Cognitive impairment is a common feature of GWI, FM, ME/CFS and long COVID. Gulf war 

illness is associated with cognitive impairments; including impaired memory and executive 

functioning (e.g., decision making, problem solving). Studies on GW veterans have demonstrated 

cognitive and mood impairments are linked to various adverse changes in neurons, glial cells, and 

neuroimmune cells, resulting in neuroinflammation [38–43]. 

There is also evidence for changes in brain structure and function associated with cognitive 

dysfunction in ME/CFS. For example, imaging studies in ME/CFS patients have found reduced grey 

matter density in certain brain regions associated with pain processing and cognitive function [44]. 

There is also evidence suggesting changes in brain activity in ME/CFS patients (and also long 

COVID), particularly in regions associated with memory, pain processing, and autonomic control [3]. 

In ME/CFS, elevated levels of pro-inflammatory cytokines/chemokines and growth factors have been 

also reported in patient blood samples, and there is evidence for neuroinflammation affecting the 

brain and spinal cord [45,46]. 

Fibromyalgia is often associated with cognitive impairment, commonly referred to as fibro fog 

[47]. This can manifest as difficulties with memory, concentration, attention, and overall mental 

clarity. While the exact cause of fibro fog is not fully understood, it is thought to be related to the 

chronic pain and fatigue associated with the condition. In FM, evidence for elevated levels of pro-

inflammatory cytokines/chemokines and growth factors, together with neuroinflammation, has also 

been reported [48]. The cognitive impairment may also be linked to changes in neurotransmitter and 
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neural pathways involved in pain processing and cognitive function. While there is no cure for fibro 

fog, various strategies can help to manage symptoms such as some medications, cognitive behavioral 

therapy (CBT), lifestyle modifications, pacing activities, and support groups [49,50].  

Cognitive impairment is a significant symptom of long COVID, with more than 50% of patients 

having cognitive slowing [51]. This cognitive impairment may result from neuroinflammation 

triggered by the immune response to the virus, or damage to blood vessels induced by the virus 

affecting blood flow to the brain [52]. Elevated markers of myeloid inflammation and complement 

activation have been identified in blood samples from long COVID patients [53]. 

2.4. Unrefreshing Sleep 

Unrefreshing sleep is a prominent symptom of patients with GWI, FM, ME/CFS and long 

COVID. The exact cause of unrefreshing sleep is not fully understood in these conditions, although 

research suggests it may be related to disruptions in sleep architecture or alterations in autonomic 

nervous system function during sleep [54–56].  

A significant percentage of GW veterans report experiencing unrefreshing sleep, along with 

other sleep-related issues such as difficulty falling asleep or staying asleep. Unrefreshing sleep is 

often accompanied by other symptoms that characterize GWI, including persistent fatigue, 

widespread pain, and cognitive difficulties [54]. This lack of restorative sleep can exacerbate other 

illness symptoms, affecting veterans’ overall health and well-being. Researchers are actively 

investigating the underlying mechanisms of GWI, including the role of sleep disturbance in its 

manifestation and progression. While there is no single cure for GWI, treatments like cognitive 

behavioral therapy for insomnia (CBT-I) have shown promise in improving sleep quality and 

reducing GWI symptoms [57]. 

FM is strongly associated with unrefreshing sleep, meaning that even after a full night’s sleep; 

individuals with FM often wake up feeling tired and not rested [55]. This is a core symptom of the 

condition, and it is often linked to other FM symptoms like disabling fatigue, chronic pain, and 

cognitive problems. People with FM often experience a disrupted sleep cycle/architecture, with more 

time spent in lighter stages of sleep (like stage 1) and less time in deep, restorative sleep (like slow-

wave sleep) [58]. 

Several factors contribute to the sleep disturbances associated with FM. Individuals with FM 

tend to have more awakenings or arousals during the night, further disrupting the sleep cycle. 

Chronic pain can disrupt sleep, and poor sleep can exacerbate pain. This creates a vicious cycle where 

sleep problems worsen pain, and pain makes it harder to sleep [59]. Some research suggests that 

autonomic nervous system dysfunction might contribute to sleep problems in FM, leading to 

heightened arousal and difficulty relaxing into sleep [60]. By addressing sleep disturbances and 

chronic pain, individuals with FM can potentially improve their overall sleep quality and experience 

a greater sense of wellbeing. 

Addressing sleep disturbance is crucial for managing FM. Treatment may involve improving 

sleep hygiene, establishing a regular sleep schedule, creating a relaxing bedtime routine, and 

optimizing the sleep environment, all of which are important [61]. Cognitive behavioral therapy for 

insomnia (CBT-I) helps individuals identify and change negative thoughts and behavior related to 

sleep [62]. In addition, sleep hygiene and conservative management is most appropriate for FM 

patients, along with ruling out or treating other confounding conditions such as obstructive sleep 

apnea, pain, anxiety, and depression [63]. 

