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Abstract: For a highly beneficial mutation A at locus 1 spreading in a very large population, we have
analyzed the scenario that at a closely linked locus 2 a second beneficial mutant B arises in repulsion;
i.e. on a chromosome carrying the wildtype a at locus 1. Under the assumptions that the fitness of B
is greater than that of A and that A- and B-carrying chromosomes can recombine at some rate 7,
recombinants AB may form and eventually fix. We present explicit formulas for the fixation time of
AB under additive fitness of the mutants as a function of the frequency X,(0) of A at the time when
B is introduced. Our analysis suggests that the effect of interference between the beneficial mutations
is most pronounced for small values of X,(0) < 0.1. Furthermore, we identify a threshold value for
r, above which recombination speeds up fixation. Using published simulation data we also describe
the genomic footprint of competing beneficial mutations. At neutral sites between the two linked
selected loci an excess of intermediate-frequency variants may occur when interference is strong; i.e.
X,(0) small. Finally, we discuss under which circumstances this scenario may be encountered in real
data.

Keywords: mathematical population genetics; nonnormalized allele frequencies; recurrent selective
sweeps

1. Introduction

The speed of beneficial mutations on their way to fixation in natural populations is a
fundamental topic in population genetics. Knowing how fast selection can act to change allele
frequencies is essential for understanding evolution. The time for a beneficial allele to spread through
anatural population was investigated early in the history of population genetics, using deterministic
models [1]. Later, propertiies of the fixation time of individual advantageous mutations under the
influence of positive directional selection and genetic drift in populations of finite size have been
derived by several authors [2 — 4].

However, the spread of two or more beneficial mutations that arise and interact during their
fixation process is much less investigated. For two interacting mutations Otto and Barton [5] have
studied the case that the second mutation is less beneficial than the first one. In contrast, Cuthbertson
et al. [6] and Bossert and Pfaffelhuber [7] considered the scenario that the second mutation is
fitter than the first one. Furthermore, they assumed that there is a chance that the first and second
mutant recombine such that the recombinant type has the highest fitness and eventually fixes. Here
we will focus on this latter case.

We consider the mathematical analysis of the fixation time in conjunction with the theory of
selective sweeps. Although beneficial mutations are a comparatively small fraction of all new
mutations, some of them may reach fixation and are thus important in evolution. If the fitness effects
of these beneficial mutations are sufficiently strong, they may cause selective sweeps, i.e. localized
reductions of genetic variation along genomes [8]. Such localized patterns of reduced genetic
variation have been convincingly described in a variety of organisms.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Detecting signatures of selective sweeps in genomes is a major goal of current population
genetics, as it allows estimating the rate of beneficial mutations going to fixation and finding the
genes involved in selection. The inference methods for detecting sweeps depend critically on
assumptions on whether the benefical mutations occur sequentially (such that there is at most one
beneficial allele on a chromosome on the way to fixation at a time) or whether beneficial alleles
overlap with each other. Models of recurrent selective sweeps traditionally assume that in
chromosomal regions of normal recombination rates at most one beneficial allele is on the way to
fixation [9 — 11].

Here we follow the scenario proposed by Bossert and Pfaffelhuber [7]. Thus we assume that,
while a highly beneficial mutation spreads in a natural population, a second beneficial mutation
arises before the first one has fixed. Furthermore, we envision that the first mutation is less fit than
the second one and that recombination may occur between the two chromosomes. Under these
conditions a haplotype may be formed that is fitter than the two individual mutations and may
therefore eventually fix. To model this process for a population of finite size, Bossert and Pfaffelhuber
[7] used stochastic differential equations and calculated the fixation time of a recombinant haplotype
under the assumption that it fixes. In contrast, we use a deterministic approach based on ordinary
differential equations (ODEs). Thus, in our analysis an explicit assumption about the fixation of a
recombinant is not necessary.

