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Abstract 

Metagenomic analysis of nonmigratory passerines (Pseudopodoces humilis and Pyrgilauda 

ruficollis) and their habitats on the Qinghai‒Tibet Plateau revealed convergent adaptations in gut 

microbial composition and function dominated by Bacillota and Pseudomonadota. Functional 

enrichment in carbohydrate metabolism and genetic information processing underpins host energy 

optimization in extreme high-altitude environments. Critically, these birds constitute a major 

reservoir of antibiotic resistance genes (ARGs), harbouring 162 antibiotic resistance ontologies 

(AROs) with nearly universal resistance to clinical antibiotic classes. The core resistome—comprising 

glycopeptide (van clusters), fluoroquinolone, and tetracycline resistance genes—reflects 

anthropogenic contamination amplified by environmental persistence. Environmental transmission 

pathways were unequivocally demonstrated via 53 AROs shared between avian hosts and proximal 

matrices (soil/grass), coupled with livestock-derived antibiotic influx through excreta, establishing 

the plateau as a hotspot for resistance gene flux. Strikingly, "low-abundance-high-resistance" taxa 

(Pseudomonadota, Actinomycetota, and Bacillota; ≤20% abundance but >90% ARG contribution) 

drive resistome plasticity, potentially facilitated by horizontal gene transfer. Our findings redefine 

resident passerines as sentinels of ecosystem health and bridges for cross-boundary antimicrobial 

resistance (AMR) spread. Mitigating global AMR thus necessitates interdisciplinary strategies 

targeting environmental reservoirs (e.g., regulating livestock antibiotic use) and monitoring avian-

mediated gene flow. 

Keywords: gut microbiome; nonmigratory passerines; Qinghai‒Tibet Plateau; antibiotic resistance 

genes (ARGs) 

 

1. Introduction 

The Qinghai‒Tibet Plateau, the highest-altitude ecosystem on Earth, is characterized by a unique 

combination of hypobaric hypoxia, low temperatures, and intense ultraviolet radiation, which 

collectively drive coevolution between native species and their symbiotic microbial communities 

[1,2]. As a critical symbiotic interface, the gut microbiota facilitates host adaptation to extreme 

environments through two regulatory mechanisms: metabolic optimization and immune 

homeostasis maintenance [3]. The assembly of microbial communities results from the tripartite 

interplay of host genetics, dietary substrates, and environmental selection pressures [4–6]. Emerging 

evidence indicates that indigenous plateau mammals (e.g., plateau pikas and Tibetan antelope) 
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exhibit seasonally stratified remodelling of the gut microbiota, enabling ecological niche-specific 

energy harvesting strategies (cellulose degradation in winter vs. protein catabolism in summer) [7,8]. 

These findings elucidate the microbe-mediated mechanisms underlying host extremophilic 

adaptation. 

Meanwhile, tens of thousands of tons of antibiotics are consumed annually in healthcare, 

livestock, and agricultural settings worldwide [9]. This anthropogenic pressure has accelerated the 

global dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), 

constituting a planetary-scale threat to ecological integrity and One Health security [10]. Critically, 

the increasing prevalence of multidrug-resistant (MDR) pathogens has established antimicrobial 

resistance (AMR)-associated infections as a leading cause of mortality worldwide, including AIDS-

related deaths [11]. Environmental compartments—including soil matrices, aquatic systems, and 

animal waste reservoirs—serve as ARG hotspots, enabling cross-ecosystem transmission through 

horizontal gene transfer (HGT), hydrological connectivity, and mobile vectors (e.g., migratory 

avifauna) [12,13]. Mounting experimental evidence has demonstrated that gut microbiomes function 

as critical reservoirs for persistent ARB populations and transmissible ARG repertoires [10,14]. 

Notably, wild birds represent underappreciated mobile vectors facilitating the intercontinental 

spread of evolving ARB lineages and novel ARG combinations through latitudinal migration 

networks [13]. 