Unrefreshing sleep is also a hallmark symptom of ME/CFS and long COVID [56,64]. This lack of 

restorative sleep significantly contributes to the overall fatigue and other common symptoms 

experienced by individuals with ME/CFS and long COVID. Many patients report not feeling rested; 

people with these conditions often wake up feeling just as tired, or even more tired, than when they 

went to bed. This persistent lack of restorative sleep contributes to the debilitating fatigue and other 

symptoms associated with illness, affecting physical and mental well-being [65]. While objective 

sleep studies (like polysomnography) may not always show significant differences between patients 
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with ME/CFS and long COVID and healthy individuals, the subjective experience of unrefreshing 

sleep is a major complaint and diagnostic criterion [66,67]. 

In summary, unrefreshing sleep is a significant and troublesome symptom in these low-energy 

associated conditions, contributing to the overall burden of the illness and influencing the quality of 

life for those affected. 

2.5. Muscle and Joint Pain 

Muscle and joint pain are symptoms common to GWI, FM, ME/CFS, and long COVID, although 

the presentation and pathophysiological mechanisms may differ from each other [17,68,69]. Whilst 

all these conditions can cause widespread pain, they also have unique characteristics and specific 

diagnostic case criteria. 

GWI is characterized by a range of symptoms including muscle and joint pain resulting from 

exposure to environmental mitochondrial toxicants during the Gulf war [68]. Pain is common and 

widespread in GWI patients, and their health-related quality of life is poor [70]. 

FM is often described as a persistent painful aching sensation, and it may be more intense in 

specific areas or fluctuate in frequency and severity. Pain is often felt in muscles, ligaments, and 

tendons, particularly at the points where they attach to bones. There is no single test for FM, and 

diagnosis is often based on symptom assessment [69]. Muscle and joint pain are also significant 

common features of ME/CFS and long COVID [17]. Although widely variable, fatigue, muscle and 

joint pain, and brain fog are frequently reported. Recent research indicates that a significant 

percentage of individuals with long COVID meet also the case criteria for ME/CFS and FM. 

While all these conditions involve muscle and joint pain, the location and intensity can vary 

among sufferers. FM is characterized by widespread pain with specific tender points, while GWI, 

ME/CFS and long COVID pain may be more generalized or specific to certain areas (i.e., tender points 

in GWI patients may worsen after exertion) [3]. 

In summary, muscle and joint pain are prominent features of GWI, FM, ME/CFS, and long 

COVID. While these conditions can be distinguished by their unique characteristics and diagnostic 

case criteria, they can also overlap, particularly in their clinical presentation as shown in Figure 1. 

 

Figure 1. Schematic representation shows the most common symptoms among low-energy associated disorders. 

The figure highlights shared clinical features as well as those that are unique to each condition. GWI, gulf war 
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illness; FM, fibromyalgia; ME/CFS, myalgic encephalomyelitis/chronic fatigue syndrome; long COVID, post-

COVID syndrome; PTSD, post-traumatic stress disorder. 

3. Understanding the Shared Biological Mechanisms Between These Conditions 

3.1. Mitochondrial Dysfunction, Oxidative Stress and Inflammation 

Mitochondrial dysfunction, which affects cellular energy production, has been increasingly 

implicated in GWI, FM, ME/CFS, and long COVID [9]. There is some evidence suggesting that 

mitochondrial dysfunction may contribute to the profound fatigue and muscle weakness seen in 

these conditions. Previous studies have reported abnormalities in mitochondrial structure, impaired 

mitochondrial respiration, decreased ATP production, and abnormal mitochondrial DNA levels, as 

described below [71]. 

In GWI, exposure to chemical agents such as organophosphates or pyridostigmine bromide 

caused mitochondrial dysfunction in GW veterans. Chen et al. have identified damage to 

mitochondrial DNA [72], and Koslik et al. [73] and Golomb et al. [74–76] have reported impaired 

mitochondrial bioenergetic function in GWI veterans. In the latter studies, mitochondrial respiratory 

chain function was assessed in muscle biopsies from GWI patients, or via 31P-NMR spectroscopy in 

GWI patients; GWI severity was also shown to be related to mitochondrial haplogroups. Elevated 

levels of oxidative stress biomarkers in serum from Gulf war veterans have been reported; however, 

there is limited evidence for increased oxidative stress in GWI [39]. In animal models of GWI, 

biomarkers of oxidative stress have been reported to be increased, both at the systemic level, and 

particularly in the hippocampus, a region of the brain important for memory and cognitive function 

[9,77]. GWI is associated with a persistent inflammatory state, particularly in the central nervous 

system; elevated levels of inflammatory markers (C-reactive protein, interleukin-6) have been 

identified in blood samples from Gulf War veterans [38]. It is of note that increased levels of 

inflammation biomarkers may represent a protective adaptation in GWI. 

