

Review

Not peer-reviewed version

Herbal Medicine for Hypertension: A Review of Potential Therapeutics

[Matthew Halma](#) * and Yusuf Saleeby

Posted Date: 6 June 2024

doi: [10.20944/preprints202406.0353.v1](https://doi.org/10.20944/preprints202406.0353.v1)

Keywords: hypertension; herbal medicine; nutraceuticals; lifestyle medicine

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Herbal Medicine for Hypertension: A Review of Potential Therapeutics

Matthew Halma ^{1,*} and Yusuf Saleeby ²

¹ EbMC Squared CIC, 11 Laura Place, Bath, UK, BA2 4BL

² Carolina Holistic Medicine, Mount Pleasant, SC, USA

* Correspondence: m.t.j.halma@vu.nl

Abstract: Hypertension is a global public health challenge, with a high prevalence across various regions and significant implications for cardiovascular risk. This article reviews the effectiveness of herbal medicine as a potential therapeutic approach for hypertension, offering an alternative or complementary solution to conventional pharmacological treatments. It highlights several natural agents that have demonstrated efficacy in lowering systolic blood pressure (SBP) in clinical and meta-analytical studies. The methodology involved a systematic review of articles that discuss herbal therapeutics for hypertension, focusing on their efficacy compared to placebo and standard treatments. The findings suggest that certain nutraceuticals, such as garlic, hawthorn, and CoQ10, can significantly reduce SBP, presenting a viable option for managing hypertension. This review underscores the need for further research to validate these findings and optimize herbal treatment strategies, potentially expanding the use of these natural products in clinical practice. The article aims to increase awareness among medical professionals and patients about the benefits and applications of herbal medicines in treating hypertension.

Keywords: hypertension; herbal medicine; nutraceuticals; lifestyle medicine

Introduction

Hypertension is a chronic disease of high blood pressure with among the highest prevalence of any chronic disease, affecting 18.5% of an adult sample in the province of Alberta, Canada [1]. Industrialized nations have higher rates of hypertension compared to non-industrialized nations, and several factors contribute to prevalence worldwide. In the USA, hypertension has been relatively flat, affecting roughly 30% of adults between the years of 1999 and 2010 [2]. Worldwide, it was estimated to affect 31.1% of adults (1.39 billion), and has a higher prevalence in low and middle income countries (LMICS, 31.5%) as opposed to high income countries (HICs, 28.5%) [3]. While age-standardized prevalence has decreased in high income countries by 10% for men and 6% for women between 2000 and 2010, it has increased in 35% for men and 29% for women during the same period in LMICS.

Hypertension is one of the strongest risk factors for all types of cardiovascular disease [4], where blood pressure greater than 140/90mm Hg is associated with a 54% increased risk of cardiovascular disease (CVD) events in patients with low pulse-wave velocity, and a 125% increased risk in patients with a high pulse wave velocity [5]. Risk factors for hypertension include a high salt intake[6], excessive alcohol consumption[7,8], and low fruit and vegetable intake[9]. Obesity[10] and being physically sedentary[11] are also risk factors for hypertension, as are smoking[12] and stress[13].

Treatment

Diagnosis of hypertension is based on a measurement of systolic blood pressure (SBP) greater than 130 mm Hg [14], according to a 2017 Practice Guideline. As such, SBP is the typical outcome measure for trials on anti-hypertensives [15].

Standard treatment involves first making lifestyle changes, most importantly losing weight, adopting a diet rich in fruits, vegetables, whole grains and low-fat dairy products, reducing sodium intake, supplementing potassium, and reducing alcohol consumption if the patient drinks more than 2 drinks per day [14]. Additionally, adopting physical activity, including aerobic and resistance training, can lower blood pressure [14]. The interventions mentioned above can lower SBP in hypertensive individuals by between 4mm Hg and 11mm Hg each.

If this is insufficient to restore healthy blood pressure, pharmacological approaches may be used. The 2017 guidelines propose an initial antihypertensive treatment of a thiazide-type diuretic or CCB, and if necessary, adding additional hypertensive treatments to lower blood pressure below 130/80 mm Hg.

Pharmacological Treatment

There are several options to choose for drug combinations to use for the patient's blood pressure to be below 130 mm Hg. These have been outlined in the 2017 guidance document and include several classes of blood pressure lowering medication: Thiazides, angiotensin converting enzyme (ACE) inhibitors, Angiotensin II Receptor Blockers (ARBs), calcium channel blockers (CCBs), and others. These agents have been demonstrated in clinical trials to significantly lower SBP with few side effects. For thiazides, side effects include electrolyte abnormalities [16,17], hyperglycemia[18], hypokalemia (potassium deficiency)[19], hyperlipidemia[20], high uric acid[20], hypercalcemia [21], hyponatremia (low sodium)[22], and possible magnesium deficiency[23].

Angiotensin Converting Enzyme (ACE) Inhibitors are associated with several adverse effects, including hypotension, renal dysfunction, hyperkalemia, and cough[24]. Other less frequent effects include angioedema, hepatotoxicity, skin rashes, and dysgeusia[24]. Angiotensin II Receptor Blockers (ARBs) are generally well tolerated, but side-effects include dizziness, headache, fatigue, gastrointestinal effects, joint pain, hyperkalemia, upper respiratory infections, and kidney problems[25]. Birth defects are possible when ACE inhibitors or ARBs are taken during pregnancy [26].

Calcium Channel blockers (CCBs) may cause adverse effects including edema, flushing, headache, dizziness, constipation, nausea, rash, and drowsiness[27].

Herbal Treatment

Lifestyle medicine is an effective means of reducing hypertension, though results take some time to manifest. Many therapeutic agents have been identified which can help with hypertension.

Methods

The methodology is to first find general reviews of herbal therapeutics for hypertension. These reviews provide a list of natural therapeutics for hypertension. Our search identifies 25 articles, included below in Table 1. The interventions for hypertension that are mentioned are shown in the right column of Table 1. Many of the interventions are repeated between general reviews.

General Review	Nutraceuticals
[28]	Garlic, Tea, Fiber, Fatty acids, Protein, Zinc, Calcium, Magnesium, Potassium, Shiitake and maitake mushrooms, seaweed, Vitamin C, Vitamin E, Vitamin D, Vitamin B6, Flavonoids, Lycopene, Coenzyme Q10, α -Lipoic acid, N-acetyl Cysteine, L-Arginine, Hawthorne, L-Carnitine, Taurine, Celery, Pycnogenol
[29]	Dietary Approaches to Stop Hypertension (DASH) diet plan, L-arginine, chlorogenic acid, fermented milk, garlic, onion, tea, soybean, ginger, hawthorn, fish oil

[30]	DASH diet plan, L-arginine, chlorogenic acid, fermented milk, garlic, onion, tea, soybean, ginger, hawthorn, fish oil, beetroot juice or extract, L-carnitine and Acetyl-L-carnitine, taurine, omega-3 fats (DHA and EPA), omega-9 fats (Olive oil), magnesium, zinc
[31]	DASH diet, L-arginine, chlorogenic acid, fermented milk, garlic, onion, tea, soybean, ginger, hawthorn, fish oil, pycnogenol, vitamin C, vitamin E, vitamin B6, coenzyme Q-10, lipoic acid, L-carnitine, taurine, L-arginine, trans-resveratrol, DHA, EPA, GLA, magnesium, zinc, lycopene.
[32]	Vitamins, garlic, lycopene
[33]	Soy isoflavones, aged garlic extract, lycopene, Pycnogenol, alpha-lipoic acid, slow-release melatonin, taurine, probiotics
[34]	Omega-3 fatty acids, fiber, polyphenols, phytosterols, red yeast rice, berberine, soy protein, coenzyme Q10
[35]	Potassium, garlic, curcumin, fish oil, pectin, docosahexaenoic acid, soya, magnesium, saffron, Vitamin C, nitrate, red wine, eicosapentaenoic acid, electrolytes, quercetin, Vitamin D, Tea, alpha lipoic acid, cinnamon, CoEnzyme Q10, Omega 3, pomegranate juice, onion, L-arginine, chocolate, pycnogenol
[36]	Calcium, Vitamin D, Resveratrol, Sodium/Potassium, Folic acid, Zinc, Melatonin
[37]	Policosanol, Red yeast rice extract, Berberine, Folic acid, Coenzyme Q10, Orthosiphon stamineus
[38]	Coenzyme Q10, pycnogenol, melatonin, green coffee, olive oil, lycopene, Chocolate, Beetroot juice, Vitamins, Minerals, Probiotics, Coenzyme Q10, Melatonin, Dried garlic, Green tea, Flaxseed, Resveratrol
[39]	Genistein, L-arginine, Berberine, Naringenin, Ellagic Acid, L-citrulline, Capsaicin, Xanthohumol, Chrysanthemic acid, Blueberry Extract, Quercetin
[40]	Polyunsaturated fatty acids, Isoflavones, Lactotripeptides, Fish peptides, L-Arginine, Potassium, Magnesium, Chelated magnesium, Calcium, Vitamin C, Cocoa flavonoids
[41]	Red yeast rice, Policosanol, Berberine, Folic acid, Coenzyme Q10
[42]	Aged garlic extract, beetroot juice, calcium (in pregnancy), chelated magnesium, cocoa flavonoids, coenzyme Q10, controlled-release melatonin, fish peptides, isoflavones, L-arginine, lactotripeptides, lycopene, polyunsaturated fatty acids, potassium, probiotics, pycnogenol, resveratrol, vitamin C.
[43]	Omega-3 polyunsaturated fatty acids, phytosterols, red yeast rice, berberine, soy protein, coenzyme Q10
[44]	Orthosiphon stamineus, policosanol, red yeast rice extract, berberine, folic acid, coenzyme Q10
[45]	Proanthocyanidins, Lycopene, Capsaicin, Garlic extracts, Spirulina, Barley, Fiber, Coenzyme Q10, Thiamine, Vitamin D, Omega-3 fatty acids, Polyunsaturated fatty acids, Beta-glucan, Plant sterols and stanols, Probiotics
[46]	Flavonoids, Beetroot, Garlic, Unsaturated fats, Omega-3 polyunsaturated fatty acids, Omega-9 monounsaturated fatty acids

