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Article 
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and Their Genomic Footprint 
Wolfgang Stephan 

Faculty of Biology, Ludwig-Maximilian University of Munich; D-82152 Planegg-Martinsried, Germany 
* Correspondence: w.stephan@lmu.de or stephan@bio.lmu.de 

Abstract: For a highly beneficial mutation A at locus 1 spreading in a very large population, we have 
analyzed the scenario that at a closely linked locus 2 a second beneficial mutant B arises in repulsion; 
i.e. on a chromosome carrying the wildtype a at locus 1. Under the assumptions that the fitness of B 
is greater than that of A and that A- and B-carrying chromosomes can recombine at some rate 𝑟, 
recombinants AB may form and eventually fix. We present explicit formulas for the fixation time of 
AB under additive fitness of the mutants as a function of  the frequency 𝑋ଶ(0) of A at the time when 
B is introduced. Our analysis suggests that the effect of interference between the beneficial mutations 
is most pronounced for small values of 𝑋ଶ(0) < 0.1. Furthermore, we identify a threshold value for 
𝑟, above which recombination speeds up fixation. Using published simulation data we also describe 
the genomic footprint of competing beneficial mutations. At neutral sites between the two linked 
selected loci an excess of intermediate-frequency variants may occur when interference is strong; i.e. 
𝑋ଶ(0) small. Finally, we discuss under which circumstances this scenario may be encountered in real 
data. 

Keywords: mathematical population genetics; nonnormalized allele frequencies; recurrent selective 
sweeps 
 

1. Introduction  

The speed of beneficial mutations on their way to fixation in natural populations is a 
fundamental topic in population genetics. Knowing how fast selection can act to change allele 
frequencies is essential for understanding evolution. The time for a beneficial allele to spread through 
a natural population was investigated early in the history of population genetics, using deterministic 
models [1]. Later, propertiies of the fixation time of individual advantageous mutations under the 
influence of positive directional selection and genetic drift in populations of finite size have been 
derived by several authors [2 − 4].  

 
However, the spread of two or more beneficial mutations that arise and interact during their 

fixation process is much less investigated. For two interacting mutations Otto and Barton [5]  have 
studied the case that the second mutation is less beneficial than the first one. In contrast, Cuthbertson 
et al. [6]  and Bossert and Pfaffelhuber [7]  considered the scenario that the second mutation is 
fitter than the first one. Furthermore, they assumed that there is a chance that the first and second 
mutant recombine such that the recombinant type has the highest fitness and eventually fixes. Here 
we will focus on this latter case. 

 
We consider the mathematical analysis of the fixation time in conjunction with the theory of 

selective sweeps. Although beneficial mutations are a comparatively small fraction of all new 
mutations, some of them may reach fixation and are thus important in evolution. If the fitness effects 
of these beneficial mutations are sufficiently strong, they may cause selective sweeps, i.e. localized 
reductions of genetic variation along genomes [8] . Such localized patterns of reduced genetic 
variation have been convincingly described in a variety of organisms.  

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 April 2025 doi:10.20944/preprints202504.2540.v1

©  2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.2540.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 11 

 

 
Detecting signatures of selective sweeps in genomes is a major goal of current population 

genetics, as it allows estimating the rate of beneficial mutations going to fixation and finding the 
genes involved in selection. The inference methods for detecting sweeps depend critically on 
assumptions on whether the benefical mutations occur sequentially (such that there is at most one 
beneficial allele on a chromosome on the way to fixation at a time) or whether beneficial alleles 
overlap with each other. Models of recurrent selective sweeps traditionally assume that in 
chromosomal regions of normal recombination rates at most one beneficial allele is on the way to 
fixation [9 − 11]. 

 
Here we  follow the scenario proposed by Bossert and Pfaffelhuber [7]. Thus we assume that, 

while a highly beneficial mutation spreads in a natural population, a second beneficial mutation 
arises before the first one has fixed. Furthermore, we envision that the first mutation is less fit than 
the second one and that recombination may occur between the two chromosomes. Under these 
conditions a haplotype may be formed that is fitter than the two individual mutations and may 
therefore eventually fix. To model this process for a population of finite size, Bossert and Pfaffelhuber 
[7] used stochastic differential equations and calculated the fixation time of a recombinant haplotype 
under the assumption that it fixes. In contrast, we use a deterministic approach based on ordinary 
differential equations (ODEs). Thus, in our analysis an explicit assumption about the fixation of a 
recombinant is not necessary.  