In FM, impaired oxidative phosphorylation, and reduced mitochondrial ATP production have 

also been reported, with the degree of mitochondrial dysfunction correlating with the severity of FM 

symptoms [78]. In FM, several studies have found evidence of increased oxidative stress in patient 

blood samples, including elevated levels of lipid peroxidation and decreased levels of antioxidants, 

including CoQ10, superoxide dismutase and catalase [9,79]. Evidence for elevated levels of pro-

inflammatory cytokines/chemokines and growth factors, together with neuroinflammation, have 

been reported in FM [48]. 

Mitochondrial dysfunction in ME/CFS results in impaired ATP production and reduced 

mitochondrial bioenergetic reserve capacity, correlating with illness severity, which could explain 

the post-exertional malaise experienced by these patients [71]. Muscle biopsies have confirmed 

mitochondrial degeneration, deletions in mitochondrial DNA, and reduced mitochondrial activity in 

ME/CFS [80–82]. In ME/CFS, increased plasma levels of oxidative stress biomarkers have been also 

identified [9]. Elevated levels of pro-inflammatory cytokines/chemokines and growth factors have 

been reported in blood from ME/CFS patients, and there is evidence for neuroinflammation affecting 

the brain and spinal cord [45,46]. 

In long COVID, research has identified evidence of mitochondrial dysfunction in the blood 

immune cells of these patients. One of the hallmarks of long COVID is post-exertional malaise, which 

can be directly linked to mitochondrial dysfunction and compromised ATP production [83]. Evidence 

for structural and metabolic abnormalities in mitochondria from long COVID patients has been 

recently documented by Szogi et al. [84]. Increased levels of oxidative stress biomarkers and reduced 

antioxidant levels have been reported in sera from long COVID patients [85]. In long COVID, 

elevated markers of myeloid inflammation and complement activation have been identified in 

patient blood samples [53]. 

3.2. Immune Dysregulation 
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Gulf war illness, ME/CFS, and long COVID all show signs of immune system dysfunction, 

triggered by environmental toxins and/or viral persistence. Inflammation or altered immune 

responses, including elevated levels of pro-inflammatory cytokines/chemokines and growth factors, 

have been reported in these conditions [36,86]. Fibromyalgia may not show overt immune 

dysfunction, but is thought to involve central sensitization, where the brain becomes hypersensitive 

to pain signals [87]. 

Immune dysfunction in GWI is linked to exposure of neurotoxins, and other environmental 

stressors during military service; elevated levels of antibodies targeted against infectious agents 

found in veterans with GWI most likely results from aberrant immune function are linked with 

mitochondrial dysfunction [2]. Elevated plasma levels of pro-inflammatory cytokines, including 

interferon-gamma, interleukin (IL)-2, IL-6 and tumor necrosis factor alpha (TNF-α), together with 

elevated levels of C-reactive protein have been found in Gulf war veterans. Elevated plasma levels of 

T- and B-cells, and reduced levels of NK cells, have also been reported in veterans with GWI [88–90]. 

Long COVID is associated with persistent immune cell activation, autoimmune antibody production 

and immune exhaustion/senescence [91–93]. 

ME/CFS can also be triggered by viral infection persistence (e.g., Epstein-Barr virus, 

cytomegalovirus, herpesvirus, etc). In ME/CFS, elevated blood levels of pro-inflammatory 

cytokines/chemokines and growth factors, together with reduced functional ability of natural killer 

cells and B- or T-cell abnormalities have been described. In particular there is evidence that NK cells 

and CD8+ T cells in ME/CFS patients may exhibit signs of exhaustion, potentially limiting their ability 

to effectively fight persistent infection [94,95]. 

FM is sometimes thought to be triggered by infections or physical/emotional trauma, although 

this is less clear [96,97]. There is evidence for immune system dysfunction in fibromyalgia, with 

altered levels of cytokines/chemokines and growth factors and inflammatory markers in the brain 

and spinal fluid indicating neuroinflammation may play a role in fibromyalgia [98,99]. A study by 

Goebel et al. found that transfer of antibodies present in the blood of fibromyalgia patients could 

induce fibromyalgia symptoms in mice, suggesting an autoimmune component [100]. 

