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Abstract: Integrating autonomous haulage systems in underground mining has revolutionized safety
and operational efficiency. However, deploying 3D detection systems for autonomous truck
navigation in such an environment faces persistent challenges due to dust, occlusion, complex
terrains, and low visibility. This affects their reliability and real-time processing. While existing
reviews have discussed object detection techniques and sensor-based systems, providing valuable
insights into their applications, only a few have addressed the unique underground challenges that
affect 3D detection models. This review synthesizes the current advancements in 3D object detection
models for underground autonomous truck navigation. It assesses deep learning algorithms, fusion
techniques, multi-modal sensor suites, and limited datasets in an underground detection system. The
study uses systematic database searches with selection criteria for relevance to underground
perception. The findings of this work show that the mid-level fusion method to combine different
sensor suites enhances robust detection. Though YOLO (You Only Look Once)-based detection
models provide superior real-time performance, challenges persist in small object detection,
computational trade-offs, and data scarcity. This paper concludes by identifying research gaps and
proposing future directions for a more scalable and resilient underground perception system. The
main novelty is its review of underground 3D detection systems in autonomous trucks.

Keywords: 3D object detection; autonomous trucks; deep learning; sensor fusion; underground
mines; YOLO algorithms

1. Introduction

The evolution of autonomous driving systems in the mining sector has brought significant
interest in enhancing computer vision for accurate and real-time 3D object detection. Unlike urban
[1-3], or surface mining driving [4-6]. Underground mining environments present unique constraints
such as limited visibility, dust, confined spaces, and uneven terrain that pose significant challenges
for 3D object detection. These object detection systems are the perceptual backbone of autonomous
truck haulage for obstacle recognition, object classification, and navigation in real-time.

Recent advancements in computer vision/image processing powered by deep learning (DL) and
artificial intelligence (AI) have significantly improved situational awareness in autonomous driving
systems [7]. AL/ML-based object detection and tracking models have seen applications in robotics
[8-10], urban autonomous driving [4,11,12], collision avoidance systems [13,15], and security systems
for monitoring and surveillance [15]. AI-ML techniques, particularly those involving deep learning,
play a significant role in these systems [7,16]. They have addressed the challenges of machine-human
interactions, particularly for collision prevention, injuries, and fatalities. In the underground
environment, research increasingly implements AI/ML architectures with (LiDAR Light Detection
and Ranging), thermal infrared (IR), and RGB (Red, Green, Blue) cameras to detect pedestrians,
machinery, and hazards [5,6,17-20]. 3D object detection models, which give richer spatial information
than 2D models, have become a critical area of research for safe autonomous truck navigation [21-
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24]. The DL algorithms include Convolutional Neural Networks (CNNs) and YOLO (You Only Look
Once), which have become efficient in identifying and classifying objects in real time [6,25,26].

These current models have demonstrated effectiveness in improving detection capabilities
under diverse and harsh conditions [15,27,28]. However, they are limited due to small and occluded
object detection inaccuracies amidst noise and obstructions. Also, they lack robustness when applied
to specific environments such as underground mines, necessitating more innovative solutions [15,29].

As the mining industry transitions to Industry 4.0 and 5.0, which prioritize human-machine
interactions, it is crucial to continually develop and innovate new systems, methods, and solutions
for object detection and anti-collision systems in underground mining environments. Deploying
autonomous vehicles into the underground mining industry is a paradigm shift toward operational
efficiency and safety enhancement. These autonomous haulage trucks are designed to navigate
dynamic and intricate mining environments, enhancing rapid decision-making accuracy and
situational awareness. To ensure this, they heavily depend on sophisticated 3D object detection
systems. However, the capabilities of these models are currently limited, which hinders the
exploitation of their full potential in autonomous mining operations. Current detection systems
frequently encounter limitations like trade-offs between speed and accuracy, especially under
adverse conditions such as variable terrains, fluctuating lighting, and diverse objects [6,12,30]. Sensor
modalities such as LIDAR, IR, and RGB cameras often result in suboptimal performance, particularly
in dynamic obstacles and rapidly changing settings. Also, the real-time application capabilities of
these detection systems remain insufficient, resulting in latency issues that could compromise
operational efficiency and safety.

Many review articles such as [2,16,18,31-37] have explored the advancements of object detection
models in autonomous vehicles and mining environments. Immam et al. [18] reviewed anti-collision
systems based on computer vision in underground mines. The study examined machine learning
algorithms, which included CNNs, Fast R-CNN, and YOLO series, for real-time object detection and
sensors employed in autonomous trucks to reduce accidents. Tang et al. [38] studied multi-sensor
fusion detection methods for 3D object detection in urban autonomous driving. They developed a
taxonomy that categorized fusion approaches and assessed their efficacy in improving detection
accuracy and safe driving in autonomous vehicle driving scenarios. Cui et al. [32] reviewed
navigation and positioning technologies in underground coal mines. The study investigated multiple
techniques, like visual image feature-based systems, inertial navigation, visible light communication
(VLC), and sensor fusion methods, to improve the accuracy and robustness of the detection systems.

Patrucco et al. [33] underscored the importance of multi-sensor systems by integrating different
sensors to address the limitations of individual sensors. The study also investigated anti-collision
technologies like cameras, LIDAR, and radar, discussing their principles, advantages, limitations, and
costs. Wang et al. [34] also reviewed the detection systems advancements in unmanned driving
technology for coal mine transportation systems. They discussed multi-sensor fusion strategies to
address the limitations of single sensors. Nevertheless, there is a limited examination of underground
settings” complex and dynamic conditions and the scarcity of standardized datasets in detection
models for benchmarking.

The underground mining environment requires robust sensor fusion techniques, low-latency
processing, and models resilient to noise and occlusion, which conventional surveys overlook. A
standardized dataset with underground conditions for practical model evaluation and performance
also exists. This review paper addresses the lacuna by synthesizing the most recent developments in
3D object detection, sensor fusion strategies, and dataset challenges within underground
autonomous haulage systems. It highlights the strengths, limitations, and suitability of various 3D
detection systems for autonomous truck navigation in an underground environment. The objectives
of this review are:

e To categorize and evaluate the various sensor modalities employed in underground
autonomous haulage 3D detection systems
e  To explore multi-sensor fusion approaches, their performance, and trade-offs
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e To analyze and synthesize the deep learning architectures used in object detection models,
particularly YOLO variants and CNNss.

e  Identify key underground dataset limitations for object detection models.

e To identify significant challenges in underground autonomous truck object detection
deployment and propose future directions for developing scalable and reliable detection
systems.

This paper presents a comprehensive review to evaluate the current literature on 3D object
detection systems for underground autonomous trucks. The process commenced with clearly
defining the research questions, followed by a comprehensive search of pertinent studies in reputable
academic databases, such as SpringerLink, Multidisciplinary Digital Publishing Institute (MDPI),
ResearchGate, Institute of Electrical and Electronics (IEEE) Xplore, and Google Scholar. The search

was conducted using keywords such as "3D object detection," "autonomous trucks," and " mining,"

v

in conjunction with relevant terms such as "pedestrian detection,” “underground,” and “object
detection.” There were defined criteria for inclusion and exclusion that guided the selection process.
The studies considered for article inclusion were restricted to journals published in reputable
academic sources, conference papers, and peer-reviewed articles. The only research included was
recent, within the last 5-10 years, and specifically addressed 3D object detection in autonomous
vehicles in underground mining environments. Data extracted from the selected studies were
categorized and analyzed in key areas, including sensor modalities, 3D detection systems, multi-
sensor fusion, fusion strategies, underground datasets, and specific mining challenges. In real-world
scenarios, categorization enabled a comparative analysis of various approaches and their
performance. The review followed established frameworks to guarantee consistency, transparency,
data synthesis, and reporting comprehensiveness.

The review aims to enhance the reliability and robustness of autonomous systems in the
underground mining industry by comprehensively analyzing 3D object detection methodologies in
autonomous vehicles. The study employs a pragmatic approach, acknowledging that underground
mining environments present distinct requirements that substantially differ from those in more
controlled industrial environments. It is, therefore, essential to comprehensively evaluate and
compare current 3D object detection techniques in such environments to ascertain their strengths,
limitations, and application-specific challenges. This investigation will help discover current
literature and technology limitations for developing more efficient detection systems that deliver
real-time, precise, and resilient performance in underground mining environments. The study will
emphasize recent advances and establish a basis for recommending future directions, particularly
optimizing algorithms for rugged, resource-limited, and unpredictable mining environments. The
study contributes to the advancement of autonomous haulage truck technology consistent with the
mining industry's safety protocols for zero fatality and operational requirements, thereby fostering a
more efficient and secure future for the sector.

