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Abstract: The prompt and accurate diagnosis of breast lesions, including the distinction between 
cancer, non-cancer, and suspicious cancer, plays a crucial role in the prognosis of breast cancer. In 
this paper, we introduce a novel method based on feature extraction and reduction for detection of 
breast cancer in mammography images. First, we extract features from multiple pre-trained 
convolutional neural network (CNN) models, and then concatenate them. The most informative 
features are selected based on their mutual information with the target variable. Subsequently, the 
selected features can be classified using a machine learning algorithm. We evaluate our approach 
using four different machine learning algorithms, and our results demonstrate that the neural 
network-based classifier yields an accuracy as high as 92% for the RSNA dataset which is a new 
dataset that provides two views and additional features such as age. We compare our proposed 
algorithm with state-of-the-art methods and demonstrate its superiority, particularly in terms of 
accuracy and sensitivity. For the MIAS dataset, we achieve an accuracy as high as 94.5%, and for the 
DDSM dataset, an accuracy of 96% is attained. These results highlight the effectiveness of our 
method in accurately diagnosing breast lesions and surpassing existing approaches. 

Keywords: breast cancer; Convolutional Neural Network (CNN); computer aided diagnosis (CAD); 
feature selection; feature classification; mammography images 

 

1. Introduction 

Breast cancer (BC) is a widespread form of cancer with millions of new diagnoses and deaths 
each year [1]. In 2020 alone, there were 2.3 million new breast cancer diagnoses and 685,000 deaths 
[2]. Although mortality rates have declined due to the implementation of regular mammography 
screening, early detection and treatment remain important for reducing cancer fatalities [3]. 
Currently, early detection of BC from radiology images requires the expertise of highly trained 
radiologists. A looming shortage of radiologists in several countries will likely worsen this problem 
[4]. Mammography screening also leads to a high incidence of false positive results. This can result 
in unnecessary anxiety, inconvenient follow-up care, extra imaging tests, and sometimes a need for 
tissue sampling (often a needle biopsy) [5-6]. Additionally, machine learning techniques have the 
potential to improve the process of evaluating screening mammograms by radiologists [7]. Deep 
learning as a subset of machine learning in recent years has revolutionized the interpretation of 
diagnostic imaging studies [8]. A convolutional neural network (CNN) is one of the most significant 
networks in the deep learning field [9]. Compared to traditional screening techniques, computer 
aided diagnosis (CAD) systems utilizing convolutional neural networks (CNN) offer faster, more 
reliable, and more robust screening. CNNs have emerged as a prominent method for pattern 
recognition in image analysis [10]. CNN has been extensively used for breast cancer detection in 
different types of breast cancer images such as ultrasound (US), magnatic resonance imaging (MRI), 
and X-ray as follows: 
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US Images: Eroğlu Y [11] proposed a hybrid-based CNN system based on ultrasonography 
images for diagnosing BC by extracting features from Alexnet, MobilenetV2, and Resnet50 then, after 
concatenating them, mRMR features selection method were used to select the best features. This 
system used machine learning algorithms support vector machine (SVM) and k-nearest neighbors (k-
NN) as a classifier. As a result, an accuracy rate of 95.6% was achieved. Reference [12] An image 
segmentation method is applied to split the breast US images into sub-regions, followed by an object 
recognition method that employs feature extraction, selection, and classification techniques to 
automatically detect the sub-regions related to BC. In [13] a method was suggested to segment BCs 
via semantic classification and patch merging. The approach involves cropping a region of interest, 
enhancing it using filters and clustering techniques, extracting features, and performing classification 
with a neural network and a k-NN classifier. 

MRI Images: Zhou J et al. [14] proposed a 3D deep CNN for the detection and localization of BC 
in dynamic contrast-enhanced MRI data using a weakly supervised approach and achieved 83.7% 
accuracy. In [15], a multi-layer CNN was designed to classify MRI images as malignant or benign 
tumors using pixel information and online data augmentation. The network achieved high accuracy  
as 98.33%. 