 
We begin by formulating the differential equations for the basic allele frequency changes. Then 

we introduce nonnormalized variables (that are proportional to the allele frequencies) to find 
approximate solutions of this system of ODEs. Subsequently, we provide explicit formulas for the 
fixation time of the recombinant type. Finally, we apply our results to simulation data by Chevin et 
al. [12] to describe patterns of selective sweeps in the genome caused by the joint fixation of two 
mutations due to selection and recombination.   

 

2. Model 

We consider a two-locus model, with alleles A and a at locus 1 and B and b at locus 2, 
respectively. The upper-case letters denote beneficial alleles with selection coefficient 𝑠ଶ  at locus 1 
and 𝑠ଷ at locus 2, whereas the alleles with lower-case letters are assumed to be neutral (wildtype). 
This model has four haplotypes AB, Ab, aB, and ab, with frequencies given by the variables 
𝑋ଵ, 𝑋ଶ, 𝑋ଷ and  𝑋ସ (which add up to 1). Assuming additive selection, their relative fitnesses are  1 +

𝑠ଵ, 1 + 𝑠ଶ, 1 + 𝑠ଷ and 1, respectively, where 𝑠ଵ = 𝑠ଶ + 𝑠ଷ .  Recombination between locus 1 and locus 
2 occurs at rate r. Since we are interested in closely linked loci, we assume that 𝑟 ≪ 𝑠௜ ≪ 1 for i = 2, 
3. In our deterministic setting (without genetic drift) the ODEs for the time change of the variables Xi 
are obtained by adding the change due to selection and the change due to recombination ([13], chapt. 
2):  

 
   ௗ௑భ

ௗ௧
= 𝑋ଵ൫𝑠ଵ − ∑ 𝑠௝𝑋௝

ଷ
௝ୀଵ ൯ − 𝑟(𝑋ଵ𝑋ସ − 𝑋ଶ𝑋ଷ) , 

 
   ௗ௑మ

ௗ௧
= 𝑋ଶ൫𝑠ଶ − ∑ 𝑠௝𝑋௝

ଷ
௝ୀଵ ൯ + 𝑟(𝑋ଵ𝑋ସ − 𝑋ଶ𝑋ଷ) ,   (1) 

 

      
𝑑𝑋3

𝑑𝑡
= 𝑋3൫𝑠3 − ∑ 𝑠𝑗𝑋𝑗

3
𝑗=1 ൯ + 𝑟(𝑋1𝑋4 − 𝑋2𝑋3) , 

 
    ௗ௑ర

ௗ௧
= 𝑋ସ൫− ∑ 𝑠௝𝑋௝

ଷ
௝ୀଵ ൯ − 𝑟(𝑋ଵ𝑋ସ − 𝑋ଶ𝑋ଷ) , 
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where 𝑡 measures time in generations.  
 
For 𝑟 > 0, which we assume throughout this paper, an exact solution of this system of ODEs is 

not known. An approximate solution can be obtained using nonnormalized variables Yi (i = 1, .... , 4) 
(see [14] for mutation-selection and [15] for recombination-selection equations). These are related 
to the original variables of equations (1) as:  

 
𝑋௜ =

௒೔

∑ ௒ೕ
ర
ೕసభ

 .      (2) 

 
Using (2) it can be shown that the nonnormalized variables satisfy the following ODEs: 
 

𝑑𝑌ଵ

𝑑𝑡
= 𝑠ଵ𝑌ଵ −

𝑟

∑ 𝑌௜
ସ
௜ୀଵ

(𝑌ଵ𝑌ସ − 𝑌ଶ𝑌ଷ) , 

 
ௗ௒మ

ௗ௧
= 𝑠ଶ𝑌ଶ +

௥

∑ ௒೔
ర
೔సభ

(𝑌ଵ𝑌ସ − 𝑌ଶ𝑌ଷ) ,   (3) 

 
    ௗ௒య

ௗ௧
= 𝑠ଷ𝑌ଷ +

௥

∑ ௒೔
ర
೔సభ

(𝑌ଵ𝑌ସ − 𝑌ଶ𝑌ଷ) ,  

 
    ௗ௒ర

ௗ௧
= −

௥

∑ ௒೔
ర
೔సభ

(𝑌ଵ𝑌ସ − 𝑌ଶ𝑌ଷ) . 