The structure of the paper is organized as follows: Section 2 provides a comprehensive review
of the key sensor-based 3D detection systems for autonomous truck navigation, multi-sensor
detection systems, and their strengths and limitations. Section 3 delves into multi-sensor fusion
strategies, grouping them into early, mid, and decision-level fusion, and assesses their impact on
detection accuracy. Section 4 discusses current deep learning architectures, their deployments, and
state-of-the-art underground 3D detection model comparisons. Section 5 synthesizes underground
dataset challenges related to autonomous object detection. Section 6 identifies the key challenges
detection systems face in underground settings and proposes future directions. Finally, Section 7
synthesizes the findings of this review. Figure 1 shows the structure of the entire review report.
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Figure 1. Structure of the Review Report.

2. Overview of Sensor Modalities for 3D Object Detection in Underground
Autonomous Haulage Trucks

Three-dimensional (3D) Object Detection is pivotal to autonomous haulage truck operation in
underground mining environments where safety, situational awareness, and navigation are critical.
These detection systems rely on different sensor modalities to provide spatial awareness, track
moving and static objects such as workers, equipment, and structural features, and detect hazards.
Unlike controlled urban environments, underground settings have variable lighting, dust,
occlusions, and uneven terrains, which necessitate the integration of complementary and robust
sensors for detection.

This section provides a detailed analysis of key sensor-based detection perception systems used
in underground autonomous trucks, which include IR, RGB cameras, and LiDAR systems. Each
system is evaluated for its operational principles, integration with deep learning algorithms,
underground applicability, and performance trade-offs.

2.1. Infrared Thermal (IR) Systems

Infrared (IR) thermal sensors (Figure 2) detect heat signals from objects and convert them into
thermal images or temperature maps. IR's ability to perceive heat from objects or obstacles makes it
significantly valuable for underground mining environments, where smoke, low light, and dust often
compromise traditional optical systems. Unlike RGB cameras that depend on ambient lighting,
thermal sensors can function in complete darkness and thermally unstable conditions.

These sensor modalities are effective in:

1. Pedestrian or worker detection by identifying humans’ heat signatures.
2. Collision avoidance in situations where RGB cameras and LiDAR sensors struggle.


https://doi.org/10.20944/preprints202505.0711.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 May 2025 d0i:10.20944/preprints202505.0711.v1

5 of 31

Figure 2. Thermal Infrared camera [39].

IR imagery can be segmented and classified in real-time when integrated with YOLO-based or
CNN architecture. Many studies have demonstrated the successful application of different YOLO
and two-stage CNN algorithms on thermal imagery for object detection in underground mining
environments [18,40—44]. Figures 3 and 4 illustrate the application of IR with DL architectures in
underground environments. Keza et al. [43] presented a pedestrian detection system that enhances
safety in underground mines by integrating thermal imaging with 3D sensors. Using a FLIR thermal
camera and depth sensors (TOF and Kinect), the system classifies regions using four methods and
segments thermal images based on temperature thresholds. However, the model demonstrated
susceptibility to motion distortion and mist and lacked enough underground datasets for model
development.

Key Features and Advantages of IR Systems

e  Effective in Low or No Light Conditions: IR systems rely on detecting heat signatures rather
than visible light, making them highly effective in poorly lit or completely dark environments
in underground mines.

e  Thermal Object Detection: These sensors distinguish objects based on their heat signatures to
identify equipment, vehicles, and workers, even in smoke, fog, or dust.

¢ Long-Range Detection Capabilities: Certain IR sensors, like long-wave infrared (LWIR), can
detect objects over significant distances, enabling early identification of hazards or obstacles.

e Insensitive to Ambient Light Variations: Unlike RGB cameras, IR systems are unaffected by
ambient light changes, ensuring consistent performance in dynamic lighting conditions.

e  Compact and Durable Designs: IR sensors are lightweight, built to endure the harsh mining
environment, and can withstand hot temperatures, vibrations, and dust.

¢ Resistance to Ambient Light Variations: Unlike RGB cameras, IR sensors are not affected by
changes in ambient light, offering consistent performance both day and night.

Despite these strengths of IR sensor modalities, there are notable limitations:

e Limited spatial resolution. This often affects fine-grained object classification

e  High purchase cost. IR sensors such as long-wave IR (LWIR) are often costly

e  Inference from reflective equipment or heat surfaces with similar thermal profiles degrades their
performance

Despite these limitations, their fusion into multisensory systems is invaluable, which enhances
system robustness and reliability. When integrated with LiDAR (for depth information) and RGB (for
texture), IR sensors contribute uniquely to real-time perception and classification.
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(a) (b)

Figure 3. Thermal Sensor for Pedestrian Detection in Underground Operations (a) Navigating System [45], (b)
Pedestrian Detection [46].

Figure 4. Thermal Imagery using YOLO Algorithm for Underground Pedestrian Detection [41].

2.2. RGB-Based 3D Detection Systems

RGB Cameras in Figure 5 remain one of the foundational sensor types utilized in 3D object
detection systems because of their ability to capture high-resolution visual data with texture and color
details [45,47-49]. They are deployed in underground mining autonomous trucks for object
classification, scene understanding, and equipment recognition. RGB camera sensors illustrated in
Figure 5 capture 2D images, which comprise red, green, and blue color channels combined to form a
full-color image and a per-pixel depth report. In 3D object detection systems, RCB cameras are often
used alone or with active stereo or time-of-flight sensing technology [18]. They are integrated with
other sensors, such as LiDAR or IR sensors, for multi-sensor systems to enhance the perception
model's scene understanding and robustness. Current detection algorithms, such as YOLO and
CNNs, have significantly improved the accuracy and speed of RGB camera models [19,26,49,50].
These algorithms use features such as pattern recognition and color differentiation for precise
detections and classifications.

RGB sensor detection systems are vital in autonomous mining trucks because they leverage
visual data from cameras to identify, classify, and track objects in the environment. RGB-Camera has
various configurations:

1. The monocular cameras, which are lightweight and cost-effective, do not have depth perception
2. Stereo cameras estimate depth by triangulating differences between two lenses
3.  Depth cameras incorporate active sensors for near-field 3D imaging.
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Figure 5. RGB Camera [18].

These sensor types are very compatible with DL models like YOLO and CNN. Zhang et al. [47]
proposed an LDSI-YOLOvS framework to enhance missed detection and low recognition for multiple
targets in underground coal mines, leveraging an RGB camera. The work reported an accuracy of
91.4%, demonstrating a 4.3% increase compared to the original YOLOvVS algorithm. Imam et al. [51]
also developed an anti-collision system for underground mines, focusing on pedestrian detection via
RGB cameras with a YOLOv5 DL-based algorithm to enhance pedestrian detection accuracy in low-
visibility conditions.

Philion and Fidler [52] also presented the Lift-Splat-Shoot model, which encodes multi-camera
images into bird’s-eye-view (BEV) representations for autonomous vehicle driving applications. The
key objective was to create an end-to-end architecture that directly transforms multi-camera data into
a unified BEV frame for semantic perception, understanding, and motion planning. The research
demonstrated that the model could segment vehicles, drivable areas, and lanes by combining
frustum-based depth inference and pooling techniques. However, there was reduced performance in
low-light conditions and reliance on simple-frame data, which affects depth estimation accuracy
compared to LiDAR-based models.

Versatility and affordability make camera-based models attractive for underground
applications. They are less expensive than LiDAR and can be applied in areas such as identifying
potential hazards and miner helmets for safety [17,53,54]. The key features and advantages of RGB
Cameras include:

1. High-Resolution Imaging. RGB cameras can capture rich and detailed visual information,
providing the necessary resolution to identify and classify objects based on color and texture.

2. Cost-Effectiveness. They are relatively inexpensive compared to other sensors, such as LIDAR
sensors, making them a known choice for cost-effective object detection models. Their
affordability enables widespread applicability in autonomous vehicles.

3. Color-Based Object Recognition. An additional layer of information is provided by the ability of
RGB cameras to perceive colors, to distinguish between similar-shaped objects, and to identify
warning signals.

4. Lightweight Design. RBG cameras are compact and easy to integrate into autonomous vehicle
platforms, enabling more sensor placement, system design, and integration flexibility.

However, there are significant challenges encountered:

High reliance on lighting makes them unsuitable for low-light environments
Affected by visual occlusions from debris and dust, which reduce detection accuracy
Lack of depth perception unless integrated with a stereo or LIDAR sensor.

W N

High computational load for processing high-resolution image frames in real time.