X-ray Images: Authors in [16] used pre-trained CNN models, InceptionV3 and ResNet50, on the 
DDSM dataset to differentiate benign and malignant mammogram tumors. Transfer learning, pre-
processing, and data augmentation techniques were used due to limited data. ResNet50 achieved 
85.7%, and InceptionV3 achieved 79.6% accuracies. In [17], authors used a CNN model that combines 
features from multiple views of mediolateral oblique (MLO) and craniocaudal (CC). Multi-scale 
features and a penalty term were used and achieved 82.02% accuracy on the DDSM dataset. Ridhi 
Hela et al. in [18] proposed a methodology for BC detection using the CBIS-DDSM image dataset. 
Image pre-processing was done, followed by feature extraction using multiple CNN models 
(AlexNet, VGG16, ResNet, GoogLeNet, and InceptionResNet). The extracted features were evaluated 
using a neural network classifier, achieving an accuracy of 88%. 

This paper provides two significant contributions to the existing literature. Firstly, it extracts a 
comprehensive set of features from diverse pre-trained convolutional neural networks (CNNs) for 
different perspectives. Additionally, it incorporates additional features like age to create a feature 
vector. Secondly, it employs a methodology to reduce feature vector dimensionality by eliminating 
weak features based on their mutual information with image labels. 

The proposed system uses five base models, namely Alexnet, Resnet50, MobileNetSmall, 
ConvNeXtSmall, and EfficienNet, whose features are concatenated and extracted for optimal 
classification with a neural network (NN) model. This approach demonstrated its capability to 
enhance the accuracy of BC classification. 

The rest of the paper is structured as follows: Section 2 outlines the materials and models 
employed in the study, while Section 3 presents the proposed model. Section 4 discusses the results 
obtained for various datasets. The paper is concluded in Section 5. 

2. Materials and Methods 

2.1. Datasets 

A. The main dataset for this project is RSNA Screening Mammography BC from a recent Kaggle 
competition [19]. The dataset contains 54713 images in dicom format, from roughly 11,000 patients. 
For each patient, there are at least four images from different laterality and views. For each subject, 
two different views CC and MLO, and images from left and right laterality were provided. The 
images are of various sizes and formats including jpeg and jpeg 2000 and different types such as 
monochrome-1 and monochrome-2. The dataset provides additional features which some of them 
can be used for classification purposes: age, implant, BIRADS, and density. We based our work on 
this dataset, but since this dataset is new, it has not been used in any published research yet. Hence, 
for comparison purposes, we used two other well-known datasets MIAS and DDSM. This dataset 
was imbalanced as only 2 percent of the images were from cancer patients, which makes any 
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classification method biased. To compensate for this, we used all positive images and only 2320 
images from negative cases. Figure 1 depicts two sample images from this dataset for cancer and 
normal cases.  

B. The Mammographic Image Analysis Society (MIAS) [20] dataset is a well-known and widely 
used dataset for the development and evaluation of CAD systems for BC detection. It consists of 322 
mammographic images, with each image accompanied by a corresponding ground truth 
classification of benign or malignant tumors. The dataset is particularly valuable for researchers 
interested in developing machine learning algorithms for BC detection, as it includes examples of 
both normal and abnormal mammograms, as well as a range of breast densities and lesion types. 
Figure 2 depicts two sample images from this dataset for cancer and normal cases. 

C. The Digital Database for Screening Mammography (DDSM) [21] includes 55,890 images, of 
which 14% are positive, and the remaining 86% are negative. Images were tiled into 598x598 tiles, 
which were then resized to 299x299. A subset of this dataset which is for positive cases and is called 
CBIS-DDSM, has been annotated and the region of interest has been extracted by experts. In this 
research, we do not use the CBIS-DDSM and use the original DDSM dataset as we are classifying the 
images from normal subjects and cancer patients. Figure 3 depicts two sample images from this 
dataset for cancer and normal cases. 

  
(a) (b) 

Figure 1. These figures show two sample images from the RSNA dataset for (a) a cancerous, and (b) 
a normal subject. 