 
Note that rescaling all 𝑌௜ by a constant leaves 𝑋௜ invariant. To fix this scaling, we use 𝑋௜(0) =

𝑌௜(0) for all i = 1, ... , 4. As outlined in Appendix (A), the following approximate solutions of the ODEs 
(3) can be found, assuming that both mutations A and B arise on background ab (so that 𝑋ଵ(0) = 0): 

 
 𝑌ଵ(𝑡) ≈ 𝑟𝑋ଶ(0)𝑋ଷ(0)𝑒௦భ௧ ∫

ଵ

𝑋4൫0൯+𝑋2൫0൯𝑒𝑠2𝜏+𝑋3൫0൯𝑒𝑠3𝜏
௧

଴
𝑑𝜏, 

 

 𝑌ଶ(𝑡) ≈ 𝑋ଶ(0)𝑒௦మ௧ ൤1 − 𝑟𝑋ଷ(0) ∫
௘ೞయഓ

𝑋4൫0൯+𝑋2൫0൯𝑒𝑠2𝜏+𝑋3൫0൯𝑒𝑠3𝜏
௧

଴
𝑑𝜏൨ ,           (4) 

 

 𝑌ଷ(𝑡) ≈ 𝑋ଷ(0)𝑒௦య௧ ൤1 − 𝑟𝑋ଶ(0) ∫
௘ೞమഓ

𝑋4൫0൯+𝑋2൫0൯𝑒𝑠2𝜏+𝑋3൫0൯𝑒𝑠3𝜏
௧

଴
𝑑𝜏൨ ,    

 
 𝑌ସ(𝑡) ≈ 𝑋ସ(0) + 𝑟𝑋ଶ(0)𝑋ଷ(0) ∫

௘ೞభഓ

𝑋4൫0൯+𝑋2൫0൯𝑒𝑠2𝜏+𝑋3൫0൯𝑒𝑠3𝜏
௧

଴
𝑑𝜏 . 

 
These approximations were first established and tested by Yun Song (personal communication). 

Numerical analysis suggests that they are generally excellent for 𝑟 < 𝑚𝑖𝑛( 𝑠ଶ, 𝑠ଷ) /10. 
 

3. Fixation time 

Using equations (4) we can find the fixation time of two interfering mutations. We call an allele 
or haplotype fixed when it reaches frequency 1 − 𝛿 and denote this time 𝑇. Thus 𝑇 measures the 
time from some initial frequency at 𝑡 = 0 to 1 − 𝛿. The initial frequency may be the frequency of a 
newly arising mutation. In a haploid population of size 𝑁 , which we consider here, this initial 
frequency is given by 1/𝑁. In our case, however, we are interested in the fixation of the double 
mutant 𝐴𝐵 whose initial frequency is 𝑋ଵ(0) = 0, as 𝐴𝐵  arises during the fixation process due to 
recombination. Thus, the fixation time of 𝐴𝐵 is found by solving the equation  

 
    𝑋ଵ(𝑇) = 1 − 𝛿 ,     (5) 
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where 𝛿 is a small number.  
 
Next we express equation (5) in terms of nonnormalized variables and obtain 
 

   𝑋ଵ(𝑇) =  ቀ1 + ∑
௒೔(்)

௒భ(்)

ସ
௜ୀଶ ቁ

ିଵ

= 1 − 𝛿 . 