Multi-sensor fusion systems integrating RGB cameras with LiDAR or thermal sensor data
address these limitations [25,28,29,54,55]. Fusion provides enhanced object classification and
detection by combining color from RGB cameras with depth and range information from other
sensors such as LiDAR. Autonomous systems achieve a more comprehensive and accurate
perception of their environments by fusing this data from complementary sensor sources.
Additionally, advancements in image technologies and algorithms have been introduced to address
some of these challenges. These include high-dynamic range (HDR) imaging to improve the camera’s
ability to handle extreme variations in brightness and enhance visibility in poor and variable lighting
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conditions [56-58]. ML algorithms are increasingly trained on augmented datasets to handle noisy
and distorted visual data inputs better, improving model robustness in adverse conditions [26,29].

2.3. LiDAR (Light Detection and Ranging) System

The capability of LIDAR technology to generate precise depth measurements of the
encompassing environment has made it a pivotal sensor type for detecting objects in autonomous
vehicles. As shown in Figure 6, LIDAR sensors can accurately detect the distance between objects in
a scanning area of up to about 50 meters [33]. The technology of LiDAR sensors has made significant
strides since their inception, making it a critical component in detecting 3D objects for autonomous
vehicle navigation. LiDAR technology was initially developed for military and atmospheric
applications [59]. It has since improved to accommodate the needs of commercial and industrial
sectors, such as the underground mine. LiDAR is the primary solution when incorporated with deep
learning algorithms in mining, where the transition to autonomous operations requires real-time and
precise detection. Solid-state designs, multi-beam configurations, and scanning mechanisms have
significantly enhanced detection range, resolution, and robustness. This has addressed the limitations
of early systems in challenging environments that depend on only single-point laser systems. LIDAR
sensors emit laser pulses that travel through the atmosphere, bounce off objects, and measure their
return time to the sensor, generating high-density point clouds representing 3D information about
the object. This information includes object size, position, and orientation. This ability allows
autonomous trucks to detect nearby equipment, obstacles, workers, and infrastructure and navigate
in GPS-denied underground tunnels.

Figure 6. 3D LiDAR Sensor [46].

Modern LiDAR systems employ solid-state designs or rotating mirrors to perform rapid scans
across 360 degrees of targeted areas. Data from these scans is processed in real-time to create dense
point clouds, which serve as the foundation for object detection, tracking, and classification
algorithms.

Key advantages of LiDAR systems in underground mining environments include:

1. High-Precision Depth Measurement. LiDAR sensors' time of flight range ensures the precise
localization of objects: This makes it particularly useful in underground mining, where exact
spatial awareness is critical for safety and overall operational efficiency.

2. Resilience to Environmental Interference: LiDAR is highly resistant to environmental
interferences, such as vibration and glare. Advanced multi-echo and solid-state have built-in
glare filters, enabling reliable performance in some of the underground mining environments.

3.  Wide Field of View and Real-Time Mapping: Several LiDAR sensors offer a full 360° coverage
view. This ensures comprehensive detection of objects, obstacles, and workers around mining
vehicles, enhancing situational awareness.

4. Efficient and Reliable Performance: LiDAR sensors are unaffected by an object’s color or
texture, allowing consistent detection regardless of the visual appearance of objects. Unlike RGB
cameras, LiDAR systems are effective in low-light conditions as they solely rely on active laser
emissions rather than ambient light.
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5.  Compatibility with SLAM systems: LiDAR systems support simultaneous localization and
mapping (SLAM), enabling autonomous haulage trucks to track their positions while
dynamically building maps of the environment.

LiDAR produces precise depth measurements in the harsh and complex underground mining
environment, making it significant. Advanced processing algorithms applied to LiDAR data can
classify, detect, and predict objects in the environment for autonomous truck navigation. Integrating
these algorithms with LiDAR can distinguish between stationary walls, moving equipment, and
other objects, which is crucial for dynamic decision-making in real-time detection operations.

LiDAR sensors are essential for recent 3D object detection systems in autonomous vehicles in
underground mining environments. LIDAR point cloud data comprises millions of points (Figure 7)
that map the objects' surroundings in 3D (positions, size, and shape), providing a precise view
beyond 2D images or videos, which is critical for accurately identifying objects in a scene. LIDAR-
based systems' resilience in harsh environments is a significant advantage for their application.
Underground mines are characterized by conditions impairing the performance of other sensor-
based systems, like cameras or radar sensors. However, LIDAR systems, such as moisture, are less
affected by these conditions. Combined with DL algorithms, LiDAR data can improve object
detection accuracy and provide a robust obstacle avoidance mechanism for safe autonomous truck
navigation. Compared to RGB data, LiIDAR 3D point clouds are critical in providing structural and
spatial information of precise depth. However, the 3D point clouds are unordered, sparse, and
sensitive to local variations, which makes raw LiDAR data processing challenging [60].

Figure 7. LiDAR Point Clouds for 3D Detection.
Generally, LIDAR object detection systems can be categorized into traditional and DL systems.

2.3.1. Traditional Methods.

Traditional methods often depend on geometric and clustering techniques to detect objects.
Algorithms such as DBSCAN [61-63] assume that objects have a higher point density than their
surroundings. This method groups nearby points into clusters, then applies shape fit to detect objects
based on geometric assumptions. Though this approach is practical in structured environments and
computationally efficient, it often struggles in noisy, complex, and unstructured environments.
Usually, it fails to detect dynamic elements such as pedestrians or moving vehicles. They are more
rule-based and best suited for controlled and simpler environments.

2.3.2. Deep-Learning-Based Methods

Recent technological advancements have enabled more accurate detection of complex real-
world environments. These models automatically learn features from large, annotated datasets and
are robust to occlusions and noisy inputs, providing accurate and more flexible detection in dynamic
environments. LIDAR-based DL Systems are generally classified into view-based, voxel-based, point-
based, and hybrid point-voxel-based methods [21,64—66].

1. Voxel-Based Methods: Voxel-based models transform raw and irregular 3D point clouds into
structured grids known as voxels for processing using 3D convolutional neural [65-68]. This
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generates simplified data, allowing the use of mature CNN architectures for object detection.
Popular techniques include:

o  VoxelNet [67]. This end-to-end framework partitions LiDAR point clouds into voxel grids
and encodes object features using stacked voxel feature encoding (VFE) layers, as illustrated
in Figure 8. This process is followed by 3D convolution to extract geometric and spatial
features. The method streamlines the detection pipeline by eliminating separate feature
extraction stages.

o  SECOND (Sparsely Embedded Convolutions Detection) [66]: This is an optimized version
of VoxelNet that employs sparse 3D convolutions, which improves computational
efficiency without sacrificing accuracy [69].

These models simplify point clouds' irregular and sparse nature and have high localization
accuracy due to precise spatial encoding in the voxel grid. Additionally, their ability to process
volumetric data directly makes them suitable for underground mine environments. However, the
limitations of voxel-based methods include a lack of semantic richness, which limits their
classification accuracy when implemented alone. Fin-grained voxelization can lead to high
computational demand. Lastly, they struggle with small object detection due to limited resolution in
sparse voxel grids.

Car
Pedestrian
Cyclist

Figure 8. VoxelNet Processing of Raw Point Cloud Providing 3D Detection Results in Underground

Environment [67].

2. Point-Based Methods. Point-based methods directly process raw LiDAR point clouds without
converting them into voxel grids (voxelization) to 2D projections. This method preserves fine-
grained geometric details of the environment by operating on ordered 3D points. This makes
them highly effective in detecting partially occluded or irregularly shaped objects. The key
pioneering family of point-based methods is PointNet [70]. This uses symmetric functions to
learn object global shape features from unordered point sets. PointNett++ [71] extends this by
using hierarchical feature learning to capture local context in clustered regions. PointPillars [72]
(Figure 9) are a widely adopted method in autonomous driving. The method partitions point
clouds into vertical columns known as “pillars” to offer a balance between detail preservation
and computational efficiency. It converts spatial features into a pseudo-image format, which
enables fast detection through 2D convolution while retaining meaningful 3D structures.

Despite their advantages in handling detailed geometry, point-based methods face limitations
in computational cost, especially in cluttered environments, limited scalability in real-time, and the
need for substantial GPU memory for training and inference
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Figure 9. PointPillar Network Framework [72].

3. Hybrid-Based Methods: Hybrid approaches integrate the strengths of voxel-based and point-
based techniques to enhance the accuracy and efficiency of 3D object detection. These methods
utilize voxelization for structured data representation while leveraging fine local feature
extraction of point-based models. A hybrid model typically starts by extracting local geometric
object features from raw point clouds using point-based encoders. The features are then
embedded into voxel grids, where the voxel-based backbone utilizes convolutions to learn
global context and make predictions. This design helps the hybrid model to balance robustness,
precision, and processing speed, making it suitable for cluttered and complex underground
environments.

Despite the fast adaptation of LiDAR-based systems, several limitations impact their
deployment in underground mining environments:

1. Lack of Object Identification: LiDAR systems can detect the presence and position of objects,
but do not provide detailed information about object types or characteristics, which is essential
for some mining applications.

