
Article Not peer-reviewed version

Embedding Security Awareness into a

Blockchain-Based Dynamic Access

Control Framework for the Zero Trust

Model in Distributed Systems

Avoy Mohajan and Sharmin Jahan *

Posted Date: 7 February 2025

doi: 10.20944/preprints202502.0498.v1

Keywords: zero trust; dynamic access control; blockchain; security awareness

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4218009
https://sciprofiles.com/profile/2794124

Article

Embedding Security Awareness into a

Blockchain-Based Dynamic Access Control

Framework for the Zero Trust Model in Distributed

Systems

Avoy Mohajan 1 and Sharmin Jahan 2,*

1 Affiliation 1
2 Affiliation 2

* sharmin.jahan@okstate.edu

Abstract: The Zero Trust (ZT) model is pivotal in enhancing the security of distributed systems by

emphasizing rigorous identity verification, granular access control (AC), and continuous monitoring.

To address the complexity and scalability challenges of modern distributed systems, we propose a

blockchain-based dynamic access control scheme (DACS) as a practical solution for implementing

ZT principles. This framework dynamically manages access control lists (ACLs) and enforces policies

through smart contracts. In the DACS framework, each blockchain node maintains an object list

specifying access permissions within its ACL and incorporates a minimum trust metric (TM)

threshold to evaluate access requests. The TM assigned to each node reflects its trustworthiness. To

further enhance security, the framework includes security awareness, enabling the dynamic

assessment of the risk factor (RF), which reflects the operational risk level. The TM of access-

requesting nodes is updated at runtime based on their behavior, with penalties imposed for malicious

actions according to the prevailing RF. Access control policies are dynamically adjusted, mitigating

risks posed by potentially untrustworthy users with valid credentials. Implemented and tested on

the Ethereum blockchain, the proposed DACS framework demonstrates its efficiency and

effectiveness in securing distributed systems.

Keywords: zero trust; dynamic access control; blockchain; security awareness

1. Introduction

The proliferation of distributed systems has transformed modern computing, introducing

scalable and decentralized architectures that enhance performance, resilience, and availability [1].

However, as the number of interconnected nodes and services grows, security challenges have

become increasingly complex. Traditional perimeter-based security models are no longer sufficient

to safeguard these intricate environments [2,3]. This shift has driven the adoption of the Zero Trust

(ZT) security model, which operates on the principle of “never trust, always verify” [2,4]. In the ZT

model, every user, device, and service must continuously authenticate its identity and access rights,

irrespective of its location or position within the network.

Implementing ZT in distributed environments requires a context-aware approach to security,

making dynamic access control schemes (DACS) [5] essential. Unlike static policies, DACS adaptively

evaluates various factors such as an actor's (e.g., user, device, or service) identity, service request

patterns, and real-time threat intelligence to make in-formed, real-time access decisions [6,7]. This

continuous evaluation ensures that access rights can be granted or revoked as conditions evolve [7,8],

providing a flexible and robust solution for securing distributed systems under the ZT model [6].

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2025 doi:10.20944/preprints202502.0498.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202502.0498.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 15

DACS represents a paradigm shift from rigid, predefined policies to flexible, adaptive access

management strategies. Effective DACS implementation depends on robust policy management

[6,9,10], which includes key components such as: Policy Enforcement Point (PEP) that intercepts and

evaluates access requests, Policy Administration Point (PAP), which defines, updates, and enforces

access rules in alignment with organizational requirements, compliance standards, and security

contexts using Access Control Lists (ACLs), and Policy Decision Point (PDP) is for evaluating access

requests based on ACLs and contextual in-formation to determine appropriate actions to adjust the

access policy. Well-designed DACS policy management ensures seamless coordination between ACL

policies and re-al-time security events [6,7], significantly enhancing system adaptability and

resilience against emerging threats. With the increased interaction among the components in dis-

tributed system, DACS policy management needs to be autonomous and includes security awareness

to reason over the access policy adjustment as per the risk level in operational context [6,7]. Security

awareness is a form of self-awareness [11,12], defined as the knowledge that enables the ability to

investigate a system's or interacting actor’s behavior to evaluate system’s security state, detect and

assess changes in security states, and reason about potential adjustments needed to maintain a secure

state [13,14].

Continuous monitoring and risk management are critical components to embed security

awareness in DACS for implementing the Zero Trust (ZT) model [4]. Continuous monitoring allows

for the early detection of emerging risks, such as compromised devices or insider threats, as they

occur. Risk management incorporates a proactive risk assessment mechanism to evaluate potential

threats and provide actionable insights for mitigation, thereby strengthening the overall security

posture. Security awareness in DACS enables the ability to evaluating access control decisions in real

time, adjusting access per-mission based on the latest risk indicators [6–8,15]. This security aware

approach minimizes the attack surface and protects sensitive resources by ensuring that access

privileges remain appropriate and do not escalate into security threats. Traditional centralized policy

management systems, however, often struggle to balance the dynamic, scalable, and context-aware

requirements of the ZT model [16]. Decentralized policy management using blockchain technology

addresses these challenges by storing policies and access logs on an immutable ledger [7,17]. This

tamper-proof system ensures that policies remain transparent and auditable, creating an unalterable

record of access control decisions. By integrating blockchain with access control systems,

organizations can establish a ZT framework where smart contracts govern access decisions,

continuously validated through consensus mechanisms [17]. This setup provides a secure, resilient,

and scalable solution for managing access in distributed Zero Trust environments.

This paper introduces a DACS framework with embedded security awareness for implementing

the ZT model in distributed systems by leveraging blockchain technology. The framework’s novelty

lies in enhancing smart contract functionality to enable continuous risk assessment and runtime

policy adjustments, thereby eliminating the need for specific trusted nodes to act as policy

management units or conduct risk assessments for other nodes. In [7,18,19], authors have employed

blockchain technology to enforce DACS; however, they rely on some distinguished trusted nodes

deployed in the network to monitor access requests and manage policies. This reliance renders the

trusted nodes attractive targets for attackers. Moreover, these approaches lack a mechanism to verify

the actions of trusted nodes, which contradicts the core principles of the ZT model.

In our proposed framework, each blockchain node is equipped with policy management

capabilities for its own resources (referred to as objects) through smart contracts that reference the

ACL, specifying which nodes in the blockchain have access permissions and the permitted operations

for each object. ACL also includes impact levels associated with those operations, where higher

impact levels signify greater potential harm to the system in cases of unauthorized access.

