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Abstract: Integrating autonomous haulage systems in underground mining has revolutionized safety 
and operational efficiency. However, deploying 3D detection systems for autonomous truck 
navigation in such an environment faces persistent challenges due to dust, occlusion, complex 
terrains, and low visibility. This affects their reliability and real-time processing. While existing 
reviews have discussed object detection techniques and sensor-based systems, providing valuable 
insights into their applications, only a few have addressed the unique underground challenges that 
affect 3D detection models. This review synthesizes the current advancements in 3D object detection 
models for underground autonomous truck navigation. It assesses deep learning algorithms, fusion 
techniques, multi-modal sensor suites, and limited datasets in an underground detection system. The 
study uses systematic database searches with selection criteria for relevance to underground 
perception. The findings of this work show that the mid-level fusion method to combine different 
sensor suites enhances robust detection. Though YOLO (You Only Look Once)-based detection 
models provide superior real-time performance, challenges persist in small object detection, 
computational trade-offs, and data scarcity. This paper concludes by identifying research gaps and 
proposing future directions for a more scalable and resilient underground perception system. The 
main novelty is its review of underground 3D detection systems in autonomous trucks. 

Keywords: 3D object detection; autonomous trucks; deep learning; sensor fusion; underground 
mines; YOLO algorithms 
 

1. Introduction 

The evolution of autonomous driving systems in the mining sector has brought significant 
interest in enhancing computer vision for accurate and real-time 3D object detection. Unlike urban 
[1–3], or surface mining driving [4–6]. Underground mining environments present unique constraints 
such as limited visibility, dust, confined spaces, and uneven terrain that pose significant challenges 
for 3D object detection. These object detection systems are the perceptual backbone of autonomous 
truck haulage for obstacle recognition, object classification, and navigation in real-time.  

Recent advancements in computer vision/image processing powered by deep learning (DL) and 
artificial intelligence (AI) have significantly improved situational awareness in autonomous driving 
systems [7]. AL/ML-based object detection and tracking models have seen applications in robotics 
[8–10], urban autonomous driving [4,11,12], collision avoidance systems [13,15], and security systems 
for monitoring and surveillance [15]. AI-ML techniques, particularly those involving deep learning, 
play a significant role in these systems [7,16]. They have addressed the challenges of machine-human 
interactions, particularly for collision prevention, injuries, and fatalities. In the underground 
environment, research increasingly implements AI/ML architectures with (LiDAR Light Detection 
and Ranging), thermal infrared (IR), and RGB (Red, Green, Blue) cameras to detect pedestrians, 
machinery, and hazards [5,6,17–20]. 3D object detection models, which give richer spatial information 
than 2D models, have become a critical area of research for safe autonomous truck navigation [21–
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24]. The DL algorithms include Convolutional Neural Networks (CNNs) and YOLO (You Only Look 
Once), which have become efficient in identifying and classifying objects in real time [6,25,26].  

These current models have demonstrated effectiveness in improving detection capabilities 
under diverse and harsh conditions [15,27,28]. However, they are limited due to small and occluded 
object detection inaccuracies amidst noise and obstructions. Also, they lack robustness when applied 
to specific environments such as underground mines, necessitating more innovative solutions [15,29].  

As the mining industry transitions to Industry 4.0 and 5.0, which prioritize human-machine 
interactions, it is crucial to continually develop and innovate new systems, methods, and solutions 
for object detection and anti-collision systems in underground mining environments. Deploying 
autonomous vehicles into the underground mining industry is a paradigm shift toward operational 
efficiency and safety enhancement. These autonomous haulage trucks are designed to navigate 
dynamic and intricate mining environments, enhancing rapid decision-making accuracy and 
situational awareness. To ensure this, they heavily depend on sophisticated 3D object detection 
systems. However, the capabilities of these models are currently limited, which hinders the 
exploitation of their full potential in autonomous mining operations. Current detection systems 
frequently encounter limitations like trade-offs between speed and accuracy, especially under 
adverse conditions such as variable terrains, fluctuating lighting, and diverse objects [6,12,30]. Sensor 
modalities such as LiDAR, IR, and RGB cameras often result in suboptimal performance, particularly 
in dynamic obstacles and rapidly changing settings. Also, the real-time application capabilities of 
these detection systems remain insufficient, resulting in latency issues that could compromise 
operational efficiency and safety. 

Many review articles such as [2,16,18,31–37] have explored the advancements of object detection 
models in autonomous vehicles and mining environments. Immam et al. [18] reviewed anti-collision 
systems based on computer vision in underground mines. The study examined machine learning 
algorithms, which included CNNs, Fast R-CNN, and YOLO series, for real-time object detection and 
sensors employed in autonomous trucks to reduce accidents. Tang et al. [38] studied multi-sensor 
fusion detection methods for 3D object detection in urban autonomous driving. They developed a 
taxonomy that categorized fusion approaches and assessed their efficacy in improving detection 
accuracy and safe driving in autonomous vehicle driving scenarios. Cui et al. [32] reviewed 
navigation and positioning technologies in underground coal mines. The study investigated multiple 
techniques, like visual image feature-based systems, inertial navigation, visible light communication 
(VLC), and sensor fusion methods, to improve the accuracy and robustness of the detection systems. 

Patrucco et al. [33] underscored the importance of multi-sensor systems by integrating different 
sensors to address the limitations of individual sensors. The study also investigated anti-collision 
technologies like cameras, LiDAR, and radar, discussing their principles, advantages, limitations, and 
costs. Wang et al. [34] also reviewed the detection systems advancements in unmanned driving 
technology for coal mine transportation systems. They discussed multi-sensor fusion strategies to 
address the limitations of single sensors. Nevertheless, there is a limited examination of underground 
settings’ complex and dynamic conditions and the scarcity of standardized datasets in detection 
models for benchmarking. 

The underground mining environment requires robust sensor fusion techniques, low-latency 
processing, and models resilient to noise and occlusion, which conventional surveys overlook. A 
standardized dataset with underground conditions for practical model evaluation and performance 
also exists. This review paper addresses the lacuna by synthesizing the most recent developments in 
3D object detection, sensor fusion strategies, and dataset challenges within underground 
autonomous haulage systems. It highlights the strengths, limitations, and suitability of various 3D 
detection systems for autonomous truck navigation in an underground environment. The objectives 
of this review are: 

• To categorize and evaluate the various sensor modalities employed in underground 
autonomous haulage 3D detection systems 

• To explore multi-sensor fusion approaches, their performance, and trade-offs 
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• To analyze and synthesize the deep learning architectures used in object detection models, 
particularly YOLO variants and CNNs. 

• Identify key underground dataset limitations for object detection models. 
• To identify significant challenges in underground autonomous truck object detection 

deployment and propose future directions for developing scalable and reliable detection 
systems. 

This paper presents a comprehensive review to evaluate the current literature on 3D object 
detection systems for underground autonomous trucks. The process commenced with clearly 
defining the research questions, followed by a comprehensive search of pertinent studies in reputable 
academic databases, such as SpringerLink, Multidisciplinary Digital Publishing Institute (MDPI), 
ResearchGate, Institute of Electrical and Electronics (IEEE) Xplore, and Google Scholar. The search 
was conducted using keywords such as "3D object detection," "autonomous trucks," and " mining," 
in conjunction with relevant terms such as "pedestrian detection,” “underground," and “object 
detection.” There were defined criteria for inclusion and exclusion that guided the selection process. 
The studies considered for article inclusion were restricted to journals published in reputable 
academic sources, conference papers, and peer-reviewed articles. The only research included was 
recent, within the last 5-10 years, and specifically addressed 3D object detection in autonomous 
vehicles in underground mining environments. Data extracted from the selected studies were 
categorized and analyzed in key areas, including sensor modalities, 3D detection systems, multi-
sensor fusion, fusion strategies, underground datasets, and specific mining challenges. In real-world 
scenarios, categorization enabled a comparative analysis of various approaches and their 
performance. The review followed established frameworks to guarantee consistency, transparency, 
data synthesis, and reporting comprehensiveness. 

The review aims to enhance the reliability and robustness of autonomous systems in the 
underground mining industry by comprehensively analyzing 3D object detection methodologies in 
autonomous vehicles. The study employs a pragmatic approach, acknowledging that underground 
mining environments present distinct requirements that substantially differ from those in more 
controlled industrial environments. It is, therefore, essential to comprehensively evaluate and 
compare current 3D object detection techniques in such environments to ascertain their strengths, 
limitations, and application-specific challenges. This investigation will help discover current 
literature and technology limitations for developing more efficient detection systems that deliver 
real-time, precise, and resilient performance in underground mining environments. The study will 
emphasize recent advances and establish a basis for recommending future directions, particularly 
optimizing algorithms for rugged, resource-limited, and unpredictable mining environments. The 
study contributes to the advancement of autonomous haulage truck technology consistent with the 
mining industry's safety protocols for zero fatality and operational requirements, thereby fostering a 
more efficient and secure future for the sector. 