2. Computational Demand: Processing of dense and sparse point clouds

3. Environmental Sensitivity: Accuracy is impacted by environmental conditions, such as dust,
fog, water vapor, and snow. These factors degrade signal quality and require additional
hardware and software processing to mitigate detection failures.

4. Sensor Surface Contamination Challenges: Dust and debris accumulating on the sensor surface
impair detection functionality, necessitating regular cleaning or protective mechanisms to
maintain reliability.

5.  High Cost. High-resolution LiDAR units are expensive, which often hinders their large-scale
deployment in budget-sensitive underground operations

6. Range and Field of View Limitations: The typical range of LiDAR sensors is limited to around
50 meters [29], restricting their effectiveness in larger underground mining operations.
Furthermore, planar scanning systems may miss obstacles above or below the scanning plane,
posing safety risks.

7.  Energy Consumption and Infrastructure Requirements: LiDAR systems consume more energy
than other sensors and demand robust infrastructure for effective operation, complicating
deployment in confined underground mining spaces.

While models such as 3DSG [5,68] have demonstrated enhanced 3D object detection for surface
mining trucks using LiDAR sensors, their direct applicability to underground environments remains
limited due to differences in spatial constraints, lighting conditions, and operational challenges.

2.4. Multi-sensor Fusion in Underground Mining: Perception Enhancement Through Integration

Multi-sensor fusion models [73-75] are at the forefront of recent 3D detection systems for
autonomous vehicle navigation in underground mining environments. These systems integrate data
from multiple sensors such as cameras, LiDAR, radar, or thermal to develop a comprehensive
perception of the environment. Each sensor type has its strengths and limitations, and by combining
them, multisensory fusion systems capitalize on their complementary capabilities to enhance
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detection accuracy and reliability for the safe navigation of autonomous trucks. LiDAR provides
precise 3D spatial information, excelling in in-depth measurement, but often struggles in particulate-
heavy environments. Cameras offer high visual data, capturing color and texture information for
more detailed feature extraction, but their performance degrades in low-light or obscured conditions.
Radar is reliable in adverse conditions and excels at long-range detection, but is less precise in
resolution. Thermal sensors capture heat signatures from objects and surroundings, making them
capable of detecting objects in completely dark and challenging conditions, such as fog, smoke, and
dust. By fusing these data streams, multisensory models address the individual limitations of each
sensor to create a robust perception framework suitable for challenging conditions in underground
mines. As sensor technologies and fusion algorithms continue to evolve, they promise a future where
autonomous trucks achieve even greater safety, efficiency, and adaptability in mining operations.

Szrek et al.[41] evaluated a UGV-based human detection system in underground mines using
RGB and IR cameras alongside YOLOv3 and HOG algorithms. While RGB imagery provided visual
context, it struggled in low-light and cluttered environments, especially for non-standing individuals.
The study showed that RGB detection alone was often insufficient, but combining it with IR data
improved reliability. A key limitation was using pre-trained models that were not optimized for
underground settings, which affected accuracy. Xu et al. [76] proposed an autonomous vehicle
localization method for underground coal mine tunnels based on fusing vision and ultrasonic
sensors. They use infrared cameras to detect wall-mounted barcodes and ultrasonic sensors to
measure distances, enabling geometric calculation of vehicle position without relying on complex
SLAM. The method achieves sub-meter accuracy but is limited by dependence on manual barcode
deployment and potential occlusion in dynamic tunnel environments.

Zhang et al. [77] also developed a real-time underground mining vehicle localization method by
fusing YOLOv5-based object detection with high-precision laser distance measurement. The system
identifies mining trucks visually using YOLOv5s and calculates exact positioning via laser sensors.
However, the system had limitations, including its sensitivity to environmental conditions such as
humidity and dust, which reduced detection robustness for small and fast-moving objects, with
future improvements suggested through upgrading to YOLOv7/YOLOvVS and enhancing multi-
object tracking capability. While recent advances have explored multi-sensor fusion using RGB,
LiDAR, and thermal imagery with CNN or YOLO-based algorithms in environments such as search-
and-rescue tunnels, urban settings, and surface mine environments, applications specifically
targeting underground autonomous haulage trucks remain extremely limited. Most existing work
focuses on drones, indicating a critical research gap for truck-scale 3D object detection and navigation
in confined mining conditions.

Key advantages of multi-sensor fusion include:

1. Enhanced Detection Accuracy: Combining the complementary strengths of different sensors,
like LiDAR'’s depth information with RGB camera’s texture data and thermal imaging’s heat
signatures, will improve overall object detection performance.

2. Robustness in Harsh Conditions: Multi-sensor models maintain improved detection
capabilities in challenging underground conditions where individual sensors may fail

3. Redundancy for Safety: These models provide multiple sources of information, allowing the
system to continue functioning safely if one sensor fails or becomes unreliable.

4. Improved Localization and Mapping: Fusing vision (RGB Cameras) with depth measurements
(LiDAR) strengthens localization precision and supports robust mapping in GPS-denied
underground environments.

5. Adaptability to Dynamic Conditions: Provides dynamic sensor prioritization, where the
system can rely more heavily on the most reliable sensors depending on environmental changes,
like thermal sensors in low-visibility conditions and LiDAR for depth information.

With these capabilities of multi-sensor systems, notable challenges associated with them include

1. High Computational Demand: Processing large volumes of synchronized data from different
sensors in real time requires powerful and often costly computational hardware.
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2. Complex Synchronization and Calibration: Multi-sensor fusion requires precise calibration
and alignment across different sensors, which is technically challenging, especially in
underground settings with vibrations and environmental noise.

3. Scarcity of Datasets for Training: There is a lack of large, annotated, multi-sensor datasets that
specifically capture underground environment conditions, limiting the ability to train robust
deep learning models

4. Increased System Weight: Adding multiple high-end sensors such as LIDAR, thermal, and RGB
cameras raises the overall cost and maintenance complexity and may impact autonomous truck
payload or energy efficiency.

3. Sensor Data Fusion Methods

Fusing data from multi-modal sensors is vital in 3D object detection for underground
autonomous trucks. The harsh underground conditions require robust perception systems capable
of overcoming occlusions, dust, and low-visibility environments. Fusion methods are generally
classified into early-stage (raw data), mid-stage (feature-level), and late-stage(decision-level) fusions
depending on when the fusion occurs in the data preprocessing pipeline, as shown in Figures 10 and
11. Each strategy has distinct strengths and significant trade-offs, as described below. Figure 12
illustrates the accuracy and complexity levels of different fusion strategies of multi-sensor models.

N
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\ J
s N

Data Level » Early Fusion R  Sensor2
J

Figure 10. Sensor Level Fusion Stages in Multisensory Fusion [78].

.

3.1. Multi-Fusion Level Methods

3.1.1. Early-Stage Fusion

Early-stage fusion, or sensor-level fusion, integrates raw, unprocessed data streams from
multiple sensors into a single dataset before performing feature extraction [79]. This method is
valuable for creating robust detection systems in environments requiring fine-grained detection
details, as it captures the full signal fidelity of individual sensor modalities.

For instance, LIDAR point clouds can be registered onto the RGB camera image pixel grid to
generate depth-colored visual maps. Thermal sensor outputs can also be overlaid on visual data to
identify heat-based anomalies. This strategy significantly detects small, obscured objects that a single
sensor type may not fully recognize. This approach maximizes the amount of extracted information,
which enables detailed feature extraction. The richness of the raw data captured ensures that critical
details are not lost during the fusion process

The primary advantage of early-stage fusion is its ability to retain rich and detailed information
across multiple sensor modalities. This gives an expressive input for DL models, enhancing detection
precision and accuracy. However, this imposes significant computational demands, as raw sensor
data requires huge memory and processing power. This computational burden causes a bottleneck
to systems requiring real-time processing, such as the underground mine.

Moreover, data temporal misalignment from different sensors, resolution disparities, and
distinct sensor frame rates introduce another challenge. This can be addressed by applying advanced
calibration techniques and synchronization protocols for adequate alignment. Misaligned data can
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lead to inaccuracies in the final fused dataset, undermining the system’s reliability, accuracy, and
effectiveness. Despite the earlier limitations, early fusion is essential in environments requiring
precise spatial understanding, and computational overhead is not the primary constraint.

3.1.2. Mid-Level Fusion

Mid-level fusion involves the integration of independent extraction features from individual
sensor modalities to create a more unified and comprehensive representation of the environment.
Rather than performing a fusion of raw sensor data, each sensor undergoes preliminary processing
via a convolutional neural network (CNN) or other feature encoders to extract high-level object
representations such as contours, depth features, temperature gradients, and motion cues. These
extracted features are consequently aligned and integrated into a shared feature space.