 
Using (4) with 𝑋ଶ(0) > 𝑋ଷ(0) and 𝑠ଷ > 𝑠ଶ, this equation can be approximated by 
 
    𝛿 ≈

௒మ(்)

௒భ(்)
+

௒య(்)

௒భ(்)
 .     (6) 

 
Evaluating the terms on the right-hand side of equation (6) requires that we find useful 

approxiations of the integrals in equations (4) because closed formulae for these integrals are not 
known (see Appendix (B)).  Besides the two aforementioned assumptions, we assume that 𝑇 is 
sufficiently large such that the second mutation is eventually dominating the first one; i.e. 
𝑋ଶ(0)𝑒௦మ் ≪ 𝑋ଷ(0)𝑒௦య், and population size is large (𝑁 > 10ହ) such that selection is strong  (𝑁𝑠௜ >

100). Under these assumptions we find for the integrals 𝐼௜(𝑇) defined in Appendix (B): 
 

   𝐼ଵ(𝑇) ≈ −
௟௡൫௑మ(଴)൯

௦మ൫ଵି௑మ(଴)൯
 , 

 
   𝐼ଶ(𝑇) <

்

௑య(଴)
 ,       (7) 

 
   𝐼ଷ(𝑇) ≈

ଵ

௑మ(଴)
ቂ

௦య

௦మ(௦యି௦మ)
𝑙𝑛൫𝑋ଶ(0)൯ −

ଵ

௦యି௦మ
𝑙𝑛൫𝑋ଷ(0)൯ቃ . 

 
Inserting these formulas into equation (6), this equation can be written in the following form: 
 

 𝛿𝐼ଵ(𝑇) ≈
ଵ

௑య(଴)௘ೞయ೅ ൬
ଵ

௥
− 𝑋ଷ(0)𝐼ଶ(𝑇)൰ +

ଵ

௑మ(଴)௘ೞమ೅ ൬
ଵ

௥
− 𝑋ଶ(0)𝐼ଷ(𝑇)൰ . (8) 

 
We can neglect the first term on the right-hand side of equation (8) for the following reasons: 

first, because we assumed that 𝑋ଶ(0)𝑒௦మ் ≪ 𝑋ଷ(0)𝑒௦య் , and second since 𝑋ଷ(0)𝐼ଶ(𝑇) is bounded by 
ଵ

௥
, the term ௑య(଴)ூమ(்)

௑మ(଴)௘ೞమ೅  can be neglected compared to ଵ

௑మ(଴)௘ೞమ೅

ଵ

௥
. This leads to equation (9): 

 

  −
ఋ௑మ(଴)௟௡൫௑మ(଴)൯

௦మ൫ଵି௑మ(଴)൯
≈ 𝑒ି௦మ் ቀ

ଵ

௥
−

௦య௟௡൫௑మ(଴)൯

௦మ(௦యି௦మ)
+

௟௡൫௑య(଴)൯

௦యି௦మ
ቁ .                     (9) 

 
Finally, we introduce population size 𝑁 into this equation by writing 𝛿 =

ଵ

ே
 , 𝑋ଷ(0) =

ଵ 

ே
  and 

𝑋ଶ(0) =
௫మబ

ே
 , where 𝑥ଶ଴ is the number of 𝐴 alleles at 𝑡 = 0. Then solving the equation for 𝑇 yields 

 

 𝑇 ≈
ଵ

௦మ
ቈ2𝑙𝑛(𝑁) − 𝑙𝑛 ቀ

௫మబ

௦మ
ቁ − 𝑙𝑛 ቆ

௟௡ቀ
ಿ

ೣమబ
ቁ

ଵି
ೣమబ

ಿ

ቇ + 𝑙𝑛 ቆ
ଵ

௥
+

௦య

௦మ

௟௡ቀ
ಿ

ೣమబ
ቁ

௦యି௦మ
−

௟௡(ே)

௦యି௦మ
ቇ቉ . (10) 

 
 
Table 1 shows that this result agrees very well with the numerical solution of equation (8).  
 
As expected, the formula for 𝑇 is complex. However, in the interesting parameter range of small 

𝑟 values such that  
ଵ

௥
≫ ቤ

௦య

௦మ

௟௡ቀ
ಿ

ೣమబ
ቁ

௦యି௦మ
−

௟௡(ே)

௦యି௦మ
ቤ, we may approximate equation (10) as 
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𝑇 ≈
ଵ

௦మ
൥2𝑙𝑛(𝑁) − 𝑙𝑛 ൭

௥

௦మ

௫మబ

ଵି
ೣమబ

ಿ

𝑙𝑛 ቀ
ே

௫మబ
ቁ൱൩.  (11) 

 
The first term on the right-hand side of equation (11) equals the fixation time of a new allele 

starting at frequency ଵ

ே 
 and ending at 1 −

ଵ

ே 
 , driven by positive directional selection with selection 

coeffcient 𝑠ଶ. This term also appears in the result of Bossert and Pfaffelhuber [7]. The denominator 
𝑠ଶcan be explained as follows. To go to fixation, the successful recombinant AB with fitness 1 + 𝑠ଶ +

𝑠ଷ has to compete against the – at the time – dominant aB type with fitness 1 + 𝑠ଷ , having a fitness 
advantage 𝑠ଶ.  