Organizations define these impact levels based on the potential damage unauthorized operations

could cause [20], aligning them with their business security requirements. Researchers in [7,21]

introduced trust values to quantify the trustworthiness of actors during access decisions, they did not

consider the impact levels of unauthorized access attempts. Our framework extends smart contract

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2025 doi:10.20944/preprints202502.0498.v1

https://doi.org/10.20944/preprints202502.0498.v1

 3 of 15

capabilities to perform ongoing risk assessments for every access request, dynamically adjusting

access policies based on behavior analysis and contextual risk. The current contextual risk for a node

is evaluated by analyzing incoming access requests within an organization-defined time window.

Risk increases as the number of unauthorized access requests grows, indicating potential broken

access control attacks [22], where attackers exploit legitimate nodes or infiltrate the network as

insiders to probe for vulnerabilities.

To quantify risk, we introduce a metric called the Risk Factor (RF) and its probability estimation.

Each blockchain node is assigned a Trust Metric (TM), which reflects its trustworthiness based on its

operational context and behavioral actions. A penalty enforcement mechanism is triggered for

anomalous behaviors, considering both the RF and the impact levels of unauthorized access attempts.

Prior research [6,7,17] has explored penalty enforcement mechanisms, but these typically rely on

predefined penalties that fail to account for the dynamism of contextual risk. Such approaches are

insufficient to address the uncertainty posed by evolving attack surfaces and the dynamic

interactions in distributed systems. Organizations also define a threshold TM for each operation,

aligning the required trust level with the operation’s impact level. The policy management

mechanism evaluates each access request by referencing both the ACL and the requester’s TM. Access

permission is granted or denied based on a comparison with the threshold value assigned to the

requested operation, enabling dynamic policy adjustments in real time. This penalty enforcement

and risk-aware policy adjustment approach aligns with the ZT principle, delivering an adaptive

access control solution tailored to the organization’s security and business requirements. To ensure

transparency and resilience, we adopt the Proof of Stake (PoS) consensus mechanism [23] to validate

each transaction, including policy adjustments and TM updates, supporting the ZT model. To

evaluate the framework, we implemented a testbed on the Ethereum blockchain platform. Smart

contracts were developed using the Remix IDE, demonstrating the framework’s effectiveness in

providing resilient and adaptable access control.

2. Background

Distributed systems, composed of diverse components, applications, and services operating

across varied environments, present unique and pressing security challenges [1]. Traditional security

models, rooted in the outdated concept of a trusted perimeter, were once effective but now fail to

meet the demands of increasingly decentralized infra-structures [2]. Their reliance on implicit trust

and static access controls creates critical vulnerabilities, leaving systems exposed to insider threats,

unauthorized access, and operational inefficiencies [3]. Addressing these challenges requires a

paradigm shift toward innovative, adaptable, and scalable security frameworks [4]. The Zero Trust

(ZT) security model has emerged as a transformative approach to securing distributed systems [4,17].

Emphasizing the principles of “never trust, always verify,” ZT validates user identities, continuously

monitors behavior, and enforces fine-grained access controls across all network resources. ZT

principles have been successfully implemented across various domains, including healthcare [24],

supply chains [25], and communication networks [26,27].

Despite its promise, implementing ZT in distributed systems introduces complexities,

particularly regarding scalability and reliance on centralized security administration. The

advancement of blockchain technology addresses these challenges by providing a decentralized,

tamper-proof foundation for managing security policies [26,27]. Block-chain-based ZT solutions

enable secure access to resources while dynamically adjusting access control to account for changing

operational contexts.

One critical enhancement to ZT is the integration of Dynamic Access Control Scheme (DACS),

which adapts access permissions in real-time based on actors' behavior, attack patterns, and evolving

network or system architecture [6–8]. DACS incorporate security mechanisms that extend traditional

ACLs with contextual attributes, enabling flexible and adaptive access control. Ali et al. [29]

developed the d-CAP framework, an ML-based dynamic ACL system for Software-Defined

Networks (SDNs), which optimizes access con-troll rules in real-time, reducing latency and

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2025 doi:10.20944/preprints202502.0498.v1

https://doi.org/10.20944/preprints202502.0498.v1

 4 of 15

processing overheads. Similarly, Jung et al. [30] proposed PortCatcher, a scalable architecture that

enhances ACL rule management using a TCAM-SRAM hybrid design, maximizing space efficiency

while minimizing latency. To effectively implement DACS, robust policy management is essential.

This includes components like the Policy Enforcement Point (PEP), which intercepts and evaluates

access requests; the Policy Administration Point (PAP), which defines and updates access rules in

alignment with security contexts and compliance standards; and the Policy Decision Point (PDP),

which dynamically evaluates access requests to adjust policies based on real-time contextual

information [6,9,10]. DACS must also embed security awareness, enabling systems to continuously

evaluate their security state, detect threats, and adapt policies accordingly [11,12,14].

Blockchain-based distributed DACS further addresses key limitations of centralized systems,

such as single points of failure and lack of auditability. Sun et al. [32] introduced a Blockchain-enabled

Provenance-based Dynamic Access Control (BPDAC) scheme, which uses smart contracts to

automate access-related decision-making while maintaining decentralized governance. Nakamura et

al. [33] demonstrated an Ethereum-based Capability-Based Access Control (CapBAC) system that

manages permissions with granular control, offering flexibility and security in hierarchical

organizations. Gong et al. [5] proposed SDACS, a blockchain-powered architecture for IoT systems

based on Hyperledger Fabric and IPFS, leveraging Attribute-Based Access Control (ABAC) to ensure

fine-grained and decentralized access management. The combination of blockchain and DACS offers

a promising future for access control in distributed systems. By eliminating reliance on trusted third

parties and central authorities, these technologies empower organizations to implement

decentralized, scalable, and context-aware security policies. Research has shown that blockchain can

revolutionize access control by enabling secure policy enforcement under complex and dynamic

conditions [34,35]. The integration of ZT principles, DACS, and blockchain technologies marks a

critical evolution in distributed systems security.

3. Approach

This paper presents a DACS framework with embedded security awareness designed to

implement a ZT model in distributed systems, utilizing blockchain technology for enhanced security

and reliability. This section provides a detailed explanation of the core components of the framework,

including blockchain nodes and smart contract functionalities, which are integral to the system's

operations. The framework leverages blockchain nodes to enable decentralized and tamper resistant

logging, ensuring that all access attempts are continuously monitored and recorded. Smart contracts

facilitate real-time detection of unauthorized access attempts and perform runtime risk assessments.

These assessments evaluate the RF of the operational context by analyzing various parameters, such

as the node's trustworthiness, access history, and behavioral patterns.