  
(a) (b) 

Figure 2. These figures show two sample images from the MIAS dataset for a)cancerous, and b) 
normal subjects. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 May 2023                   doi:10.20944/preprints202305.2209.v1

https://doi.org/10.20944/preprints202305.2209.v1


Preprints.org 4 of 12 

 

  
(a) (b) 

Figure 3. These figures show two sample images from the DDSM dataset for (a) cancerous, and (b) 
normal subjects. 

2.2. Models  

A. AlexNet [22] is a deep CNN architecture that was introduced in 2012 and achieved a 
breakthrough in computer vision tasks such as image classification. It consists of eight layers, 
including five convolutional layers and three fully connected layers. The first convolutional layer 
uses a large receptive field to capture low-level features such as edges and textures, while subsequent 
layers use smaller receptive fields to capture increasingly complex and abstract features. AlexNet 
was the first deep network to successfully use Rectified Linear Unit (ReLU) activation functions, 
which have since become a standard activation function in deep learning. It also used dropout 
regularization to prevent overfitting during training. AlexNet's success on the ImageNet dataset, 
which contains over one million images, demonstrated the potential of deep neural networks for 
image recognition tasks and paved the way for further advances in the field of computer vision. 

B. ResNet50 [23] is a deep CNN architecture that uses residual connections to enable learning 
from very deep architectures without suffering from the vanishing gradient problem. It consists of 
50 layers, including convolutional layers, batch normalization layers, ReLU activation functions, and 
fully connected layers. ResNet50 also uses a skip connection that bypasses several layers in the 
network, allowing it to effectively learn both low-level and high-level features.  

C. EfficientNet [24] is a family of deep CNN architectures that were introduced in 2019 and have 
achieved state-of-the-art performance on a range of computer vision tasks. EfficientNet uses a 
compound scaling method to simultaneously optimize the depth, width, and resolution of the 
network, allowing it to achieve high accuracy while maintaining computational efficiency. 
EfficientNet consists of a backbone network that extracts features from input images and a head 
network that performs the final classification. The backbone network uses a combination of mobile 
inverted bottleneck convolutional layers and squeeze-and-excitation (SE) blocks to capture both 
spatial and channel-wise correlations in the input. The head network uses a combination of global 
average pooling and fully connected layers to perform the final classification.  

D. MobileNet [25] is a deep learning architecture suitable for efficient and accurate analysis of 
medical images, specifically in the context of BC diagnosis. With its emphasis on computational 
efficiency, MobileNet can effectively extract features from mammography images, enabling the 
detection of subtle patterns or abnormalities associated with breast cancer. By utilizing depthwise 
separable convolutions, MobileNet optimizes memory consumption and computational load, 
making it ideal for resource-constrained environments. The integration of the ReLU6 activation 
function further enhances efficiency and compatibility with medical imaging devices. Overall, 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 May 2023                   doi:10.20944/preprints202305.2209.v1

https://doi.org/10.20944/preprints202305.2209.v1


Preprints.org 5 of 12 

 

MobileNet offers a valuable solution for BC analysis, providing accurate results while operating 
efficiently on limited computational resources. 

E. ConvNeXt [26] is an architecture that enhances the representational capacity of CNNs by 
leveraging parallel branches to capture diverse and complementary features, leading to improved 
performance on challenging visual recognition tasks. It has demonstrated excellent performance on 
various computer vision tasks, including image classification, object detection, and semantic 
segmentation. Its ability to capture complex relationships between features has made it a popular 
choice for tasks requiring a high-level understanding of visual data. 

3. Proposed Method 

In this paper, we propose a method based on extraction and concatenation of features obtained 
from various CNN models. The extracted features are then reduced such that only good features are 
selected and then used for the classification of normal and cancerous images. Figure 4 illustrates the 
block diagram of the proposed system.  
A. Feature extraction: For feature extraction, we exploit the features computed by pre-trained CNN 

models described in Section 2.2. For each model, the features are extracted from the last layer 
before the last fully connected (FC) layer as the output of the final FC layer has been trained for 
1000 classes of the ImageNet dataset and hence, we skip this layer and extract the features from 
the last layer before the final FC layer. Table 1 depicts the layer before the final FC layer and the 
number of features extracted for each CNN model used in this paper. 

