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1 Abstract

Philippines as an archipelago and tropical country, which is situated near the Pacific ocean,
faces uncertain rainfall intensities. This makes environmental, agricultural and economic sys-
tems affected by precipitation difficult to manage. Time series analysis of Philippine rainfall
pattern has been previously done, but there is no study investigating its probability distribu-
tion. Modeling the Philippine rainfall using probability distributions is essential, especially in
managing risks and designing insurance products. Here, daily and cumulative rainfall data
(January 1961 - August 2016) from 28 PAGASA weather stations are fitted to probability dis-
tributions. Moreover, the fitted distributions are examined for invariance under subsets of the
rainfall data set. We observe that the Gamma distribution is a suitable fit for the daily up
to the ten-day cumulative rainfall data. Our results can be used in agriculture, especially in
forecasting claims in weather index-based insurance.
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2 Introduction

Philippines, as an agricultural country, allocates about 32% of its total land area to crop
production [I]. The major crops include rice, corn, sugarcane and banana. In crop production,
it is essential to consider climate and weather factors that will greatly determine the potential
growth and yield of harvests. An example of these factors is rainfall availability.

Erratic rainfall pattern and extreme events could lead to production losses [2, [3]. Being
an archipelagic tropical country near the Pacific ocean, Philippines experiences more of the
adverse effects of the fast-changing climate [4]. For instance, scarce or excessive rainfall events
(e.g. El Niflo and La Nifa) occur more often and more intense than usual [5]. These situations
affect many sectors negatively or worse, these can lead to destruction of valuable assets. These
circumstances could also threat food security, telecommunication, and coastal communities.
Due to these consequences, it is necessary to determine rainfall patterns in different parts of

© 2017 by the author(s). Distributed under a Creative Commons CC BY license.


http://dx.doi.org/10.20944/preprints201712.0150.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 December 2017 d0i:10.20944/preprints201712.0150.v1

the country. Since rainfall is highly variable, we can study this using probability distributions

[6, 7, 8.

When the correct probability distributions for rainfall data are determined, we can easily
simulate or forecast rainfall amounts without losing its accuracy and reliability. The simulation
can be used for managing water resources, such as watersheds or in rain-fed farms. It can also
be employed in computations for weather index-based insurances for crops [9].

Time series analysis of Philippine rainfall data and its seasonality has been previously done
[10, B, 11, 12]. However, there is still no existing published results about the probability
distribution of the rainfall pattern in the Philippines. This study is the first and intended to
initiate more research in fitting distributions to weather indices. Our results can be used in
stochastic risk management and in the design of insurance products [13], 14} [15].

This study presents models of Philippine precipitation using daily rainfall data from the
Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA).
Specifically, we fulfill the following objectives: (i) Fit the daily and cumulative rainfall data into
positively-skewed distributions; (ii) Determine the most appropriate probability distribution
using goodness-of-fit tests; and (iii) Determine the subsets of the rainfall data where the fitted
distributions exhibit invariance. The third objective is intended to justify forecasts that only
use subset of the total rainfall data set. That is, whatever subset is used, a similar probability
distribution can be invoked up to some degree. This is important especially when only a subset
of the rainfall data is available.

In this study, we utilize rainfall data available from 28 synoptic stations of PAGASA, where
each region of the Philippines is represented. We consider 55-year daily rainfall data from
January 1961 to August 2016. Each station reaches area of 30 km up to 50 km radius. The
daily rainfall data is positively-skewed where most data points fall under lower values and is
heavily-tailed [7]. We use different probability distributions for fitting, e.g., Negative Binomial,
Gamma, Exponential, Weibull, Poisson, Geometric and Normal. Our results show that Gamma
distribution is a good fit for the daily up to the ten-day cumulative rainfall data. Since the
model does not use time series analysis, we can only predict the rainfall amount but not when
that event will exactly happen.

3 Related Studies

3.1 Foreign Studies

The following are some of the existing researches regarding the use of probability distributions
to model rainfall data.

3.1.1 Quarterly Data

Dikko et al. (2013) [16] developed a model from the quarterly rainfall data of Zaria, Nigeria
using Gamma distribution. Using the Kolmogorov-Smirnov test, they concluded that Gamma
model adequately fit the rainfall data.