The policy management functionality within the framework is a cornerstone of its ZT

implementation. It includes mechanisms to process and enforce access requests based on an ACL and

the TM associated with the participating nodes. This functionality ensures that access decisions are

dynamically informed by the most current contextual and trust-related data. Additionally, the policy

management module incorporates dynamic adaptability to evolving security contexts. It evaluates

and updates the TM of the requesting nodes, reflecting changes in their behavior or operational

environment. Furthermore, the system dynamically modifies access policies in response to these

changes, ensuring a robust and responsive access control mechanism that aligns with ZT principles.

By combining continuous monitoring, runtime risk assessment, and adaptive policy management,

the proposed DACS framework provides a comprehensive solution for securing distributed systems

while maintaining operational flexibility and resilience against emerging threats.

3.1. Define Node in Proposed Blockchain-Based DACS Framework

In our blockchain infrastructure, any active actor in distributed system such as devices,

components, services, or user accounts that collaborate to maintain operations is represented as a

node. Each node plays a vital role in maintaining, validating, and, at times, broadcasting transactions

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2025 doi:10.20944/preprints202502.0498.v1

https://doi.org/10.20944/preprints202502.0498.v1

 5 of 15

and blocks within the network. The blockchain network comprises a set of such nodes, collectively

referred to as AllNodes. We define a node, 𝑁 as

𝑁 = (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑁 , ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦𝐼𝑛𝑓𝑜𝑁 , 𝑂𝑁 , 𝐴𝐶𝐿𝑁 , 𝑇𝑀𝑁)

Here, 𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑁 includes the fundamental information required to uniquely identify and

instantiate the node, 𝑁 within the blockchain network. As shown in Figure 1, nodeName is a unique

identifier of a node.

Figure 1. Node Architecture.

ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦𝐼𝑛𝑓𝑜𝑁 represents the hierarchical relationships within the blockchain network, if

applicable. It includes the information of the node’s parent, which is another active node in the

network. Such hierarchical relationships model interdependencies among system components,

reflecting organizational or functional structures.

 𝑂𝑁 denotes the set of objects owned by the node.

For each object 𝑜𝑖 ∈ 𝑂𝑁, the node maintains an ACL:

 𝐴𝐶𝐿𝑁(𝑜𝑖) = ⋃ {(𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑛 , (𝑂𝑝𝑝, 𝐼, 𝑚𝑖𝑛𝑇𝐻)}

𝑛 ∈𝐴𝑙𝑙𝑁𝑜𝑑𝑒𝑠

Each entry in 𝐴𝐶𝐿𝑁 defines the permitted operation (𝑂𝑝𝑝 ∈ 𝑂𝑃) that a node 𝑛 can perform on

the object, 𝑜𝑖 . Each operation has an organization defined impact level, 𝐼 and 𝑚𝑖𝑛𝑇𝐻 specifying the

minimum required trustworthiness of node 𝑛 to perform the operation.

𝑂𝑃 is the set of all possible operations. In this paper, we are dealing with create (C), read (R),

update(U), delete(D) operations. So, 𝑂𝑃 = {𝐶, 𝑅, 𝑈, 𝐷}

𝑇𝑀𝑁 represents the trust metric (TM) assigned to the node 𝑁 . The trust metric reflects the

reliability and security posture of the node, dynamically adjusted based on its actions and behavior

within the network.

A node encompasses a range of critical functionalities that enable its role within the blockchain

infrastructure as shown in Figure 1. It includes the ability to instantiate ACLs for its owned objects,

either by creating new policies or modifying existing ones, ensuring that access policies are enforced

in accordance with organizational requirements. Additionally, the node adjusts its TM based on

computations confirmed by other nodes regarding its actions and behavior within the system,

reflecting its evolving trustworthiness. The node is also responsible for performing operations on its

objects, such as create, read, update, and delete (CRUD), based on the decisions made by the access

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2025 doi:10.20944/preprints202502.0498.v1

https://doi.org/10.20944/preprints202502.0498.v1

 6 of 15

control mechanism. These operations ensure that policies are enforced consistently across the

network.

Beyond these access control and policy enforcement functionalities, the node provides essential

blockchain infrastructure services. These include block creation, transaction processing, and ledger

maintenance, which collectively enable the decentralized, secure, and tamper-resistant operation of

the blockchain network.

3.2. Enhanced Smart Contract for DACS with Embedded Security Awareness

The ZT model necessitates three core functionalities: continuous monitoring, risk assessment,

and trust evaluation [4]. These components form the backbone of DACS, which rely on a robust policy

management mechanism to ensure secure access to objects [6,7]. Continuous Monitoring

functionality provides real-time surveillance of every access request. It scrutinizes request patterns,

identifies requesters, and analyzes their behaviors. This process ensures that any deviation from

expected patterns or anomalous activities can be promptly detected. Continuous monitoring creates

a detailed behavioral profile for each requester, offering a granular view of access dynamics over

time. The risk assessment procedure evaluates the data collected from continuous monitoring to

quantify the risk associated with each access request. By analyzing factors such as the sensitivity of

the requested resource, the requester’s historical behavior, and the current access context, this step

assigns a RF to every access permission. The RF acts as a crucial input for decision-making, enabling

proactive responses to potential threats. Trust evaluation complements risk assessment by

determining the trustworthiness of the requester. It leverages the insights from continuous

monitoring, focusing on the requester's behavioral consistency, compliance with security policies,

and alignment with expected access patterns. This process results in a TM that reflects the reliability

of the requester under the given access context. To implement DACS, we enhanced smart contract

functionality by embedding security awareness, enabling the system to extract insights by

aggregating the outcomes of continuous monitoring, risk assessment, and trust evaluation. Using

predefined ACLs along with the calculated RF and TM, the embedded security awareness

mechanism dynamically evaluates and adjusts access permissions. This adaptive approach ensures

that access is granted only when the requester meets the required security and trust thresholds,

aligning with ZT model principles to mitigate risks and uphold security in real-time.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2025 doi:10.20944/preprints202502.0498.v1

https://doi.org/10.20944/preprints202502.0498.v1

 7 of 15

Figure 2. Enhanced smart contract functionalities for embedding security awareness in DACS to implement ZT

model.

We enhance the smart contract functionality within our blockchain infrastructure to serve as a

decentralized policy management mechanism for DACS, as illustrated in Figure 2. This integration

enables secure, automated, and distributed management of access requests. When a blockchain node

receives a new access request, the getAccessRequest function within the smart contract associated with

that node is triggered. This function initiates the monitoring process by passing the access request to

the monitorAccessRequest function. The monitoring process evaluates the access request against the

predefined ACLs and generates actionable insights based on the request's characteristics and context.