 

 

Figure 4. Block diagram of the proposed system. 

Table 1. This table shows the CNN models used in the proposed method along with the layer name 
where the features have been extracted and the number of features extracted from each model. 

CNN Models Layer Name1 Number of features 
ResNet50 avg_pool 2048 
AlexNet fc8_prefletten 4096 

MobileNetSmall Logits 1000 
ConvNeXtSmall head_layer 768 

EfficientNet avg_pool 1280 
1 Layer’s names have been taken from TensorFlow models. 
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B. Feature concatenation: The 1-dimensional (1D) features extracted in the previous step are 
concatenated to form a single 1D feature vector. Note that for each CNN model, we have extracted 
features from two different views CC and MLO. Hence, 10 1D vectors are concatenated here. This 
forms a vector with a size of 18384 For the RSNA dataset that we used as the basis of our research, 
we have an additional useful feature for the patient age. We can also simply normalize and add age 
to our feature vector to have 18385 features in total. 
 

C. Feature selection: The majority of the features are redundant and do not carry any useful information 
and only increase the complexity of the system. Figure 5 illustrates 2 samples of good and weak 
features. As one can see from the figure, in the case of weak features, the distribution of the feature 
for normal and cancerous subjects are similar showing that there is no useful information in this 
feature and the calculated mutual information between them is zero. For the case of good features, 
normal and cancerous subjects have obviously different distributions showing that these features 
carry useful information, although small, that can improve the performance of classifiers used in the 
next step. In our proposed method, we reduced the number of features by only selecting good 
features. We define good features as the ones that have mutual information larger than a threshold. 
To compute mutual information we used the method in [27]. We empirically found a 0.02 threshold 
gives us the best results. Note that we also adopted feature selection based on mutual information 
empirically and after using various feature selection methods. The number of features for each 
dataset before and after feature selection is presented in the below table. 
 

D. Feature classification: After selecting the best features, we need to classify them. For this purpose, we 
tried multiple machine learning algorithms such as random forest, SVM, and neural networks. For 
classification with random forest, we used 100 trees, and for the neural network classifier, we used 
two fully-connected (FC) layers with 96 and 1 neurons, respectively. For the last FC layer, we used a 
sigmoid activation function that classifies normal cases from cancerous ones. 

  

(a) (b) 

Figure 5. These figures show distributions of (a) a good feature and (b) a weak feature extracted using 
a pre-trained CNN model. for cancer and noncancer subjects in the DDSM dataset. The mutual 
information computed for these two features is 0.035 and zero, respectively. 
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Table 2. The total number of features obtained from each dataset before and after feature selection. 

Dataset Before feature selection After feature selection 

RSNA 183851 452 

MIAS 9192 212 

DDSM 9192 206 
1 RSNA dataset provides two views for each subject and one additional feature for age. 

4. Results and Discussion 

This section presents the results obtained from the three datasets introduced in section 2.1 for 
models in section 2.2 and a combination of all of them as in Figure 4.  

4.1. Evaluation Metrics [28] 

To assess the performance of our experiments, we utilized various evaluation metrics. 
• True positives (TP): Instances where the predicted class and actual class are both positive. This 

indicates that the classifier accurately classified the instance with a positive label. 
• False positives (FP): Instances where the predicted class is positive but the actual class is 

negative. This means that the classifier incorrectly classified the instance with a positive label. In 
the context of breast abnormality classification, an FP response corresponds to a type I error 
according to statisticians. For example, it could refer to a calcification image being classified as 
a mass lesion or a benign mass lesion being classified as a malignant mammogram in the 
diagnosis. 

• True negatives (TN): Instances where the predicted class and actual class are both negative. This 
indicates that the classifier correctly classified the instance with a negative label. 

• False negatives (FN): Instances where the predicted class is negative but the actual class is 
positive. This means that the classifier incorrectly classified the instance with a negative label. In 
the context of breast abnormality classification, an FN response is considered a type II error. For 
instance, it could refer to a mass mammogram being classified as calcification or a malignant 
mass lesion being classified as a benign mammogram in the diagnosis. Type II errors are 
particularly significant in their consequences . 