3.3. Neuroendocrine Abnormalities 

GWI, FM, ME/CFS or long COVID may show abnormalities in the hypothalamic-pituitary-

adrenal (HPA) axis, which regulates the body’s stress response. In Gulf war veterans, alterations in 

the HPA axis (specifically suppression of ACTH and cortisol) has been linked to exposure to 

pyridostigmine bromide drug [101]. Hypothalamic-pituitary-adrenal axis dysregulation (and 

abnormal cortisol levels) is particularly evident in ME/CFS, where a dysregulated stress response can 

lead to fatigue and other symptoms [102]. There is also some evidence of altered hormone levels in 

FM and long COVID, although this is less well-established [103,104]. 

3.4. Dysregulated Gut-Brain Axis 

Recent research suggests a significant link between GWI and the gut-brain axis. Specifically, 

GWI is associated with gastrointestinal problems and neurological symptoms, and studies indicate 

that alterations in the gut microbiome (dysbiosis and impaired intestinal permeability) may play a 

crucial role in the development and persistence of symptoms [105,106]. Several studies have shown 

that GW veterans have distinct differences in their gut microbiome composition compared to 

matched healthy individuals [107]. A significant portion of GW veterans experience gastrointestinal 

problems, including abdominal pain, diarrhea and irritable bowel syndrome (IBS), which are closely 

linked to illness [108]. 

GWI also involves neurological symptoms including fatigue, cognitive deficits, and mood 

changes, suggesting a potential involvement of the gut-brain axis in these manifestations. The gut-

brain axis is believed to be disrupted in GWI through various mechanisms, including changes in the 

gut microbiome, increased intestinal permeability (leaky gut), and altered enteric nervous system 

(ENS) function [109]. Understanding the role of the gut-brain axis in GWI opens avenues for 
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developing novel potential therapeutic strategies, such as targeting the gut microbiome or 

modulating the ENS [110]. It is also of note that since Gulf war veterans have higher rates of infection, 

they may have received more antibiotics, which in turn will result in an altered gut microbiome, 

irrespective of whether this plays a causal role in gastrointestinal symptoms in GWI. 

Studies using a mouse model of GWI have shown that the compound andrographolide can 

restore gut microbiome balance, improve gut barrier function, and reduce neuroinflammation, 

potentially alleviating GWI symptoms [111]. Exposure to pyridostigmine bromide, a medication used 

during the Gulf war, has been linked to gut dysbiosis and gastrointestinal neuroimmune disruption 

in animal models [112].  

In summary, the gut-brain axis is a critical area of research in understanding the complexities of 

GWI, with evidence suggesting that gut microbiome alterations, gastrointestinal dysfunction, and 

neurological symptoms are interconnected. Further research into the gut-brain axis in GWI could 

lead to more effective treatments and management strategies for GW veterans. 

Fibromyalgia is increasingly linked to disruptions in the gut-brain axis, often involving dysbiosis 

and altered gut permeability, contributing to the wide range of FM symptoms [113,114]. The gut-

brain axis is a bidirectional communication system that connects the central nervous system with the 

enteric nervous system [115]. This communication occurs through various pathways, including the 

vagus nerve that plays a crucial role in relaying signals between the gut and the brain. The 

hypothalamic-pituitary-adrenal (HPA) axis, involved in stress response, can be impacted by gut 

health; the gut is a major site of immune activity, and immune cells can influence both gut and brain 

function [116].  

The gut microbiome influences the production and regulation of neurotransmitters (such as 

imbalances of serotonin and dopamine), which play a potential role in mood, anxiety/depression, 

pain perception, and cognitive function. In addition, several studies have described how 

dysregulation of the gut-brain axis can contribute to central sensitization, a phenomenon where the 

nervous system becomes overly sensitive to pain signals [106,109,116]. 

ME/CFS and long COVID exhibit disruptions in the gut-brain axis, which involve alterations in 

gut microbiota composition, immune responses, and neurotransmitter signaling, potentially 

contributing to the diverse and debilitating symptoms seen in both conditions [117,118]. Both 

disorders are associated with imbalances in the gut microbiome, including shifts in bacterial 

populations and reduced microbial diversity. For example, in ME/CFS, specific bacterial groups such 

as Alistipes may be increased, while Faecalibacterium is decreased [119–121]. In long COVID, 

prolonged faecal shedding of SARS-CoV-2 and associated inflammation could lead to dysbiosis [122–

126]. 