 
Furthermore, unless 𝑟 is very small, the second term in equation (11) is negative such that 𝑇 is 

smaller than ଶ௟௡(ே)

௦మ
. This is not surprising as we are dealing here with an equation describing 

continuous input of new 𝐴𝐵 alleles due to recombination, similar to the case of  fixation under 
continuous mutation pressure and positive directional selection ([16], equation (8)). Thus, based on 
equation (11) we obtain a relatively simple formula for the threshold of 𝑟 

 

    𝑟௖ =  
௦మ

௫మబ

ଵି
ೣమబ

ಿ

௟௡ቀ
ಿ

ೣమబ
ቁ
,       (12) 

  
above which recombination speeds up fixation time, whereas for 𝑟 < 𝑟௖  the second term in 

equation (11) turns positive, such that the fixation time 𝑇 becomes larger than ଶ௟ (ே)

௦మ
 , meaning that 

the input of recombinants ceases. 
 
4. Genomic footprint of competing mutations 
As an application we analyze simulation data from a study of genetic variation at neutral sites 

located between two selected loci [12]. The data were obtained using Monte Carlo simulations of a 
Wright-Fisher model ([13], chapt. 3) with two selected loci and three neutral loci. The three neutral 
sites are located between the selected loci as described in Table 1. Table 1 also contains the parameter 
values used in the simulations. They meet the assumptions of our analysis, except for the populaton 
size. In the simulations 𝑁 = 20000 was used, while in our derivation 𝑁 > 10ହ was suggested. To 
check whether this causes problems, we compared the analytical results for T from equation (10) with 
the numerical solutions of equation (8) for 𝑁 = 20000. However, as Table 1 (columns 6 and 7) shows, 
no discrepancies could be found. 

 
The first observation concerns T as a function of 𝑋ଶ(0) . Since 𝑟 = 0.005  was used in all 

simulations and in all cases 𝑟 is larger than the threshold 𝑟௖  (equation 12), we expect that T is smaller 
than ଶ௟௡(ே)

௦మ
= 198.1 and decreases with increasing 𝑋ଶ(0) =

௫మబ

ே
. This is indeed the case. The most 

pronounced effect of 𝑋ଶ(0) on fixation time is observed for small values of 𝑋ଶ(0) < 0.1. For larger 
values of 𝑋ଶ(0), however, fixation time is relatively constant. This observation is consistent with the 
formulas for T, especially equation (11), which shows that, for given 

௥

௦మ
 , fixation time depends about 

logarithmally on 𝑥ଶ଴. This formula also says that recombination is most important in speeding up 
fixation when the second mutation is introduced at low 𝑋ଶ(0) values. Here the interference between  
the two mutations is largest. 

 
Next we discuss the simulation results of Chevin et al. [12]   in the light of our analysis. 

Variation at the neutral loci (close to the selected ones) shows typical hitchhiking effects [8]; i.e. 
variation is reduced relative to the neutral standard level such that stronger selection acting at locus 
2 (𝑠ଷ > 𝑠ଶ) leads to a greater reduction than at the neutral site near locus 1. Furthermore, variation at 
the neutral locus in the middle between the two selected loci is greater than that at the loci near the 
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selected sites, which is also a typical hitchhiking effect, because the distance to the selected loci (and 
hence recombination rate) is larger. 

 
Increasing 𝑋ଶ(0) generally leads to stronger hitchhiking effects such that levels of neutral 

variation decrease with 𝑋ଶ(0). This can be clearly observed at the neutral locus close to locus 1, 
whereas at the neutral locus close to the stronger selected site this is hardly visible. At the neutral 
locus in the middle there is also a strong decay of variation with increasing levels of 𝑋ଶ(0). The effect 
of 𝑋ଶ(0)  on hitchhiking is likely due to the interference of the two mutations. The longer they 
compete with each other on their way to fixation, the weaker their hitchhiking effect. This has already 
been observed in other studies (e.g. [17] ).  