Let, 𝑅𝑒𝑞𝑁 represent the set of access requests directed to node 𝑁. Each individual access request, 𝑟𝑒𝑞

is defined as:

𝑟𝑒𝑞 = (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑁̅ , 𝑜𝑁 , 𝑂𝑝𝑝, 𝑇𝑀𝑁)

It specifies which node 𝑁̅̅̅ ∈ 𝐴𝑙𝑙𝑁𝑜𝑑𝑒𝑠 \{𝑁} requests access to the object 𝑜𝑁 to perform the

operation 𝑂𝑝𝑝, as well as the TM of the node 𝑁̅̅̅. This 𝑇𝑀𝑁 is a critical decision factor for policy

enforcement.

The Policy Enforcement Mechanism includes decideAccessRequest, which evaluates and decides

on access requests based on insights from monitorAccessRequest in real time. Based on this evaluation,

there are three possible outcomes:

1. Access Granted: If the requesting node, 𝑁̅̅̅ has the necessary access permissions as per the ACL

and maintains a TM above the minimum threshold, the operation is allowed, and the node retains

its current permissions.

2. Access Denied – Insufficient Permissions: If the requesting node, 𝑁̅̅̅ does not have the required

access permissions in the ACL, the operation is denied outright.

3. Access Denied – Low Trust Metric: If the requesting node, 𝑁̅̅̅ has the required access

permissions but its TM falls below the minimum threshold, the operation is denied due to

insufficient trustworthiness.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2025 doi:10.20944/preprints202502.0498.v1

https://doi.org/10.20944/preprints202502.0498.v1

 8 of 15

In the third scenario, where access is denied because the node, 𝑁̅̅̅ maintains a TM below the

acceptable threshold despite having access permissions. In this case, decideAccessRequest triggers a

critical follow-up process that invokes Policy Administration mechanism:

Policy Generation: The generateAccessPolicy function, part of the Policy Administrator, is

activated. This function generates a revised access policy to revoke the access permissions of node ,

 𝑁̅̅̅ due to its low TM.

Policy Adjustment: The adjustAccessPolicy function then updates the ACL to reflect the revoked

permissions. This adjustment ensures that the node's access rights are aligned with the current trust

evaluation.

ACL Update: Finally, an updated ACL is instantiated for node N that includes the adjusted

policy for node, 𝑁̅̅̅, ensuring that the latest trust and access policies are enforced across the system.

This dynamic trust evaluation and policy adjustment ensure that access permissions are not only

granted based on predefined rules but also adjusted in response to behavioral and contextual

changes, thereby maintaining a robust security posture. Moreover, the continuous monitoring

functionality, denoted as CMFunc, encompasses a crucial component called logAccessRequestForCM.

This component is responsible for systematically logging each access request alongside the

corresponding access decision. This functionality is integral to ensuring traceability and enabling

comprehensive analysis of access control activities within the system. For every access request 𝑟𝑒𝑞 ∈

𝑅𝑒𝑞𝑁 the CMFunc generates a detailed outcome encapsulating essential information. The outcome

can be expressed as:

∀𝑟𝑒𝑞 ∈ 𝑅𝑒𝑞𝑁 , 𝐶𝑀𝐹𝑢𝑛𝑐𝑁: 𝑟𝑒𝑞 → (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑁 , 𝑜𝑁 , (𝑂𝑝𝑝, 𝐼, 𝑚𝑖𝑛𝑇𝐻), 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑇𝑀𝑁)

The outcome includes 𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑁 , 𝑜𝑁 , 𝑂𝑝𝑝, 𝑇𝑀𝑁 derived from the request, 𝑟𝑒𝑞 entry, while 𝐼

and 𝑚𝑖𝑛𝑇𝐻 are obtained from the ACL for the associated 𝑂𝑝𝑝 on the corresponding 𝑜𝑁 . 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛

represents the final access control outcome, specifying whether the request is approved or denied.

The risk assessment functionality in smart contract enables dynamic risk assessment according

to organization defined observation window. The observation window determines the number of

recent access requests that must be analyzed to accurately assess and contextualize the current

security posture. To support this, the collectObservationRecords method retrieves a batch of the most

recent access requests from the outcomes of 𝐶𝑀𝐹𝑢𝑛𝑐𝑁 as specified by the observation window. This

approach ensures that the system continuously monitors and evaluates access patterns in real time.

A significant number of unauthorized access requests within the observation window serves as an

indicator that the node is being targeted, potentially signaling an elevated security risk. In this

context, risk in dynamic access control is defined as the combination of two factors: the likelihood of

unauthorized access occurring and the impact such access could have on the system’s operations or

sensitive data. We formulate the probability of a single request to a specific node, N being

unauthorized as:

𝑝𝑁 (𝑢𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 𝑎𝑐𝑐𝑒𝑠𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡) =
|(𝑂𝑁 × 𝑂𝑃 × 𝐴𝑙𝑙𝑛𝑜𝑑𝑒𝑠)| − |𝐴𝐶𝐿𝑁|

|(𝑂𝑁 × 𝑂𝑃 × 𝐴𝑙𝑙𝑛𝑜𝑑𝑒𝑠)|

The RF increases as the number of unauthorized access requests rises, indicating that the node

is being targeted by malicious actors. The evaluateRisk estimates the likelihood, 𝐿𝑁 of an

unauthorized access request based on the records within the observation window, as derived from

the outcomes of 𝐶𝑀𝐹𝑢𝑛𝑐𝑁. The likelihood is computed using the formula:

𝐿𝑁(𝑢𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 𝑎𝑐𝑐𝑒𝑠𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡) = (
𝑚

𝑘
) × 𝑝𝑁

𝑘 × (1 − 𝑝𝑁) (𝑚−𝑘)

Here, 𝑚 is total number of access requests within the observation window from

𝐶𝑀𝐹𝑢𝑛𝑐𝑁 outcomes.