[47]	Dark chocolate (flavonoids), Cocoa extract capsules (flavonoids), Beetroot juice, Powdered garlic extract, Aged garlic extract, Fish oils (omega-3 PUFA), Olive oil (omega-9 MUFA), Olive leaf extract (omega-9 MUFA)
[48]	Resveratrol, cocoa, quercetin, curcumin, brassica, berberine, Spirulina platensis
[49]	Vitamin D, Vitamin E, Vitamin B6, Vitamin B12, Vitamin C
[50]	Fiber, Milk Peptides, Meat Proteins, Soybean Proteins, Lupin Protein, Monounsaturated Fatty Acids (MUFA), Polyunsaturated Fatty Acids (PUFA), Omega-3 Fatty Acids (DHA and EPA), Ascorbic Acid (Vitamin C), Cholecalciferol (Vitamin D3), Magnesium, Zinc, Potassium, Pyridoxine (Vitamin B6), Tocopherol (Vitamin E), Polyphenols, Resveratrol, Curcumin, Berberine, Quercetin
[51]	L-arginine, Beetroot (<i>Beta vulgaris</i>), Calcium, Celery (<i>Apium graveolens L.</i>), Garlic (<i>Allium sativum</i>), Hawthorn (<i>Crataegus laevigata</i>), Magnesium, Olive leaf (<i>Olea europaea</i>), Potassium, Taurine, Vitamin C, Vitamin D, Vitamin E
[52]	Lycopene, Vitamin C, Vitamin E, Flavonoids (various types), Coenzyme Q10, Milk's tripeptides, Minerals (Calcium, Magnesium), Prebiotic Fibers (Inulin), Polyunsaturated Fatty Acids (various types)

The unique nutraceuticals included in Table 1 are compiled into Table 2. Table 2 also includes standard treatment drugs as included in the treatment guidelines for hypertension [14]. Values for change in SBP are compared vs placebo, or the comparison of standard treatment with the nutraceutical vs the control case of standard treatment alone. Exceptions are mentioned in parentheses. Nutraceuticals with a lowering of SBP greater than 4mm Hg are potential therapeutic agents, where agents with a smaller, yet statistically significant change are less likely to be therapeutically useful.

Pharmaceutical Standard Treatment	Change in SBP of pharmaceutical vs placebo [95% Confidence Interval]	Nutraceutical alternative	Change in SBP of nutraceutical vs placebo (mm Hg) [95% Confidence Interval]
Thiazide diuretics	19.2 [18.0, 20.3] [53] 12.4 [6.0, 18.8] [54]	Ashwagandha	No meta-analyses Isolated studies [55,56]
hydrochlorothiazide	8.5 [7.2,9.7] [57] 17.3 [15.7,18.8] [53]	Garlic	6.7 [1.0, 12.4]
Indapamide	11.8 [10.1,13.5] [58] 22.2 [20.6, 23.9] [53]	Hibiscus sour tea	7.6 [5.5,9.7] [59]
bendroflumethiazide	12.2 [11.4,13.0] [58]	Xiao Yao San	8.9[4.8,13.1] [60]
Chlorthalidone (CTDN)	13.2 [11.1, 15.3] [57]	Grape	3.2 [1.0,5.4] [61]
ACE inhibitor	12 [4,21] [54] 15.0 [12.7, 17.2] [53] 13.2 [12.9, 13.5] [53]	Panax ginseng	3.2 [2.3,4.2] [62]
Verapamil	13.3± 3.0 [63]	Chinese Herbal Medicine	7.5 [5.8,9.1] [64]
Captopril	9.7± 2.9 [63]	Mistletoe	8.9 [2.7,15.0] [65]

Benazepril	[66] Extract from	Nigella Sativa	3.3 (1.4, 5.1) [67]
Enalapril	15.0 [12.6,17.3] [53]	Zinc	1.5 [0.1, 2.9] [68]
Ramipril	15.0 [7.6, 22.4] [53]	Gingko Biloba Drops	13.5 [7.6,19.4] [69]
Fosinopril	10.2 [95% CI not available] [70]	Gingko Biloba Tablet	12.0[8.4,15.6] [69]
Calcium Channel Blockers (CCBs)	16.2 [15.6,16.9] [53] 15.9 [22.2,9.5] [54]	Gingko Biloba Capsule	9.7 [2.1, 17.3] [69]
Amiodipine	16.3 [15.7, 17.0] [53]	Garlic	6.7 [1.0,12.4] [71] 6.0 [0.8, 11.2] [72] 4.3 [0.3, 8.4] [72] 4.6 [1.9, 6.5] [73] 3.8 [2.5,5.0] [74] 9.1 [5.4, 12.7] [75] 5.5±1.9 [76] 8.7 ± 2.2 [77]
Lercanidipine	14.2 [11.6, 16.8] [53]	Aged Garlic Extract	11.5 [7.7, 15.3] [78]
Angiotensin II receptor blockers (ARBs)	13.2 [12.9, 13.5] [53] 10.7 [1.4, 20.0] [54]		
Candesartan cilexetil	14.2 [13.4, 15.0] [53]	Hawthorn	10.1 [7.4,12.8] [79]
Irbesartan	14.1 [13.2, 15.0] [53]	Danshen	9.0, [4.5,13.5] [80]
Losartan	12.7 [12.2, 13.3] [53]	CoQ10	16.6 [12.6,20.6] [81]
Valsartan	12.5 [11.4, 13.6] [53]	Vitamin C	3.8 [2.4, 5.3] [82]
Atenolol	14.8 [13.7, 15.9] [53]	Fish oil	3.0 [1.5,4.5] [83]
		er-xian decoction	7.8 [3.4, 12.3] [64]
		song ling xue mai kang capsule	10.3 [8.7, 11.8] [64]
		zhengan xifeng decoction-er-zhi pill	6.2 [3.3, 9.1] [64]
		liu wei dihuang pill	8.1 [5.9, 10.3] [64]
		xiao yao pill	17.7 [14.7, 20.7] [64]
		suanzaoren decoction	11.0 [8.2, 13.8] [64]
		wen dan decoction	10.0 [5.8, 14.2] [64]
		tonifying kidney and activating blood decoction	7.0 [4.2, 9.8] [64]
		tonifying kidney, nourishing yin and activating blood decoction	7.0 [4.1, 9.9] [64]

	clearing heat and activating blood decoction	7.1 [3.8, 10.4] [64]
	soothing the liver decoction	10.0 [3.7, 16.3] [64]
	calming liver, nourishing yin and tranquilizing mind decoction	5.0 [1.9, 8.1] [64]
	wuling capsule	11.6 [7.8, 15.4] [64]
	nourishing kidney and calming liver decoction	14.5 [5.6, 23.4] [64]
	nourishing yin and restoring blood decoction	11.1 [6.7, 15.6] [64]
	nourishing yin and suppressing yang decoction	12.0 [7.4, 16.6] [64]
	Alpha Lipoic Acid	
	Vitamin C	5.0 [1.5, 8.6] [84]
	Beta-Glucan Fibre	2.9 [0.9, 4.9] [85]
	Beetroot	5.0 [1.0, 8.9] [86]
	Berberine	11.9 [7.1, 16.6] [87] (relative to metformin) 6.0 [2.7, 9.2] [88]
	Blueberry	n.s. [89]
	Calcium	1.9 [0.8, 2.9] [90]
	Capsaicin	n.s. [91]
	Celery stem extract	21.5 [13.2, 29.9] [92]
	Magnesium	3 to 4 [93] 4.3 [2.2, 6.3] [94] 2.0 [0.4, 3.6] [95]
	Chlorogenic Acid	4.3 [3.0, 5.6] [96]
	Chocolate	4.5 [3.2, 5.9] [97]
	Coenzyme Q10	16.6 [12.6, 20.6] [81]
	Cocoa	2.8 [0.3, 5.3] [98]
	Controlled release melatonin	n.s. [99] 3.6 [0.7, 7.9] [100]
	Curcumin	n.s. [101]
	eicosapentaenoic acid (EPA)	2.6 [0.5, 4.6] [102]
	docosahexaenoic acid (DHA)	3.1 [0.2, 5.9] [102]