 
Finally, we discuss D, a statistic introduced by Tajima [18]. In Table 1 (column 5) only the D 

values for the neutral locus in the middle between locus 1 and 2 are shown. All D values at the other 
two loci are negative as expected from the theory of genetic hitchhiking. A negative D is observed 
when an allele has either a lower or higher frequency than expected by the neutral theory. 
Interestingly, however, Chevin et al. [12]   observed strongly positive D values for 𝑋ଶ(0) =

0.007, 0.024, and 0.077, whereas D is around zero or negative for larger 𝑋ଶ(0). Positive values of D 
indicate that alleles are at intermediate frequencies, such as predicted for balancing selection. In our 
case, however, this is probably not a valid hypothesis, at least concerning the standard models of 
balancing selection. A plausible hypothesis proposed by Bossert and Pfaffelhuber [7] is that positive 
D may be observed when a haplotype structure arises in the genome through recombination between 
different haplotypes consisting of multiple polymorphic loci. Haplotype structures exist in 
populations only if polymorphisms at individual loci tend to be in intermediate frequency (such that 
the less frequent variants are not too rare). This may be the case for 𝑋ଶ(0) = 0.007, 0.024, and 0.077, 
but not for the larger 𝑋ଶ(0)  values, for which diversity is more heavily reduced (Table 1). An 
alternative, though related hypothesis postulates that the dynamics of the two selected mutations 
(while in repulsion) reaches nonnegligible frequencies at similar times such that recombination may 
produce haplotypes with the two favorable alleles in coupling [12]. 

 
If these hypotheses are correct, a genomic footprint of competing beneficial mutations may be 

detected by measuring Tajima’s D and/or linkage disequilibrium. In general, footprints associated 
with selective sweeps caused by the fixation of beneficial mutations can be found in genetic data if 
their characteristic pattern of variation, such as a dip of nucleotide diversity around a selected site or 
a haplotype structure revealed by linkage disequilibrium, persist for some time. For Wright-Fisher 
populations such signatures may be detected for up to 0.1𝑁 generations after fixation of the driving 
mutations [19, 20]. 

 

5. Discussion 

For a highly beneficial mutation A at locus 1 spreading in a very large population, we have 
analyzed the scenario when a second beneficial mutant B arises in repulsion; i.e. on a chromosome 
carrying the wildtype a at locus 1. Under the assumptions that the fitness of B is greater than that of 
A and that A- and B-carrying chromosomes can recombine, recombinants AB may form and 
eventually fix. We present approximate formulas for the fixation time of AB under additive fitness of 
the mutations as a function of 𝑋ଶ(0), the frequency of A at the introduction of B. The latter parameter 
turns out to be useful for describing  the interference between competing beneficial mutations. 

 
Our analysis suggests that the effect of interference between beneficial mutations is most 

pronounced for small values of 𝑋ଶ(0) < 0.1. In this parameter range fixation time decreases 
substantially with 𝑋ଶ(0). However, for larger values fixation time is relatively constant (Table 1). 
This agrees with the formulas for T, especially equation (11), which shows that T depends about 
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logarithmally on 𝑋ଶ(0). Similarly, the effect of interference on the genomic footprint of competing 
mutations can be clearly discerned. For small values of 𝑋ଶ(0) = 0.007, 0.024, and 0.077, a strongly 
positive D was observed, whereas D is around zero or negative for larger 𝑋ଶ(0) (Table 1). Positive 
values of D indicate that alleles are in intermediate frequencies. This may be observed when a 
haplotype structure arises in the genome through recombination between different allelic types 
consisting of multiple polymorphic loci [7, 12].  