This fusion strategy provides an effective balance between perception richness and
computational efficiency. By processing feature representations with low dimensionality, memory
and bandwidth are reduced instead of the significant volume of raw data, while capturing rich
information from each sensor modality. Mid-level fusion provides several advantages, including data
efficiency. This reduction in computational requirements offers a more efficient system for real-time
operations. Mid-level fusion is particularly relevant for real-time applications in underground
autonomous trucks where edge deployment and split-second decision-making are critical.

Nevertheless, mid-level fusion introduces its challenges. There is difficulty in effectively
aligning extracted features from heterogeneous sensors, which require spatial and temporal
synchronization and are often trivial. Misalignments can degrade fusion quality and present
detection errors. Additionally, fusion performance solely depends on the design and quality of the
feature extraction modules as well as fusion architecture, such as cross-modal attention networks,
which require careful design and tuning

3.1.3. Late-Stage Fusion

Late-level (decision-level) fusion integrates the final outputs of independently processed sensor
data, such as bounding boxes, to make high-level decisions. Each sensor operates autonomously in
this approach, and the outputs are generated using techniques like weighted averages or voting
schemes to obtain final decisions. In [80], the study employed a decision fusion method utilizing
camera and LiDAR sensors for mine track object detection. This strategy is favored for its simplicity
and modularity, enabling sensors to be trained and maintained separately, simplifying the model
design. The decision fusion approach is computationally lightweight, making it suitable for
embedded systems or as a fallback in redundant safety layers. As individual sensors process their
data autonomously, the fusion process occurs at the decision level, which does not require handling
extensive raw data. This makes late-stage fusion suitable for resource-constrained environments and
real-time processing applications.

Despite these advantages, there are limitations, such as overreliance on high-level decisions.
Additionally, it lacks access to raw or intermediate data. It cannot refine ambiguities that are
introduced earlier in the training pipeline. If one sensor misclassifies an object, the fusion process
cannot correct it. This challenge often reduces overall detection accuracy and system performance,
particularly in complex scenarios of late fusion models, especially in occluded and multiple
overlapping scenes. Table 1 comprises the different sensor fusion strategies, strengths, and
limitations in multi-sensor underground autonomous truck haulage models.


https://doi.org/10.20944/preprints202505.0711.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 May 2025

15 of 31

ﬁ
M Early Fusion

Detect Net

Deep Fusion

Late Fusion

-8

Figure 11. Multi-Fusion Level Methods [3].

Fusion Levels: Accuracy vs
Complexity

Early Fusion

Late Fusion

0 20 40 60 80 100

Performance B Complexity

Figure 12. Fusion Strategies Performance Comparison.

Table 1. Sensor Fusion Strategies in 3D Object Detection.

Fusion

Approach Level Advantages Limitations

-Has rich, joint data . . . .
) -High computational cost, complex calibration

representation . .. . . .
P -Raw data is sensitive to noise, distortions, and

-Fine-grained detection of

Early-Level misalignments
y Raw data small and obscured objects Sa g
Fusion . . -High Memory
-Supports detailed spatial . .
. -Demands precise spatial and temporal data
modeling . S
. . alignment and calibration
-High-resolution outputs
-Balances accuracy and
efficiency -Requires accurate feature alignment and
Mid-Level -Reduction in data volume resolution compatibility
. Feature Level . .
Fusion -Adaptable to real-time models-Often lose granularity from raw data
-Can exploit diverse features - Has complex architecture tuning
across sensor modalities
-No raw data alignment and its .
. -Cannot resolve early-stage mistakes
complexities . S
. . - Heavy reliance on accurate individual sensor
.. - Simple to implement
Late-Stage Decision . . performance
. -Computationally efficient . . .. .
Fusion Level - Not suitable for applications requiring detailed

integration of raw or feature-level data detection
accuracy in complex scenes

-Effective in redundancy layers
-Suitable for real-time
detection applications

This section and the comparison below demonstrate how each fusion strategy proves its unique
strengths and limitations based on the deployment context. In complex underground mining
environments, where safety-critical decisions are required in real-time, mid-level fusion often
provides the best balance between detection accuracy and real-time decision-making. However,
hybrid strategies that combine early and late fusion may also provide good results for fail-safe
designs.
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3.2. Sensor Fusion Advantages and Limitations

3.2.1. Advantages of Sensor Fusion in the Underground Mine Environment

Sensor fusion significantly enhances perception performance in autonomous haulage systems,
especially within complex and dynamic underground mine environments. By integrating different
sensor modalities such as LIDAR, camera, and IR, sensor fusion improves decision-making accuracy
by overcoming individual sensor limitations. The key advantages include the following;:

1. Resilience in Harsh Conditions: Sensor fusion compensates for individual sensor weaknesses.
For example, LIDAR often degrades in dense particulate environments, cameras struggle in low
light, and thermal sensors may lose range in open spaces. The fusion of these sensors provides
a more consistent and robust perception across such extreme conditions.

2. Enhanced Object Detection and Classification: Multi-modal sensor integration improves object
detection precision. Combining LiDAR and thermal data enhances the recognition of equipment,
workers, and structural features, especially in low-visibility or occluded scenes.

3. Improved Operational Safety: Integrating multiple sensors increases system reliability and
robustness, providing better object identification and more reliable obstacle avoidance. This
ensures workers' and equipment safety in confined underground settings.

4. Real-Time Decision Making: Fusion systems enable faster and more informed decision-
making, allowing real-time analysis of extreme environmental conditions. This enables
autonomous trucks to respond promptly to dynamic changes in the environment.

5. Model reliability and Redundancy: Fusion systems enhance fault tolerance and robustness by
ensuring that the failure of one sensor modality does not compromise the entire perception
system

3.2.2. Challenges in Sensor Data Fusion

Despite the transformative benefits of fusion modalities, sensor fusion in underground
autonomous haulage systems faces several technical and environmental challenges that complicate
its implementation. These challenges must be addressed to ensure accurate, scalable, reliable, and
real-time detection systems.

1. Sensor Signal Reliability and Noise: Underground environmental conditions, such as noise,
vibrations, dust, and electromagnetic interference, can significantly introduce noise into sensor
outputs, degrading performance. LiDAR sensors may produce inaccurate point clouds due to
reflective surfaces, while RGB cameras may struggle in low-light conditions. Filtering this noise
without losing essential features requires advanced adaptive filtering and denoising techniques.

2. Heterogeneous Sensor Integration: Each sensor type, such as LiDAR, cameras, radar, and IR,
produces data in distinct resolutions, formats, and operational ranges. Integrating this
heterogeneous input data requires overcoming challenges associated with data pre-processing,
feature extraction, and data representation. For instance, fusing LiDAR point cloud data with
pixel-based data from cameras involves significant computational effort and advanced
algorithms to ensure meaningful integration and representation.

3. Data Synchronization and Latency Management: Precise synchronization of data streams from
various sensors is crucial for real-time sensor fusion performance. Differences in signal delays,
sampling rates, and processing times can lead to temporal data mismatches, resulting in
inaccurate fusion outputs. For example, data from a camera capturing images at 30 frames per
second (fps) must be aligned with LiDAR data that operates at a different frequency (e.g., 15
Hz). Sophisticated temporal alignment algorithms or interpolation methods are required to
ensure all sensor inputs contribute meaningful data to the fused output.

4. Computational Complexity. The large volume of high-dimensional data that multiple sensors
generate presents significant computational challenges. Real-time processing, critical for
applications such as autonomous truck navigation, demands high-performance hardware and
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optimized algorithms. Resource constraints, including limited processing power and energy
availability in mining vehicles, further complicate this task. Efficient techniques that balance
computational load with fusion accuracy are crucial for deployment in such environments.

5. Environmental Factors: Underground conditions pose severe challenges to sensor performance.
Poor lighting, dust, smoke, noise, and fog can obscure camera, radar, and LiDAR data, while
extreme temperatures can impact sensor calibration and accuracy. Additionally, confined spaces
and irregular terrains can cause occlusions or reflections that lead to distorted sensor readings.
Designing fusion algorithms that can compensate for these environmental factors is a critical
area of research. Addressing these challenges requires interdisciplinary solutions drawn from
signal processing and Machine Learning.

4. Algorithms for 3D Object Detection in Autonomous Trucks

The rapid evolution of ML algorithms has revolutionized numerous sectors, including
autonomous vehicles and industrial robotics. It enables these systems to learn from experience,
process complex sensory data, adapt, and make real-time decisions. Over the past decade, ML
techniques have transitioned from basic pattern recognition to sophisticated algorithms that address
complex, real-world challenges. AI/ML technologies provide automation, safety, and productivity
advancements in the mining industry, particularly underground operations.