The structure of the paper is organized as follows: Section 2 provides a comprehensive review 
of the key sensor-based 3D detection systems for autonomous truck navigation, multi-sensor 
detection systems, and their strengths and limitations. Section 3 delves into multi-sensor fusion 
strategies, grouping them into early, mid, and decision-level fusion, and assesses their impact on 
detection accuracy. Section 4 discusses current deep learning architectures, their deployments, and 
state-of-the-art underground 3D detection model comparisons. Section 5 synthesizes underground 
dataset challenges related to autonomous object detection. Section 6 identifies the key challenges 
detection systems face in underground settings and proposes future directions. Finally, Section 7 
synthesizes the findings of this review. Figure 1 shows the structure of the entire review report. 
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Figure 1. Structure of the Review Report. 

2. Overview of Sensor Modalities for 3D Object Detection in Underground 
Autonomous Haulage Trucks 

Three-dimensional (3D) Object Detection is pivotal to autonomous haulage truck operation in 
underground mining environments where safety, situational awareness, and navigation are critical. 
These detection systems rely on different sensor modalities to provide spatial awareness, track 
moving and static objects such as workers, equipment, and structural features, and detect hazards. 
Unlike controlled urban environments, underground settings have variable lighting, dust, 
occlusions, and uneven terrains, which necessitate the integration of complementary and robust 
sensors for detection.  

This section provides a detailed analysis of key sensor-based detection perception systems used 
in underground autonomous trucks, which include IR, RGB cameras, and LiDAR systems. Each 
system is evaluated for its operational principles, integration with deep learning algorithms, 
underground applicability, and performance trade-offs. 

2.1. Infrared Thermal (IR) Systems 

Infrared (IR) thermal sensors (Figure 2) detect heat signals from objects and convert them into 
thermal images or temperature maps. IR's ability to perceive heat from objects or obstacles makes it 
significantly valuable for underground mining environments, where smoke, low light, and dust often 
compromise traditional optical systems. Unlike RGB cameras that depend on ambient lighting, 
thermal sensors can function in complete darkness and thermally unstable conditions.  

These sensor modalities are effective in: 

1. Pedestrian or worker detection by identifying humans’ heat signatures. 
2. Collision avoidance in situations where RGB cameras and LiDAR sensors struggle. 
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Figure 2. Thermal Infrared camera [39]. 

IR imagery can be segmented and classified in real-time when integrated with YOLO-based or 
CNN architecture. Many studies have demonstrated the successful application of different YOLO 
and two-stage CNN algorithms on thermal imagery for object detection in underground mining 
environments [18,40–44]. Figures 3 and 4 illustrate the application of IR with DL architectures in 
underground environments. Keza et al. [43] presented a pedestrian detection system that enhances 
safety in underground mines by integrating thermal imaging with 3D sensors. Using a FLIR thermal 
camera and depth sensors (TOF and Kinect), the system classifies regions using four methods and 
segments thermal images based on temperature thresholds. However, the model demonstrated 
susceptibility to motion distortion and mist and lacked enough underground datasets for model 
development. 

Key Features and Advantages of IR Systems 

• Effective in Low or No Light Conditions: IR systems rely on detecting heat signatures rather 
than visible light, making them highly effective in poorly lit or completely dark environments 
in underground mines. 

• Thermal Object Detection: These sensors distinguish objects based on their heat signatures to 
identify equipment, vehicles, and workers, even in smoke, fog, or dust. 

• Long-Range Detection Capabilities: Certain IR sensors, like long-wave infrared (LWIR), can 
detect objects over significant distances, enabling early identification of hazards or obstacles. 

• Insensitive to Ambient Light Variations: Unlike RGB cameras, IR systems are unaffected by 
ambient light changes, ensuring consistent performance in dynamic lighting conditions. 

• Compact and Durable Designs: IR sensors are lightweight, built to endure the harsh mining 
environment, and can withstand hot temperatures, vibrations, and dust. 

• Resistance to Ambient Light Variations: Unlike RGB cameras, IR sensors are not affected by 
changes in ambient light, offering consistent performance both day and night. 

Despite these strengths of IR sensor modalities, there are notable limitations: 

• Limited spatial resolution. This often affects fine-grained object classification  
• High purchase cost. IR sensors such as long-wave IR (LWIR) are often costly 
• Inference from reflective equipment or heat surfaces with similar thermal profiles degrades their 

performance 

Despite these limitations, their fusion into multisensory systems is invaluable, which enhances 
system robustness and reliability. When integrated with LiDAR (for depth information) and RGB (for 
texture), IR sensors contribute uniquely to real-time perception and classification. 
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Figure 3. Thermal Sensor for Pedestrian Detection in Underground Operations (a) Navigating System [45], (b) 
Pedestrian Detection [46]. 

 

Figure 4. Thermal Imagery using YOLO Algorithm for Underground Pedestrian Detection [41]. 

2.2. RGB-Based 3D Detection Systems 

RGB Cameras in Figure 5 remain one of the foundational sensor types utilized in 3D object 
detection systems because of their ability to capture high-resolution visual data with texture and color 
details [45,47–49]. They are deployed in underground mining autonomous trucks for object 
classification, scene understanding, and equipment recognition. RGB camera sensors illustrated in 
Figure 5 capture 2D images, which comprise red, green, and blue color channels combined to form a 
full-color image and a per-pixel depth report. In 3D object detection systems, RCB cameras are often 
used alone or with active stereo or time-of-flight sensing technology [18]. They are integrated with 
other sensors, such as LiDAR or IR sensors, for multi-sensor systems to enhance the perception 
model's scene understanding and robustness. Current detection algorithms, such as YOLO and 
CNNs, have significantly improved the accuracy and speed of RGB camera models [19,26,49,50]. 
These algorithms use features such as pattern recognition and color differentiation for precise 
detections and classifications. 

RGB sensor detection systems are vital in autonomous mining trucks because they leverage 
visual data from cameras to identify, classify, and track objects in the environment. RGB-Camera has 
various configurations: 

1. The monocular cameras, which are lightweight and cost-effective, do not have depth perception 
2. Stereo cameras estimate depth by triangulating differences between two lenses 
3. Depth cameras incorporate active sensors for near-field 3D imaging. 
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Figure 5. RGB Camera [18]. 

These sensor types are very compatible with DL models like YOLO and CNN. Zhang et al. [47] 
proposed an LDSI-YOLOv8 framework to enhance missed detection and low recognition for multiple 
targets in underground coal mines, leveraging an RGB camera. The work reported an accuracy of 
91.4%, demonstrating a 4.3% increase compared to the original YOLOv8 algorithm. Imam et al. [51] 
also developed an anti-collision system for underground mines, focusing on pedestrian detection via 
RGB cameras with a YOLOv5 DL-based algorithm to enhance pedestrian detection accuracy in low-
visibility conditions. 

Philion and Fidler [52] also presented the Lift-Splat-Shoot model, which encodes multi-camera 
images into bird’s-eye-view (BEV) representations for autonomous vehicle driving applications. The 
key objective was to create an end-to-end architecture that directly transforms multi-camera data into 
a unified BEV frame for semantic perception, understanding, and motion planning. The research 
demonstrated that the model could segment vehicles, drivable areas, and lanes by combining 
frustum-based depth inference and pooling techniques. However, there was reduced performance in 
low-light conditions and reliance on simple-frame data, which affects depth estimation accuracy 
compared to LiDAR-based models.  

Versatility and affordability make camera-based models attractive for underground 
applications. They are less expensive than LiDAR and can be applied in areas such as identifying 
potential hazards and miner helmets for safety [17,53,54]. The key features and advantages of RGB 
Cameras include: 

1. High-Resolution Imaging. RGB cameras can capture rich and detailed visual information, 
providing the necessary resolution to identify and classify objects based on color and texture.  

2. Cost-Effectiveness. They are relatively inexpensive compared to other sensors, such as LiDAR 
sensors, making them a known choice for cost-effective object detection models. Their 
affordability enables widespread applicability in autonomous vehicles. 

3. Color-Based Object Recognition. An additional layer of information is provided by the ability of 
RGB cameras to perceive colors, to distinguish between similar-shaped objects, and to identify 
warning signals. 

4. Lightweight Design. RBG cameras are compact and easy to integrate into autonomous vehicle 
platforms, enabling more sensor placement, system design, and integration flexibility. 

However, there are significant challenges encountered: 

1. High reliance on lighting makes them unsuitable for low-light environments 
2. Affected by visual occlusions from debris and dust, which reduce detection accuracy 
3. Lack of depth perception unless integrated with a stereo or LiDAR sensor.  
4. High computational load for processing high-resolution image frames in real time. 

Multi-sensor fusion systems integrating RGB cameras with LiDAR or thermal sensor data 
address these limitations [25,28,29,54,55]. Fusion provides enhanced object classification and 
detection by combining color from RGB cameras with depth and range information from other 
sensors such as LiDAR. Autonomous systems achieve a more comprehensive and accurate 
perception of their environments by fusing this data from complementary sensor sources. 
Additionally, advancements in image technologies and algorithms have been introduced to address 
some of these challenges. These include high-dynamic range (HDR) imaging to improve the camera’s 
ability to handle extreme variations in brightness and enhance visibility in poor and variable lighting 
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conditions [56–58]. ML algorithms are increasingly trained on augmented datasets to handle noisy 
and distorted visual data inputs better, improving model robustness in adverse conditions [26,29]. 