3.1.2 Monthly Data

In 1999, Sen et al. [I7] modeled the monthly rainfall data in Libya. They utilized the latest
recorded rainfall data for at least 20 years and confirmed that monthly rainfall is Gamma
distributed using chi-square test.
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A similar research was studied by Al-Suhili et al. [I8] where they modeled the monthly
rainfall data of Sulaimania Region in Iraq. They fitted continuous distributions such as, Nor-
mal, Lognormal, Weibull, Exponential and Gamma. From their calculations, they found that
Gamma distribution best fit the data.

3.1.3 Daily Data

As early as in 1998, probability distributions were used to model rainfall. Duan et al. [19]
worked on the Weibull distribution to model the daily precipitation in the US Pacific Northwest.
They have seen that the one-parameter Weibull distribution performed as efficient compared
with the Gamma model.

Li et al. (2012) [7] conducted studies on the 49 daily precipitation records in Texas. They
worked on the Kappa, Gamma, Exponential and Generalized Pareto (GP) distributions. They
also used hybrid (Gamma and GP) distributions to compensate for low-generating of extreme
values of the first four distributions. They have shown that application of hybrid distributions
can create an efficient and more realistic rainfall simulations.

In a study conducted by Brissette et al. (2012) []], rainfall data were collected from 24
weather stations and two watersheds in Quebec, Canada. They evaluated six probability dis-
tributions, namely, Exponential, Gamma, Weibull, skewed-Normal, Mixed-Exponential, and a
hybrid (exponential and GP). Their results showed that Mixed-Exponential distributions best
simulates the daily precipitation in the province of Quebec.

Another study by Neykov et al. (2014) [20] modeled rainfall data using Gamma, Weibull
and Lognormal distributions. Similar with Li et al. (2012), they also used hybrid distributions
since common distribution models fail to produce sufficiently heavy-tail results. Based from
their results, hybrid distributions best fit the daily rainfall data.

3.1.4 Hourly Data

Dan’azumi et al. (2010) examined hourly rainfall data in Peninsular Malaysia. They tried
four distributions (GP, Exponential, Gamma and Beta). They evaluated the models using
goodness-of-fit tests and concluded that Generalized Pareto distribution is the best model for
hourly rainfall data [21].

3.2 Local Studies (Philippines)

Studies on rainfall patterns have been made. Pajuelas (2000) [10] researched on rainfall vari-
ations in the Philippines in 1950-1996. Long-term trends and variability of the rainfall in
different parts of the country were also analyzed using time series analysis as in the research
of Villafuerte et al. (2014) [5] and Cinco et al. (2014) [11]. June to October is the usual rainy
season in the Philippines. However, there is still no existing published literature for modeling
the daily rainfall data in the Philippines using probability distributions.

We have done a preliminary study to demonstrate ways to forecast rainfall [22]. These
forecasts were used to predict the number of claims for the Weather-Index Based Insurance
(WIBI) in Malaybalay City and Davao City. The Moving Averages technique was applied to
30-year rainfall data. It was observed that this technique did not produce a satisfying forecast
since it did not capture the rare extreme cases valuable [23] for WIBI. Another approach
used to forecast rainfall was fitting probability distributions to the rainfall data. We evaluated
probability distributions (Exponential, Negative Binomial, Gamma, Poisson and Normal) using
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Pearson’s chi-square goodness-of-fit test. Results show that daily and cumulative rainfall data
in Malaybalay City and Davao City follow the Gamma distribution. This can be used to
reasonably estimate the number of WIBI claims.

4 Methodology

4.1 Data Collection

The 55-year daily rainfall data (January 1961 - August 2016) for 28 synoptic stations (as shown
in Fig. [1)) is requested from PAGASA. These data are examined for sufficiency and removal of
missing values.

Location Map of
Synoptic Stations v
in the Philippines o

w<CA>>E
Y

Legend

% Synoptic Stations

Figure 1: Philippine map presenting the locations of the 28 PAGASA weather stations

We construct the histograms using intervals of 10mm as bins to represent the classes of
rainfall amounts. We then calculated the relative frequencies that will be used for the proba-
bility distribution fitting. The probability distributions are fitted for each rainfall data in each
station, first by adjusting the 10 mm bins (e.g., if i = 10mm then 4,4 = (¢/10) 4+ 0.5). Then,
these distributions are evaluated using goodness-of-fit tests.