 
Finally, we address the question whether we can expect observing patterns of overlapping 

selective sweeps due to competing mutations in genomes. Estimates of the average selection 
coefficient 𝑠 and the rate 𝜈 at which beneficial mutations arise and go to fixation (i.e. selective 
substitutions) are known for some species including Drosophila melanogaster. For instance, Jensen et 
al. [21]  analyzed a dataset of genetic variation from the euchromatic part of the genome of a D. 
melanogaster population from Africa, which is – roughly speaking – the  recombining portion of 
chromosomes. They obtained the following estimates: 𝑠 = 0.002 , 𝑁 = 5 × 10଺ and 𝜈 = 4.2 ×

10ିଵଵ per generation per nucleotide site. Since under selection and genetic drift the mean fixation 
time (conditional on fixation) for a diploid species such as D. melanogaster is 𝑇 =

ସ

௦
𝑙𝑛(2𝑁𝑠) [3], we 

find that the probability of a second substitution arising on a chromosome during the sojourn of the 
first one to fixation is 𝑇𝜈 = 8.3 × 10ି଻  per nucleotide site. Multiplying 𝑇𝜈  with  the size of the 
euchromatic part of a chromosome (in D. melanogaster approximately 24 Mb = 2.4 × 10଻ base pairs), 
we find that on average at about 20 sites of a chromosome strongly selected substitutions could arise 
and compete with the first mutation during its sojourn to fixation.  

 
An example that some of these selected substitutions occur in close proximity in the genome is 

found at the polyhomeotic locus of a European population of D. melanogaster. Voigt et al. [22] report 
a case in which five selected substitutions (i.e. nearly fixed variants between Europe and Africa) are 
located in the 5-kb intergenic region between polyhomeotic proximal and the gene CG3835 within a 
segment of 2.28 kb. They showed that these five selected variants are involved in adaptation of D. 
melanogaster to the higher temperature in Europe compared to that of the ancestral species range in 
Africa. Variation is generally low in the whole polyhomeotic region and Tajima’s D is strongly negative, 
as expected after a sweep. However, using a larger dataset than in her previous study, Susanne Voigt 
(personal communication) found evidence that the five beneficial substitutions that likely caused the 
sweep did not act independently in a sequential manner but were selected as haplotype block. As a 
consequence, an elevated level of Tajima’s D in the fragment containing the five selected substitutions 
was not detected. 

 
A more promising example in the context of interference between beneficial mutations may be 

the Agouti locus in deer mice. Here the precise mutations required for adaptation to light-colored soil 
of the Nebraska Sand Hills have been identified [23] . The authors claim that – contrary to the 
aforementioned Drosophila case – the light Sand Hills phenotype is the result of independent selection 
on many mutations within the Agouti locus spanning about 120 kb. Thus, in this case a genomic 
footprint of interference between beneficial mutations may be encountered in sequence data. 

 

Appendices 

(A) Derivation of the approximate solutions of ODEs (3) 
We write the solutions in the form  
 
    𝑌ଵ = 𝑟𝑋ଶ(0)𝑋ଷ(0)𝑒௦భ௧𝐼ଵ(𝑡) , 
 
𝑌ଶ = 𝑋ଶ(0)𝑒௦మ௧൫1 − 𝑟𝑋ଷ(0)𝐼ଶ(𝑡)൯ ,    (A1) 
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    𝑌ଷ = 𝑋ଷ(0)𝑒௦య௧൫1 − 𝑟𝑋ଶ(0)𝐼ଷ(𝑡)൯ , 
 

𝑌ସ = 𝑋ସ(0) +  𝑟𝑋ଶ(0)𝑋ଷ(0)𝐼ସ(𝑡) , 
 
where 𝐼௜(0) = 0 for i = 1, ... , 4. 

 

Next we compare the time derivatives of equations (A1) with those of the 

corresponding equations (3). Assuming r << si then leads to  

 

    
ௗூర

ௗ௧
≈

௘ೞభ೟

௑ర(଴)ା௑మ(଴)௘ೞమ೟ା௑య(଴)௘ೞయ೟ .    (A2) 

 

This immediately yields the last equation in (4) (up to first order in r). In a similar 

way, we obtain ௗூ೔

ௗ௧
 for i = 1, 2 , 3 by comparing the time derivatives of equations (A1) 

with those of the corresponding equations (3). 