Historically, traditional object detection techniques such as Histogram of Oriented Gradients
(HOG) and Support Vector Machines (SVM) struggled to perform under harsh underground
conditions because of occluded or noisy environments. Developing more robust and adaptable DL
algorithms, particularly Convolutional Neural Networks (CNNs) and YOLO, has emerged to address
many of these challenges [81]. These algorithms allow for more precise, reliable, and adaptive
perception in complex underground environments.

This section synthesizes major ML algorithms and their integration for 3D object detection in
underground autonomous haulage navigation. The section emphasizes their architectural principles,
recent applications in underground operations, and performance trade-offs.

4.1. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are the foundational technologies to modern computer
vision because they can learn spatial hierarchies of image data features[82]. CNNs have proven
resilient in underground environments due to poor lighting, dust, and occluded conditions.

CNN-based object detection models follow two-stage processes [83]. Girshick et al. [84]
introduced the original R-CNN (Region-based), which utilizes selective search to propose regions of
interest, followed by CNN-based classification. Though this method is accurate, it is computationally
expensive and unsuitable for real-time applications. Subsequent models such as Fast R-CNN [85] and
Faster R-CNN [86] directly used the region proposal stage in the CNN, minimizing latency and
enabling near real-time applications. Mask R-CNN [87] further enhanced this by adding instance
segmentation alongside detecting and classifying objects valuable for cluttered environments like
underground mines.

Several studies have shown the use of CNNs for vehicle and personnel detection in underground
tunnels, which validates the robustness of hierarchical feature extraction [83,86]. However, CNN
algorithms remain challenged by their high computational load, local receptive fields that may miss
the global context, and limitations in the 3D point cloud [24,88]. Lightweight CNN variants that
employ quantization, pruning, and multispectral imaging have been explored to overcome these
challenges. These techniques reduce model size and energy consumption capabilities, making CNNs
suitable for edge deployment in underground autonomous haulage. However, challenges remain in
meeting real-time performance and adaptability to complex underground scenarios in underground
autonomous haulage. However, challenges remain in meeting real-time performance and
adaptability to complex underground scenarios.
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4.2. YOLO (You Only Look Once) Series Algorithm

YOLO (You Only Look Once) algorithms have gained prominence and recognition for their
single-stage framework approach. This feature enables simultaneous object localization and
classification in one network pass, delivering real-time detection inference critical for dynamic
underground environments [89-92]. Redmon et al. [93] pioneered the introduction of YOLOv1 to
reframe the detection task as a regression problem, significantly enhancing inference speed. Later
versions, such as YOLOv3, YOLOv4, and YOLOV5, presented features including multi-scale
detection (Darknet-53), cross-stage partial networks (CSPDarknet), and enhanced model flexibility
[94]. YOLOVS, the latest version, includes lightweight designs, transformer-based enhancements, and
an improved feature pyramid for better accuracy-speed balance. Figure 13 shows the traditional
architecture of the YOLO framework.

Underground-specific YOLO model adaptations include:

Research has leveraged the YOLO algorithms to develop robust object detection models.[21].
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Figure 13. YOLO Architecture.

Zhang et al. [19] proposed LDSI YOLOvVS to address issues of multi-target detection in the coal
mine excavation environment. The work leveraged the YOLOvVS architecture and had an mAP
improvement of 4.3% compared to the original YOLOv8 model shown in Figure 14. The study
achieved 91.4% mAP and 82.2 FPS, demonstrating strong adaptability to underground dusty, low-
light, and occluded underground conditions. Despite its potential detection performance, the model's
training on a specialized excavation dataset may limit its generalization to different mining sites
without retraining or domain adaptation. Ni et al. [89] also developed a YOLOvS8-based pedestrian
and hazard detection model for underground mining environments, which achieves real-time
capability and improved accuracy. Zhang et al. [95] proposed YOLO-UCM, an improved YOLOvS
model, to enhance pedestrian detection in underground coal. It integrated Vision Transformers (ViT)
and Meta-AconC for enhanced feature extraction and detection accuracy.

DDEB-YOLOV5s model, which incorporated a C3-Dense feature extraction module, weighted
BiFPN, and a decoupled detection head, improved feature extraction, achieving multi-target tracking
accuracy of 93.1% and stability in mining environments [96]. Li et al. [97] presented an improved
YOLOvV11-based miner detection model for underground coal mines, enhancing feature extraction
with Efficient Channel Attention (ECA) and refining localization with a weighted CloU loss. The
model achieves 95.8% at mAP@50 and 59.6 FPS on a custom underground dataset, outperforming
existing detectors. However, it mainly focuses on personnel detection, with future work needed for
broader underground object recognition.
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Figure 14. YOLOVS detection model in an underground mining environment [19].

While YOLO models have achieved considerable success, they are challenged by difficulty
detecting objects in highly occluded or cluttered conditions. This often requires additional
computational resources as the scale increases. The trade-off between detection speed, accuracy, and
model size remains a key challenge when deployed on embedded GPU systems in underground
haulage trucks. Therefore, ongoing research aims to optimize YOLO's performance in such settings,
ensuring that real-time, accurate detection remains feasible even with limited computational power.
A performance comparison of YOLO and CNN algorithms is presented in Table 2. The table
highlights key advantages and limitations of CNN-based and YOLO-based object detection
frameworks concerning application constraints in underground settings characterized by low
lighting, occlusion, computational overhead, and real-time processing inference.

Table 2. Comparison of YOLO and CNN DL Models for Object Detection in Underground Mining

Environments.

DL-Approach Advantages Limitation
-Computationally expensive, limiting real-
time deployment

- 1 label havel
- Effective in noisy and low-light underground N.eejd arge, labeled datasets and have long
o training hours
conditions

CNN - Enhanced detection accuracy with - Difficulty in deployment of embedded edge

multispectral data
- Effective for segmentation and complex object
shapes

-Extracts hierarchical features effectively from
image data

computers

- Require large, labeled datasets for training
- Prone to overfitting in complex and
dynamic mine layouts

-Single-stage architecture enables fast inference - Trade-offs in accuracy for small or occluded

speed for real-time autonomous navigation objects.

- Well-structured Tracing of overlapping and - Reduced robustness without data

moving objects augmentation or custom tuning practices
YOLO Series Lightweight versions are suitable for - Improved performance requires extensive

deployment on GPU edge platforms hyperparameter tuning

- Easy to fine-tune across variable mining - Limited generalization to unseen mining

datasets data

- Latest YOLOVS variants support transformer- - Persistent challenge by sensor

based attention misalignment and fusion latency

In summary, two-stage detection frameworks such as CNNs provide high detection accuracy
but introduce computational overhead, making them unsuitable for real-time underground
applications. On the other hand, YOLO-based models provide a viable direction for fast and efficient
object detection, with recent versions demonstrating adaptability to underground conditions.
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However, they often suffer in small object detection and tradeoffs between accuracy and inference
speed. Continued efforts to enhance these models for edge computing and improve their robustness
and real-time performance under occlusions and dynamic environments will be crucial to advancing
autonomous haulage safety and efficiency in underground mining operations.

4.3. Detection Model Comparison for Underground Autonomous Haulage Systems

Current 3D object detection models designed for underground autonomous haulage systems
navigation differ in structure, sensor dependency, and performance. The performance of 3D object
detection systems is crucial for ensuring the safety and efficiency of autonomous trucks, particularly
in complex and dynamic environments such as underground mines. Table 3 below evaluates and
summarizes the performance of the leading 3D object detection models used in underground
autonomous truck applications. It highlights their capabilities to handle the unique challenges posed
by underground environments, detection approaches, advantages, limitations, and key performance
metrics.