Understanding the role of the gut-brain axis in these conditions opens up new avenues for 

treatment with probiotics and prebiotics that may help restore gut microbiome balance; dietary 

interventions to reduce inflammation and promote a healthy gut environment could also be 

beneficial. Vagus nerve stimulation, which can be achieved through various methods, may help 

modulate gut-brain communication. Further research into the intricate interplay between the gut and 

the brain is crucial for developing more effective and targeted therapies in these disorders 

[110,117,127].  

3.5. Apoptosis and Ferroptosis 

Apoptosis is a process of programmed cell death, which can occur after a number of triggering 

events, including mitochondrial dysfunction and oxidative stress [128]. Ferroptosis is a type of iron-

dependent programmed cell death (distinct from apoptosis) characterised by the accumulation of 

free radical induced lipid peroxidation products [129]. There is evidence that apoptosis and/or 

ferroptosis contribute to the pathogenesis of GWI, ME/CFS, FM and long COVID. 

In GWI, serum from patients has been reported to increase apoptosis in cultured neuroblastoma 

cells, suggesting that apoptosis potentially contributes to the neurocognitive and mood dysfunction 

experienced by some veterans [130]. Such data related to apoptosis in GWI research have opened 
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avenues for potential therapeutic interventions. For example, Tsilibary et al. investigated the role of 

the anthrax vaccine given to Gulf war veterans in inducing apoptosis in cultured neural cells, and the 

use of IgG isotype anti-PA protein antibodies in neutralizing the adverse effects of serum on neural 

cultures, including reducing apoptosis [131]. This research suggests that immunotherapy targeting 

specific antigens or pathways involved in GWI-related apoptosis could be a viable approach for 

treating the illness. 

In FM, there is some evidence that increased apoptosis in nerve cells, particularly dorsal root 

ganglia, may contribute to nerve damage and altered pain processing, resulting in the pain and 

hypersensitivity associated with this condition. Apoptosis-related genes are reportedly upregulated 

in dorsal root ganglia in models of neuropathic pain, suggesting a potential link to chronic pain 

conditions like FM [132]. Increased apoptosis markers and decreased cell viability have been 

observed in animal models of FM, factors that can be reduced following selenium administration 

[133]. Transient receptor potential (TRP) channels (like TRPM2 and TRPV1) play a role in calcium 

influx into nerve terminals, which can trigger apoptosis. Selenium treatment in animal models noted 

above reduces hyperalgesia, oxidative stress levels, and apoptosis by modulating these channels 

[133]. Elevated levels of anti-annexin antibodies, which are associated with apoptosis, have been 

reported in some FM patients, particularly those with Sjögren’s syndrome [134]. Similarly, there is 

evidence that ferroptosis, particularly in skeletal muscles, may play a role in the widespread pain and 

other symptoms associated with FM [135]. Specifically, studies have shown that magnesium 

hexacyanoferrate nanocatalysts, which act as ferroptosis inhibitors, can alleviate FM symptoms in 

mouse models by reducing oxidative stress and mitochondrial dysfunction [136]. 

Patients with ME/CFS have an increased rate of apoptosis in their neutrophils compared to 

healthy individuals; neutrophils are thus eliminated at a faster than normal rate, which may impair 

the immune system’s ability to respond effectively to pathogenic agents [137]. Cezar et al. found 

CD4+ T cells from participants who later presented long COVID were more apoptotic in culture than 

those of sequelae-free participants at month 1, suggesting that CD4+ T cell death during the acute 

phase of SARS-CoV-2 infection might pave the way for long COVID [138]. In addition, ferroptosis is 

activated during the progression of COVID-19, and a low baseline level of a ferroptosis marker 

(SLC7A11) may indicate an increased risk for long COVID-19, and associated cardiovascular and 

neurological dysfunction [139–141].  

3.6. Telomere Shortening 

Telomeres are repetitive DNA sequences at the ends of chromosomes that protect the 

chromosomes from damage and degradation. During DNA replication DNA polymerase, the 

enzyme that copies DNA, cannot fully replicate the very ends of the chromosomes, leading to a small 

loss of telomere length with each cell division; this shortening of the telomeres eventually leads to 

cellular senescence and apoptosis [142]. Whilst telomere shortening is a natural part of the aging 

process, a number of factors can accelerate this process, including lifestyle factors and exposure to 

toxins [143]. At the cellular level, telomere shortening is linked to mitochondrial dysfunction, 

oxidative stress, and inflammation [144–146]. Telomere shortening leads to premature cellular aging 

and increased risk of age-related diseases [147]. 