We have tested the data set for invariance using two versions. Invariace version 1: The
daily rainfall data is examined in exhibiting invariant patterns for different time scales (ten-
year, five-year, one-year, half-year, and monthly). Using chi-square test, the most appropriate
fit to each of these subsets is chosen. Invariace version 2: We have also tested if a good fit still
remains if we use the distribution with parameter estimated using the complete data set as fit
to the subsets.
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If the rainfall data demonstrates invariance, then researchers may opt to request and use
smaller sets of data without sacrificing its integrity of prediction. We can still produce sub-
stantial outcome necessary for our study since the data sets still follow the same distribution.
It will also be more time and cost-efficient to deal with smaller sets of data.

Cumulative rainfall data (adding rainfall amount of n consecutive days, wheren = 2,3, ...,10)
are also fitted to the probability distributions. We also apply goodness-of-fit tests to determine
the most fit distribution.

4.2 Probability Distributions

Daily rainfall data are usually positively skewed and heavy-tailed, that is, most data points fall
on the side with the lower values [7]. Based from our initial findings using the daily rainfall
data available for Malaybalay City and Davao City, a special probability distribution (i.e.,
Gamma) suitably fit the daily rainfall data. We focus on this distribution but we have also
tested Negative Binomial, Exponential, Weibull, Poisson, Geometric and Normal distributions
for fitting. Negative Binomial distribution is a good candidate for fitting daily rainfall data,
but the Gamma distribution is good both for fitting daily and cumulative rainfall.

Gamma Distribution. Let z be the random variable for rainfall amount in mm. The
Gamma distribution has two parameters, where « is the shape parameter and [ is the rate
parameter. It has a probability density function given by:

1
peT ()

a:o"le_%,x > 0. (1)

fx) =

4.3 Goodness-of-fit Test

To assess the consistency of the probability distributions in modeling the daily rainfall data
of the Philippines, goodness-of-fit tests are used. We use Pearson’s chi-square test, and the
maximum log-likelihood to estimate the Akaike Information Criterion (AIC). In this paper,
we only present the commonly used Pearson’s chi-square statistic. The Pearson’s chi-square
test will be used to determine if the daily rainfall data are consistent with the probability
distribution. The null and alternative hypotheses to be tested are stated as follows:

H,: The rainfall data do follow the specified distribution.

H,: The rainfall data do not follow the specified distribution.

To compute for the x? statistic, we employ the following formula:

=) O )

where, x? is the chi-square statistic, O; is the observed value in bin 4 and, T; is the expected
value in bin i. We consider a = 0.05 as the level of significance and, the degrees of freedom (df)
is the total number of bins (n) less by 1 and less the number of parameters of the distribution,
k (i.e., df =n—k—1). For instance, the df if we fit an exponential distribution is df = n — 2.
We reject the null hypothesis H, if Xi[df] < x2. Otherwise, we fail to reject H,.

The rule-of-thumb in using this test is that the expected frequency for all the bins must
be > 5 [24]. In this study, we are analyzing a large data set where extreme rare events (large
rainfall amounts) are important. Majority of the bins have frequencies > 5 but a few have
frequencies < 5 to reflect the rare extreme events.
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4.4 Distribution Fitting

To determine which probability distribution is a good fit, we formulate a nonlinear program
(NLP) that minimizes the x? value. A sample NLP for fitting Gamma distribution is as follows:

Minimize
n 0,—T;)?
Xo = Zz’:l( T )
subject to
Yia i<l
a, >0

where o and [ are the shape and rate parameters, respectively; O; is the relative frequency of
bin i; and, T} is the theoretical Gamma frequency of bin i.

A similar formulation is done for each station for all considered probability distributions. We
solve the NLP above using MS Excel Solver with RGRNonlinear engine. Sample computations
are presented in the Supplementary File.

5 Results and Discussion

5.1 Fitting to 1961-2016 Data

The histogram for the daily rainfall data for each station are constructed and fitted to the
probability distributions considered in this study. As an example, the fitted distributions for
Casiguran, Aurora station are given in Fig. The chi-square value and parameter estimates
for the respective distribution are shown in the figure.