2.3. LiDAR (Light Detection and Ranging) System 

The capability of LIDAR technology to generate precise depth measurements of the 
encompassing environment has made it a pivotal sensor type for detecting objects in autonomous 
vehicles. As shown in Figure 6, LIDAR sensors can accurately detect the distance between objects in 
a scanning area of up to about 50 meters [33]. The technology of LiDAR sensors has made significant 
strides since their inception, making it a critical component in detecting 3D objects for autonomous 
vehicle navigation. LiDAR technology was initially developed for military and atmospheric 
applications [59]. It has since improved to accommodate the needs of commercial and industrial 
sectors, such as the underground mine. LiDAR is the primary solution when incorporated with deep 
learning algorithms in mining, where the transition to autonomous operations requires real-time and 
precise detection. Solid-state designs, multi-beam configurations, and scanning mechanisms have 
significantly enhanced detection range, resolution, and robustness. This has addressed the limitations 
of early systems in challenging environments that depend on only single-point laser systems. LiDAR 
sensors emit laser pulses that travel through the atmosphere, bounce off objects, and measure their 
return time to the sensor, generating high-density point clouds representing 3D information about 
the object. This information includes object size, position, and orientation. This ability allows 
autonomous trucks to detect nearby equipment, obstacles, workers, and infrastructure and navigate 
in GPS-denied underground tunnels. 

 

Figure 6. 3D LiDAR Sensor [46]. 

Modern LiDAR systems employ solid-state designs or rotating mirrors to perform rapid scans 
across 360 degrees of targeted areas. Data from these scans is processed in real-time to create dense 
point clouds, which serve as the foundation for object detection, tracking, and classification 
algorithms.  

Key advantages of LiDAR systems in underground mining environments include:  

1. High-Precision Depth Measurement. LiDAR sensors' time of flight range ensures the precise 
localization of objects: This makes it particularly useful in underground mining, where exact 
spatial awareness is critical for safety and overall operational efficiency. 

2. Resilience to Environmental Interference: LiDAR is highly resistant to environmental 
interferences, such as vibration and glare. Advanced multi-echo and solid-state have built-in 
glare filters, enabling reliable performance in some of the underground mining environments. 

3. Wide Field of View and Real-Time Mapping: Several LiDAR sensors offer a full 360° coverage 
view. This ensures comprehensive detection of objects, obstacles, and workers around mining 
vehicles, enhancing situational awareness. 

4. Efficient and Reliable Performance: LiDAR sensors are unaffected by an object’s color or 
texture, allowing consistent detection regardless of the visual appearance of objects. Unlike RGB 
cameras, LiDAR systems are effective in low-light conditions as they solely rely on active laser 
emissions rather than ambient light. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2025 doi:10.20944/preprints202505.0711.v1

https://doi.org/10.20944/preprints202505.0711.v1


 9 of 31 

 

5. Compatibility with SLAM systems: LiDAR systems support simultaneous localization and 
mapping (SLAM), enabling autonomous haulage trucks to track their positions while 
dynamically building maps of the environment. 

LiDAR produces precise depth measurements in the harsh and complex underground mining 
environment, making it significant. Advanced processing algorithms applied to LiDAR data can 
classify, detect, and predict objects in the environment for autonomous truck navigation. Integrating 
these algorithms with LiDAR can distinguish between stationary walls, moving equipment, and 
other objects, which is crucial for dynamic decision-making in real-time detection operations. 

LiDAR sensors are essential for recent 3D object detection systems in autonomous vehicles in 
underground mining environments. LiDAR point cloud data comprises millions of points (Figure 7) 
that map the objects' surroundings in 3D (positions, size, and shape), providing a precise view 
beyond 2D images or videos, which is critical for accurately identifying objects in a scene. LiDAR-
based systems' resilience in harsh environments is a significant advantage for their application. 
Underground mines are characterized by conditions impairing the performance of other sensor-
based systems, like cameras or radar sensors. However, LiDAR systems, such as moisture, are less 
affected by these conditions. Combined with DL algorithms, LiDAR data can improve object 
detection accuracy and provide a robust obstacle avoidance mechanism for safe autonomous truck 
navigation. Compared to RGB data, LiDAR 3D point clouds are critical in providing structural and 
spatial information of precise depth. However, the 3D point clouds are unordered, sparse, and 
sensitive to local variations, which makes raw LiDAR data processing challenging [60].  

 

Figure 7. LiDAR Point Clouds for 3D Detection. 

Generally, LiDAR object detection systems can be categorized into traditional and DL systems. 

2.3.1. Traditional Methods.  

Traditional methods often depend on geometric and clustering techniques to detect objects. 
Algorithms such as DBSCAN [61–63] assume that objects have a higher point density than their 
surroundings. This method groups nearby points into clusters, then applies shape fit to detect objects 
based on geometric assumptions. Though this approach is practical in structured environments and 
computationally efficient, it often struggles in noisy, complex, and unstructured environments. 
Usually, it fails to detect dynamic elements such as pedestrians or moving vehicles. They are more 
rule-based and best suited for controlled and simpler environments.  

2.3.2. Deep-Learning-Based Methods 

Recent technological advancements have enabled more accurate detection of complex real-
world environments. These models automatically learn features from large, annotated datasets and 
are robust to occlusions and noisy inputs, providing accurate and more flexible detection in dynamic 
environments. LiDAR-based DL Systems are generally classified into view-based, voxel-based, point-
based, and hybrid point-voxel-based methods [21,64–66].  

1. Voxel-Based Methods: Voxel-based models transform raw and irregular 3D point clouds into 
structured grids known as voxels for processing using 3D convolutional neural [65–68]. This 
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generates simplified data, allowing the use of mature CNN architectures for object detection. 
Popular techniques include: 

o VoxelNet [67]. This end-to-end framework partitions LiDAR point clouds into voxel grids 
and encodes object features using stacked voxel feature encoding (VFE) layers, as illustrated 
in Figure 8. This process is followed by 3D convolution to extract geometric and spatial 
features. The method streamlines the detection pipeline by eliminating separate feature 
extraction stages. 

o SECOND (Sparsely Embedded Convolutions Detection) [66]:  This is an optimized version 
of VoxelNet that employs sparse 3D convolutions, which improves computational 
efficiency without sacrificing accuracy [69].  

These models simplify point clouds' irregular and sparse nature and have high localization 
accuracy due to precise spatial encoding in the voxel grid. Additionally, their ability to process 
volumetric data directly makes them suitable for underground mine environments. However, the 
limitations of voxel-based methods include a lack of semantic richness, which limits their 
classification accuracy when implemented alone. Fin-grained voxelization can lead to high 
computational demand. Lastly, they struggle with small object detection due to limited resolution in 
sparse voxel grids. 

 

Figure 8. VoxelNet Processing of Raw Point Cloud Providing 3D Detection Results in Underground 
Environment [67]. 

2. Point-Based Methods. Point-based methods directly process raw LiDAR point clouds without 
converting them into voxel grids (voxelization) to 2D projections. This method preserves fine-
grained geometric details of the environment by operating on ordered 3D points. This makes 
them highly effective in detecting partially occluded or irregularly shaped objects. The key 
pioneering family of point-based methods is PointNet [70]. This uses symmetric functions to 
learn object global shape features from unordered point sets. PointNett++ [71] extends this by 
using hierarchical feature learning to capture local context in clustered regions. PointPillars [72] 
(Figure 9) are a widely adopted method in autonomous driving. The method partitions point 
clouds into vertical columns known as “pillars” to offer a balance between detail preservation 
and computational efficiency. It converts spatial features into a pseudo-image format, which 
enables fast detection through 2D convolution while retaining meaningful 3D structures.  

Despite their advantages in handling detailed geometry, point-based methods face limitations 
in computational cost, especially in cluttered environments, limited scalability in real-time, and the 
need for substantial GPU memory for training and inference 
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Figure 9. PointPillar Network Framework [72]. 

3. Hybrid-Based Methods: Hybrid approaches integrate the strengths of voxel-based and point-
based techniques to enhance the accuracy and efficiency of 3D object detection. These methods 
utilize voxelization for structured data representation while leveraging fine local feature 
extraction of point-based models. A hybrid model typically starts by extracting local geometric 
object features from raw point clouds using point-based encoders. The features are then 
embedded into voxel grids, where the voxel-based backbone utilizes convolutions to learn 
global context and make predictions. This design helps the hybrid model to balance robustness, 
precision, and processing speed, making it suitable for cluttered and complex underground 
environments. 

Despite the fast adaptation of LiDAR-based systems, several limitations impact their 
deployment in underground mining environments: 

1. Lack of Object Identification: LiDAR systems can detect the presence and position of objects, 
but do not provide detailed information about object types or characteristics, which is essential 
for some mining applications. 