• Accuracy: This metric represents the overall number of correctly classified instances. In the case 
of the abnormality classifier, accuracy signifies the correct classification of image patches 
containing either mass or calcification. Similarly, accuracy shows the correct classification of 
image patches as either malignant or benign in the pathology classifier. 

  𝐴𝐴𝐴𝐴𝐴𝐴 =  (TP+TN)
(TP+TN+FP+FN)

       (1) 

• Sensitivity or Recall: This metric represents the proportion of positive image patches that are 
correctly classified. In the abnormality type classifier, sensitivity indicates the fraction of image 
patches that are truly mass lesions and are correctly classified. Similarly, in the abnormality 
pathology classifier, it shows the fraction of truly malignant image patches that are correctly 
classified. Given the significance of type II error, this metric is valuable for evaluating 
performance. 

                                                        𝑆𝑆𝑆𝑆 = TP
(TP+FN)

                                                               (2) 

• Precision: This metric reflects the proportion of positive predictions that are correctly categorized. 
It is calculated using the following formula: 
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          𝑃𝑃𝑃𝑃 = TP
(TP+FP)

        (3) 

• F1 Score: This measure combines the impact of recall and precision using the harmonic mean, 
giving equal penalties to extreme values. It is commonly calculated using the formula: 

𝐹𝐹 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = (2∗Sn∗Pr)
(Sn+Pr)

      (4) 

4.2. Performance Evaluation of the Proposed Model for Different Classifiers 

Table 3 presents a comparison of performance metrics for different CNN models using the RSNA 
dataset. Among the individual CNN models, EfficientNet consistently outperforms the other models 
in terms of accuracy, sensitivity, precision, AUC, and F-Score. Its superior performance can be 
attributed to its architecture, which enables it to capture relevant features and make accurate 
predictions on the RSNA dataset. EfficientNet proves to be the most effective choice among the 
individual models for accurately classifying medical images in the RSNA dataset. From the last row 
of the table, one can see that the proposed concatenation scheme, significantly improves all 
performance metrics, for instance, the achieved accuracy is 6 percent more than the best CNN model, 
i.e., EfficientNet. 

Table 4 presents a summary of the results obtained using the kNN classifier with k=5. The 
findings indicate a significant decline in performance compared to the NN model. Specifically, 
without feature concatenation, the highest accuracy is achieved with AlexNet, which is 8 percent 
lower than the accuracy of the same model with the NN classifier, and 13 percent lower than the best-
performing EfficientNet model with the NN classifier. Additionally, the accuracy of the concatenated 
model is also 14 percent lower compared to the concatenated model with the NN classifier. 

Table 5 displays the results obtained from the random forest classifier. It demonstrates that the 
accuracy of the concatenated Model is equivalent to that of the KNN classifier, but falls short 
compared to the neural network. Among the individual models, EfficientNet exhibits the most 
favorable performance metrics, while mobileNetSmall exhibits the least favorable performance. 

Table 6 displays the results of the proposed method using the SVM classifier. It is evident from 
the table that SVM exhibits the lowest accuracy among all four investigated methods. Specifically,  
the accuracy of the SVM-based method is 19 percent lower than that of the NN-based method. 
Furthermore, in comparison to the KNN and RandomForest-based systems, the accuracy of the 
concatenated model decreased by 5 percent. 

Table 3. Performance comparison of the proposed method for different CNN models and Concat. 
Model with the NN classifier for RSNA dataset. 

CNN Models Acc Sn Pr AUC F-Score 
AlexNet 81% 84% 87% 0.82 0.86 
Resnet50 84% 90% 86% 0.89 0.88 
MobileNetSmall 77% 85% 81% 0.81 0.83 
ConvNexSmall 79% 87% 83% 0.83 0.85 
EfficientNet 86% 92% 88% 0.92 0.90 
Concat. Model 92% 96% 92% 0.96 0.94 
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Table 4. Performance comparison of the proposed method for different CNN models and Concat. 
Model with the kNN classifier for RSNA dataset. 