Although selected probability distributions fit well on the daily rainfall data using the chi-
square test, the Gamma distribution gives the lowest chi-square statistic. In fact, this is also
the case for the other 27 stations which can be seen in Table[I] Since all chi-square values are
less than 1, then we fail to reject the null hypothesis, that is, the rainfall data is consistent with
the Gamma distribution. Some relevant statistics are also available in the said table.

One important characterstic of the distribution is the higher variance compared to the mean
(02 > p). This implies heavy-tailed distribution. Moreover, we have observed a limitation of
the fitted Gamma distribution. The theoretical mean based on the fitted Gamma distribution
overestimates the sample mean (arithmetic mean of the data set). If this limitation will affect
our decision-making (e.g., in calculating claims in insurance), the sample mean and sample
variance can be used instead.

The chi-square test determines how good a fit is based from the total sum of squares of
the deviations between the observed and expected frequencies [24]. In real-world scenario, the
most valuable result of modeling rainfall is its ability to capture extreme cases such as scarcity
and excessive rainfall [23].

Even if it is concluded that the Gamma distribution is the most appropriate fit in all sta-
tions, there are many instances where the parameters generated from the distribution do not
adequately fit these extreme events. In particular, the Omm rainfall bin is often underestimated
like in Fig. This underestimation of the probability for Omm rainfall leads to the overesti-
mation of the mean (theoretical vs sample mean). If our concern is the risk of heavy rainfall
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Table 1: Chi-Square Statistic, Gamma Parameters, Mean and Variance of the Daily Rainfall

Stations X2 o 6] Sample p Theoretical Sample  Theoretical
Statistic U o’ o’
Alabat 0.4099 0.4845 5.3377 12.1131 21.8099  537.7867 1257.9252
Ambulong  0.3812 0.4674 3.8345 7.3937 14.1058  290.2251  608.2298
Aparri 0.3712 0.4808 3.6777 7.6806 13.8335  351.3177  575.6597
Baguio 0.4450 0.4055 6.6438 13.1523 23.1054  1251.4053 1618.0082
Calapan 0.2044 0.7279 2.2392 9.0945 11.9691  291.8176  332.6180
Casiguran  0.1997 0.5683 3.5382 13.2524 15.9722  689.2780  644.3421
Catarman  0.2640 0.6063 3.6925 13.1551 18.1223  547.6203  759.5473
Catbalogan 0.2779 0.7381 2.7476 11.3585 15.8309  365.2982 518.9384
Coron 0.1453 0.5623 2.5394 9.2205 10.3486  378.5312  317.2361
Daet 0.3016 0.5815 3.9648 12.9429 18.8248  565.5086  838.3145
Dagupan 0.3555 0.4616 3.6535 8.7230 13.0997  513.0897  541.9259
Davao 0.0921 0.9189 1.4883 8.0656 9.1687 184.2827  268.2910
Dipolog 0.1652 0.7159 2.2587 9.5762 11.8642  295.4741  331.9550
Dumaguete 0.1898 0.7041 1.9076 6.1234 9.2495 119.3114  227.2054
General 0.1030 0.8198 1.3137 30.9043 32.1319  801.4443  785.0553
%I?;tos 0.3619 0.4297 4.5369 12.2384 15.7475  932.5550  784.9772
Infanta 0.2191 0.7734 2.9654 15.0836 18.3845  614.8149  642.2330
Laoag 0.6282 0.4275 4.2408 7.4816 14.4275  624.4602  678.0803
Legaspi 0.3223 0.6283 3.7886 13.2480 19.4694  509.1944  834.9838
Malaybalay 0.1577 1.0125 1.8059 11.0668 13.5575  232.3778  500.6942
Masbate 0.4903 0.4904 4.6714 8.5683 18.8997  279.6118  968.3227
Puerto 0.1430 0.6564 1.9648 6.7124 8.8297 175.3931  221.7624
Princesa
Romblon 0.1848 0.6560 24711 8.9604 12.0079  276.2044  360.5720
Roxas 0.1836 0.6070 2.5494 8.3154 11.3981  261.5332  350.6694
Cit
Scignce 0.2519 0.5000 3.5888 9.7572 14.0363  438.8623  572.2657
%:gﬁ)%%n 0.3194 0.7170 2.8582 10.6722 16.0729  293.7729  544.1465
Tuguegarao 0.3482 0.5176 3.1253 7.1080 12.2818  314.6867  445.7025
Zamboanga 0.1125 0.7481 1.5527 5.8815 7.4515 130.7624  157.4928
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Figure 2: Rainfall histogram for Casiguran Station and selected fitted probability distributions
with corresponding parameters

and not the risk of drought, the fitted Gamma distribution and its corresponding theoretical
mean can be used. The difference between the risk cost in using the theoretical mean and the
risk cost in using the sample mean can be part of the insurance safety loading.