2. Computational Demand: Processing of dense and sparse point clouds  
3. Environmental Sensitivity: Accuracy is impacted by environmental conditions, such as dust, 

fog, water vapor, and snow. These factors degrade signal quality and require additional 
hardware and software processing to mitigate detection failures. 

4. Sensor Surface Contamination Challenges: Dust and debris accumulating on the sensor surface 
impair detection functionality, necessitating regular cleaning or protective mechanisms to 
maintain reliability. 

5. High Cost. High-resolution LiDAR units are expensive, which often hinders their large-scale 
deployment in budget-sensitive underground operations 

6. Range and Field of View Limitations: The typical range of LiDAR sensors is limited to around 
50 meters [29], restricting their effectiveness in larger underground mining operations. 
Furthermore, planar scanning systems may miss obstacles above or below the scanning plane, 
posing safety risks. 

7. Energy Consumption and Infrastructure Requirements: LiDAR systems consume more energy 
than other sensors and demand robust infrastructure for effective operation, complicating 
deployment in confined underground mining spaces. 

While models such as 3DSG [5,68] have demonstrated enhanced 3D object detection for surface 
mining trucks using LiDAR sensors, their direct applicability to underground environments remains 
limited due to differences in spatial constraints, lighting conditions, and operational challenges. 

2.4. Multi-sensor Fusion in Underground Mining: Perception Enhancement Through Integration 

Multi-sensor fusion models [73–75] are at the forefront of recent 3D detection systems for 
autonomous vehicle navigation in underground mining environments. These systems integrate data 
from multiple sensors such as cameras, LiDAR, radar, or thermal to develop a comprehensive 
perception of the environment. Each sensor type has its strengths and limitations, and by combining 
them, multisensory fusion systems capitalize on their complementary capabilities to enhance 
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detection accuracy and reliability for the safe navigation of autonomous trucks. LiDAR provides 
precise 3D spatial information, excelling in in-depth measurement, but often struggles in particulate-
heavy environments. Cameras offer high visual data, capturing color and texture information for 
more detailed feature extraction, but their performance degrades in low-light or obscured conditions. 
Radar is reliable in adverse conditions and excels at long-range detection, but is less precise in 
resolution. Thermal sensors capture heat signatures from objects and surroundings, making them 
capable of detecting objects in completely dark and challenging conditions, such as fog, smoke, and 
dust. By fusing these data streams, multisensory models address the individual limitations of each 
sensor to create a robust perception framework suitable for challenging conditions in underground 
mines. As sensor technologies and fusion algorithms continue to evolve, they promise a future where 
autonomous trucks achieve even greater safety, efficiency, and adaptability in mining operations. 

Szrek et al.[41] evaluated a UGV-based human detection system in underground mines using 
RGB and IR cameras alongside YOLOv3 and HOG algorithms. While RGB imagery provided visual 
context, it struggled in low-light and cluttered environments, especially for non-standing individuals. 
The study showed that RGB detection alone was often insufficient, but combining it with IR data 
improved reliability. A key limitation was using pre-trained models that were not optimized for 
underground settings, which affected accuracy. Xu et al. [76] proposed an autonomous vehicle 
localization method for underground coal mine tunnels based on fusing vision and ultrasonic 
sensors. They use infrared cameras to detect wall-mounted barcodes and ultrasonic sensors to 
measure distances, enabling geometric calculation of vehicle position without relying on complex 
SLAM. The method achieves sub-meter accuracy but is limited by dependence on manual barcode 
deployment and potential occlusion in dynamic tunnel environments. 

Zhang et al. [77] also developed a real-time underground mining vehicle localization method by 
fusing YOLOv5-based object detection with high-precision laser distance measurement. The system 
identifies mining trucks visually using YOLOv5s and calculates exact positioning via laser sensors. 
However, the system had limitations, including its sensitivity to environmental conditions such as 
humidity and dust, which reduced detection robustness for small and fast-moving objects, with 
future improvements suggested through upgrading to YOLOv7/YOLOv8 and enhancing multi-
object tracking capability. While recent advances have explored multi-sensor fusion using RGB, 
LiDAR, and thermal imagery with CNN or YOLO-based algorithms in environments such as search-
and-rescue tunnels, urban settings, and surface mine environments, applications specifically 
targeting underground autonomous haulage trucks remain extremely limited. Most existing work 
focuses on drones, indicating a critical research gap for truck-scale 3D object detection and navigation 
in confined mining conditions. 

Key advantages of multi-sensor fusion include: 

1. Enhanced Detection Accuracy: Combining the complementary strengths of different sensors, 
like LiDAR’s depth information with RGB camera’s texture data and thermal imaging’s heat 
signatures, will improve overall object detection performance.  

2. Robustness in Harsh Conditions: Multi-sensor models maintain improved detection 
capabilities in challenging underground conditions where individual sensors may fail 

3. Redundancy for Safety: These models provide multiple sources of information, allowing the 
system to continue functioning safely if one sensor fails or becomes unreliable. 

4. Improved Localization and Mapping: Fusing vision (RGB Cameras) with depth measurements 
(LiDAR) strengthens localization precision and supports robust mapping in GPS-denied 
underground environments. 

5. Adaptability to Dynamic Conditions: Provides dynamic sensor prioritization, where the 
system can rely more heavily on the most reliable sensors depending on environmental changes, 
like thermal sensors in low-visibility conditions and LiDAR for depth information. 

With these capabilities of multi-sensor systems, notable challenges associated with them include 

1. High Computational Demand: Processing large volumes of synchronized data from different 
sensors in real time requires powerful and often costly computational hardware. 
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2. Complex Synchronization and Calibration: Multi-sensor fusion requires precise calibration 
and alignment across different sensors, which is technically challenging, especially in 
underground settings with vibrations and environmental noise. 

3. Scarcity of Datasets for Training: There is a lack of large, annotated, multi-sensor datasets that 
specifically capture underground environment conditions, limiting the ability to train robust 
deep learning models 

4. Increased System Weight: Adding multiple high-end sensors such as LiDAR, thermal, and RGB 
cameras raises the overall cost and maintenance complexity and may impact autonomous truck 
payload or energy efficiency. 

3. Sensor Data Fusion Methods  

Fusing data from multi-modal sensors is vital in 3D object detection for underground 
autonomous trucks. The harsh underground conditions require robust perception systems capable 
of overcoming occlusions, dust, and low-visibility environments. Fusion methods are generally 
classified into early-stage (raw data), mid-stage (feature-level), and late-stage(decision-level) fusions 
depending on when the fusion occurs in the data preprocessing pipeline, as shown in Figures 10 and 
11. Each strategy has distinct strengths and significant trade-offs, as described below. Figure 12 
illustrates the accuracy and complexity levels of different fusion strategies of multi-sensor models. 

 

Figure 10. Sensor Level Fusion Stages in Multisensory Fusion [78]. 

3.1. Multi-Fusion Level Methods 

3.1.1. Early-Stage Fusion  

Early-stage fusion, or sensor-level fusion, integrates raw, unprocessed data streams from 
multiple sensors into a single dataset before performing feature extraction [79]. This method is 
valuable for creating robust detection systems in environments requiring fine-grained detection 
details, as it captures the full signal fidelity of individual sensor modalities. 

For instance, LiDAR point clouds can be registered onto the RGB camera image pixel grid to 
generate depth-colored visual maps. Thermal sensor outputs can also be overlaid on visual data to 
identify heat-based anomalies. This strategy significantly detects small, obscured objects that a single 
sensor type may not fully recognize. This approach maximizes the amount of extracted information, 
which enables detailed feature extraction. The richness of the raw data captured ensures that critical 
details are not lost during the fusion process  

The primary advantage of early-stage fusion is its ability to retain rich and detailed information 
across multiple sensor modalities. This gives an expressive input for DL models, enhancing detection 
precision and accuracy. However, this imposes significant computational demands, as raw sensor 
data requires huge memory and processing power. This computational burden causes a bottleneck 
to systems requiring real-time processing, such as the underground mine. 

Moreover, data temporal misalignment from different sensors, resolution disparities, and 
distinct sensor frame rates introduce another challenge. This can be addressed by applying advanced 
calibration techniques and synchronization protocols for adequate alignment. Misaligned data can 
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lead to inaccuracies in the final fused dataset, undermining the system’s reliability, accuracy, and 
effectiveness. Despite the earlier limitations, early fusion is essential in environments requiring 
precise spatial understanding, and computational overhead is not the primary constraint. 

3.1.2. Mid-Level Fusion 

Mid-level fusion involves the integration of independent extraction features from individual 
sensor modalities to create a more unified and comprehensive representation of the environment. 
Rather than performing a fusion of raw sensor data, each sensor undergoes preliminary processing 
via a convolutional neural network (CNN) or other feature encoders to extract high-level object 
representations such as contours, depth features, temperature gradients, and motion cues. These 
extracted features are consequently aligned and integrated into a shared feature space. 