Compared with those of mammals, avian gut microbiomes exhibit lower stability and greater 

plasticity [15], traits strongly influenced by selective pressures from their complex life-history 

strategies, including dietary flexibility, flight-associated physiological adaptations, and long-distance 

migrations [16]. Metagenomic analyses by Lin et al [17] revealed that migratory birds harbour mobile 

genetic elements (MGEs) and demonstrate high coselection potential for antibiotic resistance genes 

(ARGs), increasing the risk of environmental contamination. Notably, endemic Tibetan Plateau 

species such as Pseudopodoces humilis and Pyrgilauda ruficollis have evolved hypoxia-responsive 

mechanisms to thrive in extremely high-altitude environments (3200–4550 m) [18]. Despite these 

adaptations, current avian microbiome research remains disproportionately focused on low-altitude 

and migratory waterfowl. Field sampling challenges have hindered investigations of plateau-

dwelling resident birds, which serve dual roles as AMR reservoirs and bioindicators of ecosystem 

health in low-disturbance regions. The distribution patterns of ARGs and host‒microbe coadaptation 

mechanisms in these birds’ unique habitats remain poorly characterized, underscoring the urgent 

need for targeted studies to address the increasing global threat of antibiotic resistance. 

Previous studies have characterized the gut microbiota of avian species such as Haradrius 

alexandrinus, Charadrius alexandrinus, and Passer montanus using 16S rRNA amplicon sequencing 

and culture-dependent methods [19,20]. However, these approaches offer limited resolution of 

microbial community dynamics and fail to comprehensively resolve antibiotic resistance gene (ARG) 

profiles in wild birds. Recent advances in high-throughput metagenomics have enabled systematic 

annotation of functional pathways and ARG identification across host-associated and environmental 

microbiomes [21,22]. To address these gaps, we selected two plateau-endemic resident birds, the 

Ground Tit (Pseudopodoces humilis) and the Rufous-necked Snowfinch (Pyrgilauda ruficollis), as 

model systems. Leveraging metagenomic sequencing, we aimed to (1) elucidate functional regulatory 

networks governing host‒microbe interactions under extreme environmental stress, (2) characterize 

community-wide ARG distribution patterns and horizontal transmission potential, and (3) evaluate 

the role of resident birds as ARG reservoirs and the implications for ecosystem health. Our findings 

advance the understanding of microbial evolutionary adaptation in extremely high-altitude 

ecosystems while providing actionable insights into the wildlife-mediated global dissemination of 

antimicrobial resistance, thereby informing strategies to mitigate this pressing public health 

challenge. 
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2. Materials and Methods 

2.1. Sampling 

Sampling efforts were carried out at three sites in Tianjun County, Menyuan County and Xinghai 

County, Qinghai Province, from July to September 2024 (Figure S1 and Table S1). During the feeding 

of cattle and sheep in pastoral areas, Tibetan people often observe birds competing for food. We 

trapped Pseudopodoces humilis (in text abbreviation: PH group) and Pyrgilauda ruficollis (in text 

abbreviation: PR group) using live trapping and locked them in cages previously sterilized with 75% 

alcohol. Fresh faeces were collected in 2-mL tubes (Kejin, China) and immediately frozen in liquid 

nitrogen before being sent for analysis to the Qinghai Provincial Institute for Endemic Disease 

Prevention and Control, Xining, China. The faecal samples were collected at a minimum distance 

interval of five metres to ensure that all the fresh droppings were expelled from different individuals, 

and the captured individuals were marked with nontoxic avian leg bands prior to release. In total, 

we collected 16 PH and 16 PR faecal samples, 15 soil samples and 6 grass samples. 

2.2. DNA Extraction and Sequencing 

Metagenomic DNA was isolated from approximately 0.25 g samples using a TIANamp Soil 

DNA Kit (Tiangen Biotech; Beijing; China) following the manufacturer’s instructions. The DNA 

concentration and quality were assessed with an Agilent 5400 instrument. The high-quality DNA was 

randomly fragmented into segments of approximately 350 bp using a Covaris ultrasonic disruptor to 

construct the library. Library preparation was completed through steps including end repair, 

addition of A-tails, ligation of sequencing adapters, purification, and PCR amplification. All libraries 

were then subjected to 2 × 150 bp paired-end sequencing on the BGISEQ DNBSEQ-T7 platform 

(Novogene, Beijing, China). 