5.2 Fitting to Subsets of the Data (Invariance Version 1)

We have also employed fitting smaller sets (ten-year, five-year, one-year, half-year, and monthly)
of rainfall data into probability distributions. If we take a look at the chi-square values for the
different subsets of rainfall data shown in Table [2, these are all less than 1. Meaning, these
subsets of data considered are still consistent with the Gamma distribution.

In Fig. [ we can visually compare the histograms for each data sets. Even if the chi-
square test indicates that the Gamma distribution is a good fit for smaller sets of rainfall
data, it is possible that the Gamma distribution for the monthly and half-year data would not
produce sufficient rainfall amount prediction. This means that decreasing the quantity of data
considered would only be suitable up to some extent.

5.3 Fitting the Parameters from 1961-2016 Data to Subsets of the
Data (Invariance Version 2)

In this section, we fit the obtained Gamma parameters in Table [I] to different subsets of the
rainfall data. As we can see in Table [3| most of the chi-square statistics are still within the

acceptance level. That is to say that majority of the subsets of rainfall follow the same Gamma
distribution as the 55-year daily rainfall data.
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Table 2: Chi-Square Statistic for Different Time Scales of Data (Invariance Version 1)
Time Scales

Stations 1961-2016 10-year b5H-year 1l-year Half-year Monthly
Alabat 0.4099 0.1813 0.2269 0.2133  0.2449 0.4578
Ambulong 0.3812 0.2170 0.2212 0.2646  0.3593 0.4006
Aparri 0.3712 0.2951 0.3952 0.5565  0.5565 0.2196
Baguio 0.4450 0.4894 0.3921 0.6532  0.2306 0.6289
Calapan 0.2044 0.2910 0.2963 0.3748  0.1536 0.1536
Casiguran 0.1997 0.1880 0.2175 0.5219  0.4041 0.2297
Catarman 0.2640 0.2466 0.2569 0.5493  0.2459 0.2836
Catbalogan 0.2779 0.3448 0.3814 0.4406  0.2620 0.2103
Coron 0.1453 0.1506  0.2096 0.3888  0.6215 0.7415
Daet 0.3016 0.2167 0.2527 0.2635  0.2996 0.4880
Dagupan 0.3555 0.4891 0.5215 0.3575  0.5807 0.4540
Davao 0.0921 0.1343 0.1387 0.2144  0.1979 0.1315
Dipolog 0.1652 0.1504 0.1920 0.1221  0.4664 0.3827
Dumaguete 0.1898 0.2693 0.1277 0.0746  0.4673 0.3678
General Santos 0.1030 0.0899 0.0728 0.2915  0.1517 0.2066
Iba 0.3619 0.4092 0.5039 0.8116  0.8643 0.9299
Infanta 0.2191 0.2603 0.3275 0.7283  0.1047 0.2162
Laoag 0.6282 0.7257 0.6529 0.9957  0.9540 0.4915
Legaspi 0.3223 0.3707 0.2459 0.3990  0.2015 0.2678
Malaybalay 0.1577 0.2290 0.2464 0.1223  0.2227 0.1559
Masbate 0.4903 0.1647 0.1833 0.4396  0.2792 0.3348
Puerto Princesa  0.1430 0.0349 0.1541 0.2451  0.4020 0.0349
Romblon 0.1848 0.2163 0.1995 0.3703  0.1411 0.1796
Roxas City 0.1836 0.2407 0.2757 0.6046  0.0469 0.2678
Science Garden 0.2519 0.3236  0.3112 0.3909  0.5006 0.5523
Tacloban 0.3194 0.4086 0.4678 0.3201  0.3828 0.1647
Tuguegarao 0.3482 0.2841 0.3275 0.1974  0.4254 0.1352
Zamboanga 0.1125 0.1009 0.1391 0.2943  0.2381 0.3654
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Table 3: Chi-Square Values for Invariance Version 2
Time Scales