We begin by formulating the differential equations for the basic allele frequency changes. Then
we introduce nonnormalized variables (that are proportional to the allele frequencies) to find
approximate solutions of this system of ODEs. Subsequently, we provide explicit formulas for the
fixation time of the recombinant type. Finally, we apply our results to simulation data by Chevin et
al. [12] to describe patterns of selective sweeps in the genome caused by the joint fixation of two
mutations due to selection and recombination.

2. Model

We consider a two-locus model, with alleles A and a at locus 1 and B and b at locus 2,
respectively. The upper-case letters denote beneficial alleles with selection coefficient s, at locus 1
and sz at locus 2, whereas the alleles with lower-case letters are assumed to be neutral (wildtype).
This model has four haplotypes AB, Ab, aB, and ab, with frequencies given by the variables
X1, X5, Xsand X, (which add up to 1). Assuming additive selection, their relative fitnesses are 1 +
51, 1+5,, 1+ s3and 1, respectively, where s; = s, + 5s3. Recombination between locus 1 and locus
2 occurs at rate r. Since we are interested in closely linked loci, we assume that r < s5; < 1 fori=2,
3. In our deterministic setting (without genetic drift) the ODEs for the time change of the variables X:
are obtained by adding the change due to selection and the change due to recombination ([13], chapt.

2):
B4 = X, (51— B3o1 57X)) — (X1 Xy — X,X3)
" 181 — Lj=1 54 104 A2nsly
dx.
d_tz = Xz(sz - Z?=1 Sin) + (X1 Xy — X2X3), @)
dX; 3
PRREE (53 -2 Sij) +r(6x, - XX,
X,

I X4(_ 213':1 Sij) —1r(X1 Xy — X;X3),
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where t measures time in generations.

For r > 0, which we assume throughout this paper, an exact solution of this system of ODEs is
not known. An approximate solution can be obtained using nonnormalized variables Yi (i=1, ...., 4)
(see [14] for mutation-selection and [15] for recombination-selection equations). These are related
to the original variables of equations (1) as:

Yi

Xi=

)

) -
j=1Yj

Using (2) it can be shown that the nonnormalized variables satisfy the following ODEs:

ﬂ =5 — L(Y1Y4 - 1Y),
dt =Y
%ZSzYz +ﬁ(y1y4_Y2Y3), ®)
Z—Y: =53, +ﬁ(y1y4 - 1Y),
‘Z—Y: = —ﬁ(yﬂ/z} —Y;¥3).

Note that rescaling all ¥; by a constant leaves X;invariant. To fix this scaling, we use X;(0) =
Y;(0) foralli=1, ..., 4. As outlined in Appendix (A), the following approximate solutions of the ODEs
(3) can be found, assuming that both mutations A and B arise on background ab (so that X;(0) = 0):

1

~ st (¢
Yl (t) ~ rXZ (0)X3 (O)e 1 0 X4(0)+X2(O)eSZT+X3(0)eS3T dT;
() = X,(0)e | 1= 1X,(0) fy |, @
z 2 380 X4 (0)+X,(0)e52T+X3(0)e37 |
eSzT

s3 _ t
B0 = X0 1= X0 [ 3G s 4

eslt

X4(0)+X,(0)e°2"+X5(0)e*3"

Yy(t) = X,(0) + 17X, (0)X5(0) [ dr.

These approximations were first established and tested by Yun Song (personal communication).
Numerical analysis suggests that they are generally excellent for r < min(s,, s3) /10.

3. Fixation time

Using equations (4) we can find the fixation time of two interfering mutations. We call an allele
or haplotype fixed when it reaches frequency 1 — § and denote this time T. Thus T measures the
time from some initial frequency at ¢t = 0 to 1 — §. The initial frequency may be the frequency of a
newly arising mutation. In a haploid population of size N, which we consider here, this initial
frequency is given by 1/N. In our case, however, we are interested in the fixation of the double
mutant AB whose initial frequency is X;(0) = 0, as AB arises during the fixation process due to
recombination. Thus, the fixation time of AB is found by solving the equation

X, (T)=1-96, ©)
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where 6 is a small number.