This fusion strategy provides an effective balance between perception richness and 
computational efficiency. By processing feature representations with low dimensionality, memory 
and bandwidth are reduced instead of the significant volume of raw data, while capturing rich 
information from each sensor modality. Mid-level fusion provides several advantages, including data 
efficiency. This reduction in computational requirements offers a more efficient system for real-time 
operations. Mid-level fusion is particularly relevant for real-time applications in underground 
autonomous trucks where edge deployment and split-second decision-making are critical. 

Nevertheless, mid-level fusion introduces its challenges. There is difficulty in effectively 
aligning extracted features from heterogeneous sensors, which require spatial and temporal 
synchronization and are often trivial. Misalignments can degrade fusion quality and present 
detection errors. Additionally, fusion performance solely depends on the design and quality of the 
feature extraction modules as well as fusion architecture, such as cross-modal attention networks, 
which require careful design and tuning  

3.1.3. Late-Stage Fusion  

Late-level (decision-level) fusion integrates the final outputs of independently processed sensor 
data, such as bounding boxes, to make high-level decisions. Each sensor operates autonomously in 
this approach, and the outputs are generated using techniques like weighted averages or voting 
schemes to obtain final decisions. In  [80], the study employed a decision fusion method utilizing 
camera and LiDAR sensors for mine track object detection. This strategy is favored for its simplicity 
and modularity, enabling sensors to be trained and maintained separately, simplifying the model 
design. The decision fusion approach is computationally lightweight, making it suitable for 
embedded systems or as a fallback in redundant safety layers. As individual sensors process their 
data autonomously, the fusion process occurs at the decision level, which does not require handling 
extensive raw data. This makes late-stage fusion suitable for resource-constrained environments and 
real-time processing applications. 

Despite these advantages, there are limitations, such as overreliance on high-level decisions. 
Additionally, it lacks access to raw or intermediate data. It cannot refine ambiguities that are 
introduced earlier in the training pipeline. If one sensor misclassifies an object, the fusion process 
cannot correct it. This challenge often reduces overall detection accuracy and system performance, 
particularly in complex scenarios of late fusion models, especially in occluded and multiple 
overlapping scenes. Table 1 comprises the different sensor fusion strategies, strengths, and 
limitations in multi-sensor underground autonomous truck haulage models. 
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Figure 11. Multi-Fusion Level Methods [3]. 

 

Figure 12. Fusion Strategies Performance Comparison. 

Table 1. Sensor Fusion Strategies in 3D Object Detection. 

Fusion 
Approach Level Advantages Limitations 

Early-Level 
Fusion  

Raw data 

-Has rich, joint data 
representation 
-Fine-grained detection of 
small and obscured objects  
-Supports detailed spatial 
modeling 
-High-resolution outputs 

-High computational cost, complex calibration 
-Raw data is sensitive to noise, distortions, and 
misalignments 
-High Memory 
-Demands precise spatial and temporal data 
alignment and calibration 

Mid-Level 
Fusion 

Feature Level 

-Balances accuracy and 
efficiency  
-Reduction in data volume 
-Adaptable to real-time models 
-Can exploit diverse features 
across sensor modalities 

 -Requires accurate feature alignment and 
resolution compatibility 
-Often lose granularity from raw data 
- Has complex architecture tuning 

Late-Stage 
Fusion 

Decision 
Level 

-No raw data alignment and its 
complexities 
- Simple to implement 
-Computationally efficient 
-Effective in redundancy layers 
-Suitable for real-time 
detection applications 

-Cannot resolve early-stage mistakes  
- Heavy reliance on accurate individual sensor 
performance 
- Not suitable for applications requiring detailed 
integration of raw or feature-level data detection 
accuracy in complex scenes 

 
This section and the comparison below demonstrate how each fusion strategy proves its unique 

strengths and limitations based on the deployment context. In complex underground mining 
environments, where safety-critical decisions are required in real-time, mid-level fusion often 
provides the best balance between detection accuracy and real-time decision-making. However, 
hybrid strategies that combine early and late fusion may also provide good results for fail-safe 
designs. 

0 20 40 60 80 100

Late Fusion

Early Fusion

Fusion Levels: Accuracy vs 
Complexity

Performance Complexity
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3.2. Sensor Fusion Advantages and Limitations  

3.2.1. Advantages of Sensor Fusion in the Underground Mine Environment 

Sensor fusion significantly enhances perception performance in autonomous haulage systems, 
especially within complex and dynamic underground mine environments. By integrating different 
sensor modalities such as LiDAR, camera, and IR, sensor fusion improves decision-making accuracy 
by overcoming individual sensor limitations. The key advantages include the following: 

1. Resilience in Harsh Conditions: Sensor fusion compensates for individual sensor weaknesses. 
For example, LiDAR often degrades in dense particulate environments, cameras struggle in low 
light, and thermal sensors may lose range in open spaces. The fusion of these sensors provides 
a more consistent and robust perception across such extreme conditions. 

2. Enhanced Object Detection and Classification: Multi-modal sensor integration improves object 
detection precision. Combining LiDAR and thermal data enhances the recognition of equipment, 
workers, and structural features, especially in low-visibility or occluded scenes. 

3. Improved Operational Safety: Integrating multiple sensors increases system reliability and 
robustness, providing better object identification and more reliable obstacle avoidance. This 
ensures workers' and equipment safety in confined underground settings. 

4. Real-Time Decision Making: Fusion systems enable faster and more informed decision-
making, allowing real-time analysis of extreme environmental conditions. This enables 
autonomous trucks to respond promptly to dynamic changes in the environment. 

5. Model reliability and Redundancy: Fusion systems enhance fault tolerance and robustness by 
ensuring that the failure of one sensor modality does not compromise the entire perception 
system 

3.2.2. Challenges in Sensor Data Fusion 

Despite the transformative benefits of fusion modalities, sensor fusion in underground 
autonomous haulage systems faces several technical and environmental challenges that complicate 
its implementation. These challenges must be addressed to ensure accurate, scalable, reliable, and 
real-time detection systems. 

1. Sensor Signal Reliability and Noise: Underground environmental conditions, such as noise, 
vibrations, dust, and electromagnetic interference, can significantly introduce noise into sensor 
outputs, degrading performance. LiDAR sensors may produce inaccurate point clouds due to 
reflective surfaces, while RGB cameras may struggle in low-light conditions. Filtering this noise 
without losing essential features requires advanced adaptive filtering and denoising techniques. 

2. Heterogeneous Sensor Integration: Each sensor type, such as LiDAR, cameras, radar, and IR, 
produces data in distinct resolutions, formats, and operational ranges. Integrating this 
heterogeneous input data requires overcoming challenges associated with data pre-processing, 
feature extraction, and data representation. For instance, fusing LiDAR point cloud data with 
pixel-based data from cameras involves significant computational effort and advanced 
algorithms to ensure meaningful integration and representation. 

3. Data Synchronization and Latency Management: Precise synchronization of data streams from 
various sensors is crucial for real-time sensor fusion performance. Differences in signal delays, 
sampling rates, and processing times can lead to temporal data mismatches, resulting in 
inaccurate fusion outputs. For example, data from a camera capturing images at 30 frames per 
second (fps) must be aligned with LiDAR data that operates at a different frequency (e.g., 15 
Hz). Sophisticated temporal alignment algorithms or interpolation methods are required to 
ensure all sensor inputs contribute meaningful data to the fused output. 

4. Computational Complexity. The large volume of high-dimensional data that multiple sensors 
generate presents significant computational challenges. Real-time processing, critical for 
applications such as autonomous truck navigation, demands high-performance hardware and 
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optimized algorithms. Resource constraints, including limited processing power and energy 
availability in mining vehicles, further complicate this task. Efficient techniques that balance 
computational load with fusion accuracy are crucial for deployment in such environments. 

5. Environmental Factors: Underground conditions pose severe challenges to sensor performance. 
Poor lighting, dust, smoke, noise, and fog can obscure camera, radar, and LiDAR data, while 
extreme temperatures can impact sensor calibration and accuracy. Additionally, confined spaces 
and irregular terrains can cause occlusions or reflections that lead to distorted sensor readings. 
Designing fusion algorithms that can compensate for these environmental factors is a critical 
area of research. Addressing these challenges requires interdisciplinary solutions drawn from 
signal processing and Machine Learning.  

4. Algorithms for 3D Object Detection in Autonomous Trucks  

The rapid evolution of ML algorithms has revolutionized numerous sectors, including 
autonomous vehicles and industrial robotics. It enables these systems to learn from experience, 
process complex sensory data, adapt, and make real-time decisions. Over the past decade, ML 
techniques have transitioned from basic pattern recognition to sophisticated algorithms that address 
complex, real-world challenges. AI/ML technologies provide automation, safety, and productivity 
advancements in the mining industry, particularly underground operations.  

Historically, traditional object detection techniques such as Histogram of Oriented Gradients 
(HOG) and Support Vector Machines (SVM) struggled to perform under harsh underground 
conditions because of occluded or noisy environments. Developing more robust and adaptable DL 
algorithms, particularly Convolutional Neural Networks (CNNs) and YOLO, has emerged to address 
many of these challenges [81]. These algorithms allow for more precise, reliable, and adaptive 
perception in complex underground environments. 