𝑘 is number of access requests identified as unauthorized within the observation window from

𝐶𝑀𝐹𝑢𝑛𝑐𝑁 outcomes. The RF for a specific request, 𝑟𝑒𝑞 to access the node, 𝑁 is defined:

𝑅𝐹𝑁(𝑟𝑒𝑞) = 𝐿𝑁(𝑢𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 𝑎𝑐𝑐𝑒𝑠𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡) × 𝐼 × {
0, 𝑖𝑓 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑔𝑟𝑎𝑛𝑡𝑒𝑑

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The Trust Evaluation functionality within the smart contract is designed to evaluate the TM for

a node, 𝑁̅̅̅, that initiates an access request. To enhance security, a penalty enforcement mechanism is

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2025 doi:10.20944/preprints202502.0498.v1

https://doi.org/10.20944/preprints202502.0498.v1

 9 of 15

incorporated, which is triggered when an unauthorized access request is detected. The TM of the

node, 𝑁̅̅̅ is dynamically adjusted based on the RF at the specific moment of evaluation. The penalty

enforcement and trust metric adjustment are formulated as follows:
𝑇𝑀𝑁𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑇𝑀𝑁 − 𝑇𝑀𝑁 × 𝑅𝐹𝑁

With high 𝑅𝐹𝑁, penalty will be high and dynamically estimated. The adjusted TM will be new

TM for the node, 𝑁. PublishchangeInTrustMetric allows node, N to instantiate a transaction to publish

the changes so that the affected node, 𝑁 of which the TM has adjusted can validate the actions and

update its current TM. The smart contract associated with each node repeats the process continuously

on every access request to include DACS for implementing ZT model. Our trust evaluation

mechanism does not reward a node for behaving as expected. In other words, the TM cannot increase

dynamically. The rationale behind this is that persistent attackers may wait for a certain period before

attempting unauthorized access to evade detection. In such cases, if a node’s TM falls below the

threshold, the system administrator can investigate the actor represented by the node and manually

reassign the TM based on their findings.

4. Experiment

To evaluate our approach, we designed a blockchain network using the Ethereum blockchain, a

decentralized, open-source platform that facilitates the creation and deployment of smart contracts

and decentralized applications (DApps). Ethereum's robust infrastructure and support for

programmable contracts make it an ideal platform for implementing our solution. We enhanced the

functionality of smart contracts using Remix IDE, a powerful web-based development environment

tailored for Ethereum blockchain development. Remix IDE is widely recognized for its capabilities in

writing, deploying, testing, and debugging smart contracts. It supports Solidity, the most commonly

used programming language for Ethereum smart contracts and provides a suite of tools to interact

seamlessly with the Ethereum network. One notable advantage of Remix IDE is its interactive

interface, which allows developers to test both public and internal functions of smart contracts

directly. This feature was instrumental in validating the logic and functionality of our enhanced smart

contracts before deployment.

After successfully implementing and deploying the defined node functionalities and enhanced

smart contracts, we designed a blockchain network comprising 10 interconnected nodes (𝑆𝐴 to 𝑆𝐽),

as outlined in Table 1. This network simulates a decentralized environment, enabling us to rigorously

test and analyze the performance and security of our proposed system in a realistic and scalable

setup. By leveraging the Ethereum blockchain and its associated tools, we ensured that our

experimental setup aligns with industry standards, providing a robust and flexible foundation for

evaluating our approach.

For simplicity, we assume that each node is associated with a single object, resulting in a total of

10 objects in the entire application, as outlined in Table 1. CRUD (Create, Read, Update, and Delete)

operations can be performed on these objects, and each operation is assigned an impact level based

on its potential severity to the application if performed without proper authorization. The impact

levels are categorized as follows:

High (H): Impact score of 0.9

Moderate (M): Impact score of 0.5

Low (L): Impact score of 0.2

Table 1. Access Control Lists (ACLs) Matrix: Node-Wise Permissions (Rows) vs. Object-Wise Operations

(Columns) for Create (C), Read (R), Update (U), and Delete (D).

 𝑂𝐴

(C=H,

R=H,

U=H,

D=H)

𝑂𝐵

(C=H,

R=M,

U=H,

D=H)

𝑂𝐶

(C=H,

R=M,

U=H,

D=H)

𝑂𝐷

(C=M,

R=L,

U=L,

D=M)

𝑂𝐸

(C=M,

R=L,

U=L,

D=M)

𝑂𝐹

(C=M,

R=L,

U=L,

D=M)

𝑂𝐺

(C=M,

R=L,

U=L,

D=M)

𝑂𝐻

(C=L,

R=L,

U=M,

D=L)

𝑂𝐼

(C=L,

R=L,

U=L,

D=L)

𝑂𝐽

(C=L,

R=L,

U=M,

D=L)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2025 doi:10.20944/preprints202502.0498.v1

https://doi.org/10.20944/preprints202502.0498.v1

 10 of 15

𝑆𝐴 C, R,

U, D

C, R,

U, D

C, R, U,

D

C, R,

U, D

C, R, U,

D

C, R, U,

D

C, R,

U, D

C, R,

U, D

C, R,

U, D

C, R,

U, D

𝑆𝐵 C C, R,

U, D

C, R C, R,

U, D

C, R, U,

D

R R R, U R, U R, U

𝑆𝐶 C C, R C, R, U,

D

R R C, R, U,

D

C, R,

U, D

R R R

𝑆𝐷 C C, R,

U, D

C, R C, R C, R C, R,

U, D

C, R,

U, D

R

𝑆𝐸 C C, R C, R, U,

D

C, R C, R R R C, R,

U, D

𝑆𝐹 C C, R C, R C, R, U,

D

C, R R R R

𝑆𝐺 C C, R C, R C, R C, R,

U, D

R R R

𝑆𝐻 C C, R,

U, D

C, R C, R

𝑆𝐼 C C, R C, R,

U, D

C, R

𝑆𝐽 C C, R C, R C, R,

U, D

Each object and its associated operations are assigned a minimum threshold value for TM, as

detailed in Table 2. The methodology for determining the impact levels and minimum threshold

values for TM is beyond the scope of this paper. For our experiment, we assume these values are

provided by domain experts, guided by organizational policies and risk assessments.

Table 2. Minimum required trust metric for perform CRUD operations on objects.

 𝑂𝐴

𝑂𝐵

𝑂𝐶

𝑂𝐷

𝑂𝐸

𝑂𝐹

𝑂𝐺

𝑂𝐻

𝑂𝐼

𝑂𝐽

Create

(C)

0.95 0.8 0.8 0.65 0.65 0.65 0.65 0.55 0.55 0.55

Read (R) 0.95 0.75 0.75 0.6 0.6 0.6 0.6 0.55 0.55 0.55

Update

(U)

0.95 0.8 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Delete

(D)

0.95 0.8 0.8 0.65 0.65 0.65 0.65 0.55 0.55 0.55

Each node’s ACL contains entries only for its own objects. For instance, node 𝑆𝐹 owns the object,

𝑂𝐹 . So, the ACL for node 𝑆𝐹 for object, 𝑂𝐹 would be:

𝐴𝐶𝐿𝐹(𝑜𝐹) = {(𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐴
, (𝐶, 𝑀, 0.65), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐴

, (𝑅, 𝐿, 0.6),

(𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐴
, (𝑈, 𝐿, 0.6), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐴

, (𝐷, 𝑀, 0.65), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐵
, (𝑅, 𝐿, 0.6), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐶

, (𝐶, 𝑀, 0.65),

(𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐶
, (𝑅, 𝐿, 0.6), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐶

, (𝑈, 𝐿, 0.6), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐶
, (𝐷, 𝑀, 0.65), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐷

, (𝐶, 𝑀, 0.65),

(𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐷
, (𝑅, 𝐿, 0.6), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐸

, (𝐶, 𝑀, 0.65), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐸
, (𝑅, 𝐿, 0.6), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐹

, (𝐶, 𝑀, 0.65),

(𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐹
, (𝑅, 𝐿, 0.6), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐹

, (𝑈, 𝐿, 0.6), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐹
, (𝐷, 𝑀, 0.65), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐺

, (𝐶, 𝑀, 0.65), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐺
, (𝑅, 𝐿, 0.6)

}

After designing the blockchain network and successfully instantiating the nodes, assigning their

ACLs, and specifying the corresponding TM and minimum TM thresholds for each operation, we

conducted experiments on various scenarios. In these scenarios, a node receives access requests—

both authorized and unauthorized—for its objects. The node dynamically determines the RF,

evaluates the access request based on the ACL policy, RF, and the current TM of the requesting node,

and decides whether to grant or deny access.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2025 doi:10.20944/preprints202502.0498.v1

https://doi.org/10.20944/preprints202502.0498.v1

 11 of 15

Below, we describe three scenarios in detail:

Scenario 1: Access Request Granted

Our first scenario is that node, 𝑆𝐹 receives an access request from node, 𝑆𝐵 to perform a read

(R) operation to object 𝑂𝐹 as below:

𝑟𝑒𝑞𝑠𝑐1 = (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐵
 , 𝑜𝐹 , 𝑅, 1)

The request includes the current TM of node 𝑆𝐵, denoted as, 𝑇𝑀𝐵 as 100%. Upon receiving the

access request, the smart contract associated with node, 𝑆𝐹 triggers to evaluate the request. The smart

contract checks the access policy defined ACL of node, 𝑆𝐹 for object, 𝑂𝐹 , denoted as 𝐴𝐶𝐿𝐹 (𝑂𝐹).

According to 𝐴𝐶𝐿𝐹 (𝑂𝐹), the read operation is permitted (as shown in Table 1), and the minimum

required TM threshold is 60% (as shown in Table 2). Since the current 𝑇𝑀𝐵 is 100%, which exceeds

the required threshold, the access request is "granted." The decision is logged for continuous

monitoring and appended to the outcome of the Continuous Monitoring Function (𝐶𝑀𝐹𝑢𝑛𝑐𝐹) as

follows:

𝐶𝑀𝐹𝑢𝑛𝑐𝐹: 𝑟𝑒𝑞𝑠𝑐1 → (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐵
 , 𝑜𝐹 , (𝑅, 0.2, 0.6), "𝑔𝑟𝑎𝑛𝑡𝑒𝑑", 1)

Since, the request is “granted”, no risk assessment and trust evaluation have been performed.

Scenario 2: Access Request Denied Due to No Permission

In the second scenario, node 𝑆𝐹 receives an access request from node 𝑆𝐺 to perform an update

(U) operation on object 𝑂𝐹 , with 𝑇𝑀𝐺 currently at 100%. The access request is defined as:

𝑟𝑒𝑞𝑠𝑐2 = (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐺
 , 𝑜𝐵 , 𝑈, 1)

The smart contract evaluates the access request based on 𝐴𝐶𝐿𝐹 (𝑂𝐹) and 𝑇𝑀𝐺 . The decision is

to deny the request, as node, 𝑆𝐺 lacks update operation permission for object, 𝑂𝐹 (as referenced in

Table 1). The outcome generated by 𝐶𝑀𝐹𝑢𝑛𝑐𝐵 includes the decision and relevant information as

follows:

𝐶𝑀𝐹𝑢𝑛𝑐𝐵: 𝑟𝑒𝑞𝑠𝑐2 → (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐺
 , 𝑜𝐹 , (𝑈, 0.2, 0.6), "𝑑𝑒𝑛𝑖𝑒𝑑", 1)

Risk Assessment and Trust Metric Adjustment

Risk Assessment mechanism is triggered to evaluate 𝑅𝐹𝑆𝐹
 (the Risk Factor for node, 𝑆𝐹) and

adjust 𝑇𝑀𝐺 to penalize node, 𝑆𝐺 . Any unauthorized access request is considered a potential

security compromise attempt.

The risk assessment uses an observation window containing a specified number of recent

records to determine the frequency of denied access requests. For demonstration, we consider

variations in the observation window size and the resulting 𝑅𝐹𝑆𝐹
 and adjusted 𝑇𝑀𝐺 . The Risk Factor

and adjusted TM vary depending on the observation window size and the number of unauthorized

access requests within the window. These variations, along with their calculated to RF and TM

adjustment, are summarized in Table 3.

The probability of a single request to node, 𝑆𝐹 being unauthorized is calculated as below:

𝑝𝑆𝐹
 (𝑢𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 𝑎𝑐𝑐𝑒𝑠𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡) =

(1 ×4 ×10)− 19

(1 ×4 ×10)
 = 0.525

In our experimenting observation window from 𝐶𝑀𝐹𝑢𝑛𝑐𝐵 outcomes, 25 recent records are

considered, with 3 recorded as unauthorized access requests. The likelihood of an unauthorized

access request (𝐿𝐵) is computed as:

𝐿𝑆𝐹
(𝑢𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 𝑎𝑐𝑐𝑒𝑠𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡) = (

25

3
) × 0.5253 × (1 − 0.525) 22 = 2.57 × 10−5

Risk Factor and Adjusted Trust Metric

The 𝑅𝐹𝑆𝐹
 calculated after the denied access request, 𝑟𝑒𝑞𝑠𝑐2 is:

𝑅𝐹𝑆𝐹
(𝑟𝑒𝑞𝑠𝑐2) = 2.57 × 10−5 × 0.2 × 1 = 0.00000514

And the adjusted. 𝑇𝑀𝐺 would be:
𝑇𝑀𝐺𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 1 − 1 × 0.00000514 = 0.99999486

The PublishchangeInTrustMetric function allows node, 𝑆𝐹 to initiate a transaction to notify node,

𝑆𝐺 of its adjusted 𝑇𝑀𝐺 , which will be validated by node Sg and established in the network.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2025 doi:10.20944/preprints202502.0498.v1

https://doi.org/10.20944/preprints202502.0498.v1

 12 of 15

Table 3. Dynamic RF and adjusted TM estimation with variation in records across different observation

windows (considering that we perform the calculation when node 𝑆𝐹 receives an access request from node 𝑆𝐺 to

perform an update (U) operation on object 𝑂𝐹, and the request has been “denied”).