Next we express equation (5) in terms of nonnormalized variables and obtain

&Uy=@+24yﬂﬁq=1—&

=2y 1y
Using (4) with X,(0) > X5(0) and sz > s,, this equation can be approximated by

BAGIRAG!
Tnm  onm’ ©)

Evaluating the terms on the right-hand side of equation (6) requires that we find useful
approxiations of the integrals in equations (4) because closed formulae for these integrals are not
known (see Appendix (B)). Besides the two aforementioned assumptions, we assume that Tis
sufficiently large such that the second mutation is eventually dominating the first one; i.e.
X,(0)e%2" « X;(0)e®2T, and population size is large (N > 10°) such that selection is strong (Ns; >
100). Under these assumptions we find for the integrals [;(T) defined in Appendix (B):

- __In(X3(0)
h(T) ~ s2(1-%2(0))’
T
L(T) < FAGK (7)

$3—S2

~—t |3 -
Mﬂ~&@kwﬂyﬂ&®ﬂ in(X;(0))] -
Inserting these formulas into equation (6), this equation can be written in the following form:

O = s (2= K OLM) + o (- O™ ®)

X3(0)ES3T XZ(O)eszT

We can neglect the first term on the right-hand side of equation (8) for the following reasons:
first, because we assumed that X,(0)e2" « X;(0)e®s”, and second since X5(0)I,(T) is bounded by

1 X3(0)I5(T) 1 1 . . .
-, the term X, (yes2T Call be neglected compared to Yo T This leads to equation (9):
_8X0n(X2(0) o7 (1 _ s3in(X2(0)) | In(X3(0))
Sz(l—Xz(O)) € (T 52(53—52) + S53—S2 ) ' (9)

Finally, we introduce population size N into this equation by writing &§ =% ,X3(0) =% and
X,(0) = xNﬂ , where x,, is the number of A alleles at t = 0. Then solving the equation for T yields

T~ =|2m(N) - in (22) - 1 i) +1 1+S—3—m(%)——’”(”) 10
T s, n n Sy n 1—% n r Sy S3—S s3=s3 /|’ (10)

Table 1 shows that this result agrees very well with the numerical solution of equation (8).

As expected, the formula for T is complex. However, in the interesting parameter range of small

n(335)
5_3 x20/ In(N)
S2 S3—S2 $3—S2

1

r values such that ~ > , we may approximate equation (10) as



https://doi.org/10.20944/preprints202504.2540.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 April 2025 d0i:10.20944/preprints202504.2540.v1

5 of 11

1
T ~—
S2

2In(N) — In (;—Zlfi"ﬂ In (%))l (11)

The first term on the right-hand side of equation (11) equals the fixation time of a new allele
starting at frequency Niand ending at1 — Nl , driven by positive directional selection with selection

coeffcient s,. This term also appears in the result of Bossert and Pfaffelhuber [7]. The denominator
s,can be explained as follows. To go to fixation, the successful recombinant AB with fitness 1+ s, +
sz has to compete against the — at the time — dominant aB type with fitness 1 + s, having a fitness
advantage s,.

Furthermore, unless r is very small, the second term in equation (11) is negative such that T is
2In(N)
S2
continuous input of new AB alleles due to recombination, similar to the case of fixation under

smaller than . This is not surprising as we are dealing here with an equation describing

continuous mutation pressure and positive directional selection ([16], equation (8)). Thus, based on
equation (11) we obtain a relatively simple formula for the threshold of r

n=2H (12)

above which recombination speeds up fixation time, whereas for r <1, the second term in

equation (11) turns positive, such that the fixation time T becomes larger than ZIS—(N) , meaning that
2

the input of recombinants ceases.