2.3. Sequence Analyses and Metagenome Assembly 

The raw BGISEQ paired-end sequencing data were preprocessed using Fastp (v0.23.1) with the 

following criteria. Reads were discarded if either paired read contained (a) adapter sequences 

(detected by default overlap analysis); (b) >10% ambiguous bases (N); or (c) >50% low-quality bases 

(Phred score <5). Considering the possibility of host contamination in samples, clean data were 

subjected to BLAST analysis against the host database to filter out reads of host origin. Bowtie2 

software (v2.5.4) was used with the following default parameter settings: --end-to-end, --sensitive, -I 

200, and -X 400 [23–25]. MEGAHIT software (v1.2.9) was used for assembly analysis of the clean data, 

with the following assembly parameter settings: --presets meta-large (--end-to-end, --sensitive, -I 200, 

-X 400) [24,26], and scaftigs without N were obtained by breaking the resulting scaffolds from the N 

junction [27,28]. 

2.4. Gene Prediction and Construction of the Nonredundant Gene Set 

With the default parameters, MetaGeneMark (v2.1) was used to perform ORF prediction for 

scaftigs (≥ 500 bp) of each sample [23,29–32], and sequences with a length of less than 100 nt in the 

prediction results were filtered out [26,27,33–35]. For the ORF prediction results, CD-HIT software 

(v4.5.8) was used to eliminate redundancy [36,37] and obtain the nonredundant initial gene catalogue 

(the nucleic acid sequences encoded by successive nonredundant genes are called genes) [34], with 

parameter settings: -c 0.95, -G 0, -aS 0.9, -g 1, -d 0 [30,32]. Clean data from each sample were aligned 

to the initial gene catalogue by using Bowtie2 to calculate the number of reads of the genes in each 

sample alignment, with the following parameter settings: --end-to-end, --sensitive, -I 200, -x 400 

[27,30]. Genes with <= 2 reads in each sample were filtered out to finally determine the gene catalogue 

(unigenes) for subsequent analysis [34]. On the basis of the abundance of each gene in the gene 

catalogue in each sample, the abundance information of each unigene in each sample was statistically 

analysed. 
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2.5. Gene Taxonomic Prediction 

DIAMOND software (v2.1.9) [38] was used for alignment of unigene sequences with the 

Micro_NR database, which included sequences from bacteria, fungi, archaea, and viruses extracted 

from the NCBI NR database (https://www.ncbi.nlm.nih.gov/). The alignment was performed using 

the BLASTP algorithm with a parameter setting of 1e-5 [24]. From the alignment results of each 

sequence, the one with evalue <= min. evalue *10 was selected. Since each sequence may have 

multiple alignment results, the LCA algorithm (applied to the systematic taxonomy of MEGAN 

software (https://en.wikipedia.org/wiki/Lowest_common_ancestor)) was adopted to determine the 

species annotation information of the sequence [39]. In addition to the results of the LCA annotation 

and gene abundance table, the abundance of each sample at each taxonomic level and the 

corresponding gene abundance tables were acquired. The abundance of a species in a sample. 

Microbiome analyses were conducted using a standardized bioinformatics pipeline. Taxonomic 

abundance profiles across hierarchical levels were visualized through relative abundance profiles 

and Bray‒Curtis distance-based clustering trees implemented in Perl SVG (v5.18.2). Alpha diversity 

metrics, including the Chao1 richness and Shannon entropy indices, were computed using the R 

vegan package (v2.15.3). Beta diversity patterns were examined via principal coordinate analysis 

(PCoA) employing the R packages extrafont, ggplot2, and grid (v2.15.3 for core dependencies), with 

dimensionality reduction performed on normalized abundance matrices. Intersectional analysis of 

taxonomic features across sample groups was visualized using the R VennDiagram package (v3.0.3). 