	Dietary Approaches to Stop Hypertension (DASH) diet	6.7 [5.2,8.3] [103]
	ellagitannin-rich fruit	n.s. [104]
	Fish oil	2.6 [0.6, 4.5] [105]
	Food peptides	5.1 [3.1,7.1] [106]
	Flavonoid rich fruits	n.s. [107]
	flaxseed	2.9 [0.3,5.4] [108] 1.8 [0.1, 3.5] [109]
	Folic Acid	2.0 [0.4, 3.6] [110]
	Genistein	n.s. [111]
	Ginger	6.4 [1.5,11.3] [112]
	Green Tea	2.1 [1.1,3.1] [113] 1.9 [0.9,3.0] [114] 2.0 [1.0,2.9] [115] 1.2 [0.2,2.2] [116]
	Green coffee extract	3.1 [1.8, 4.4] [117] 3.1 [2.3, 3.9] [118]
	Isoflavones	n.s. [119] 1.9 [0.4, 3.5] [120]
	l-arginine	5.4 [2.3, 8.5] [121] 6.4 [4.1, 8.7] [122] n.s. (in pregnant women) [123] 5.0 [2.1,7.9] [124] (post-exercise SBP)
	l-carnitine	n.s. [125] n.s. [126]
	l-citrulline	4.1 [0.3, 7.9] [127] n.s. [128]
	Lactotripeptides	3.0 [1.7, 4.2] [129] 1.3 [0.5, 2.1] [130] 3.7 [1.8, 6.7] [131] 1.3 [0.1, 2.5] [132] 4.0 [2.1, 5.9] [133] 5.6 [4.4,6.9] [134] 4.8 [3.7, 6.0] [135] 3.4 [2.3, 4.5] [136] (non-hypertensive population) n.s. [137]

		3.4 [1.2, 5.6] [138]
Lycopene		5.9 [2.6, 9.1] [139] (tomato extract) 2.6 [0.1, 5.2] [140] 5.0 [1.1, 8.8] [141] 5.7 [2.0, 9.3] [142] 5.6 [0.3, 10.9] [143]
Melatonin		3.4 [1.1, 5.8] [144]
Monounsaturated fatty acids (MUFA)		2.3 [0.3,4.3] [145] n.s. [146]
Motherwort oil		15.1 [12.1, 18.1] (stage 1 hypertension, change from baseline) [147] 11.7 [9.3, 14.1] (stage 2 hypertension, change from baseline) [147]
Nattokinase		3.5 [2.2, 4.4] [148]
Omega 3		4.5 [2.8, 6.1] (untreated hypertensive patients) [149] 2.6 [1.7, 3.6] [150] 1.2 [0.6,1.8] [151]
Olive Oil		n.s. [152]
Olive leaf extract		4.5 [1.6,7.4] [153] 3.9 [1.3, 6.4] [154]
Onion		Significant effect [155]
Phytosterols		1.6 [0.4, 2.7] [156]
Grape polyphenols		1.5 [0.2, 2.8] [157]
Polyphenols		3.7 [3.2,4.2] [158]
Policosanol		3.4 [1.5, 5.3] [159]
Potassium		4.5 [3.1, 5.9] [160] 4.3 [2.5, 6.0] [161] 4.7 [2.4, 7.0] [162] 3.3 [1.6, 4.9] [163]
Inulin		n.s. [164]
Proanthocyanidins		4.6 [1.1, 8.0] [165]
Probiotics		2.1 [0.2, 3.9] [166]

		1.6 [-0.1, 3.1] [167] 5.6 [1.5, 9.8] [168] 3.1 [1.4, 4.7] [169] 3.6 [0.7, 6.5] [170] 3.1 [1.6, 4.6] [171] 3.1 to 5.0 [172] 2.0 [1.1, 2.8] [173] 2.2 [0.9, 3.4] [174] 2.7 [0.5, 5.0] [175] 3.3 [1.2,5.4] [176]
	Pycnogenol	3.2 [0.2, 6.2] [177] 2.5 [1.0, 4.1] [178] 3.2 [0.9,5.5] [179] n.s. [180]
	Quercetin	2.4 [1.0, 3.8] [181] 3.0 [0.3, 5.8] [182] 1.7 [0.2, 3.2] [183]
	Red Wine Polyphenols	2.6 [0.4, 4.8] [184]
	Red Yeast Rice	3.3 [0.0, 6.7] [185]
	Resveratrol	n.s. [186] 11.9 [2.8, 21.0] [187]
	Saffron	0.7 [0.2, 1.1] [188]
	Seaweed	n.s. [189]
	Soy	2.2 [0.3, 4.1] [190] 1.7 [0.1, 3.3] [191]
	Spirulina	4.6 [1.0, 8.2] [192]
	Tea	4.8 [1.6, 8.4] [193] 2.4 [0.5, 4.2] [194] n.s. [195]
	Taurine	3 [range 0 to 15] [196] 4.7 [0.3, 9.1] [197]
	Tocopherol (Vitamin E)	3.4 [0.1, 6.7] [198]
	Vitamin D	n.s. [199] n.s. [200]

This work has the limitation of reporting prior meta-analyses, and not performing a de-novo meta-analysis for each compound, which would be quite taxing. In the case where new trials have taken place, the meta-analysis value may be changed by inclusion of the new trial, but attempts are made to include the most recent and thorough meta-analyses.

Including such a wide variety of meta-analyses introduces a significant degree of heterogeneity in treatment length, dosages, and therefore effect sizes. Individual meta-analyses do often pool together heterogenous treatment regimens, which is usually chosen to be therapeutically relevant.

Additionally, given the confidence intervals on these values, it can be expected that some of the significant results found are spurious, which is why it is recommended to prioritize agents with a 95% confidence interval much greater than zero, or alternatively a low p-value. Several therapeutic agents may lack significant power in their trials, and results relying on few trials may mistakenly show a larger effect than what can normally be expected.

These caveats are quite standard to the reporting of any meta-analysis result, however, and weighing evidence is a standard part of meta-analysis, so these limitations are not overly damaging to this article as a summary work on herbal treatments for hypertension.

Conclusion

Several therapeutic agents have been identified as having potential value in treating hypertension and may warrant further investigation. This work aims to motivate further research into alternatives for anti-hypertensive drugs. Future work includes further trials to verify clinical efficacy, as well as potential combinations and modifications of therapies for maximum effect.

Given that these are unfamiliar therapeutics for many practitioners, educational resources may be a useful means of communicating the potential value of using herbal therapeutics in antihypertensive treatment to both patients, medical professionals and caregivers. It is possible that new markets, or expansions of existing markets, for herbal products may emerge given the greater awareness of the therapeutic potential for antihypertensive nutraceuticals.

Acknowledgments: We thank Natalie Durzynski and Laura Braden for their suggestions on this manuscript.