4. Genomic footprint of competing mutations

As an application we analyze simulation data from a study of genetic variation at neutral sites
located between two selected loci [12]. The data were obtained using Monte Carlo simulations of a
Wright-Fisher model ([13], chapt. 3) with two selected loci and three neutral loci. The three neutral
sites are located between the selected loci as described in Table 1. Table 1 also contains the parameter
values used in the simulations. They meet the assumptions of our analysis, except for the populaton
size. In the simulations N = 20000 was used, while in our derivation N > 10° was suggested. To
check whether this causes problems, we compared the analytical results for T from equation (10) with
the numerical solutions of equation (8) for N = 20000. However, as Table 1 (columns 6 and 7) shows,
no discrepancies could be found.

The first observation concerns T as a function of X,(0). Since r = 0.005 was used in all

simulations and in all cases 7 is larger than the threshold 7, (equation 12), we expect that T is smaller
than 211:_(1\/) = 198.1 and decreases with increasing X,(0) = xNﬂ
2

pronounced effect of X,(0) on fixation time is observed for small values of X,(0) < 0.1. For larger

This is indeed the case. The most

values of X,(0), however, fixation time is relatively constant. This observation is consistent with the
formulas for T, especially equation (11), which shows that, for given SL , fixation time depends about
2

logarithmally on x,,. This formula also says that recombination is most important in speeding up
fixation when the second mutation is introduced at low X,(0) values. Here the interference between
the two mutations is largest.

Next we discuss the simulation results of Chevin et al. [12] in the light of our analysis.
Variation at the neutral loci (close to the selected ones) shows typical hitchhiking effects [8]; i.e.
variation is reduced relative to the neutral standard level such that stronger selection acting at locus
2 (s3 > s;) leads to a greater reduction than at the neutral site near locus 1. Furthermore, variation at
the neutral locus in the middle between the two selected loci is greater than that at the loci near the
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selected sites, which is also a typical hitchhiking effect, because the distance to the selected loci (and
hence recombination rate) is larger.

Increasing X,(0) generally leads to stronger hitchhiking effects such that levels of neutral
variation decrease with X,(0). This can be clearly observed at the neutral locus close to locus 1,
whereas at the neutral locus close to the stronger selected site this is hardly visible. At the neutral
locus in the middle there is also a strong decay of variation with increasing levels of X,(0). The effect
of X,(0) on hitchhiking is likely due to the interference of the two mutations. The longer they
compete with each other on their way to fixation, the weaker their hitchhiking effect. This has already
been observed in other studies (e.g. [17]).

Finally, we discuss D, a statistic introduced by Tajima [18]. In Table 1 (column 5) only the D
values for the neutral locus in the middle between locus 1 and 2 are shown. All D values at the other
two loci are negative as expected from the theory of genetic hitchhiking. A negative D is observed
when an allele has either a lower or higher frequency than expected by the neutral theory.
Interestingly, however, Chevin et al. [12] observed strongly positive D values for X,(0) =
0.007,0.024, and 0.077, whereas D is around zero or negative for larger X,(0). Positive values of D
indicate that alleles are at intermediate frequencies, such as predicted for balancing selection. In our
case, however, this is probably not a valid hypothesis, at least concerning the standard models of
balancing selection. A plausible hypothesis proposed by Bossert and Pfaffelhuber [7] is that positive
D may be observed when a haplotype structure arises in the genome through recombination between
different haplotypes consisting of multiple polymorphic loci. Haplotype structures exist in
populations only if polymorphisms at individual loci tend to be in intermediate frequency (such that
the less frequent variants are not too rare). This may be the case for X,(0) = 0.007,0.024, and 0.077,
but not for the larger X,(0) values, for which diversity is more heavily reduced (Table 1). An
alternative, though related hypothesis postulates that the dynamics of the two selected mutations
(while in repulsion) reaches nonnegligible frequencies at similar times such that recombination may
produce haplotypes with the two favorable alleles in coupling [12].

If these hypotheses are correct, a genomic footprint of competing beneficial mutations may be
detected by measuring Tajima’s D and/or linkage disequilibrium. In general, footprints associated
with selective sweeps caused by the fixation of beneficial mutations can be found in genetic data if
their characteristic pattern of variation, such as a dip of nucleotide diversity around a selected site or
a haplotype structure revealed by linkage disequilibrium, persist for some time. For Wright-Fisher
populations such signatures may be detected for up to 0.1N generations after fixation of the driving
mutations [19,20].