2.6. Functional Gene Annotation 

Functional annotation of the unigenes was performed using DIAMOND (v2.0.15) with BLASTP 

alignment against the KEGG (v2023.1) [40,41] and PHI (v4.12) databases, applying an e-value cut-off of 

1e−5 [30,42]. From the alignment results of each sequence, the best BLAST hit results were selected for 

subsequent analysis [30,32,43,44]. The relative abundance at different functional levels was calculated 

according to the alignment results (the relative abundance at each functional level was equal to the 

sum of the relative abundance of genes annotated at that functional level) [23,30]. For antibiotic 

resistance profiling, the unigenes were aligned to the CARD database (https://card.mcmaster.ca/) [45] 

using Resistance Gene Identifier (RGI) software (v6.0.2) [46] provided by the CARD database (RGI 

built-in BLASTP, default evalue < 1e-30) [47]. The relative abundance of each ARO was calculated 

according to the RGI alignment result and unigene abundance information. To reveal the relationship 

between microbial composition and the resistome, Circos (v0.64)-generated visualization of 

abundance distribution circle map.resistance genes (unigenes annotated as ARO) and species 

attribution analysis of the resistance mechanism were carried out (some AROs with long names are 

abbreviated as the first three words plus underlines). 

3. Results 

3.1. Bacterial Community Profile 

A total of 53 metagenomes were sequenced using the BGISEQ DNBSEQ-T7 platform (2 × 150 

bp). High-throughput sequencing of the microbial DNA samples generated 391.4 Gb of high-quality 

clean data from the 53 samples. An average of 7.38 Gb were obtained per sample (Supplementary 

File 1). Furthermore, after de novo assembly, 1306.62 Mb of scaftigs (with total lengths ranging from 

0.94 to 52.13 Mb) were generated, with an N50 of 76426 bp (Supplementary File 2). 

Taxonomic annotation of the metagenomic sequencing data against the NR database revealed 

that Bacteria dominated the microbial community and presented significantly greater phylogenetic 

diversity than did Archaea, Eukaryota, and viral sequences (Supplementary File 3). The top four 

phyla in the PH group were Pseudomonadota (15.21%), Actinomycetota (10.70%), Chordata (5.86%), 

and Bacillota (4.79%) (Figure 1a and (Supplementary File 4). In the PR group, Pseudomonadota also 

predominated, with an average relative abundance of 9.88%, followed by Bacillota (6.91%), 
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Streptophyta (5.82%), and Chordata (5.10%). Unclassified sequences and low-abundance sequences 

were categorized as "Others," accounting for 52.04% and 64.18% of the total community in each 

sample, respectively, indicating the presence of a significant number of unknown bacteria in the guts 

of these two bird species. A considerable proportion of Pseudomonadota was detected in the soil 

(35.13%) and grass (11.49%) samples, while Streptophyta (29.14%) was the most dominant phylum 

in the grass samples. At the genus level, Enterococcus represented the most abundant bacterial taxon 

in both avian species, with relative abundances of 2.06% (PH) and 4.26% (PR), while host-specific 

secondary genera emerged—Rhodococcus (1.84%) and Pseudomonas (1.75%) in PH versus 

Turicibacter (1.97%) and Hordeivirga (1.65%) in PR (Figure S1 and (Supplementary File 5). 

Hierarchical clustering analysis revealed that bacterial communities in the faeces of Tibetan PH and 

PR clustered closely between species and were obviously distinct from other environmental 

communities (Figure 1b). Moreover, the grass and soil samples were grouped together. 

a b 

 

Figure 1. Taxonomic profiles and beta diversity of bacterial communities at the phylum level in finch species 

and environmental samples. (a) Relative abundance of bacterial taxa at the phylum level across different sample 

groups, including PH, PR, grass, and soil samples. Each bar represents one group and is colour-coded by 

phylum. (b) The dendrogram indicates similarity in microbial communities on the basis of Bray–Curtis distance, 

with corresponding stacked bar plots showing phylum-level composition. 

Venn diagrams revealed a conserved gut microbial architecture between PH and PR (Figure S2), 

despite divergent abundance patterns in specific taxa. Concordantly, α diversity metrics 

demonstrated comparable community complexity between species (Figure 2). To distinguish the 

differences in microbial communities across various ecological environments, we compared the 

metagenomic sequencing data from wild bird faeces with those from environmental samples 

collected from their surrounding areas. The PCoA results indicated that, at the phylum level, the 

intestinal microbiota of most passerine hosts (PH) exhibited compositional convergence with the 

predominant microbial profile of proximal environmental reservoirs (PR) (Figure 3). Significant 

divergence emerged between specific PH species and PR cohorts, suggesting host phylogenetic 

constraints on microbial assembly. Subsequent genus-level PCoA corroborated these 

macroecological patterns while resolving finer taxonomic stratification among niches (Figure S3). 
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Figure 2. Alpha diversity at the genus level (Chao1 estimator and Shannon estimator). 