Stations 1961-2016 10-year 5-year  l-year Half-year Monthly
Alabat 0.4099  0.3789 0.4001  0.4301 0.4268 0.4795
Ambulong 0.3812  0.3339 0.3043  0.4007 0.6522 0.9645
Aparri 0.3712  0.4043 0.4243  0.5902 0.5565 0.5902
Baguio 0.4450  0.5408 0.4179  0.8369 0.6106 1.5769
Calapan 0.2044  0.4010 0.4059 0.7633 0.2123 0.1526
Casiguran 0.1997 0.1934 0.2398  1.9348 0.4464 0.4324
Catarman 0.2640 0.2516 0.3010  0.6190 0.2587 0.6237
Catbalogan 0.2779 0.6701 1.7702  0.4496 0.3462 0.4261
Coron 0.1453  0.1522 0.2845  0.8500 0.6302 2.7835
Daet 0.3016  0.2516 0.2707  0.2958 0.3257 0.7008
Dagupan 0.3555  1.3207 1.3251  0.3639 0.6849 4.6998
Davao 0.0921  0.1550 0.1609  0.4285 0.2087 0.2306
Dipolog 0.1652  0.1523 0.2161  0.2010 0.8311 0.3871
Dumaguete 0.1898  0.8103 0.1471  0.1525 0.4756 0.3730
General Santos 0.1030  0.0920 0.0855  0.4425 0.2610 0.3101
Iba 0.3619  0.4461 0.8017  1.6427 1.1215 8.1793
Infanta 0.2191  0.2981 0.5690 10.1170 0.1181 0.2805
Laoag 0.6282 1.0139 0.6961  1.2925 0.9654 4.0310
Legaspi 0.3223  0.5218 0.2527 0.5784 0.2627 0.4826
Malaybalay 0.1577 0.6180 1.8447  0.1805 0.3204 0.2230
Masbate 0.4903 0.4488 0.4171  0.6938 0.5799 0.3790
Puerto Princesa 0.1430 0.1414 0.1618  0.2481 0.4046 5.9052
Romblon 0.1848 0.6716 0.2147  0.6637 0.1985 0.2007
Roxas City 0.1836  0.3366 0.4286 11.3534 0.3017 0.3615
Science Garden 0.2519  0.9628 0.6835  0.5306 0.5056 2.5424
Tacloban 0.3194  0.9920 2.8359 0.3301 0.5046 0.2035
Tuguegarao 0.3482 0.3131 0.3317  0.3439 0.5171 0.3042
Zamboanga 0.1125 0.1066 0.1512  0.7289 0.2536 0.7689
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Figure 3: Gamma Distribution for the Daily Rainfall in Science Garden Quezon City Station

5.4 Fitting to Cumulative Data

Similar to the daily data, we have also fitted the probability distributions into the cumulative
rainfall data. Using the chi-square test, the cumulative n-day rainfall patterns where n =
2,3,...,10 also follow Gamma distribution. It is evident that the parameters o and [ increase
as n increases. That is because the probability of a zero rainfall decreases as we increase the
number of days considered. In some stations, there is an obvious change in the shape when
a <1toa>1as we can see in Fig. [f

6 Conclusions

Considering the 55-year daily rainfall data available from 28 different synoptic stations in the
Philippines with each region represented, the rainfall distribution for each station follows the
Gamma distribution. With regards to the cumulative rainfall amount, we have confirmed
that each stations rainfall pattern still follows the Gamma distribution. Lastly, we considered
modeling the rainfall pattern using smaller sets of the data and have shown that still, it is
consistent with the Gamma distribution.

The use of relatively simple probability distributions in this research had generated novel
results to represent the Philippine rainfall data. However, we recommend the following areas
to work on in the future: (i) Since the distributions generated are for areas covered by the 28
weather station, we can consider spatial interpolation to generate a distribution for the uncov-
ered areas; and (ii) As mentioned earlier, there are stations where the resulting distribution
for lower bins are underestimated. We may opt to use hybrid distributions to improve the
probability estimates.

Supplementary files:

e Summary of Gamma distribution parameters.xlsx
e Sample computations.xlsx
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