5. Discussion

For a highly beneficial mutation A at locus 1 spreading in a very large population, we have
analyzed the scenario when a second beneficial mutant B arises in repulsion; i.e. on a chromosome
carrying the wildtype a at locus 1. Under the assumptions that the fitness of B is greater than that of
A and that A- and B-carrying chromosomes can recombine, recombinants AB may form and
eventually fix. We present approximate formulas for the fixation time of AB under additive fitness of
the mutations as a function of X,(0), the frequency of A at the introduction of B. The latter parameter
turns out to be useful for describing the interference between competing beneficial mutations.

Our analysis suggests that the effect of interference between beneficial mutations is most
pronounced for small values of X,(0) < 0.1. In this parameter range fixation time decreases
substantially with X,(0). However, for larger values fixation time is relatively constant (Table 1).
This agrees with the formulas for T, especially equation (11), which shows that T depends about
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logarithmally on X,(0). Similarly, the effect of interference on the genomic footprint of competing
mutations can be clearly discerned. For small values of X,(0) = 0.007,0.024, and 0.077, a strongly
positive D was observed, whereas D is around zero or negative for larger X,(0) (Table 1). Positive
values of D indicate that alleles are in intermediate frequencies. This may be observed when a
haplotype structure arises in the genome through recombination between different allelic types
consisting of multiple polymorphic loci [7,12].

Finally, we address the question whether we can expect observing patterns of overlapping
selective sweeps due to competing mutations in genomes. Estimates of the average selection
coefficient s and the rate v at which beneficial mutations arise and go to fixation (i.e. selective
substitutions) are known for some species including Drosophila melanogaster. For instance, Jensen et
al. [21] analyzed a dataset of genetic variation from the euchromatic part of the genome of a D.
melanogaster population from Africa, which is — roughly speaking — the recombining portion of
chromosomes. They obtained the following estimates: s = 0.002, N =5x10° and v =4.2 X
107! per generation per nucleotide site. Since under selection and genetic drift the mean fixation
time (conditional on fixation) for a diploid species such as D. melanogaster is T = %ln(ZNs) [3], we

find that the probability of a second substitution arising on a chromosome during the sojourn of the
first one to fixation is Tv = 8.3 x 1077 per nucleotide site. Multiplying Tv with the size of the
euchromatic part of a chromosome (in D. melanogaster approximately 24 Mb = 2.4 x 107 base pairs),
we find that on average at about 20 sites of a chromosome strongly selected substitutions could arise
and compete with the first mutation during its sojourn to fixation.

An example that some of these selected substitutions occur in close proximity in the genome is
found at the polyhomeotic locus of a European population of D. melanogaster. Voigt et al. [22] report
a case in which five selected substitutions (i.e. nearly fixed variants between Europe and Africa) are
located in the 5-kb intergenic region between polyhomeotic proximal and the gene CG3835 within a
segment of 2.28 kb. They showed that these five selected variants are involved in adaptation of D.
melanogaster to the higher temperature in Europe compared to that of the ancestral species range in
Africa. Variation is generally low in the whole polyhomeotic region and Tajima’s D is strongly negative,
as expected after a sweep. However, using a larger dataset than in her previous study, Susanne Voigt
(personal communication) found evidence that the five beneficial substitutions that likely caused the
sweep did not act independently in a sequential manner but were selected as haplotype block. As a
consequence, an elevated level of Tajima’s D in the fragment containing the five selected substitutions
was not detected.

A more promising example in the context of interference between beneficial mutations may be
the Agoutilocus in deer mice. Here the precise mutations required for adaptation to light-colored soil
of the Nebraska Sand Hills have been identified [23]. The authors claim that — contrary to the
aforementioned Drosophila case — the light Sand Hills phenotype is the result of independent selection
on many mutations within the Agouti locus spanning about 120 kb. Thus, in this case a genomic
footprint of interference between beneficial mutations may be encountered in sequence data.