 

Figure 3. Principal coordinate analysis (PCoA) based on abundance at the phylum level (Bray‒Curtis algorithm). 

A total of 228 opportunistically pathogenic species were identified via comparison against a 

previously published pathogen list [48] Salmonella enterica, Pseudomonas aeruginosa, and E. coli were 

the most prevalent bacteria. Furthermore, several clinically critical pathogens, such as Staphylococcus 

aureus, Yersinia pestis, and Vibrio cholerae, were consistently observed. 

3.2. Functional Profiling of the Gut Metagenome 

The metabolic and functional pathways of the nonredundant (NR) gene catalogue derived from 

the microbiome were annotated using the KEGG database. Approximately 50% of the NR genes 

(17,408 KEGG Orthology (KO) functions) were assigned to 44 level II orthology groups (Figure 4). 

Among the annotated functions, metabolic pathways dominated (40.47% of total KO assignments), 

with the following subcategories: carbohydrate metabolism (10.73%), amino acid metabolism 

(10.05%), energy metabolism (9.57%), metabolism of cofactors and vitamins (5.83%), nucleotide 

metabolism (3.75%), and lipid metabolism (3.00%). The remaining functional categories primarily 

included genetic information processing (13.86%) and environmental information processing 

(10.88%). Furthermore, Bray‒Curtis distance analysis based on the microbial functional module 

composition revealed similar clustering patterns among the samples (Figure S4). 
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Figure 4. The KEGG functional annotation of the predicted nonredundant gene catalogue based on the 

functional database. 

3.3. Antibiotic Resistance Profiles 

To profile antibiotic resistance genes (ARGs) in the gut microbiota of avian and environmental 

samples, metagenomic unigenes were screened against the Comprehensive Antibiotic Resistance 

Database (CARD v3.2.5). We identified 162 distinct antibiotic resistance ontology (ARO) categories 

across the 4 metagenome samples (Supplementary File6). Avian-associated samples dominated the 

resistome, containing 143 AROs (88.27% of the total), of which 53 were shared with the environmental 

samples(Figure 5a). Notably, 130 AROs (90.91% of avian-associated AROs) were common to both the 

PH and the PR, indicating conserved resistance gene pools between these sympatric passerines. 

a b 

 

Figure 5. Distribution and composition of antibiotic resistance genes (ARGs) in the finch gut and environmental 

microbiota. (a) Venn diagram showing the shared and unique antibiotic resistance ontologies (AROs) among the 

PH, PR, grass, and soil samples. (b) Relative abundance of the top 20 antibiotic resistance ontology terms in each 

sample group. 

The 20 most abundant AROs across samples revealed that the faecal samples from PR presented 

relatively high ARG abundances, followed by the soil samples from the environment (Figure 5b). 
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Although PH shared a large portion of AROs with PR (n=130), the abundance of these AROs in PH 

was much lower than that in PR. Most of these genes represented antibiotic target alterations, 

encompassing four classical glycopeptide resistance gene clusters, namely, the vanI cluster, vanB 

cluster, vanG cluster, and vanP cluster, which confer resistance to glycopeptide and tetracycline 

antibiotics. The second most common function was antibiotic efflux, represented by three types of 

classic multidrug efflux pumps: the resistance-nodulation-cell division (RND)-type, ATP-binding 

cassette (ABC)-type and major facilitator superfamily (MFS)-type, which confer resistance to 

fluoroquinolones, macrolides, diaminopyrimidine, phenicol, lincosamides, nucleosides, and 

rifamycin, as well as disinfecting agents and antiseptics. 