This section synthesizes major ML algorithms and their integration for 3D object detection in 
underground autonomous haulage navigation. The section emphasizes their architectural principles, 
recent applications in underground operations, and performance trade-offs.  

4.1. Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are the foundational technologies to modern computer 
vision because they can learn spatial hierarchies of image data features[82]. CNNs have proven 
resilient in underground environments due to poor lighting, dust, and occluded conditions.  

CNN-based object detection models follow two-stage processes [83]. Girshick et al. [84] 
introduced the original R-CNN (Region-based), which utilizes selective search to propose regions of 
interest, followed by CNN-based classification. Though this method is accurate, it is computationally 
expensive and unsuitable for real-time applications. Subsequent models such as Fast R-CNN [85] and 
Faster R-CNN [86] directly used the region proposal stage in the CNN, minimizing latency and 
enabling near real-time applications. Mask R-CNN [87] further enhanced this by adding instance 
segmentation alongside detecting and classifying objects valuable for cluttered environments like 
underground mines.  

Several studies have shown the use of CNNs for vehicle and personnel detection in underground 
tunnels, which validates the robustness of hierarchical feature extraction [83,86]. However, CNN 
algorithms remain challenged by their high computational load, local receptive fields that may miss 
the global context, and limitations in the 3D point cloud [24,88]. Lightweight CNN variants that 
employ quantization, pruning, and multispectral imaging have been explored to overcome these 
challenges. These techniques reduce model size and energy consumption capabilities, making CNNs 
suitable for edge deployment in underground autonomous haulage. However, challenges remain in 
meeting real-time performance and adaptability to complex underground scenarios in underground 
autonomous haulage. However, challenges remain in meeting real-time performance and 
adaptability to complex underground scenarios.  
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4.2. YOLO (You Only Look Once) Series Algorithm 

YOLO (You Only Look Once) algorithms have gained prominence and recognition for their 
single-stage framework approach. This feature enables simultaneous object localization and 
classification in one network pass, delivering real-time detection inference critical for dynamic 
underground environments [89–92]. Redmon et al. [93] pioneered the introduction of YOLOv1 to 
reframe the detection task as a regression problem, significantly enhancing inference speed. Later 
versions, such as YOLOv3, YOLOv4, and YOLOv5, presented features including multi-scale 
detection (Darknet-53), cross-stage partial networks (CSPDarknet), and enhanced model flexibility 
[94]. YOLOv8, the latest version, includes lightweight designs, transformer-based enhancements, and 
an improved feature pyramid for better accuracy-speed balance. Figure 13 shows the traditional 
architecture of the YOLO framework.  

Underground-specific YOLO model adaptations include: 
Research has leveraged the YOLO algorithms to develop robust object detection models.[21]. 

 

Figure 13. YOLO Architecture. 

Zhang et al. [19] proposed LDSI YOLOv8 to address issues of multi-target detection in the coal 
mine excavation environment. The work leveraged the YOLOv8 architecture and had an mAP 
improvement of 4.3% compared to the original YOLOv8 model shown in Figure 14. The study 
achieved 91.4% mAP and 82.2 FPS, demonstrating strong adaptability to underground dusty, low-
light, and occluded underground conditions. Despite its potential detection performance, the model's 
training on a specialized excavation dataset may limit its generalization to different mining sites 
without retraining or domain adaptation. Ní et al. [89] also developed a YOLOv8-based pedestrian 
and hazard detection model for underground mining environments, which achieves real-time 
capability and improved accuracy. Zhang et al. [95] proposed YOLO-UCM, an improved YOLOv5 
model, to enhance pedestrian detection in underground coal. It integrated Vision Transformers (ViT) 
and Meta-AconC for enhanced feature extraction and detection accuracy.   

DDEB-YOLOv5s model, which incorporated a C3-Dense feature extraction module, weighted 
BiFPN, and a decoupled detection head, improved feature extraction, achieving multi-target tracking 
accuracy of 93.1% and stability in mining environments [96]. Li et al. [97] presented an improved 
YOLOv11-based miner detection model for underground coal mines, enhancing feature extraction 
with Efficient Channel Attention (ECA) and refining localization with a weighted CIoU loss. The 
model achieves 95.8% at mAP@50 and 59.6 FPS on a custom underground dataset, outperforming 
existing detectors. However, it mainly focuses on personnel detection, with future work needed for 
broader underground object recognition. 
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Figure 14. YOLOv8 detection model in an underground mining environment [19]. 

While YOLO models have achieved considerable success, they are challenged by difficulty 
detecting objects in highly occluded or cluttered conditions. This often requires additional 
computational resources as the scale increases. The trade-off between detection speed, accuracy, and 
model size remains a key challenge when deployed on embedded GPU systems in underground 
haulage trucks. Therefore, ongoing research aims to optimize YOLO's performance in such settings, 
ensuring that real-time, accurate detection remains feasible even with limited computational power. 
A performance comparison of YOLO and CNN algorithms is presented in Table 2. The table 
highlights key advantages and limitations of CNN-based and YOLO-based object detection 
frameworks concerning application constraints in underground settings characterized by low 
lighting, occlusion, computational overhead, and real-time processing inference. 

Table 2. Comparison of YOLO and CNN DL Models for Object Detection in Underground Mining 
Environments. 

DL-Approach Advantages Limitation 

CNN 

-Extracts hierarchical features effectively from 
image data 
- Effective in noisy and low-light underground 
conditions 
- Enhanced detection accuracy with 
multispectral data 
- Effective for segmentation and complex object 
shapes 

-Computationally expensive, limiting real-
time deployment 
- Need large, labeled datasets and have long 
training hours 
- Difficulty in deployment of embedded edge 
computers 
- Require large, labeled datasets for training 
- Prone to overfitting in complex and 
dynamic mine layouts 

YOLO Series 

-Single-stage architecture enables fast inference 
speed for real-time autonomous navigation 
- Well-structured Tracing of overlapping and 
moving objects 
- Lightweight versions are suitable for 
deployment on GPU edge platforms 
- Easy to fine-tune across variable mining 
datasets 
- Latest YOLOv8 variants support transformer-
based attention 

- Trade-offs in accuracy for small or occluded 
objects. 
- Reduced robustness without data 
augmentation or custom tuning practices 
- Improved performance requires extensive 
hyperparameter tuning 
- Limited generalization to unseen mining 
data 
- Persistent challenge by sensor 
misalignment and fusion latency 

 
In summary, two-stage detection frameworks such as CNNs provide high detection accuracy 

but introduce computational overhead, making them unsuitable for real-time underground 
applications. On the other hand, YOLO-based models provide a viable direction for fast and efficient 
object detection, with recent versions demonstrating adaptability to underground conditions. 
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However, they often suffer in small object detection and tradeoffs between accuracy and inference 
speed. Continued efforts to enhance these models for edge computing and improve their robustness 
and real-time performance under occlusions and dynamic environments will be crucial to advancing 
autonomous haulage safety and efficiency in underground mining operations.  

4.3. Detection Model Comparison for Underground Autonomous Haulage Systems 

Current 3D object detection models designed for underground autonomous haulage systems 
navigation differ in structure, sensor dependency, and performance. The performance of 3D object 
detection systems is crucial for ensuring the safety and efficiency of autonomous trucks, particularly 
in complex and dynamic environments such as underground mines. Table 3 below evaluates and 
summarizes the performance of the leading 3D object detection models used in underground 
autonomous truck applications. It highlights their capabilities to handle the unique challenges posed 
by underground environments, detection approaches, advantages, limitations, and key performance 
metrics.  

Table 3. Comparison of Recent 3D Detection Models for Underground Applications, where x means no 
information. 

Model/Framework
Detection 
Algorithm Sensor Modalities mAP (%) FPS Limitations 

LDSI-YOLOv8 [19] YOLOv8n RGB Camera  91.4  82.2 

It has limited 
scalability in other 

mining 
environments. 