References

1. Ye M, Vena JE, Johnson JA, et al. Chronic disease surveillance in Alberta's tomorrow project using administrative health data. *Int J Popul Data Sci.* ;6:1672.
2. Guo F, He D, Zhang W, et al. Trends in Prevalence, Awareness, Management, and Control of Hypertension Among United States Adults, 1999 to 2010. *J Am Coll Cardiol.* 2012;60:599–606.
3. Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. *Nat Rev Nephrol.* 2020;16:223–37.
4. Kjeldsen SE. Hypertension and cardiovascular risk: General aspects. *Pharmacol Res.* 2018;129:95–9.
5. Niiranen TJ, Kalesan B, Hamburg NM, et al. Relative Contributions of Arterial Stiffness and Hypertension to Cardiovascular Disease: The Framingham Heart Study. *J Am Heart Assoc.* ;5:e004271.
6. Rust P, Ekmekcioglu C. Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension. In: Islam MdS, ed. *Hypertension: from basic research to clinical practice.* Cham: Springer International Publishing 2017:61–84. https://doi.org/10.1007/978-3-319-5584_14_7
7. Sesso HD, Cook NR, Buring JE, et al. Alcohol Consumption and the Risk of Hypertension in Women and Men. *Hypertension.* 2008;51:1080–7.
8. Briasoulis A, Agarwal V, Messerli FH. Alcohol Consumption and the Risk of Hypertension in Men and Women: A Systematic Review and Meta-Analysis. *J Clin Hypertens.* 2012;14:792–8.
9. Wang L, Manson JE, Gaziano JM, et al. Fruit and Vegetable Intake and the Risk of Hypertension in Middle-Aged and Older Women. *Am J Hypertens.* 2012;25:180–9.
10. Aronow WS. Association of obesity with hypertension. *Ann Transl Med.* 2017;5:350.
11. Guo C, Zhou Q, Zhang D, et al. Association of total sedentary behaviour and television viewing with risk of overweight/obesity, type 2 diabetes and hypertension: A dose-response meta-analysis. *Diabetes Obes Metab.* 2020;22:79–90.
12. Halperin RO, Michael Gaziano J, Sesso HD. Smoking and the Risk of Incident Hypertension in Middle-aged and Older Men. *Am J Hypertens.* 2008;21:148–52.
13. Sparrenberger F, Cichelero FT, Ascoli AM, et al. Does psychosocial stress cause hypertension? A systematic review of observational studies. *J Hum Hypertens.* 2009;23:12–9.
14. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. *Circulation.* 2018;138:e484–594.
15. Parikh KS, Rajagopal S, Arges K, et al. Use of outcome measures in pulmonary hypertension clinical trials. *Am Heart J.* 2015;170:419–429.e3.
16. Clayton JA, Rodgers S, Blakey J, et al. Thiazide diuretic prescription and electrolyte abnormalities in primary care. *Br J Clin Pharmacol.* 2006;61:87–95.

17. Ravioli S, Bahmad S, Funk G-C, et al. Risk of Electrolyte Disorders, Syncope, and Falls in Patients Taking Thiazide Diuretics: Results of a Cross-Sectional Study. *Am J Med.* 2021;134:1148–54.
18. Carter BL, Ernst ME. Thiazide-Induced Hyperglycemia: Can It Be Prevented? *Am J Hypertens.* 2009;22:473.
19. Rodenburg EM, Visser LE, Hoorn EJ, et al. Thiazides and the risk of hypokalemia in the general population. *J Hypertens.* 2014;32:2092.
20. Savage PJ, Pressel SL, Curb JD, et al. Influence of long-term, low-dose, diuretic-based, antihypertensive therapy on glucose, lipid, uric acid, and potassium levels in older men and women with isolated systolic hypertension: The Systolic Hypertension in the Elderly Program. SHEP Cooperative Research Group. *Arch Intern Med.* 1998;158:741–51.
21. Ljunghall S, Backman U, Danielson BG, et al. Calcium and Magnesium Metabolism During Long-Term Treatment with Thiazides. *Scand J Urol Nephrol.* 1981;15:257–62.
22. Hwang KS, Kim G-H. Thiazide-Induced Hyponatremia. *Electrolytes Blood Press E BP.* 2010;8:51–7.
23. Davies D, Fraser R. Do diuretics cause magnesium deficiency? *Br J Clin Pharmacol.* 1993;36:1–10.
24. Alderman CP. Adverse effects of the angiotensin-converting enzyme inhibitors. *Ann Pharmacother.* 1996;30:55–61.
25. Dina R, Jafari M. Angiotensin II-receptor antagonists: An overview. *Am J Health Syst Pharm.* 2000;57:1231–41.
26. Bullo M, Tschumi S, Bucher BS, et al. Pregnancy Outcome Following Exposure to Angiotensin-Converting Enzyme Inhibitors or Angiotensin Receptor Antagonists. *Hypertension.* 2012;60:444–50.
27. Elliott WJ, Ram CVS. Calcium Channel Blockers. *J Clin Hypertens.* 2011;13:687–9.
28. Houston MC. Nutraceuticals, Vitamins, Antioxidants, and Minerals in the Prevention and Treatment of Hypertension. *Prog Cardiovasc Dis.* 2005;47:396–449.
29. Chen Z-Y, Peng C, Jiao R, et al. Anti-hypertensive Nutraceuticals and Functional Foods. *J Agric Food Chem.* 2009;57:4485–99.
30. Houston MC. Treatment of Hypertension with Nutrition and Nutraceutical Supplements: Part 2. *Altern Complement Ther.* 2019;25:23–36.
31. Houston MC. The role of cellular micronutrient analysis, nutraceuticals, vitamins, antioxidants and minerals in the prevention and treatment of hypertension and cardiovascular disease. *Ther Adv Cardiovasc Dis.* 2010;4:165–83.
32. Alves QL, Camargo SB, Silva DF. Role of nutraceuticals in the prevention and treatment of hypertension and cardiovascular diseases. *J Hypertens Manag.* 2019;5:1–10.
33. Borghi C, Tsiofis K, Agabiti-Rosei E, et al. Nutraceuticals and blood pressure control: a European Society of Hypertension position document. *J Hypertens.* 2020;38:799.
34. Houston M. The role of nutrition and nutraceutical supplements in the treatment of hypertension. *World J Cardiol.* 2014;6:38–66.
35. Trivedi M, Singh S, Johri P, et al., editors. *Nutraceuticals Inspiring the Contemporary Therapy for Lifestyle Diseases.* Boca Raton: CRC Press 2024. <https://doi.org/10.1201/9781003392934>
36. Fogacci S, Fogacci F, Cicero AF. Nutraceuticals and hypertensive disorders in pregnancy: the available clinical evidence. *Nutrients.* 2020;12:378.
37. Trimarco V, Cimmino CS, Santoro M, et al. Nutraceuticals for Blood Pressure Control in Patients with High-Normal or Grade 1 Hypertension. *High Blood Press Cardiovasc Prev.* 2012;19:117–22.
38. Sirtori CR, Arnaldi A, Cicero AFG. Nutraceuticals for blood pressure control. *Ann Med.* 2015;47:447–56.
39. Sánchez-Gloria JL, Osorio-Alonso H, Arellano-Buendía AS, et al. Nutraceuticals in the Treatment of Pulmonary Arterial Hypertension. *Int J Mol Sci.* 2020;21:4827. doi: 10.3390/ijms21144827
40. Cicero AFG, Colletti A. Nutraceuticals and Blood Pressure Control: Results from Clinical Trials and Meta-Analyses. *High Blood Press Cardiovasc Prev.* 2015;22:203–13.
41. Mazza A, Lenti S, Schiavon L, et al. Nutraceuticals for Serum Lipid and Blood Pressure Control in Hypertensive and Hypercholesterolemic Subjects at Low Cardiovascular Risk. *Adv Ther.* 2015;32:680–90.
42. Borghi C, Cicero AFG. Nutraceuticals with a clinically detectable blood pressure-lowering effect: a review of available randomized clinical trials and their meta-analyses. *Br J Clin Pharmacol.* 2017;83:163–71.
43. Rivelles AA, Ciciola P, Costabile G, et al. The Possible Role of Nutraceuticals in the Prevention of Cardiovascular Disease. *High Blood Press Cardiovasc Prev.* 2019;26:101–11.
44. Rozza F, de Simone G, Izzo R, et al. Nutraceuticals for Treatment of High Blood Pressure Values in Patients with Metabolic Syndrome. *High Blood Press Cardiovasc Prev.* 2009;16:177–82.
45. Cicero AFG, Grassi D, Tocci G, et al. Nutrients and Nutraceuticals for the Management of High Normal Blood Pressure: An Evidence-Based Consensus Document. *High Blood Press Cardiovasc Prev.* 2019;26:9–25.
46. Turner JM, Spatz ES. Nutritional Supplements for the Treatment of Hypertension: A Practical Guide for Clinicians. *Curr Cardiol Rep.* 2016;18:126.
47. Chiu H-F, Venkatakrishnan K, Wang C-K. Chapter 20 - Nutraceuticals and functional foods in the prevention of hypertension induced by excessive intake of dietary salt. In: Preuss HG, Bagchi D, eds.

Dietary Sugar, Salt and Fat in Human Health. Academic Press 2020:423–50. <https://doi.org/10.1016/B978-0-12-816918-6.00020-2>

48. Carrizzo A, Izzo C, Forte M, et al. A Novel Promising Frontier for Human Health: The Beneficial Effects of Nutraceuticals in Cardiovascular Diseases. *Int J Mol Sci.* 2020;21:8706. doi: 10.3390/ijms21228706

49. Varma KS, Lokhande TN, Herole RA, et al. Vitamins as Nutraceuticals for Hypertension. *Preventive and Therapeutic Role of Vitamins as Nutraceuticals*. Apple Academic Press 2024.