To systematically elucidate the associations between bacterial communities and antibiotic 

resistance mechanisms within the samples, we generated a double-circle plot depicting the 

relationships between metagenomic bacteria and resistance mechanisms (Figure 6). Antibiotic target 

alteration has emerged as the most prevalent resistance mechanism, exhibiting extensive associations 

with multiple bacterial phyla and demonstrating significant enrichment within Pseudomonadota. 

Furthermore, antibiotic efflux was also highly prevalent in both Pseudomonadota and Bacillota, 

indicating that efflux pumps represent a common resistance strategy in these taxa. Additionally, 

certain phyla, including Bacteroidota, Chloroflexota, and Verrucomicrobiota, exhibited moderate 

associations with multiple resistance mechanisms. This pattern reflects the diverse adaptation 

strategies employed by bacterial populations in response to antibiotic pressure in the sampled 

environment. We next assessed the similarity of ARO composition among each sample group via 

PCoA. Our findings revealed significant overlap between avian and environmental (soil/grass) 

resistomes (Figure 7). Notably, avian samples presented greater β diversity than did environmental 

samples. Antibiotic target alterations were more enriched in the PH resistome, whereas antibiotic 

efflux mechanisms were more prevalent in the PR resistome. 

 

Figure 6. Circos plot illustrating the associations between bacterial taxa and antibiotic resistance mechanisms in 

the metagenomic dataset. 
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Figure 7. PCoA (Bray‒Curtis) of the annotated CARD between birds and their associated environmental 

microbiota. 

These AROs were further analysed for their microbial origin. Taxonomic analysis revealed that 

the AROs were predominantly associated with Pseudomonadota, Actinomycetota, and Bacillota 

across all the samples (Figure 8a–d). Approximately 90% of AROs in PH, 92% in PR, and 87% in grass 

samples originated from these phyla, despite their relatively low microbial abundances: 

Pseudomonadota constituted 15%, 10%, and 11% of the total microbiota in PH, PR, and grass, 

respectively; Actinomycetota accounted for 11% (PH), 5% (PR), and 7% (grass); and Bacillota 

represented 5% (PH), 7% (PR), and 0.6% (grass). In contrast, the soil samples exhibited divergent 

patterns, with 49% of the AROs linked to Actinomycetota (10% microbial abundance) and 23% to 

Pseudomonadota (35% abundance). These findings underscore a systemic disproportionality 

between microbial prevalence and resistance gene contribution, where phylogenetically restricted 

taxa drive ARG reservoirs despite their low ecological representation. 

 

 

Figure 8. a-d Circos plots representing the alignment of the proportions of different antibiotic resistance 

ontologies and microbial phyla in the PH (a), PR (b), soil (c) and grass (d) groups. The inner ring shows the 

distribution of different antibiotic resistance ontologies in the corresponding microbial phyla. The outer ring 

shows the relative abundance of different phyla in each group. 
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4. Discussion 

This study provides the first systematic characterization of gut microbiome adaptation and ARG 

dissemination in two plateau-endemic passerines—Pseudopodoces humilis (PH) and Pyrgilauda 

ruficollis (PR)—under extreme environmental conditions on the Qinghai‒Tibet Plateau. These 

species were selected not only for their ecological representativeness as endemic taxa but also for 

their dual importance in elucidating extremophilic adaptation and ARG transmission dynamics. 

Taxonomic analysis revealed no significant divergence in the gut microbial community structure at 

the phylum level between species, with Bacillota and Pseudomonadota dominating both 

assemblages, which is consistent with the typical passerine microbiota [49–51]. This similarity likely 

arises from their shared ecological niche as cave-dwelling species and partial dietary overlap, 

underscoring the roles of host ecology, diet, and environmental selection in shaping microbial 

communities, in accordance with the host‒microbe coevolution theory [52,53]. Members of the 

phylum Bacillota (e.g., Butyrivibrio spp.) mediate the degradation of insoluble fibres (e.g., cellulose 

and resistant starch) and produce butyrate, conferring anti-inflammatory benefits and enhancing 

intestinal barrier integrity. These metabolic functions enable hosts to extract energy and nutrients 

from carbohydrates, polysaccharides, sugars, and fatty acids [54–56]. Notably, sequences assigned to 

Chordata were detected at substantial abundances in both species (Pseudopodoces humilis (PH): 