YOLOv8 for 
Hazard Detection 

[89] 

YOLOv8-
based 

RGB Camera 99.5 45 

Limited robustness 
and generalization 
due to reliance on a 

small, self-
constructed dataset 

YOLO-UCM [95] YOLOv5 RGB Camera 93.5 15 
Model trained on a 
simulated dataset 

DDEB-YOLOv5s + 
StrongSORT [96]  

YOLOv5s with 
StrongSORT 

RGB Camera 
91.7 

 
98 

High model 
complexity 
- Requires 
significant 

computational 
resources 

- Reduced speed (98 
FPS compared to 
lighter models) 

YOLOv11-based 
Model [97] 

YOLOv11 RGB Camera 95.8 59.6 
Focuses mainly on 

personnel detection 

Pedestrian 
Detection Model 

[98] 

YOLOv5 
(Deep 

Learning) 
RGB Camera 71.6 x 

Challenges with 
occlusion and 
detection in 

crowded scenes 
Slim-YOLO-
PR_KD [99] YOLOv8s RGB Camera 92.4 67 

Scope limited to 
pedestrian detection 

5. Dataset Analysis, Challenges, and Proposed Strategies 

Annotated datasets tailored for underground environments are limited. Existing datasets are 
heavily focused on surface mine and urban driving conditions and are limited in diverse lighting, 
dust interference, and confined space conditions. While synthetic datasets for underground 
applications have been used as a cost-effective alternative, they often lack the complexities of real-
world situations. Dynamic underground conditions create challenges that synthetic data fail to 
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replicate accurately, leading to poor model generalization and reduced performance when applied 
in actual mining environments. Real-world datasets are crucial for models to handle the varied and 
unpredictable nature of underground mining. The better the dataset reflects real underground 
scenarios, the more effectively the model detects objects accurately and reliably. Table 4 outlines the 
key underground-specific datasets and their characteristics. This section presents a comprehensive 
breakdown of challenges relating to datasets in underground 3D object detection and maps each 
challenge to implementable solutions. Addressing real-world underground constraints like dust, 
occlusion, sensor misalignments, and data imbalance will advance the frontier of autonomous truck 
navigation in an underground mine environment. This fills a significant gap in the literature and 
provides actionable insights for future system model designs.  

Table 4. Underground Specific Dataset and Its Characteristics. 

Dataset Name Sensor Type(s) Objects Annotated Environment Limitations 

LDSI-YOLOv8 
Excavation Scenes 
[19] 

RGB Camera Pedestrian 
Underground coal 
mine 

Limited scalability 
across diverse mining 
environments  
Scene specific 

Thermal image set 
[54] 

Thermal IR 
Workers, conveyor 
loads 

Real coal mine Lacks scalability 

YOLO-UCM [95] RGB Camera Pedestrians Underground mines 

Model trained on a 
simulated dataset; 
real underground 
variability may affect 
model performance 

Real-time perception 
excavation dataset 
[96] 

RGB Camera Miners, Equipment 
Excavation working 
faces in coal mines 

Generalization to 
highly dynamic or 
new tunnel layouts is 
untested 

MANAGEM 
Pedestrian Detection 
Model [98] 

RGB Camera Pedestrians 
Underground coal 
mines 

Sensitive to occlusion 
and crowded scenes 

 
Recent detection frameworks in underground mining environments have achieved impressive 

results using RGB imagery, LiDAR, and thermal sensors. These rely solely on single data points and 
pose limitations under dust, fog, smoke, or complete dark conditions. Multi-sensor fusion offers a 
promising direction, integrating LiDAR for depth perception, thermal infrared for heat-based 
detection, and a camera for rich texture. Future research should prioritize developing fusion-based 
models that combine complementary sensor data, enhancing situational awareness and resilience for 
autonomous truck operations in the highly variable and constrained underground mining 
environment 

5.1. Dataset Challenges in the Underground Environment  

The development of scalable and effective 3D object detection systems for autonomous 
underground haulage trucks is hindered by significant dataset-related challenges: 

1. Environmental Complexity: Underground environmental conditions pose significant 
challenges, which hinder effective dataset collection for detection models. Such challenges 
include poor lighting conditions, as these settings lack natural light. This leads to images with 
low contrast and clarity, making it difficult for optical sensors such as cameras to capture objects 
accurately. Additionally, dust and smoke from drilling, blasting, and transportation activities 
often scatter light and obscure sensors, limiting data quality. Furthermore, uneven terrain, 
cluttered backgrounds, and waste materials make distinguishing between detection objects and 
irrelevant objects challenging for safe detection.  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2025 doi:10.20944/preprints202505.0711.v1

https://doi.org/10.20944/preprints202505.0711.v1


 22 of 31 

 

2. Data Annotation Challenges: Annotating 3D data like LiDAR point clouds for detection models 
is particularly challenging as it’s labor-intensive and needs expert knowledge of mining 
scenarios. Unlike 2D image annotation, identifying objects in 3D, especially in scenarios 
involving overlapping objects or partial occlusions, demands significant effort. The annotating 
process is prone to human errors and can significantly impact model performance.  

3. Suboptimal Dataset Representation: Mining datasets are often characterized by issues related 
to overrepresenting common objects, such as trucks, and underrepresenting critical but rare 
classes, such as pedestrians. Frequently encountered objects dominate the dataset, while less 
common but critical elements, such as workers, are underrepresented in the data. This imbalance 
causes biases that prioritize common classes at the expense of rarer but safety-critical objects to 
be detected. This degrades model performance and limits generalizability. 

4. Inefficient Model Generalization: A significant challenge in underground mining is the 
variability in mine layout and equipment types across different mines. This makes models 
trained in one mine less effective in another. The dynamic nature of mining operations 
necessitates continuous model updates that can adapt to variable scenarios. 

5. High Computational Complexity and Real-Time Constraints: High-resolution sensors 
generate terabytes of data daily, which requires massive infrastructure for storage, robust 
computational efficiency, and real-time processing. Managing such large datasets while 
maintaining efficiency is a persistent issue. Latency in data processing can potentially 
compromise the system’s effectiveness and safety-critical decisions. 

6. Temporal Synchronization in Multi-sensor Models: Temporal synchronization is a significant 
challenge in multi-sensor 3D object detection models. Variability in sampling rates, operating 
modes, and data speed from different sensors causes a misaligned data stream, impairs fusion 
quality, and detection accuracy. Delays in transmission and hardware limitations worsen 
synchronization challenges.  

5.2. Proposed Strategies for Dataset Optimization and Model Robustness in Underground 

The following strategies are proposed to address these challenges: 

1. Enhance Sensor Capabilities: Deploy robust sensors that withstand uneven terrain, dust, 
extreme vibrations, and temperature fluctuations to ensure consistent detection system 
performance. Integrate multi-sensor configurations by combining complementary sensing 
modalities. This will provide a robust and reliable detection system to enhance safety in 
underground mining operations. 

2. Advanced Data Preprocessing and Augmentation Techniques: Effective preprocessing and 
data augmentation techniques should be employed to significantly simulate dust, noise, 
occlusion, and variabilities in lightning [7,9,79]. Synthetic dust clouds, altering textures, and 
adjusting brightness can help the system adapt to variable surface types or equipment, ensuring 
robust object detection models for challenging underground conditions.  

3. Improved Data Synchronization: Solving temporal synchronization issues in multi-modal 3D 
object detection demands a combination of advanced computational methods and real-time data 
management strategies. Use software-based interpolation, a Kalman filter, or a deep learning-
driven alignment framework to offer more flexible solutions for proper data synchronization. 
Catching strategies can also compensate for data transmission delays. 

4. Effective Data Annotation: Leverage data annotation tools such as semi-automated tools, active 
learning, and pre-trained models [87]. This will reduce manual annotation effort and improve 
labeling accuracy by minimizing human error and maximizing efficiency. Additionally, domain-
specific annotation guidelines can ensure consistency.  

5. Optimize Dataset Representation: Accurate object detection requires balanced datasets. 
Applying class weighting, oversampling, and Generative Adversarial Networks (GAN)- based 
synthetic data generation will balance rare and common object instances in datasets. This 
approach ensures that objects like pedestrians and/or rare but critical events receive more 
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attention during training. This improves model robustness in accurately detecting safety-critical 
objects in real-world scenarios. 

6. Improvement in Model Generalization: Employ domain adaptation techniques such as transfer 
learning and adversarial training to improve models’ generalizability in cross-site applications. 
Consistent and continuous fine-tuning based on environmental feedback and characteristics 
enhances model adaptation. 

7. Edge Processing and Optimized Data Handling: Efficient data handling is crucial in managing 
large data volumes. Use efficient compression techniques to reduce the size of datasets without 
sacrificing critical features and integrity. Employing edge computing to optimize data will 
enable real-time and on-site data preprocessing. This reduces latency and bandwidth usage, 
enhancing the system's ability to operate in real-time. It will reduce data transmission time and 
minimize the load on central systems, allowing for quicker decision-making. 

6. Key Challenges and Future Directions In 3D Detection Systems for 
Underground Mines 

6.1. Challenges in the Underground Environment. 

The application of 3D object detection systems in underground mining environments is complex 
due to the unique and extreme conditions. These challenges can be categorized into environmental 
constraints, real-time operational intricacies, and computational limitations. Overcoming these 
barriers, especially with sensor fusion, real-time processing, detection accuracy, and pedestrian 
safety, will require further advancements in AI/ML, sensor technology, and edge computing. Future 
3D detection systems in autonomous trucks must be intelligent, robust, and adaptive enough to 
operate safely and efficiently in unpredictable, diverse underground mining environments.  