CNN Models Acc Sn Pr AUC F-Score 
AlexNet 73% 70% 72% 0.70 0.71 
Resnet50 72% 75% 71% 0.73 0.73 
MobileNetSmall 64% 71% 67% 0.68 0.69 
ConvNexSmall 66% 74% 70% 0.71 0.72 
EfficientNet 71% 78% 74% 0.76 0.76 
Concat. Model 78% 81% 79% 0.82 0.80 

Table 5. Performance comparison of the proposed method for different CNN models and Concat. 
Model with the Random Forest classifier for RSNA dataset. 

CNN Models Acc Sn Pr AUC F-Score 
AlexNet 71% 67% 69% 0.68 0.68 
Resnet50 69% 70% 67% 0.71 0.68 
MobileNetSmall 60% 67% 63% 0.64 0.65 
ConvNexSmall 62% 69% 65% 0.67 0.67 
EfficientNet 73% 74% 70% 0.75 0.72 
Concat. Model 78% 79% 77% 0.80 0.78 

Table 6. Performance comparison of the proposed method for different CNN models and Concat. 
Model with the SVM classifier for RSNA dataset. 

CNN Models Acc Sn Pr AUC F-Score 
AlexNet 62% 61% 63% 0.62 0.62 
Resnet50 64% 66% 63% 0.65 0.64 
MobileNetSmall 60% 63% 59% 0.60 0.61 
ConvNexSmall 62% 65% 61% 0.63 0.63 
EfficientNet 68% 70% 66% 0.68 0.68 
Concat. Model 73% 75% 72% 0.74 0.73 

4.3. Comparison of the Proposed System with State-of-the-art Methods 

Based on the findings presented in Tables 3-6, it is evident that the neural network (NN) classifier 
achieves the highest level of performance. Therefore, we employ the suggested approach using the 
NN classifier as the benchmark to compare it with the existing methods. 

To the best of our knowledge, the RSNA dataset has not been utilized in any previously 
published papers. Consequently, for the purposes of this section, we conducted a comparison of our 
proposed model against existing methods using the MIAS and DDSM datasets and summarized the 
results in Table 7. 

Upon examining Table 7, it is evident that our proposed model has exhibited superior 
performance compared to state-of-the-art algorithms in terms of accuracy and sensitivity across both 
the MIAS and DDSM datasets. While the method described in [29] demonstrated slightly better 
precision for the MIAS dataset, our algorithm outperformed it in the remaining two performance 
metrics. 
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Table 7. Performance comparison of our proposed model against vs. methods using the MIAS and 
DDSM datasets. 

Method Dataset Number Of Images ACC Sn Pr 
SVM & Hough[29] MIAS & InBreast 322&206 86.13%  80.67% 92.81% 
LQP & SVM [30] MIAS 95 94% NA NA 
GMM & SVM [31] Mini-MIAS dataset 90 92.5% NA NA 
KNN [32] Mini-MIAS 120 92% NA NA 
Voting Classifier[33] MIAS 322 85% NA NA 
CNN-4d [34] Mini-MIAS 547 89.05% 90.63% 83.67% 
CNN [35] DDSM 10,480 93.5% NA NA 
CNNs [36] DDSM 11,218 85.82% 82.28% 86.59% 
Our Method+NN MIAS 322 94.5% 96.32% 91.80% 
Our Method+NN DDSM 55,890 96% 94.70% 97% 

5. Conclusions 

We proposed a novel method for accurately diagnosing breast cancer in mammography images. 
By extracting and selecting features from multiple pre-trained convolutional neural network models, 
and then classifying them using various machine learning algorithms, we achieved impressive results 
for different datasets. We showed that the proposed scheme obtains its best performance with a 
neural network-based classifier. Accuracies as high as 92%, 94.5%, and 96% were achieved for RSNA, 
MIAS, and DDASM datasets, respectively. Comparisons with existing methods showcased the 
superiority of our approach, particularly in terms of accuracy and sensitivity. These outcomes 
highlight the potential of our method to significantly improve the prognosis of breast cancer through 
timely and precise diagnosis. 
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