5.86%; Pyrgilauda ruficollis (PR): 5.10%), potentially reflecting increased meat consumption during 

summer sampling (July–September) or indicating the presence of intestinal parasites (e.g., 

nematodes). At the genus level, Enterococcus was predominant in both birds. This genus frequently 

exhibits multidrug resistance (particularly to β-lactams and quinolones), highlighting its ARG 

dissemination potential [57]. Key distinctions included elevated abundances of Rhodococcus (1.84%) 

and Pseudomonas (1.75%) in Pseudopodoces humilis (PH), which aligned with their relatively high 

proportions of Pseudomonadota (15.21%) and Actinomycetota (10.70%). Pseudomonas species 

possess metabolic capabilities for denitrification, sulfur oxidation, and urea degradation, potentially 

serving as biocontrol agents against pathogens such as Vibrio species [58]. Conversely, Pyrgilauda 

ruficollis (PR) presented relatively high abundances of plant/soil-associated genera (e.g., Triticum: 

1.97%; Hordeum: 1.65%) and increased Streptophyta abundance in grass samples (snowfinch: 5.82%; 

grass: 29.14%). This suggests greater grass seed consumption in Pyrgilauda ruficollis (PR), with their 

microbiota more substantially influenced by environmental bacteria (e.g., soil- and plant-derived 

microbes) [59]. In support of this, the soil samples presented high abundance of Acidobacteriota 

(12.78%), a diverse and ubiquitous soil phylum linked to local geochemical properties [60,61]. The 

microbial structure of birds is different from that of soil, and the phylogenetic composition of the soil 

microbiota is less heterogeneous than that of the bird microbiota and grass microbiota, potentially 

because of the diverse and variable conditions in the environmental samples. The diversity and 

composition of soil bacterial communities, on a large spatial scale, can be predicted largely by a single 

variable: soil pH [62]. 

We further elucidated the microbial risks associated with Pseudopodoces humilis (PH) and 

Pyrgilauda ruficollis (PR), in which 228 opportunistic pathogens were detected. The identification of 

such a high abundance of opportunistic pathogens underscores the complexity of their microbial 

communities' pathogenic potential and suggests that wild birds may serve as potential reservoirs of 

infection, highlighting the need for continuous surveillance of these pathogens. Systematic screening 

of pathogen profiles using metagenomic technology provides novel strategies for disease prevention, 

control, and early diagnosis while also establishing a more robust data foundation for related 

pathological studies. 

The 21st-century public health challenge posed by the global spread of antibiotic resistance (AR) 

involves complex environmental drivers in avian species inhabiting the Qinghai‒Tibet Plateau. 

Environmental compartments in China demonstrate pervasive antibiotic contamination, with 

detection rates reaching 100% in soils, 98.0% in surface waters, and 96.4% in coastal waters [63], 

establishing reservoirs for ARG dissemination. As critical environmental vectors, birds facilitate the 

transmission of ARB through faecal deposition and contaminated water sources [64–66]. This study 
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employed metagenomic sequencing to conduct unbiased resistome profiling of Pseudopodoces 

humilis (PH) and Pyrgilauda ruficollis (PR), circumventing the limitations inherent in targeted 

detection approaches [67]. We comprehensively identified 162 ARO categories. While both species 

shared >90% of the ARGs, Pyrgilauda ruficollis (PR) had a significantly greater total ARG abundance. 

The gut microbiomes of these species have demonstrated resistance to nearly all major classes of 

antibiotics relevant to clinical and agricultural practice, with glycopeptide-, fluoroquinolone-, and 

tetracycline-resistance genes constituting the core resistome. Glycopeptide antibiotics, notably 

vancomycin and teicoplanin, have served as last-resort therapeutics against bacterial infections for 

more than half a century and remain essential for treating methicillin-resistant Staphylococcus aureus 