50. Fatima S, Yadav N. Nutraceutical and Nanonutraceutical in the Management of CVD and Hypertension. *Handbook of Nutraceuticals: Science, Technology and Engineering*. Springer 2023:1–38.

51. Al-Achi A. Are Nutraceuticals Effective in Controlling Essential Hypertension. *Clin Pharmacol Biopharm.* 2017;6:e128.

52. Ghaffari S, Roshanravan N. The role of nutraceuticals in prevention and treatment of hypertension: An updated review of the literature. *Food Res Int.* 2020;128:108749.

53. Baguet J-P, Robitail S, Boyer L, et al. A Meta-Analytical Approach to the Efficacy of Antihypertensive Drugs in Reducing Blood Pressure. *Am J Cardiovasc Drugs.* 2005;5:131–40.

54. Carey RM, Moran AE, Whelton PK. Treatment of Hypertension: A Review. *JAMA.* 2022;328:1849–61.

55. Kylliang DAK, Acharya DS, Hegde DV. A Clinical Study on the Effect of Ashwagandhadi Churna in the management of Rakta-Gata-Vata with special reference to Essential Hypertension. *J Ayurveda Integr Med Sci.* 2019;4:79–85. doi: 10.21760/jaims.v4i05.706

56. Kushwaha S, Betsy A, Chawla P. Effect of Ashwagandha (*Withania somnifera*) Root Powder Supplementation in Treatment of Hypertension. *Stud Ethno-Med.* 2012;6:111–5.

57. Dineva S, Uzunova K, Pavlova V, et al. Network meta-analysis of efficacy and safety of chlorthalidone and hydrochlorothiazide in hypertensive patients. *Blood Press Monit.* 2021;26:160.

58. Macfarlane TV, Pigazzani F, Flynn RWV, et al. The effect of indapamide vs. bendroflumethiazide for primary hypertension: a systematic review. *Br J Clin Pharmacol.* 2019;85:285–303.

59. Serban C, Sahebkar A, Ursoniu S, et al. Effect of sour tea (*Hibiscus sabdariffa* L.) on arterial hypertension: a systematic review and meta-analysis of randomized controlled trials. *J Hypertens.* 2015;33:1119.

60. Xiong X, Wang P, Duan L, et al. Efficacy and safety of Chinese herbal medicine Xiao Yao San in hypertension: A systematic review and meta-analysis. *Phytomedicine.* 2019;61:152849.

61. Ashoori M, Soltani S, Kolahdouz-Mohammadi R, et al. The effect of whole grape products on blood pressure and vascular function: A systematic review and meta-analysis of randomized controlled trials. *Nutr Metab Cardiovasc Dis.* 2023;33:1836–48.

62. Park SH, Chung S, Chung M-Y, et al. Effects of *Panax ginseng* on hyperglycemia, hypertension, and hyperlipidemia: A systematic review and meta-analysis. *J Ginseng Res.* 2022;46:188–205.

63. Hilleman DE, Ryschon KL, Mohiuddin SM, et al. Fixed-dose combination vs monotherapy in hypertension: a meta-analysis evaluation. *J Hum Hypertens.* 1999;13:477–83.

64. Xiong X, Yang X, Li X, et al. Efficacy and safety of Chinese herbal medicine for patients with postmenopausal hypertension: A systematic review and meta-analysis. *Pharmacol Res.* 2019;141:481–500.

65. O'HARE JP, HOYT LH. Mistletoe in the Treatment of Hypertension. *N Engl J Med.* 1928;199:1207–13.

66. Frishman WH, Ram CVS, McMahon FG, et al. Comparison of Amlodipine and Benazepril Monotherapy to Amlodipine Plus Benazepril In Patients with Systemic Hypertension: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study. *J Clin Pharmacol.* 1995;35:1060–6.

67. Sahebkar A, Soranna D, Liu X, et al. A systematic review and meta-analysis of randomized controlled trials investigating the effects of supplementation with *Nigella sativa* (black seed) on blood pressure. *J Hypertens.* 2016;34:2127.

68. Mousavi SM, Mofrad MD, do Nascimento IJB, et al. The effect of zinc supplementation on blood pressure: a systematic review and dose-response meta-analysis of randomized-controlled trials. *Eur J Nutr.* 2020;59:1815–27.

69. Yi Y, Zhang G, Lv S, et al. Comparative efficacy and safety of ginkgo-based Chinese patent medicines in patients with hypertension: A systematic review and network meta-analysis of randomized clinical trials. *Medicine (Baltimore).* 2024;103:e37927.

70. Fernández M, Madero R, González D, et al. Combined versus single effect of fosinopril and hydrochlorothiazide in hypertensive patients. *Hypertension.* 1994;23:I207.

71. Xiong XJ, Wang PQ, Li SJ, et al. Garlic for hypertension: A systematic review and meta-analysis of randomized controlled trials. *Phytomedicine.* 2015;22:352–61.

72. Kwak JS, Kim JY, Paek JE, et al. Garlic powder intake and cardiovascular risk factors: a meta-analysis of randomized controlled clinical trials. *Nutr Res Pract.* 2014;8:644.

73. Ried K, Frank OR, Stocks NP, et al. Effect of garlic on blood pressure: A systematic review and meta-analysis. *BMC Cardiovasc Disord.* 2008;8:13.

74. Wang H, Yang J, Qin L, et al. Effect of garlic on blood pressure: A meta-analysis. *J Clin Hypertens.* 2015;17:223–31.

75. Rohner A, Ried K, Sobenin IA, et al. A Systematic Review and Metaanalysis on the Effects of Garlic Preparations on Blood Pressure in Individuals With Hypertension. *Am J Hypertens.* 2015;28:414–23.

76. Ried K. Garlic lowers blood pressure in hypertensive subjects, improves arterial stiffness and gut microbiota: A review and meta-analysis. *Exp Ther Med.* 2020;19:1472–8.

77. Ried K. Garlic Lowers Blood Pressure in Hypertensive Individuals, Regulates Serum Cholesterol, and Stimulates Immunity: An Updated Meta-analysis and Review12. *J Nutr.* 2016;146:389S-396S.

78. Ried K, Travica N, Sali A. The effect of aged garlic extract on blood pressure and other cardiovascular risk factors in uncontrolled hypertensives: the AGE at Heart trial. *Integr Blood Press Control.* 2016;9:9–21.

79. Cloud A, Vilcins D, McEwen B. The effect of hawthorn (*Crataegus* spp.) on blood pressure: A systematic review. *Adv Integr Med.* 2020;7:167–75.

80. Chen Z, Peng Y-Y, Yang F-W, et al. [Meta-analysis of clinical efficacy and safety of Compound Danshen Dripping Pills combined with conventional antihypertensive drugs in treatment of hypertensive left ventricular hypertrophy]. *Zhongguo Zhong Yao Za Zhi Zhongguo Zhongyao Zazhi China J Chin Mater Medica.* 2021;46:2578–87.

81. Rosenfeldt FL, Haas SJ, Krum H, et al. Coenzyme Q10 in the treatment of hypertension: a meta-analysis of the clinical trials. *J Hum Hypertens.* 2007;21:297–306.

82. Juraschek SP, Guallar E, Appel LJ, et al. Effects of vitamin C supplementation on blood pressure: a meta-analysis of randomized controlled trials123. *Am J Clin Nutr.* 2012;95:1079–88.

83. Morris MC, Sacks F, Rosner B. Does fish oil lower blood pressure? A meta-analysis of controlled trials. *Circulation.* 1993;88:523–33.

84. Guan Y, Dai P, Wang H. Effects of vitamin C supplementation on essential hypertension: A systematic review and meta-analysis. *Medicine (Baltimore).* 2020;99:e19274.

85. Evans CEL, Greenwood DC, Threapleton DE, et al. Effects of dietary fibre type on blood pressure: a systematic review and meta-analysis of randomized controlled trials of healthy individuals. *J Hypertens.* 2015;33:897.

86. Benjamin CJR, Porto AA, Valenti VE, et al. Nitrate Derived From Beetroot Juice Lowers Blood Pressure in Patients With Arterial Hypertension: A Systematic Review and Meta-Analysis. *Front Nutr.* 2022;9. doi: 10.3389/fnut.2022.823039

87. Suadoni MT, Atherton I. Berberine for the treatment of hypertension: A systematic review. *Complement Ther Clin Pract.* 2021;42:101287.

88. Lan J, Zhao Y, Dong F, et al. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipidemia and hypertension. *J Ethnopharmacol.* 2015;161:69–81.