Table 3. Comparison of Recent 3D Detection Models for Underground Applications, where x means no

information.
Detection .. e ey e
Model/Framework R Sensor Modalities mAP (%) FPS Limitations
Algorithm
It has limited
scalability in other
LDSI-YOLOv8[19] YOLOv8n RGB Camera 914 82.2 .
mining
environments.
Limited robustness
YOLOvV8 fOIj YOLOVS- and geneFahzatlon
Hazard Detection RGB Camera 99.5 45 due to reliance on a
based
[89] small, self-
constructed dataset
YOLO-UCM [95]  YOLOV5 RGB Camera 93.5 15 Model trained on a
simulated dataset
High model
complexity
- Requires
DDEB-YOLOVSs + YOLOVSs with | o 91.7 o8 Coi;grziﬁgial
StrongSORT [96]  StrongSORT P
resources
- Reduced speed (98
FPS compared to
lighter models)
YOLOv11-based YOLOV1 RGB Camera 95.8 506 Focuses mainly on
Model [97] personnel detection
Pedestrian YOLOV5 C::clllzziif;;zh
Detection Model (Deep RGB Camera 71.6 X L.
(98] Learning) detection in
crowded scenes
Slim-YOLO- Scope limited to
YOLOvS8 RGB 2.4 7
PR_KD [99] OLOv8s GB Camera ? 6 pedestrian detection

5. Dataset Analysis, Challenges, and Proposed Strategies

Annotated datasets tailored for underground environments are limited. Existing datasets are
heavily focused on surface mine and urban driving conditions and are limited in diverse lighting,
dust interference, and confined space conditions. While synthetic datasets for underground
applications have been used as a cost-effective alternative, they often lack the complexities of real-
world situations. Dynamic underground conditions create challenges that synthetic data fail to
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replicate accurately, leading to poor model generalization and reduced performance when applied
in actual mining environments. Real-world datasets are crucial for models to handle the varied and
unpredictable nature of underground mining. The better the dataset reflects real underground
scenarios, the more effectively the model detects objects accurately and reliably. Table 4 outlines the
key underground-specific datasets and their characteristics. This section presents a comprehensive
breakdown of challenges relating to datasets in underground 3D object detection and maps each
challenge to implementable solutions. Addressing real-world underground constraints like dust,
occlusion, sensor misalignments, and data imbalance will advance the frontier of autonomous truck
navigation in an underground mine environment. This fills a significant gap in the literature and
provides actionable insights for future system model designs.

Table 4. Underground Specific Dataset and Its Characteristics.

Dataset Name Sensor Type(s) Objects Annotated Environment Limitations
Limited scalability
Underground coal  across diverse mining

LDSI-YOLOvS8
Excavation Scenes RGB Camera Pedestrian

[19] mine environments

Scene specific
Thermal image set Thermal IR Workers, conveyor Real coal mine Lacks scalability
[54] loads

Model trained on a

simulated dataset;
YOLO-UCM [95] RGB Camera Pedestrians Underground mines real underground
variability may affect
model performance
Generalization to

Real-time perception Excavation working highly dynamic or

excavation dataset ~RGB Camera Miners, Equipment . . .
[96] faces in coal mines  new tunnel layouts is
untested
MANAGEM
1 o Lusi

Pedestrian Detection RGB Camera Pedestrians Ur}derground coa Sensitive to occlusion

mines and crowded scenes
Model [98]

Recent detection frameworks in underground mining environments have achieved impressive
results using RGB imagery, LIDAR, and thermal sensors. These rely solely on single data points and
pose limitations under dust, fog, smoke, or complete dark conditions. Multi-sensor fusion offers a
promising direction, integrating LiDAR for depth perception, thermal infrared for heat-based
detection, and a camera for rich texture. Future research should prioritize developing fusion-based
models that combine complementary sensor data, enhancing situational awareness and resilience for
autonomous truck operations in the highly variable and constrained underground mining
environment

5.1. Dataset Challenges in the Underground Environment

The development of scalable and effective 3D object detection systems for autonomous
underground haulage trucks is hindered by significant dataset-related challenges:

1. Environmental Complexity: Underground environmental conditions pose significant
challenges, which hinder effective dataset collection for detection models. Such challenges
include poor lighting conditions, as these settings lack natural light. This leads to images with
low contrast and clarity, making it difficult for optical sensors such as cameras to capture objects
accurately. Additionally, dust and smoke from drilling, blasting, and transportation activities
often scatter light and obscure sensors, limiting data quality. Furthermore, uneven terrain,
cluttered backgrounds, and waste materials make distinguishing between detection objects and
irrelevant objects challenging for safe detection.
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2. Data Annotation Challenges: Annotating 3D data like LIDAR point clouds for detection models
is particularly challenging as it's labor-intensive and needs expert knowledge of mining
scenarios. Unlike 2D image annotation, identifying objects in 3D, especially in scenarios
involving overlapping objects or partial occlusions, demands significant effort. The annotating
process is prone to human errors and can significantly impact model performance.

3. Suboptimal Dataset Representation: Mining datasets are often characterized by issues related
to overrepresenting common objects, such as trucks, and underrepresenting critical but rare
classes, such as pedestrians. Frequently encountered objects dominate the dataset, while less
common but critical elements, such as workers, are underrepresented in the data. This imbalance
causes biases that prioritize common classes at the expense of rarer but safety-critical objects to
be detected. This degrades model performance and limits generalizability.

4. Inefficient Model Generalization: A significant challenge in underground mining is the
variability in mine layout and equipment types across different mines. This makes models
trained in one mine less effective in another. The dynamic nature of mining operations
necessitates continuous model updates that can adapt to variable scenarios.

5. High Computational Complexity and Real-Time Constraints: High-resolution sensors
generate terabytes of data daily, which requires massive infrastructure for storage, robust
computational efficiency, and real-time processing. Managing such large datasets while
maintaining efficiency is a persistent issue. Latency in data processing can potentially
compromise the system’s effectiveness and safety-critical decisions.

6. Temporal Synchronization in Multi-sensor Models: Temporal synchronization is a significant
challenge in multi-sensor 3D object detection models. Variability in sampling rates, operating
modes, and data speed from different sensors causes a misaligned data stream, impairs fusion
quality, and detection accuracy. Delays in transmission and hardware limitations worsen
synchronization challenges.

5.2. Proposed Strategies for Dataset Optimization and Model Robustness in Underground

The following strategies are proposed to address these challenges:

1. Enhance Sensor Capabilities: Deploy robust sensors that withstand uneven terrain, dust,
extreme vibrations, and temperature fluctuations to ensure consistent detection system
performance. Integrate multi-sensor configurations by combining complementary sensing
modalities. This will provide a robust and reliable detection system to enhance safety in
underground mining operations.

2.  Advanced Data Preprocessing and Augmentation Techniques: Effective preprocessing and
data augmentation techniques should be employed to significantly simulate dust, noise,
occlusion, and variabilities in lightning [7,9,79]. Synthetic dust clouds, altering textures, and
adjusting brightness can help the system adapt to variable surface types or equipment, ensuring
robust object detection models for challenging underground conditions.

3. Improved Data Synchronization: Solving temporal synchronization issues in multi-modal 3D
object detection demands a combination of advanced computational methods and real-time data
management strategies. Use software-based interpolation, a Kalman filter, or a deep learning-
driven alignment framework to offer more flexible solutions for proper data synchronization.
Catching strategies can also compensate for data transmission delays.

4. Effective Data Annotation: Leverage data annotation tools such as semi-automated tools, active
learning, and pre-trained models [87]. This will reduce manual annotation effort and improve
labeling accuracy by minimizing human error and maximizing efficiency. Additionally, domain-
specific annotation guidelines can ensure consistency.

5. Optimize Dataset Representation: Accurate object detection requires balanced datasets.
Applying class weighting, oversampling, and Generative Adversarial Networks (GAN)- based
synthetic data generation will balance rare and common object instances in datasets. This
approach ensures that objects like pedestrians and/or rare but critical events receive more
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attention during training. This improves model robustness in accurately detecting safety-critical
objects in real-world scenarios.

6. Improvementin Model Generalization: Employ domain adaptation techniques such as transfer
learning and adversarial training to improve models’ generalizability in cross-site applications.
Consistent and continuous fine-tuning based on environmental feedback and characteristics
enhances model adaptation.

7. Edge Processing and Optimized Data Handling: Efficient data handling is crucial in managing
large data volumes. Use efficient compression techniques to reduce the size of datasets without
sacrificing critical features and integrity. Employing edge computing to optimize data will
enable real-time and on-site data preprocessing. This reduces latency and bandwidth usage,
enhancing the system's ability to operate in real-time. It will reduce data transmission time and
minimize the load on central systems, allowing for quicker decision-making.

6. Key Challenges and Future Directions In 3D Detection Systems for
Underground Mines

6.1. Challenges in the Underground Environment.

The application of 3D object detection systems in underground mining environments is complex
due to the unique and extreme conditions. These challenges can be categorized into environmental
constraints, real-time operational intricacies, and computational limitations. Overcoming these
barriers, especially with sensor fusion, real-time processing, detection accuracy, and pedestrian
safety, will require further advancements in AI/ML, sensor technology, and edge computing. Future
3D detection systems in autonomous trucks must be intelligent, robust, and adaptive enough to
operate safely and efficiently in unpredictable, diverse underground mining environments.