There is evidence for telomere shortening in military veterans with GWI, FM, ME/CFS and long 

COVID. Military veterans are reported to have shorter telomeres compared to their civilian peers 

[148]. Gulf war veterans were exposed to a variety of environmental toxins, including pesticides, 

pyridostigmine bromide, and smoke from oil well fires [149]. Such exposures are linked to 

mitochondrial dysfunction, oxidative stress and inflammation [150], thereby accelerating telomere 

shortening. Veterans with GWI may therefore have shorter telomeres compared to their peers 

without the illness, although this requires confirmation. Such accelerated telomere shortening could 

be a contributing factor to the development of various health problems associated with GWI, 

including cardiovascular and neurodegenerative disorders [148,150]. 
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There is evidence that individuals with ME/CFS experience a faster rate of telomere shortening 

compared to healthy individuals, indicating premature aging. A study by Rajeevan et al. found that 

the association between ME/CFS and shorter telomeres was largely moderated by females under 45 

years old [151]. The observed telomere shortening in ME/CFS could be a marker of premature 

immunosenescence (premature aging of the immune system) and may contribute to the development 

of other age-related diseases. 

Fibromyalgia is also associated with telomere shortening, with the degree of shortening 

correlating with the frequency/severity of pain [152]. When FM is accompanied by 

anxiety/depression, the effects on telomere length can be even more pronounced in these patients. 

These data suggest that chronic pain in FM may contribute to premature cellular aging, affecting 

overall health and potentially increasing the risk of age-related diseases [152]. 

Research suggests that acute SARS-CoV-2 infection can accelerate telomere shortening in blood 

cells, potentially contributing to the persistent symptoms associated with long COVID [153–155]. The 

telomere shortening observed in long COVID appears to be independent of the patient’s 

chronological age, suggesting a direct impact of the virus on telomere length [155]. Patients with 

shorter telomeres in the immune cells (leukocytes) have been linked to worse prognoses in COVID-

19, and this shortening may be independent of chronological age [153]. 

Figure 2 displays shared potential biological abnormalities involved in the development of low-

energy associated conditions. 

 

Figure 2. Potential shared pathophysiological mechanisms underlying low-energy associated disorders. The 

schematic overview highlights how divergent initial pathologies can converge on common molecular pathways, 

illustrating a complex interplay that ultimately leads to the common core symptoms observed in these 
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conditions. GWI, gulf war illness; FM, fibromyalgia; ME/CFS, myalgic encephalomyelitis/chronic fatigue 

syndrome; long COVID, post-COVID syndrome. Created with BioRender (https://app.biorender.com; accessed 

on 4 August 2025). 

4. Implications for Promising Therapeutic Strategies 

4.1. Stem Cell Therapy 

Stem cells can differentiate into various cell types, promoting tissue regeneration and potentially 

repairing damaged organs. Based on their ability to differentiate into other cell types, stem cells are 

classified as either pluripotent, multipotent, omnipotent, totipotent, oligopotent, or unipotent. 

Depending on where they originated from, stem cells may be classified as embryonic, adult, foetal, 

or iPSCs [156]. Stem cell therapy involves transplanting healthy stem cells to replace damaged or 

diseased stem cells, or using them to stimulate the body’s own repair mechanisms, for example by 

secreting growth factors or recruiting other cell types necessary for tissue repair [157]. 

Stem cells can transfer their healthy mitochondria to cells with damaged or dysfunctional 

mitochondria, thereby restoring cellular energy levels and reducing oxidative stress; this transfer can 

occur through various mechanisms, including tunnelling nanotubes, gap junctions, and extracellular 

vesicles [158]. In addition to reducing oxidative stress by improving mitochondrial function, stem 

cells per se have antioxidant action, directly scavenging free radicals or stimulating production of 

antioxidant enzymes like superoxide dismutase, catalase, and glutathione peroxidase in other cells 

[159]. Stem cells can also engulf and degrade dysfunctional mitochondria from damaged cells, 

promoting cellular repair and proliferation; the engulfment of damaged mitochondria can trigger the 

production of cytoprotective enzymes like heme-oxygenase-1 (HO-1), which can further enhance the 

stem cell’s ability to rescue damaged cells [160]. Additionally, stem cells can release factors that 

stimulate mitochondrial biogenesis in recipient cells. Stem cells can also help to regulate the immune 

system, reducing inflammation via shifting the balance of immune cell activity from a pro-

inflammatory to an anti-inflammatory state [161]. 

Stem cell therapy is of relevance to the treatment of GWI, FM, ME/CFS and long COVID, 

although research in each of these areas is still at an early stage. Mesenchymal stem cells may be 

particularly beneficial in treating patients with ME/CFS; improvements in sleep quality, levels of 

energy and pain, and cognitive function have been reported following stem cell therapy. Several 

randomised controlled clinical trials have reported the beneficial effects of stem cell therapy in 

patients with severe COVID-19 infection [162–164]. Mokhemer et al. reported symptomatic 

improvement in a rat model of FM following stem cell therapy [165]. Using a cell culture based 

system; Tsilibary et al., identified the potential of stem cell therapy to protect cells against toxic factors 

present in serum from veterans with GWI [14]. 