89. Zhu Y, Sun J, Lu W, et al. Effects of blueberry supplementation on blood pressure: a systematic review and meta-analysis of randomized clinical trials. *J Hum Hypertens.* 2017;31:165–71.

90. van Mierlo L a. J, Arends LR, Streppel MT, et al. Blood pressure response to calcium supplementation: a meta-analysis of randomized controlled trials. *J Hum Hypertens.* 2006;20:571–80.

91. Shirani F, Foshati S, Tavassoly M, et al. The effect of red pepper/capsaicin on blood pressure and heart rate: A systematic review and meta-analysis of clinical trials. *Phytother Res.* 2021;35:6080–8.

92. Zafar MU, Rasheed A, Ismail H. Exploring the Effects of Celery Stem on Blood Pressure, and Associated Parameters as Social Determinants in Hypertensive Individuals: A Randomized Control Trail. *Ann Hum Soc Sci.* 2023;4:118–26. doi: 10.35484/ahss.2023(4-IV)11

93. Kass L, Weekes J, Carpenter L. Effect of magnesium supplementation on blood pressure: a meta-analysis. *Eur J Clin Nutr.* 2012;66:411–8.

94. Jee SH, Miller ER, Guallar E, et al. The effect of magnesium supplementation on blood pressure: a meta-analysis of randomized clinical trials*. *Am J Hypertens.* 2002;15:691–6.

95. Zhang X, Li Y, Del Gobbo LC, et al. Effects of Magnesium Supplementation on Blood Pressure. *Hypertension.* 2016;68:324–33.

96. Onakpoya IJ, Spencer EA, Thompson MJ, et al. The effect of chlorogenic acid on blood pressure: a systematic review and meta-analysis of randomized clinical trials. *J Hum Hypertens.* 2015;29:77–81.

97. Desch S, Schmidt J, Kobler D, et al. Effect of Cocoa Products on Blood Pressure: Systematic Review and Meta-Analysis. *Am J Hypertens.* 2010;23:97–103.

98. Jafarnejad S, Salek M, Clark CCT. Cocoa Consumption and Blood Pressure in Middle-Aged and Elderly Subjects: A Meta-Analysis. *Curr Hypertens Rep.* 2020;22:1.

99. Lee EK-P, Poon P, Yu C-P, et al. Controlled-release oral melatonin supplementation for hypertension and nocturnal hypertension: A systematic review and meta-analysis. *J Clin Hypertens.* 2022;24:529–35.

100. Kam E, Lee P, Poon P, et al. CONTROLLED-RELEASED ORAL MELATONIN SUPPLEMENTATION FOR HYPERTENSION: A SYSTEMATIC REVIEW AND META-ANALYSIS. *J Hypertens.* 2022;40:e302.

101. Karimi A, Moini Jazani A, Darzi M, et al. Effects of curcumin on blood pressure: A systematic review and dose-response meta-analysis. *Nutr Metab Cardiovasc Dis.* 2023;33:2089–101.

102. Guo X, Li K, Li J, et al. Effects of EPA and DHA on blood pressure and inflammatory factors: a meta-analysis of randomized controlled trials. *Crit Rev Food Sci Nutr.* 2019;59:3380–93.

103. Sanei P, Salehi-Abargouei A, Esmaillzadeh A, et al. Influence of Dietary Approaches to Stop Hypertension (DASH) diet on blood pressure: A systematic review and meta-analysis on randomized controlled trials. *Nutr Metab Cardiovasc Dis.* 2014;24:1253–61.

104. Looi D, Moorthy M, Chaiyakunapruk N, et al. Impact of ellagitannin-rich fruit consumption on blood pressure: A systematic review and meta-analysis of randomized controlled trials. *J Funct Foods.* 2022;99:105320.

105. Campbell F, Dickinson HO, Critchley JA, et al. A systematic review of fish-oil supplements for the prevention and treatment of hypertension. *Eur J Prev Cardiol.* 2013;20:107–20.

106. Hugo Pripp A. Effect of peptides derived from food proteins on blood pressure: a meta-analysis of randomized controlled trials. *Food Nutr Res.* 2008;52:1641.

107. Ellwood L, Torun G, Bahar Z, et al. Effects of flavonoid-rich fruits on hypertension in adults: a systematic review. *JBI Evid Synth.* 2019;17:2075.

108. Ursoniu S, Sahebkar A, Andrica F, et al. Effects of flaxseed supplements on blood pressure: A systematic review and meta-analysis of controlled clinical trial. *Clin Nutr.* 2016;35:615–25.

109. Khalesi S, Irwin C, Schubert M. Flaxseed Consumption May Reduce Blood Pressure: A Systematic Review and Meta-Analysis of Controlled Trials 1, 2, 3. *J Nutr.* 2015;145:758–65.

110. McRae MP. High-dose folic acid supplementation effects on endothelial function and blood pressure in hypertensive patients: a meta-analysis of randomized controlled clinical trials. *J Chiropr Med.* 2009;8:15–24.

111. Hemati N, Asis M, Moradi S, et al. Effects of genistein on blood pressure: A systematic review and meta-analysis. *Food Res Int.* 2020;128:108764.

112. Hasani H, Arab A, Hadi A, et al. Does ginger supplementation lower blood pressure? A systematic review and meta-analysis of clinical trials. *Phytother Res.* 2019;33:1639–47.

113. Khalesi S, Sun J, Buys N, et al. Green tea catechins and blood pressure: a systematic review and meta-analysis of randomised controlled trials. *Eur J Nutr.* 2014;53:1299–311.

114. Onakpoya I, Spencer E, Heneghan C, et al. The effect of green tea on blood pressure and lipid profile: A systematic review and meta-analysis of randomized clinical trials. *Nutr Metab Cardiovasc Dis.* 2014;24:823–36.

115. Peng X, Zhou R, Wang B, et al. Effect of green tea consumption on blood pressure: A meta-analysis of 13 randomized controlled trials. *Sci Rep.* 2014;4:6251.

116. Neyestani TR, Nikooyeh B. A comprehensive overview on the effects of green tea on anthropometric measures, blood pressure, glycemic and lipidemic status: An umbrella review and meta meta-analysis study. *Nutr Metab Cardiovasc Dis.* 2022;32:2026–40.

117. Pourmasoumi M, Hadi A, Marx W, et al. The Effect of Green Coffee Bean Extract on Cardiovascular Risk Factors: A Systematic Review and Meta-analysis. In: Sahebkar A, Sathyapalan T, eds. *Natural Products and Human Diseases: Pharmacology, Molecular Targets, and Therapeutic Benefits.* Cham: Springer International Publishing 2021:323–45. https://doi.org/10.1007/978-3-030-73234-9_21

118. Han B, Nazary-Vannani A, Talaei S, et al. The effect of green coffee extract supplementation on blood pressure: A systematic review and meta-analysis of randomized controlled trials. *Phytother Res.* 2019;33:2918–26.

119. Liu XX, Li SH, Chen JZ, et al. Effect of soy isoflavones on blood pressure: A meta-analysis of randomized controlled trials. *Nutr Metab Cardiovasc Dis.* 2012;22:463–70.

120. Taku K, Lin N, Cai D, et al. Effects of soy isoflavone extract supplements on blood pressure in adult humans: systematic review and meta-analysis of randomized placebo-controlled trials. *J Hypertens.* 2010;28:1971.

121. Dong J-Y, Qin L-Q, Zhang Z, et al. Effect of oral l-arginine supplementation on blood pressure: A meta-analysis of randomized, double-blind, placebo-controlled trials. *Am Heart J.* 2011;162:959–65.

122. Shiraseb F, Asbaghi O, Bagheri R, et al. Effect of l-Arginine Supplementation on Blood Pressure in Adults: A Systematic Review and Dose–Response Meta-analysis of Randomized Clinical Trials. *Adv Nutr.* 2022;13:1226–42.

123. Zhu Q, Yue X, Tian Q-Y, et al. Effect of l-Arginine Supplementation on Blood Pressure in Pregnant Women: A Meta-Analysis of Placebo-Controlled Trials. *Hypertens Pregnancy.* 2013;32:32–41.

124. Alves Porto A, Almeida Gonzaga L, Benjamin CJR, et al. Effect of oral l-arginine supplementation on post-exercise blood pressure in hypertensive adults: A systematic review with meta-analysis of randomized double-blind, placebo-controlled studies. *Sci Sports.* 2022;37:552–61.

125. Askarpour M, Hadi A, Dehghani Kari Bozorg A, et al. Effects of L-carnitine supplementation on blood pressure: a systematic review and meta-analysis of randomized controlled trials. *J Hum Hypertens.* 2019;33:725–34.