 

(B) Approximations of the integrals in equations (4) 
We begin by approximating the integral  
 
   𝐼ଵ(𝑡) = ∫

ଵ

௑ర(଴)ା௑మ(଴)௘ೞమഓା௑య(଴)௘ೞయഓ

௧

଴
𝑑𝜏 .    (B1) 

 
The function to integrate has a maximum at 𝜏 = 0 and decays quickly to zero (within about 𝑡̂  ≈

−
௟௡൫௑మ(଴)൯

௦మ
 generations). Because 𝑋ଷ(0) =

ଵ

ே
,  we may assume for large populations that within this 

short decay time 𝑋ଷ(0)𝑒௦యఛ ≪ 𝑋ଶ(0)𝑒௦మఛand  neglect the last term in the denominator. For 𝑡 > 𝑡̂ the 
integral can then be approximated by a standard formula. This leads to the approximation for 
𝐼ଵ(𝑇) given in equations (7). This approximation is excellent for large population sizes 𝑁 > 10ହ.  

 
Next we consider the integral 
 
   𝐼ଶ(𝑡) = ∫

௘ೞయഓ

௑ర(଴)ା௑మ(଴)௘ೞమഓା௑య(଴)௘ೞయഓ

௧

଴
𝑑𝜏 .   (B2) 

 
Here the function to integrate increases monotonically up to a level of ଵ

𝑋3൫0൯
 for large 𝑡. This 

leads to the upper bound of this integral given in equations (7). A more precise approximation is not 
required in this case (see main text below equation (8)). 

 
Finally, we approximate the integral  
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   𝐼ଷ(𝑡) = ∫
௘ೞమഓ

௑ర(଴)ା௑మ(଴)௘ೞమഓା௑య(଴)௘ೞయഓ

௧

଴
𝑑𝜏 .   (B3) 

The function to integrate has a maximum at 𝑡̂ =
ଵ

௦య
𝑙𝑛 ቀ

௦మ

௦యି௦మ

௑ర(଴)

௑య(଴)
ቁ ≈ −

ଵ

௦య
𝑙𝑛൫𝑋ଷ(0)൯. For 𝑡 ≤ 𝑡̂ we 

integrate the function ௘ೞమ೟

𝑋4൫0൯+𝑋2൫0൯𝑒𝑠2𝑡 and for larger times ଵ

𝑋2൫0൯+𝑋3൫0൯𝑒ቀ𝑠3−𝑠2ቁ𝑡
 . This leads to the 

third formula in equations (7), which was obtained assuming large populations.   
 
In general, the analytical results in this paper were derived for large populations (𝑁 > 10ହ). In 

the applying these results to the simulation data of Chevin et al. [12], we had to check numerically 
whether they are still valid for a smaller population size of 20000 used in these simulations. We found 
that the fixation times analytically calculated agree very well with the numerical results (see Table 1).  

Table 1. Simulation data of Chevin et al. [12]  and fixation times. 

 

𝑋ଶ(0)  𝜋௟                      𝜋௠                      𝜋௥     D              𝑇௔௡௔                  𝑇௡௨௠ 
_________________________________________________________________________
____________________________ 

 

0.007  0.333  0.491  0.191  0.503  162.7 

 163.4  

0.024  0.311  0.473  0.201  0.535  157.0 

 152.1 

0.077  0.276  0.420  0.198  0.468  141.8 

 141.8 

0.224  0.244  0.323  0.192  0.019  133.1 

 133.2 

0.5  0.184  0.184  0.168  −0.621 127.1  127.3 

 

The first five columns show the simulation data: 𝑋ଶ(0), the frequency of the first mutation when 
the second mutation is introduced; 𝜋௟ , relative genetic diversity at a neutral locus between loci 1 and 
2 near locus 1 (here ’relative’ refers to expected diversity under neutrality); 𝜋௠ , relative genetic 
diversity at neutral locus in the middle between loci 1 and 2; 𝜋௥ , relative genetic diversity at a neutral 
locus between loci 1 and 2 near locus 2; 𝐷, Tajima’s [18] measure of the deviation of the level of 
variation from neutrality at the locus in the middle. 𝑇௔௡௔  is the fixation time from equation (10) 
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measured in generations, and 𝑇௡௨௠ is obtained by solving equation (8) numerically. The parameter 
values are: 𝑁 = 20000, 𝑋ଷ(0) =

ଵ

ே
, 𝛿 =

ଵ

ே
, 𝑠ଶ = 0.1, 𝑠ଷ = 0.2, 𝑟 = 0.005. 
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