Appendices

(A) Derivation of the approximate solutions of ODEs (3)
We write the solutions in the form

Y; = rX,(0)X5(0)e1 1, (¢),

Y, = X,(0)es2t (1 = rX3(0)[,(1)) , (AT)
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Ys = X3(0)e%3 (1 — rX,(0)5(1)),
Y, = X,(0) + rX5(0)X3(0)1,(0),

where [;(0) =0 fori=1, ..., 4.

Next we compare the time derivatives of equations (Al) with those of the

corresponding equations (3). Assuming r << si then leads to

d14 eslt

dt  X,(0)+X,(0)eS2t+X5(0)es3t

(A2)

This immediately yields the last equation in (4) (up to first order in r). In a similar
way, we obtain % fori=1,2,3 by comparing the time derivatives of equations (A1)

with those of the corresponding equations (3).

(B) Approximations of the integrals in equations (4)
We begin by approximating the integral

L) =[] : dr (B1)

X4(0)+X,(0)eS2T+Xx5(0)eS3T !

The function to integrate has a maximum at 7 = 0 and decays quickly to zero (within about £ =
_ In(X2(0))
2

. 1 . e
. generations). Because X, 0) = 7 We may assume for large populations that within this

short decay time X5(0)e®* « X,(0)e"2"and neglect the last term in the denominator. For t > { the
integral can then be approximated by a standard formula. This leads to the approximation for
I,(T) given in equations (7). This approximation is excellent for large population sizes N > 10°.

Next we consider the integral

t 8531'

L®) = [ dr . (B2)

0 X4(0)+X2(0)eS27+Xx3(0)eS37

Here the function to integrate increases monotonically up to a level of X;(O)for large t. This
3

leads to the upper bound of this integral given in equations (7). A more precise approximation is not
required in this case (see main text below equation (8)).

Finally, we approximate the integral
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t eSz‘L’

L) = [

T
0 X4(0)+X2(0)eS27+Xx3(0)eS37

The function to integrate has a maximum at £ = —In (S—ZX“—(O)) ~ ——1In(X5(0)). For t < t we
s3 53—52 X3(0) S3

esz2t . 1
———— and for larger times
X4(0)+X,(0)e’2" & X5(0)+X5(0)e(s3752)t

third formula in equations (7), which was obtained assuming large populations.

(B3)

integrate the function . This leads to the

In general, the analytical results in this paper were derived for large populations (N > 10°). In
the applying these results to the simulation data of Chevin et al. [12], we had to check numerically
whether they are still valid for a smaller population size of 20000 used in these simulations. We found
that the fixation times analytically calculated agree very well with the numerical results (see Table 1).

Table 1. Simulation data of Chevin et al. [12] and fixation times.

X,(0) T Tm 2 D Tana Thum

0.007 0.333 0.491 0.191 0.503 162.7
163.4

0.024 0.311 0.473 0.201 0.535 157.0
152.1

0.077 0.276 0.420 0.198 0.468 141.8
141.8

0.224 0.244 0.323 0.192 0.019 133.1
133.2

0.5 0.184 0.184 0.168 —-0.621 127.1 127.3

The first five columns show the simulation data: X,(0), the frequency of the first mutation when
the second mutation is introduced; m;, relative genetic diversity at a neutral locus between loci 1 and
2 near locus 1 (here 'relative’ refers to expected diversity under neutrality); m,,, relative genetic
diversity at neutral locus in the middle between loci 1 and 2; m,, relative genetic diversity at a neutral
locus between loci 1 and 2 near locus 2; D, Tajima’s [18] measure of the deviation of the level of
variation from neutrality at the locus in the middle. T,,, is the fixation time from equation (10)

d0i:10.20944/preprints202504.2540.v1
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measured in generations, and T,,,, is obtained by solving equation (8) numerically. The parameter
values are: N = 20000, X5(0) = %,5 = %,52 =0.1,s; = 0.2,7 = 0.005.
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