126. Anaraki SR, Aali Y, Nikbaf-Shandiz M, et al. The Effects of L-Carnitine Supplementation on Blood Pressure in Adults: A Systematic Review and Dose-response Meta-analysis. *Clin Ther.* 2024;46:e73–86.

127. Barkhidarian B, Khorshidi M, Shab-Bidar S, et al. Effects of L-citrulline supplementation on blood pressure: A systematic review and meta-analysis. *Avicenna J Phytomedicine.* 2019;9:10–20.

128. Mirenayat MS, Moradi S, Mohammadi H, et al. Effect of L-Citrulline Supplementation on Blood Pressure: a Systematic Review and Meta-Analysis of Clinical Trials. *Curr Hypertens Rep.* 2018;20:98.

129. Fekete ÁA, Givens DI, Lovegrove JA. Casein-Derived Lactotripeptides Reduce Systolic and Diastolic Blood Pressure in a Meta-Analysis of Randomised Clinical Trials. *Nutrients.* 2015;7:659–81. doi: 10.3390/nu7010659

130. Cicero AFG, Aubin F, Azais-Braesco V, et al. Do the Lactotripeptides Isoleucine–Proline and Valine–Proline–Proline Reduce Systolic Blood Pressure in European Subjects? A Meta-Analysis of Randomized Controlled Trials. *Am J Hypertens.* 2013;26:442–9.

131. Cicero AFG, Gerocarni B, Laghi L, et al. Blood pressure lowering effect of lactotripeptides assumed as functional foods: a meta-analysis of current available clinical trials. *J Hum Hypertens.* 2011;25:425–36.

132. Qin L-Q, Xu J-Y, Dong J-Y, et al. Lactotripeptides intake and blood pressure management: A meta-analysis of randomised controlled clinical trials. *Nutr Metab Cardiovasc Dis.* 2013;23:395–402.

133. Turpeinen AM, Järvenpää S, Kautiainen H, et al. Antihypertensive effects of bioactive tripeptides—a random effects meta-analysis. *Ann Med.* 2013;45:51–6.

134. Chanson-Rolle A, Aubin F, Braesco V, et al. Influence of the Lactotripeptides Isoleucine–Proline–Proline and Valine–Proline–Proline on Systolic Blood Pressure in Japanese Subjects: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. *PLOS ONE.* 2015;10:e0142235.

135. Xu J-Y, Qin L-Q, Wang P-Y, et al. Effect of milk tripeptides on blood pressure: A meta-analysis of randomized controlled trials. *Nutrition.* 2008;24:933–40.

136. Chanson-Rolle A, Aubin F, Braesco V, et al. Evaluation of the Blood Pressure Lowering-Effect of the Lactotripeptides Valine-Proline-Proline and Isoleucine-Proline-Proline in Non-Hypertensive Japanese Subjects through a Meta-Analysis of Randomized-Controlled Studies. *Food Nutr Sci.* 2018;9:1221–53. doi: 10.4236/fns.2018.910088

137. Jauhainen T, Niittynen L, Orešić M, et al. Effects of long-term intake of lactotripeptides on cardiovascular risk factors in hypertensive subjects. *Eur J Clin Nutr.* 2012;66:843–9.

138. Cicero AFG, Colletti A, Rosticci M, et al. Effect of Lactotripeptides (Isoleucine–Proline–Proline/Valine–Proline–Proline) on Blood Pressure and Arterial Stiffness Changes in Subjects with Suboptimal Blood Pressure Control and Metabolic Syndrome: A Double-Blind, Randomized, Crossover Clinical Trial. *Metab Syndr Relat Disord.* 2016;14:161–6.

139. Rattanavipan W, Nithiphongwarakul C, Sirisuwansith P, et al. Effect of tomato, lycopene and related products on blood pressure: A systematic review and network meta-analysis. *Phytomedicine.* 2021;88:153512.

140. Rezaei kelishadi M, Asbaghi O, Nazarian B, et al. Lycopene Supplementation and Blood Pressure: Systematic review and meta-analyses of randomized trials. *J Herb Med.* 2022;31:100521.

141. Li X, Xu J. Lycopene Supplement and Blood Pressure: An Updated Meta-Analysis of Intervention Trials. *Nutrients.* 2013;5:3696–712. doi: 10.3390/nu5093696

142. Cheng HM, Koutsidis G, Lodge JK, et al. Tomato and lycopene supplementation and cardiovascular risk factors: A systematic review and meta-analysis. *Atherosclerosis.* 2017;257:100–8.

143. Ried K, Fakler P. Protective effect of lycopene on serum cholesterol and blood pressure: Meta-analyses of intervention trials. *Maturitas.* 2011;68:299–310.

144. Hadi A, Ghaedi E, Moradi S, et al. Effects of Melatonin Supplementation On Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. *Horm Metab Res.* 2019;51:157–64.

145. Schwingshackl L, Strasser B, Hoffmann G. Effects of Monounsaturated Fatty Acids on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis. *Ann Nutr Metab.* 2011;59:176–86.

146. Jovanovski E, de Castro Ruiz Marques A, Li D, et al. Effect of high-carbohydrate or high-monounsaturated fatty acid diets on blood pressure: a systematic review and meta-analysis of randomized controlled trials. *Nutr Rev.* 2019;77:19–31.

147. Shikov AN, Pozharitskaya ON, Makarov VG, et al. Effect of Leonurus cardiaca oil extract in patients with arterial hypertension accompanied by anxiety and sleep disorders. *Phytother Res.* 2011;25:540–3.

148. Li X, Long J, Gao Q, et al. Nattokinase Supplementation and Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. *Rev Cardiovasc Med.* 2023;24:234. doi: 10.31083/j.rcm2408234

149. Miller PE, Van Elswyk M, Alexander DD. Long-Chain Omega-3 Fatty Acids Eicosapentaenoic Acid and Docosahexaenoic Acid and Blood Pressure: A Meta-Analysis of Randomized Controlled Trials. *Am J Hypertens.* 2014;27:885–96.

150. Zhang X, Ritonja JA, Zhou N, et al. Omega-3 Polyunsaturated Fatty Acids Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. *J Am Heart Assoc.* 2022;11:e025071.

151. Musazadeh V, Kavyani Z, Naghshbandi B, et al. The beneficial effects of omega-3 polyunsaturated fatty acids on controlling blood pressure: An umbrella meta-analysis. *Front Nutr.* 2022;9. doi: 10.3389/fnut.2022.985451

152. Zamora-Zamora F, Martínez-Galiano JM, Gaforio JJ, et al. Effects of olive oil on blood pressure: A systematic review and meta-analysis. *Grasas Aceites.* 2018;69:e272–e272. doi: 10.3989/gya.0105181

153. Rahimianfar F. The Effect of Olive Leaf Extract on Systolic and Diastolic Blood Pressure in Adults: A Systemic Review and Meta-Analysis. *Olive Cultivation*. IntechOpen 2022. <https://doi.org/10.5772/intechopen.102769>

154. Razmipoosh E, Abdollahi S, Mousavirad M, et al. The effects of olive leaf extract on cardiovascular risk factors in the general adult population: a systematic review and meta-analysis of randomized controlled trials. *Diabetol Metab Syndr*. 2022;14:151.

155. Hejazi N, Ghalandari H, Nouri M, et al. Onion supplementation and health metabolic parameters: A systematic review and meta-analysis of randomized controlled trials. *Clin Nutr ESPEN*. 2023;58:1–13.

156. Ghaedi E, Foshati S, Ziae R, et al. Effects of phytosterols supplementation on blood pressure: A systematic review and meta-analysis. *Clin Nutr*. 2020;39:2702–10.

157. Li S-H, Zhao P, Tian H-B, et al. Effect of Grape Polyphenols on Blood Pressure: A Meta-Analysis of Randomized Controlled Trials. *PLOS ONE*. 2015;10:e0137665.

158. Kiyimba T, Yiga P, Bamuwamye M, et al. Efficacy of Dietary Polyphenols from Whole Foods and Purified Food Polyphenol Extracts in Optimizing Cardiometabolic Health: A Meta-Analysis of Randomized Controlled Trials. *Adv Nutr*. 2023;14:270–82.

159. Askarpour M, Ghaedi E, Roshanravan N, et al. Policosanol supplementation significantly improves blood pressure among adults: A systematic review and meta-analysis of randomized controlled trials. *Complement Ther Med*. 2019;45:89–97.

160. Filippini T, Violi F, D'Amico R, et al. The effect of potassium supplementation on blood pressure in hypertensive subjects: A systematic review and meta-analysis. *Int J Cardiol*. 2017;230:127–35.