(MRSA) and penicillin-resistant Streptococcus pneumoniae. The historical use of avoparcin as a 

livestock growth promoter [68] likely contributed to the evolution of vancomycin-resistant 

enterococci (VREs) [69,70]. Critically, homologous resistance genes (vanA, B, C, D, E, and G) have 

been detected in >10,000-year-old permafrost samples [71,72] and are highly abundant in 

contemporary soil, marine, and human faecal matrices [73], confirming that environmental reservoirs 

are intrinsic sources of ARGs. The persistence of fluoroquinolone resistance is linked to 

environmental stability and low biodegradability [74], whereas tetracycline resistance genes are 

widely distributed among plateau nonmigratory birds (e.g., corvids and Gyps himalayensis) [75,76], 

collectively indicating a regional ecological network of resistance. Given the absence of direct 

antibiotic exposure in both bird species, their ARGs likely originate from environmental pathways 

(e.g., antibiotic residues from free-grazing livestock enter ecosystems via excreta [77] ), with 53 AROs 

shared between birds and environmental samples (soil, grass), highlighting the critical role of 

environmental transmission. Substantial quantities of antibiotics discharged from hospitals and 

livestock operations contaminate rivers, sediments, and soils [78], enabling the transmission of 

antibiotic-resistant bacteria (ARB) from contaminated matrices to avian species [79]. ARGs may be 

disseminated to hosts via contaminated water, food chains, or aerosols, posing elevated risks in 

regions with limited public health infrastructure [80]. The resistome composition was significantly 

associated with microbial community structure. Although Pseudomonadota, Actinomycetota, and 

Bacillota represented only 20% of the total relative microbial abundance, they harboured >90% of the 

identified ARGs. This "low-abundance-high-resistance" phenomenon suggests that these taxa serve 

as key vectors for ARG dissemination, potentially facilitated by horizontal gene transfer (HGT) [81]. 

Consequently, structural shifts in microbial communities may directly modulate resistance 

transmission. 

The present study has several limitations that should be acknowledged. First, the relatively small 

sample size (*n* = 53) and cross-sectional design constrained our ability to investigate gut microbiota 

dynamics and their impacts across the host life cycle. Future studies should incorporate broader 

taxonomic representations, encompassing both migratory and resident avian populations across 

diverse ecosystems, to systematically elucidate the ecological and evolutionary drivers shaping 

microbial communities and their role in antibiotic resistance transmission. Longitudinal monitoring 

is particularly essential to resolve the effects of seasonal fluctuations, environmental stressors (e.g., 

extreme climatic events, variations in food resources), and migratory behaviour on microbial 

community structure and resistome dynamics. Additionally, annotations relying on the NR and 

CARD databases are inherently subject to taxonomic bias towards well-characterized taxa, 

potentially overlooking plateau-specific antibiotic resistance genes (ARGs) or novel resistance 

mechanisms. Therefore, integrating culturomics with single-cell sequencing technologies represents 

a critical approach for characterizing the biological traits and resistance potential of 

uncultivated/unclassified microorganisms, thereby advancing the current understanding. 

Furthermore, the absence of quantitative data on environmental factors (e.g., antibiotic residue 

concentrations, pH, and heavy metal pollution) impedes the precise delineation of the environmental 

drivers underpinning the resistome. Future investigations should employ multivariate statistical 

modelling frameworks (e.g., structural equation modelling and machine learning algorithms) to 
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quantify causal relationships between multiple environmental stressors and the evolution of 

microbial antibiotic resistance. 

5. Conclusions 

On the basis of metagenomic analysis of nonmigratory passerines and their habitats on the 

QingHai Tibetan Plateau, this study revealed significant convergence in gut microbial composition 

and function across species. These birds represent critical reservoirs of antibiotic resistance genes 

(ARGs), which serve as major sources of resistance determinants for local environmental bacteria. 

Transmission pathways were clearly demonstrated by the sharing of 53 resistance determinants 

between avian hosts and proximal environmental matrices (soil/grass), combined with livestock-

derived antibiotic influx via excreta. These mechanisms establish the Tibetan Plateau as a hotspot for 

resistance gene dissemination. Collectively, these findings reposition resident passerines as sentinel 

species for ecosystem health and bridge the need for cross-boundary antimicrobial resistance (AMR) 

transmission. Mitigating global AMR thus necessitates interdisciplinary strategies targeting 

environmental reservoirs (e.g., regulating antibiotic use in livestock operations) and monitoring 

avian-mediated gene flow. 
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