Observation

window size

Number of

unauthorized

access

requests

RF Current TM Adjusted TM

25 3 0.00000514 1 0.99999486

50 7 0.00000236 1 0.99999764

25 3 0.00000514 0.7 0.699996402

50 7 0.00000236 0.7 0.699998348

Scenario 3: Access Request Denied Due to Insufficient Trust Metric

In the third scenario, node, 𝑆𝐹 receives an access request from node, 𝑆𝐶 to perform a read (R)

operation on object 𝑂𝐹 . However, 𝑇𝑀𝐶 (current Trust Metric of node, 𝑆𝐶) is only 50%, as specified

below:

𝑟𝑒𝑞𝑠𝑐3 = (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐶
 , 𝑜𝐹 , 𝑅, 0.5)

The access request is denied, even though node, 𝑆𝐶 has read operation permission in 𝐴𝐶𝐿𝐹 (𝑂𝐹),

(see Table 1) This denial occurs because the minimum required trust metric to perform read operation

on 𝑂𝐹 is 60% (as referenced in Table 2), which node , 𝑆𝐶 fails to meet.

Triggering Policy Adjustment

This decision triggers the generateAccessPolicy mechanism to create a new access policy. The

updated policy revokes previously granted permission to node, 𝑆𝐶 to perform the read operation on

object, 𝑂𝐹 , reflecting its reduced trustworthiness.

The adjustAccessPolicy function then updates 𝐴𝐶𝐿𝐹 (𝑂𝐹) to reflect the changes, creating a new

instance of the Access Control List.

5. Performance Analysis

To evaluate the scalability of the proposed DACS framework, we measured key performance

metrics, such as transaction validation time for processing access requests, as the number of

participating nodes and access requests increased. Additionally, to assess the operational overhead

introduced by the dynamic RF and TM adjustments in our approach, we compared the average

transaction validation time with a basic block-chain-based access control management approach. The

latter simply allows nodes to decide on access requests based on a predefined ACL for the node’s

objects. The comparison results are presented in Table 4. We conducted the experiments on a personal

computer running Linux (csx2 5.15.0-130-generic #140-Ubuntu SMP x86_64 x86_64 x86_64

GNU/Linux). The results indicate that while the additional processes of risk evaluation and TM

adjustment at individual nodes—validated by the PoS consensus mechanism—introduce some

operational overhead, it remains within a tolerable range. In future work, we will explore

optimizations to enhance the performance of our approach.

Table 4. Performance comparison of our approach with a basic blockchain-based access control management

approach by varying the number of nodes in the network.

Number of Nodes Average Transaction

Validation Time (Our

Approach) in Seconds

Average Transaction

Validation Time (Basic

Approach) in Seconds

15 0.08523 0.002839

50 0.261504 0.002834

100 0.468003 0.002819

500 2.31576 0.002814

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2025 doi:10.20944/preprints202502.0498.v1

https://doi.org/10.20944/preprints202502.0498.v1

 13 of 15

1000 4.602902 0.002920

6. Conclusions

The rapid evolution of distributed systems has introduced complex security challenges,

necessitating the implementation of the Zero Trust (ZT) model to address security threats effectively.

Dynamic Access Control Scheme (DACS) are critical in realizing ZT principles, offering adaptive and

context-aware security measures. Embedding security awareness into DACS enhances the ability to

dynamically adjust access policies based on real-time contextual analysis. This paper presents an

innovative DACS framework with embedded security awareness and leverages blockchain

technology to eliminate the reliance on centralized trusted nodes, thereby improving security and

scalability. By enhancing smart contract functionalities, the framework supports continuous risk

assessment, real-time policy adjustments, and penalty enforcement that respond to evolving threats.

Metrics such as Risk Factor (RF) and Trust Metric (TM) ensure granular and dynamic access control,

aligning with organizational security objectives and the core principles of the ZT model. The

proposed framework adopts a Proof of Stake (PoS) consensus mechanism to validate transactions

related to access control policies and TM adjustments. However, the study acknowledges two

limitations: (1) the absence of a procedural approach to determine the minimum required TM for

operations based on organizational impact levels, and (2) the lack of a communication protocol to

coordinate TM adjustments across multiple nodes. Future work will focus on addressing these gaps.

An evaluation of our approach on the Ethereum blockchain demonstrates the framework's

effectiveness in delivering resilient, adaptable, and decentralized access control. This solution not

only strengthens the security posture of distributed systems but also lays the foundation for future

innovations in secure, scalable, and context-aware access management in dynamic and open

environments.

Author Contributions: “Conceptualization”, Avoy Mohajan and Sharmin Jahan, “Methodology”, Avoy

Mohajan and Sharmin Jahan, “Validation” , Avoy Mohajan, “Writing-original draft”, Avoy Mohajan and

Sharmin Jahan, “Investigation”, Sharmin Jahan, “Writing-Reviewing and editing”, Sharmin Jahan,

“Supervision”, Sharmin Jahan.

Funding: This research received no external funding.

References

1. Van Steen, M.; Tanenbaum, A. S. Distributed systems, 3rd ed.; Leiden, The Netherlands: Maarten van Steen,

2017.

2. Patil, A. et al. Design and implementation of a consensus algorithm to build zero trust model. 2020 IEEE

17th India Council International Conference (INDICON). IEEE, 2020, doi:

10.1109/INDICON49873.2020.9342207.

3. Sengupta, B.; Anantharaman, L. Distritrust: Distributed and low-latency access validation in zero-trust

architecture. Journal of Information Security and Applications, 2021, doi:
https://doi.org/10.1016/j.jisa.2021.103023.

4. Stafford, V. Zero trust architecture. NIST special publication 800-207, 2020, doi:

https://doi.org/10.6028/NIST.SP.800-207.

5. Gong, Q. et al. SDACS: Blockchain-Based Secure and Dynamic Access Control Scheme for Internet of

Things. Sensors 24.7: 2267, 2024, doi: https://doi.org/10.3390/s24072267.

6. Alboqmi, R. Jahan, S. Gamble, R. F. A Risk Adaptive Access Control Model for the Service Mesh

Architecture, 2024 IEEE 3rd International Conference on Computing and Machine Intelligence (ICMI),

2024, pp. 1-6, doi: 10.1109/ICMI60790.2024.10585800.

7. Wang, P. et al. Dynamic access control and trust management for blockchain-empowered IoT. IEEE

Internet of Things Journal 9.15, 2021, pp. 12997-13009, doi: 10.1109/JIOT.2021.3125091.