4.2. Coenzyme Q10 Supplementation 

Supplementation with CoQ10 has been shown to be beneficial in GWI, FM, ME/CFS and long 

COVID, resulting from improved mitochondrial function, reductions in oxidative stress, 

inflammation and apoptosis/ferroptosis, and telomere shortening, as described below. 

In GWI, supplementary CoQ10 improved physical function and self-reported health, as well as 

fatigue, pain and muscle strength [166]. Several studies have shown that CoQ10 supplementation can 

reduce fatigue and improve quality of life in individuals with ME/CFS. Castro-Marrero et al. reported 

supplementation with CoQ10 and NADH improved fatigue in ME/CFS [167]. Supplementation with 

CoQ10 for symptoms such as fatigue, pain, and cognitive dysfunction in ME/CFS has been suggested 

in a consensus report from the European Network on ME/CFS (EUROMENE consortium) [168].  

Fibromyalgia patients have depleted CoQ10 levels in tissues (typically 40–50% of the normal 

level) [169]. Hence, supplementation with CoQ10 can help reduce chronic pain, fatigue, and improve 

overall quality of life in FM patients. A randomized, double blind, placebo-controlled study found 

that 300 mg/day of CoQ10 for 40 days significantly reduced chronic pain and fatigue in FM patients, 
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with a corresponding improvement in mitochondrial energy production [169]. Supplemental CoQ10 

may be particularly helpful in reducing pain and fatigue in those with FM who are also taking 

pregabalin [170].  

Clinical studies supplementing CoQ10 in COVID-19 patients (and in patients with long COVID) 

have reported mixed outcomes. In a prospective observational RCT study, 116 patients with long 

COVID were supplemented with 200 mg of CoQ10 and 200 mg of alpha-lipoic acid per day for 2 

months versus 58 long COVID patients who received placebo; the fatigue severity assessed using 

self-reported questionnaire was substantially reduced in the treated patients compared to the placebo 

group [171]. However, a randomised controlled intervention study comprising 121 long COVID 

patients supplemented with 500 mg of CoQ10 per day for 6 weeks reported no significant benefit on 

illness symptoms [172]. 

There is evidence that supplementation with CoQ10 may help protect telomeres from damage 

caused by oxidative stress and inflammation. A study involving older adults with low selenium 

levels showed that supplementation with CoQ10 and selenium resulted in less telomere shortening 

compared to placebo. This study also found a correlation between longer telomeres and reduced 

cardiovascular mortality [173]. 

There is also evidence that supplementary CoQ10 could improve the efficiency of stem cell 

therapy when this procedure is applied in these disorders. A number of studies have demonstrated 

beneficial effects of CoQ10 on stem cell metabolism, of relevance to improving the efficiency of stem 

cell therapy when applied in the above disorders. Coenzyme Q10 has been shown to protect stem 

cells from damage caused by factors like hypoxia, oxidative stress, and aging [174]. 

For example, CoQ10 has been shown to protect bone marrow-derived mesenchymal stem cells 

from H2O2-induced oxidative stress and cell death. It has also been shown promise in reducing 

oxidative stress and potentially enhancing the therapeutic efficiency of BMSC transplantation for 

spinal cord injury treatment [175,176]. Coenzyme Q10 can enhance the regenerative potential of stem 

cells by promoting cell differentiation, angiogenesis, and tissue repair. It can also help stem cells 

migrate to the site of injury and integrate into the damaged tissue. Coenzyme Q10 can be combined 

with stem cells in various ways, such as co-administration or loading stem cells with CoQ10. For 

example, CoQ10-loaded exosomes have shown promise in delivering CoQ10 to target cells and 

enhancing their therapeutic effects [177–179]. 

Coenzyme Q10 has shown promise in enhancing stem cell therapy for conditions like lung 

fibrosis, nerve injury, and intervertebral disc degeneration [180]. Maruo et al. described the activation 

of mitochondria in human mesenchymal stem cells using encapsulated CoQ10 [181]. Li et al. 

identified impaired mitochondrial function in mesenchymal stem cells of aged mice compared to 

young mice, and suggested that this area of metabolism as a potential therapeutic target (i.e., via 

CoQ10 supplementation) to enhance the regenerative function of these cells [182]. Studies to 

investigate the effect of CoQ10 in reducing stem cell senescence, improving the survival rate and 

activity of stem cells against toxic agents, and increasing the efficiency of transplanted stem cells have 

been summarised in Table 1. 