1. Environmental Challenges. Underground environments present near-zero natural light, which 
requires reliance on artificial illumination. This condition introduces variable lighting, low-light 
noise, shadows, and glare, adversely impacting vision-based systems. The prevalence of low-
light imaging noise and incomplete data under artificial lighting conditions affects the 
performance of object detectors. IR modalities improve visibility but are limited in range and 
resolution. Dust, airborne particulates, and smoke generated by drilling, blasting, and other unit 
mining operational activities interfere with sensor signals[4]. These conditions degrade the 
quality of LiDAR point cloud data, leading to degraded object detection. Although radar sensors 
are less affected by these environmental factors, they lack resolution, necessitating multi-sensor 
fusion techniques to ensure robust detection. Creating fail-safes, redundancy in sensor data, and 
methods for ensuring detection capabilities and reliability are essential for reliable performance. 

2. Dynamic and Irregular Obstacles. Continuous machinery and other object movements of other 
objects create a dynamic and unpredictable detection environment. Debris, uneven terrain, and 
narrow layouts can lead to misclassifications due to their resemblance to natural geological 
features in sensor data. Advanced semantic segmentation and computationally efficient ML-
based classifiers are needed to address these challenges. 

3. Equipment Blind Spots and Sensor Occlusion. Large mining trucks have extensive blind spots, 
particularly around corners and confined spaces, and occlusions from structures or materials 
often obscure key objects. This increases the risk of undetected obstacles, raising the likelihood 
of collisions causing fatalities. Multi-view and re-identification methods for occluded objects 
have shown improved continuity in detection. However, these solutions often introduce 
significant computational overheads, limiting real-time performance implementation in 
underground environments. 

4. Sensor Data Integration and Overload. High-resolution LiDAR generates millions of data 
points per second, requiring advanced data fusion algorithms to integrate and process 
information from multiple sensors efficiently. Real-time data fusion across LiDAR, IR, and 
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camera presents a substantial computational load. Managing data overload is critical to ensuring 
timely and accurate object detection. 

5. Real-Time Latency Challenges. The maximum need for split-second decision-making in 
autonomous trucks operating in high-risk environments means delays are unacceptable. Edge 
computing systems, which process data locally to reduce latency, have demonstrated 
effectiveness in mitigating this issue. However, challenges remain in the trade-offs between 
model complexity and detection accuracy. While YOLO algorithms have shown potential 
enhancement in 3D object detection, they are often affected by low-light, cluttered, small objects, 
and dynamic underground mine settings.  

6. Efficiency vs Accuracy Trade-Offs. Large models give high accuracy but are computationally 
intensive and unsuitable for resource-constrained environments. Lightweight models such as 
YOLO-Nano have high speed but may lack robustness for detecting small or partially occluded 
objects [100].  

7. Generalization Across Mining Sites. Every underground mining environment has unique 
variability in tunnel geometry, layout, infrastructure, machinery, and operational processes. 
Detection models trained in one site may not be scalable in another, which poses a significant 
obstacle to generalizing 3D object detection systems. Due to these variations, domain shifts cause 
models to fail to perform effectively on another site.  

6.2. Future Research Directions 

3D object detection remains crucial for both safety and efficiency. While significant progress has 
been made, challenges remain in optimizing algorithms, improving sensor fusion, and enabling real-
time decision-making in dynamic underground environments. The following research directions are 
proposed to push the frontier of autonomous haulage detection systems:  

1. Multi-Sensor Fusion and Edge Computing. Integrating data from sensors like LiDAR, IR, and 
cameras with edge computing is needed to reduce latency and improve real-time processing. 
Enhanced fusion techniques that combine high-resolution LiDAR data with camera visual 
information could provide more detailed and accurate object detection. Additionally, by 
processing data locally, autonomous trucks can make real-time decisions without relying on 
external servers, improving response times and operational efficiency. 

2. Collaborative Detection Systems: Future autonomous trucks may not operate in isolation but 
as part of a larger network of autonomous systems, including other trucks, drones, and support 
equipment. Collaboration between these systems to share detection data and build shared scene 
understanding can improve object detection. Multi-agent communication and coordination 
could improve detection capabilities, object tracking, awareness, and cooperative navigation. 

3. Design Lightweight and Real-time DL Models: Research into the development of optimized 
lightweight models for embedded GPUs in autonomous trucks. Advancements in pruning and 
quantization can minimize model size without significantly compromising detection accuracy. 

4. Real-Time Object Classification and Localization: Improvements should be made in detection, 
real-time object classification, and 3D localization. Improved situational awareness enhances 
safe navigation and operational efficiency in underground mining operations.  

5. Development of Standardized, open-access datasets: More effort is needed to develop large-
scale, labeled datasets that are open-access and reflect underground mining conditions, which 
will improve research into more robust models for autonomous truck safe navigation. 
Simulation data combined with real underground mining footage will provide efficient training 
benchmarks. 

6. Advanced AI and ML Models: Leveraging cutting-edge AI techniques, such as transfer 
learning, reinforcement learning, or deep reinforcement learning, could significantly enhance 
the adaptability and robustness of 3D object detection systems. These models could enable them 
to learn from diverse datasets and improve their detection capabilities, even in challenging 
environments like the underground mine. More sophisticated and newer versions of YOLO, like 
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YOLOv8, can be integrated to improve detection speed and accuracy for maximum system 
performance. Developing domain-adaptive and site-specific fine-tuning models capable of 
learning and generalizing across different environments needs much research focus. 

7. Field Validation of Object Detection Systems: Validation of detection systems in operational 
underground sites to evaluate the model’s real-world performance. Additionally, safety-critical 
metrics should be incorporated into the evaluation process to assess the developed models' real-
world capabilities and safety impact. 

8. Regulatory and Ethical Compliance: As autonomous trucks become more recognized in the 
mining industry, ensuring that object detection systems meet safety standards and regulatory 
requirements will be essential. Developing frameworks that align detection systems with safety 
regulations and ethical standards is crucial. This will ensure transparency in model design and 
performance benchmarking, which is key to operational and public trust. 

9. Long-Term Robustness and Reliability: Long-term deployment of autonomous trucks in 
underground mines will require systems that can withstand harsh conditions, such as exposure 
to dust, vibration, and moisture. Ensure long-term stability of systems through real-time health 
monitoring, regular sensor updates, and robustness against sensor drift and wear. This will be 
essential to ensure continued safety and model performance. 
Addressing these challenges and leveraging emerging research directions will enable the mining 

industry to accelerate the safe and efficient implementation of autonomous truck haulage in 
underground operations. This will mark a transformative growth in automation in industry. 

7. Discussions  

The application of 3D detection systems in underground autonomous trucks presents critical 
challenges and opportunities different from other domains like urban driving and indoor robotic 
machines. The underground mining environment is known for its complex terrain, occlusion, high 
particulate matter, limited visibility, and dynamic equipment-worker interactions. Therefore, it 
necessitates more specialized sensor configurations and robust perception models capable of 
operating in these extreme conditions. This paper reveals that multi-modal sensor fusion, especially 
combining LiDAR and RGB cameras, provides the most robust perception capabilities. While the 
camera contributes contextual texture data, LiDAR offers high-resolution depth information. When 
fused effectively, they compensate for each other’s limitations, especially under low visibility or high 
dust conditions. Mid-level fusion is demonstrated to be the most balanced fusion approach, 
providing efficient feature integration while maintaining sufficient data richness for real-time object 
detection. Deep learning algorithms, particularly the YOLO-based framework, have shown strong 
performance in object detection tasks. Architectures such as YOLOv5 and YOLOv8 demonstrate real-
time detection capabilities with significant mean Average Precision (mAP). However, small object 
detection and a lack of large-scale annotated datasets often hinder their performance in the 
underground environment. The following key trades were:  

1. Accuracy vs. Speed: It was noticed that high-accuracy models like YOLOv8 often demonstrate 
slower inference times. This can be problematic for real-time underground navigation 

2. Sensor Cost vs. Redundancy: Multi-sensor models improve robustness. However, they also 
increase hardware costs and integration complexity. 

3. Fusion Complexity vs. Benefit: The early fusion approach provides detailed insights and 
features but is highly computationally expensive. Late fusion is computationally efficient but is 
less accurate. 
Benchmarking for diverse datasets shows limited consistency in model evaluation, making it 

difficult to compare models directly. This shows the need for standardized mining-specific data sets 
and benchmarking protocols for efficient performance evaluation. 
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8. Conclusion 

This review has comprehensively surveyed 3D object detection systems tailored explicitly for 
underground mining autonomous truck navigation. The review uniquely bridges the research gap 
between urban autonomous systems and the specific challenges of underground truck navigation. 
The study evaluates the current state of sensor modalities, detection algorithms, and fusion 
techniques. Additionally, it highlighted the unique constraints posed by underground complex 
conditions. Though technologies such as LiDAR, RGB cameras, and thermal sensors have proven 
individual strengths, integrating these sensors provides a promising path forward. Deep learning 
architecture, particularly YOLO-based object detectors, has demonstrated strong potential in real-
time detection. However, challenges persist, including occlusion handling, limited underground 
datasets, computational overhead, and performance trade-offs. While significant strides have been 
made in 3D object detection for autonomous trucks in mining, ongoing innovation, and research are 
essential to overcoming the persisting challenges. These advancements will enhance operational 
efficiency and play a crucial role in safeguarding the well-being of workers. 
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