8. Hwang, D. Y.; Jung, Y. C.; Ki-Hyung K. Dynamic access control scheme for iot devices using blockchain.

2018 international conference on information and communication technology convergence (ICTC). IEEE,

2018, doi: 10.1109/ICTC.2018.8539659.

9. Alevizos, L.; Vinh T. T.; Max H. E. Augmenting zero trust architecture to endpoints using blockchain: A

state-of-the-art review. Security and privacy 5.1: e191, 2021, doi: https://doi.org/10.1002/spy2.191.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2025 doi:10.20944/preprints202502.0498.v1

https://doi.org/10.20944/preprints202502.0498.v1

 14 of 15

10. Alkhresheh, A.; Khalid E.; Hossam S. H. DACIoT: Dynamic access control framework for IoT deployments.

IEEE Internet of Things Journal 7.12, 2020, pp. 11401-11419, doi: 10.1109/JIOT.2020.3002709.

11. Dutt, N. et al. Self-awareness for autonomous systems. Proceedings of the IEEE 108.7, 2020, pp. 971-975,

doi: 10.1109/JPROC.2020.2990784.

12. Petrovska, A. Self-Awareness as a Prerequisite for Self-Adaptivity in Computing Systems. 2021 IEEE

International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C).

IEEE, 2021, doi: 10.1109/ACSOS-C52956.2021.00039.

13. Jahan, S.; Gamble, R. F. Applying Security-Awareness to Service-Based Systems. 2021 IEEE International

Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). IEEE, 2021,

doi: 10.1109/ACSOS-C52956.2021.00041.

14. Jahan, S. An adaptation assessment framework for runtime security assurance case evolution, Diss. The University

of Tulsa, 2021.

15. Vanickis, R. et al. Access control policy enforcement for zero-trust-networking. 2018 29th Irish Signals and

Systems Conference (ISSC). IEEE, 2018, doi: 10.1109/ISSC.2018.8585365.

16. Gai, K. et al. A blockchain-based access control scheme for zero trust cross-organizational data sharing.

ACM Transactions on Internet Technology 23.3, 2023, pp. 1-25, doi: https://doi.org/10.1145/3511899.

17. Whyte, S. T.; Omoyiola, B. O.; Okoni, B. Use of Blockchain Technology in Data Integrity Assurance. SSRN,

2022

18. Zhang, Y. et al. Smart Contract-Based Access Control for the Internet of Things, in IEEE Internet of Things

Journal, vol. 6, no. 2, 2019, pp. 1594-1605, doi: 10.1109/JIOT.2018.2847705.

19. Rahman, M.; Barbara, G.; Fabrizio, B. Blockchain-based access control management for decentralized online

social networks. Journal of Parallel and Distributed Computing 144, 2020, pp. 41-54, doi:

https://doi.org/10.1016/j.jpdc.2020.05.011.

20. Radack, S. M. Federal information processing standard (FIPS) 199, standards for security. 2004.

21. Wang, J. et al. Trust and attribute-based dynamic access control model for Internet of Things. 2017

International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC).

IEEE, 2017, doi: 10.1109/CyberC.2017.47.

22. Ahmed, A. et al. BACAD: AI-based framework for detecting vertical broken access control attacks.

Egyptian Informatics Journal 28: 100571, 2024, doi: https://doi.org/10.1016/j.eij.2024.100571.

23. Nguyen, C. T. et al. Proof-of-stake consensus mechanisms for future blockchain networks: fundamentals,

applications and opportunities. IEEE access 7, 2019, pp. 85727-85745, doi: 10.1109/ACCESS.2019.2925010.

24. Peepliwal, A. K et al. A prototype model of zero trust architecture blockchain with EigenTrust-based

practical Byzantine fault tolerance protocol to manage decentralized clinical trials. Blockchain: Research

and Applications 5.4: 100232, 2024, doi: https://doi.org/10.1016/j.bcra.2024.100232.

25. Kulkarni, A.; Hazari, N. A.; Niamat, M. A Zero Trust-based framework employed by Blockchain

Technology and Ring Oscillator Physical Unclonable Functions for security of Field Programmable Gate

Array Supply Chain. IEEE Access, 2024, doi: 10.1109/ACCESS.2024.3418572.

26. Elmadani, S.; Hariri, S.; Shao, S. Blockchain based methodology for zero trust modeling and quantification

for 5g networks. 2022 IEEE/ACS 19th International Conference on Computer Systems and Applications

(AICCSA). IEEE, 2022, doi: 10.1109/AICCSA56895.2022.10017914.

27. Feng, Y. et al. "Blockchain enabled zero trust based authentication scheme for railway communication

networks." Journal of Cloud Computing 12.: 62, 2023.

28. Jin, Q.; Liming, W. Zero-trust based distributed collaborative dynamic access control scheme with deep

multi-agent reinforcement learning. EAI Endorsed Transactions on Security and Safety 8.27, 2020, doi:

http://dx.doi.org/10.4108/eai.25-6-2021.170246.

29. Ali, F.S. et al. Dynamic acl policy implementation in software defined networks. 2022 International

Conference on IT and Industrial Technologies (ICIT). IEEE, 2022, doi: 10.1109/ICIT56493.2022.9989241.

30. Jung, C. et al. A scalable and dynamic acl system for in-network defense. Proceedings of the 2022 ACM

SIGSAC Conference on Computer and Communications Security. 2022, doi:

https://doi.org/10.1145/3548606.3560606.

31. You, H. et al. Dynamic access control method for SDP-based network environments. EURASIP Journal on

Wireless Communications and Networking 2023.1: 94, 2023.

32. Sun, L. et al. BPDAC: A Blockchain Based and Provenance Enabled Dynamic Access Control Scheme. IEEE

Access, 2023, doi: 10.1109/ACCESS.2023.3340887.

33. Nakamura, Y. et al. Exploiting smart contracts for capability-based access control in the internet of things.

Sensors 20.6: 1793, 2020, doi: https://doi.org/10.3390/s20061793.

34. Rouhani, S.; Deters, R. Blockchain based access control systems: State of the art and challenges.

IEEE/WIC/ACM International Conference on Web Intelligence. 2019, doi:

https://doi.org/10.1145/3350546.335256.

35. Punia, A. et al. A systematic review on blockchain-based access control systems in cloud environment.

Journal of Cloud Computing 13.1: 146, 2024.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2025 doi:10.20944/preprints202502.0498.v1

https://doi.org/10.20944/preprints202502.0498.v1

 15 of 15

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2025 doi:10.20944/preprints202502.0498.v1

https://doi.org/10.20944/preprints202502.0498.v1