It is important to note that individual responses to CoQ10 supplementation may vary, and 

further research is needed to fully understand its therapeutic implications for these conditions. 

Table 1. Summary of studies supplementing Coenzyme Q10 in stem cell models. 

        Study refs.           Models 
                                          

Outcomes 

Park et al. (2012) [183]  Neural stem cells (rat) 

Improved cell viability and intracellular 

signaling proteins during hypoxia-

reperfusion 

Choi et al. (2013) [184]  Neural stem cells (mouse) 
CoQ10 restored amyloid beta-inhibited 

proliferation by activating the PI3K pathway 
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Zhang et al. (2015) [174]  
Mesenchymal stem cells 

(rat) 

Inhibition of oxidative stress and cell aging 

induced by D-galactose 

Lee et al. (2021) [185]  
Ovarian stem cells 

(mouse) 

Improved stem cell function in 

vinylcyclohexene-diepoxide induced model 

of ovarian failure 

Velichkovska et al.  

(2019) [186]  

Neural progenitor cells 

(mouse) 

Mitochondrial dysfunction induced by anti-

retroviral drugs (tenofovir and emtricitabine) 

improved 

Liu et al. (2022) [187]  
Airway basal stem cells 

(human) 

Reduced oxidative stress induced by 

hydrogen peroxide; improved efficiency of 

transplanted cells in bleomycin-induced 

model of pulmonary fibrosis 

Sun et al. (2023) [180]  
Mesenchymal stem cells 

(rat) 

Improved efficiency of transplanted cells in 

rat model of intervertebral disc degeneration 

Hernández-Perez et al. 

(2022) [188]  

Mesenchymal stem cells 

(human) 

Reduced oxidative stress, improved cell 

viability and proliferation following 

exposure to MPP+ 

Zheng et al. (2023) [189]  

Umbilical cord 

mesenchymal stem cells 

(human) 

Reduced oxidative stress induced by 

hydrogen peroxide, cell senescence reduced 

and proliferation capacity improved 

5. Conclusions and Future Perspectives 

Although GWI, FM, ME/CFS and long COVID have distinct origins, it should be noted that a 

significant proportion of GWI veterans meet case criteria for ME/CFS and FM. This review explores 

the evidence that these disorders comprise a group of so-called low-energy associated conditions 

with overlapping common symptoms and underlying to shared pathophysiological mechanisms. In 

particular, evidence for the roles of mitochondrial dysfunction, oxidative stress, inflammation, 

apoptosis/ferroptosis, immune dysregulation, autonomic dysfunction, disrupted brain-gut-

microbiome axis and telomere shortening as common features in the pathogenesis of these disorders 

has been identified. 

Given the potential role of CoQ10 in promoting normal mitochondrial function, as an 

antioxidant, anti-inflammatory and antiapoptotic/ferroptotic agent, there is a rationale for the role of 

supplementary CoQ10 in the management of these disorders. The reported benefits of supplementary 

CoQ10 administration in reducing telomere shortening and improving the efficiency of stem cell 

transfer has also been identified as promising therapeutic strategies in these disorders. 

While promising, further research and rigorous large-scale RCTs are needed to fully elucidate 

the underlying biological pathomechanisms by which CoQ10 can mitigate the common symptoms, 

and to establish efficacy and dosing protocols in these disorders. Understanding these connections 

based on a personalized medicine approach may provide new targets for therapeutic interventions 

and improve outcomes for individuals with these complex conditions. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

ANS Autonomic nervous system 

ATP Adenosine triphosphate 

CBT-I Cognitive behaviour therapy-insomnia 

CoQ10 Coenzyme Q10 

ENS Enteric nervous system 

FM Fibromyalgia 

FDA Food and Drug Administration 

GWI Gulf war illness 

HRV Heart rate variability 

HPA Hypothalamic-pituitary-adrenal axis 

HO-1 Heme-oxygenase-1 

IBS Irritable bowel syndrome 

IL Interleukin 

ME/CFS  Myalgic encephalomyelitis/chronic fatigue syndrome 

MPP+ 1-methyl-4-phenylpyridinium 

PEM Post-exertional malaise 

PESE Post-exertional symptom exacerbation 

PI3K Phosphatidylinositol-3-kinase  

POTS Postural orthostatic tachycardia syndrome 

RCT Randomized controlled trial 

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 

SLC7A11 Solute carrier family 7 member 11 

TRPV1 Transient receptor potential vanilloid 1 

TRPM2 Transient receptor potential melastatin 2 
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