161. Poorolajal J, Zeraati F, Soltanian AR, et al. Oral potassium supplementation for management of essential hypertension: A meta-analysis of randomized controlled trials. *PLOS ONE*. 2017;12:e0174967.

162. Binia A, Jaeger J, Hu Y, et al. Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure: a meta-analysis of randomized controlled trials. *J Hypertens*. 2015;33:1509.

163. Filippini T, Naska A, Kasdagli M, et al. Potassium Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. *J Am Heart Assoc*. 2020;9:e015719.

164. Faghihimani Z, Namazi N, Ghaffari S, et al. Effects of Inulin Type-Carbohydrates on blood pressure: a systematic review and meta-analysis. *Int J Food Prop*. 2021;24:129–39.

165. Ren J, An J, Chen M, et al. Effect of proanthocyanidins on blood pressure: A systematic review and meta-analysis of randomized controlled trials. *Pharmacol Res*. 2021;165:105329.

166. Chi C, Li C, Wu D, et al. Effects of Probiotics on Patients with Hypertension: a Systematic Review and Meta-analysis. *Curr Hypertens Rep*. 2020;22:33.

167. Lewis-Mikhael A-M, Davoodvandi A, Jafarnejad S. Effect of *Lactobacillusplantarum* containing probiotics on blood pressure: A systematic review and meta-analysis. *Pharmacol Res*. 2020;153:104663.

168. Liang T, Wu L, Xi Y, et al. Probiotics supplementation improves hyperglycemia, hypercholesterolemia, and hypertension in type 2 diabetes mellitus: An update of meta-analysis. *Crit Rev Food Sci Nutr*. 2021;61:1670–88.

169. Qi D, Nie X-L, Zhang J-J. The effect of probiotics supplementation on blood pressure: a systemic review and meta-analysis. *Lipids Health Dis*. 2020;19:79.

170. Khalesi S, Sun J, Buys N, et al. Effect of Probiotics on Blood Pressure. *Hypertension*. 2014;64:897–903.

171. Dong J-Y, Szeto IMY, Makinen K, et al. Effect of probiotic fermented milk on blood pressure: a meta-analysis of randomised controlled trials. *Br J Nutr*. 2013;110:1188–94.

172. Ejtahed H-S, Ardestarlarijani E, Tabatabaei-Malazy O, et al. Effect of probiotic foods and supplements on blood pressure: a systematic review of meta-analyses studies of controlled trials. *J Diabetes Metab Disord*. 2020;19:617–23.

173. Zarezadeh M, Musazadeh V, Ghalichi F, et al. Effects of probiotics supplementation on blood pressure: An umbrella meta-analysis of randomized controlled trials. *Nutr Metab Cardiovasc Dis*. 2023;33:275–86.

174. Zhao T-X, Zhang L, Zhou N, et al. Long-term use of probiotics for the management of office and ambulatory blood pressure: A systematic review and meta-analysis of randomized, controlled trials. *Food Sci Nutr*. 2023;11:101–13.

175. Liu J, Zhang D, Guo Y, et al. The Effect of *Lactobacillus* Consumption on Human Blood Pressure: a Systematic Review and Meta-Analysis of Randomized Controlled Trials. *Complement Ther Med*. 2020;54:102547.

176. Hendijani F, Akbari V. Probiotic supplementation for management of cardiovascular risk factors in adults with type II diabetes: A systematic review and meta-analysis. *Clin Nutr*. 2018;37:532–41.

177. ZHANG Z, TONG X, WEI Y-L, et al. Effect of Pycnogenol Supplementation on Blood Pressure: A Systematic Review and Meta-analysis. *Iran J Public Health*. 2018;47:779–87.

178. Malekahmadi M, Moradi Moghaddam O, Firouzi S, et al. Effects of pycnogenol on cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. *Pharmacol Res*. 2019;150:104472.

179. Pourmasoumi M, Hadi A, Mohammadi H, et al. Effect of pycnogenol supplementation on blood pressure: A systematic review and meta-analysis of clinical trials. *Phytother Res*. 2020;34:67–76.

180. Fogacci F, Tocci G, Sahebkar A, et al. Effect of Pycnogenol on Blood Pressure: Findings From a PRISMA Compliant Systematic Review and Meta-Analysis of Randomized, Double-Blind, Placebo-Controlled, Clinical Studies. *Angiology*. 2020;71:217–25.

181. Popolek-Kalisz J, Fornal E. The Effects of Quercetin Supplementation on Blood Pressure – Meta-Analysis. *Curr Probl Cardiol*. 2022;47:101350.

182. Serban M, Sahebkar A, Zanchetti A, et al. Effects of Quercetin on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. *J Am Heart Assoc*. ;5:e002713.

183. Tamtaji OR, Milajerdi A, Dadgostar E, et al. The Effects of Quercetin Supplementation on Blood Pressures and Endothelial Function Among Patients with Metabolic Syndrome and Related Disorders: A Systematic Review and Meta-analysis of Randomized Controlled Trials. *Curr Pharm Des*. 2019;25:1372–84.

184. Weaver SR, Rendeiro C, McGettrick HM, et al. Fine wine or sour grapes? A systematic review and meta-analysis of the impact of red wine polyphenols on vascular health. *Eur J Nutr*. 2021;60:1–28.

185. Xiong X, Wang P, Li X, et al. The effects of red yeast rice dietary supplement on blood pressure, lipid profile, and C-reactive protein in hypertension: A systematic review. *Crit Rev Food Sci Nutr*. 2017;57:1831–51.

186. Fogacci F, Tocci G, Presta V, et al. Effect of resveratrol on blood pressure: A systematic review and meta-analysis of randomized, controlled, clinical trials. *Crit Rev Food Sci Nutr*. 2019;59:1605–18.

187. Liu Y, Ma W, Zhang P, et al. Effect of resveratrol on blood pressure: A meta-analysis of randomized controlled trials. *Clin Nutr*. 2015;34:27–34.

188. Setayesh L, Ashtary-Larky D, Clark CCT, et al. The Effect of Saffron Supplementation on Blood Pressure in Adults: A Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. *Nutrients*. 2021;13:2736. doi: 10.3390/nu13082736

189. Ayatollahi SA, Asgary S, Ghanbari F, et al. Quantifying the Impact of Algae Supplement on Blood Pressure: Systematic Review and Meta-analysis of Randomized Controlled Trials. *Curr Probl Cardiol*. 2022;47:101336.

190. Dong J-Y, Tong X, Wu Z-W, et al. Effect of soya protein on blood pressure: a meta-analysis of randomised controlled trials. *Br J Nutr*. 2011;106:317–26.

191. Mosallanezhad Z, Mahmoodi M, Ranjbar S, et al. Soy intake is associated with lowering blood pressure in adults: A systematic review and meta-analysis of randomized double-blind placebo-controlled trials. *Complement Ther Med*. 2021;59:102692.

192. Machowiec P, Ręka G, Maksymowicz M, et al. Effect of Spirulina Supplementation on Systolic and Diastolic Blood Pressure: Systematic Review and Meta-Analysis of Randomized Controlled Trials. *Nutrients*. 2021;13:3054. doi: 10.3390/nu13093054

193. Mahdavi-Roshan M, Salari A, Ghorbani Z, et al. The effects of regular consumption of green or black tea beverage on blood pressure in those with elevated blood pressure or hypertension: A systematic review and meta-analysis. *Complement Ther Med*. 2020;51:102430.

194. Yarmolinsky J, Gon G, Edwards P. Effect of tea on blood pressure for secondary prevention of cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials. *Nutr Rev*. 2015;73:236–46.

195. Taubert D, Roesen R, Schöming E. Effect of Cocoa and Tea Intake on Blood Pressure: A Meta-analysis. *Arch Intern Med*. 2007;167:626–34.

196. Waldron M, Patterson SD, Tallent J, et al. The Effects of Oral Taurine on Resting Blood Pressure in Humans: a Meta-Analysis. *Curr Hypertens Rep*. 2018;20:81.

197. Guan L, Miao P. The effects of taurine supplementation on obesity, blood pressure and lipid profile: A meta-analysis of randomized controlled trials. *Eur J Pharmacol*. 2020;885:173533.

198. Emami MR, Safabakhsh M, Alizadeh S, et al. Effect of vitamin E supplementation on blood pressure: a systematic review and meta-analysis. *J Hum Hypertens*. 2019;33:499–507.

199. Witham MD, Nadir MA, Struthers AD. Effect of vitamin D on blood pressure: a systematic review and meta-analysis. *J Hypertens*. 2009;27:1948.

200. Golzarand M, Shab-Bidar S, Koochakpoor G, et al. Effect of vitamin D3 supplementation on blood pressure in adults: An updated meta-analysis. *Nutr Metab Cardiovasc Dis*. 2016;26:663–73.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.