1. Environmental Challenges. Underground environments present near-zero natural light, which
requires reliance on artificial illumination. This condition introduces variable lighting, low-light
noise, shadows, and glare, adversely impacting vision-based systems. The prevalence of low-
light imaging noise and incomplete data under artificial lighting conditions affects the
performance of object detectors. IR modalities improve visibility but are limited in range and
resolution. Dust, airborne particulates, and smoke generated by drilling, blasting, and other unit
mining operational activities interfere with sensor signals[4]. These conditions degrade the
quality of LIDAR point cloud data, leading to degraded object detection. Although radar sensors
are less affected by these environmental factors, they lack resolution, necessitating multi-sensor
fusion techniques to ensure robust detection. Creating fail-safes, redundancy in sensor data, and
methods for ensuring detection capabilities and reliability are essential for reliable performance.

2. Dynamic and Irregular Obstacles. Continuous machinery and other object movements of other
objects create a dynamic and unpredictable detection environment. Debris, uneven terrain, and
narrow layouts can lead to misclassifications due to their resemblance to natural geological
features in sensor data. Advanced semantic segmentation and computationally efficient ML-
based classifiers are needed to address these challenges.

3. Equipment Blind Spots and Sensor Occlusion. Large mining trucks have extensive blind spots,
particularly around corners and confined spaces, and occlusions from structures or materials
often obscure key objects. This increases the risk of undetected obstacles, raising the likelihood
of collisions causing fatalities. Multi-view and re-identification methods for occluded objects
have shown improved continuity in detection. However, these solutions often introduce
significant computational overheads, limiting real-time performance implementation in
underground environments.

4. Sensor Data Integration and Overload. High-resolution LiDAR generates millions of data
points per second, requiring advanced data fusion algorithms to integrate and process
information from multiple sensors efficiently. Real-time data fusion across LiDAR, IR, and
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camera presents a substantial computational load. Managing data overload is critical to ensuring
timely and accurate object detection.

5. Real-Time Latency Challenges. The maximum need for split-second decision-making in
autonomous trucks operating in high-risk environments means delays are unacceptable. Edge
computing systems, which process data locally to reduce latency, have demonstrated
effectiveness in mitigating this issue. However, challenges remain in the trade-offs between
model complexity and detection accuracy. While YOLO algorithms have shown potential
enhancement in 3D object detection, they are often affected by low-light, cluttered, small objects,
and dynamic underground mine settings.

6. Efficiency vs Accuracy Trade-Offs. Large models give high accuracy but are computationally
intensive and unsuitable for resource-constrained environments. Lightweight models such as
YOLO-Nano have high speed but may lack robustness for detecting small or partially occluded
objects [100].

7. Generalization Across Mining Sites. Every underground mining environment has unique
variability in tunnel geometry, layout, infrastructure, machinery, and operational processes.
Detection models trained in one site may not be scalable in another, which poses a significant
obstacle to generalizing 3D object detection systems. Due to these variations, domain shifts cause
models to fail to perform effectively on another site.

6.2. Future Research Directions

3D object detection remains crucial for both safety and efficiency. While significant progress has
been made, challenges remain in optimizing algorithms, improving sensor fusion, and enabling real-
time decision-making in dynamic underground environments. The following research directions are
proposed to push the frontier of autonomous haulage detection systems:

1. Multi-Sensor Fusion and Edge Computing. Integrating data from sensors like LiDAR, IR, and
cameras with edge computing is needed to reduce latency and improve real-time processing.
Enhanced fusion techniques that combine high-resolution LiDAR data with camera visual
information could provide more detailed and accurate object detection. Additionally, by
processing data locally, autonomous trucks can make real-time decisions without relying on
external servers, improving response times and operational efficiency.

2. Collaborative Detection Systems: Future autonomous trucks may not operate in isolation but
as part of a larger network of autonomous systems, including other trucks, drones, and support
equipment. Collaboration between these systems to share detection data and build shared scene
understanding can improve object detection. Multi-agent communication and coordination
could improve detection capabilities, object tracking, awareness, and cooperative navigation.

3. Design Lightweight and Real-time DL Models: Research into the development of optimized
lightweight models for embedded GPUs in autonomous trucks. Advancements in pruning and
quantization can minimize model size without significantly compromising detection accuracy.

4. Real-Time Object Classification and Localization: Improvements should be made in detection,
real-time object classification, and 3D localization. Improved situational awareness enhances
safe navigation and operational efficiency in underground mining operations.

5. Development of Standardized, open-access datasets: More effort is needed to develop large-
scale, labeled datasets that are open-access and reflect underground mining conditions, which
will improve research into more robust models for autonomous truck safe navigation.
Simulation data combined with real underground mining footage will provide efficient training
benchmarks.

6. Advanced AI and ML Models: Leveraging cutting-edge Al techniques, such as transfer
learning, reinforcement learning, or deep reinforcement learning, could significantly enhance
the adaptability and robustness of 3D object detection systems. These models could enable them
to learn from diverse datasets and improve their detection capabilities, even in challenging
environments like the underground mine. More sophisticated and newer versions of YOLO, like
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YOLOVS, can be integrated to improve detection speed and accuracy for maximum system
performance. Developing domain-adaptive and site-specific fine-tuning models capable of
learning and generalizing across different environments needs much research focus.

7. Field Validation of Object Detection Systems: Validation of detection systems in operational
underground sites to evaluate the model’s real-world performance. Additionally, safety-critical
metrics should be incorporated into the evaluation process to assess the developed models' real-
world capabilities and safety impact.

8. Regulatory and Ethical Compliance: As autonomous trucks become more recognized in the
mining industry, ensuring that object detection systems meet safety standards and regulatory
requirements will be essential. Developing frameworks that align detection systems with safety
regulations and ethical standards is crucial. This will ensure transparency in model design and
performance benchmarking, which is key to operational and public trust.

9. Long-Term Robustness and Reliability: Long-term deployment of autonomous trucks in
underground mines will require systems that can withstand harsh conditions, such as exposure
to dust, vibration, and moisture. Ensure long-term stability of systems through real-time health
monitoring, regular sensor updates, and robustness against sensor drift and wear. This will be
essential to ensure continued safety and model performance.

Addressing these challenges and leveraging emerging research directions will enable the mining
industry to accelerate the safe and efficient implementation of autonomous truck haulage in
underground operations. This will mark a transformative growth in automation in industry.

7. Discussions

The application of 3D detection systems in underground autonomous trucks presents critical
challenges and opportunities different from other domains like urban driving and indoor robotic
machines. The underground mining environment is known for its complex terrain, occlusion, high
particulate matter, limited visibility, and dynamic equipment-worker interactions. Therefore, it
necessitates more specialized sensor configurations and robust perception models capable of
operating in these extreme conditions. This paper reveals that multi-modal sensor fusion, especially
combining LiDAR and RGB cameras, provides the most robust perception capabilities. While the
camera contributes contextual texture data, LIDAR offers high-resolution depth information. When
fused effectively, they compensate for each other’s limitations, especially under low visibility or high
dust conditions. Mid-level fusion is demonstrated to be the most balanced fusion approach,
providing efficient feature integration while maintaining sufficient data richness for real-time object
detection. Deep learning algorithms, particularly the YOLO-based framework, have shown strong
performance in object detection tasks. Architectures such as YOLOv5 and YOLOvVS8 demonstrate real-
time detection capabilities with significant mean Average Precision (mAP). However, small object
detection and a lack of large-scale annotated datasets often hinder their performance in the
underground environment. The following key trades were:

1.  Accuracy vs. Speed: It was noticed that high-accuracy models like YOLOVS often demonstrate
slower inference times. This can be problematic for real-time underground navigation

2. Sensor Cost vs. Redundancy: Multi-sensor models improve robustness. However, they also
increase hardware costs and integration complexity.

3. Fusion Complexity vs. Benefit: The early fusion approach provides detailed insights and
features but is highly computationally expensive. Late fusion is computationally efficient but is
less accurate.

Benchmarking for diverse datasets shows limited consistency in model evaluation, making it
difficult to compare models directly. This shows the need for standardized mining-specific data sets
and benchmarking protocols for efficient performance evaluation.
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8. Conclusion

This review has comprehensively surveyed 3D object detection systems tailored explicitly for
underground mining autonomous truck navigation. The review uniquely bridges the research gap
between urban autonomous systems and the specific challenges of underground truck navigation.
The study evaluates the current state of sensor modalities, detection algorithms, and fusion
techniques. Additionally, it highlighted the unique constraints posed by underground complex
conditions. Though technologies such as LiDAR, RGB cameras, and thermal sensors have proven
individual strengths, integrating these sensors provides a promising path forward. Deep learning
architecture, particularly YOLO-based object detectors, has demonstrated strong potential in real-
time detection. However, challenges persist, including occlusion handling, limited underground
datasets, computational overhead, and performance trade-offs. While significant strides have been
made in 3D object detection for autonomous trucks in mining, ongoing innovation, and research are
essential to overcoming the persisting challenges. These advancements will enhance operational
efficiency and play a crucial role in safeguarding the well-being of workers.
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