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Abstract: The Zero Trust (ZT) model is pivotal in enhancing the security of distributed systems by 

emphasizing rigorous identity verification, granular access control (AC), and continuous monitoring. 

To address the complexity and scalability challenges of modern distributed systems, we propose a 

blockchain-based dynamic access control scheme (DACS) as a practical solution for implementing 

ZT principles. This framework dynamically manages access control lists (ACLs) and enforces policies 

through smart contracts. In the DACS framework, each blockchain node maintains an object list 

specifying access permissions within its ACL and incorporates a minimum trust metric (TM) 

threshold to evaluate access requests. The TM assigned to each node reflects its trustworthiness. To 

further enhance security, the framework includes security awareness, enabling the dynamic 

assessment of the risk factor (RF), which reflects the operational risk level. The TM of access-

requesting nodes is updated at runtime based on their behavior, with penalties imposed for malicious 

actions according to the prevailing RF. Access control policies are dynamically adjusted, mitigating 

risks posed by potentially untrustworthy users with valid credentials. Implemented and tested on 

the Ethereum blockchain, the proposed DACS framework demonstrates its efficiency and 

effectiveness in securing distributed systems. 
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1. Introduction 

The proliferation of distributed systems has transformed modern computing, introducing 

scalable and decentralized architectures that enhance performance, resilience, and availability [1]. 

However, as the number of interconnected nodes and services grows, security challenges have 

become increasingly complex. Traditional perimeter-based security models are no longer sufficient 

to safeguard these intricate environments [2,3]. This shift has driven the adoption of the Zero Trust 

(ZT) security model, which operates on the principle of “never trust, always verify” [2,4]. In the ZT 

model, every user, device, and service must continuously authenticate its identity and access rights, 

irrespective of its location or position within the network. 

Implementing ZT in distributed environments requires a context-aware approach to security, 

making dynamic access control schemes (DACS) [5] essential. Unlike static policies, DACS adaptively 

evaluates various factors such as an actor's (e.g., user, device, or service) identity, service request 

patterns, and real-time threat intelligence to make in-formed, real-time access decisions [6,7]. This 

continuous evaluation ensures that access rights can be granted or revoked as conditions evolve [7,8], 

providing a flexible and robust solution for securing distributed systems under the ZT model [6]. 
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DACS represents a paradigm shift from rigid, predefined policies to flexible, adaptive access 

management strategies. Effective DACS implementation depends on robust policy management 

[6,9,10], which includes key components such as: Policy Enforcement Point (PEP) that intercepts and 

evaluates access requests, Policy Administration Point (PAP), which defines, updates, and enforces 

access rules in alignment with organizational requirements, compliance standards, and security 

contexts using Access Control Lists (ACLs), and Policy Decision Point (PDP) is for evaluating access 

requests based on ACLs and contextual in-formation to determine appropriate actions to adjust the 

access policy. Well-designed DACS policy management ensures seamless coordination between ACL 

policies and re-al-time security events [6,7], significantly enhancing system adaptability and 

resilience against emerging threats. With the increased interaction among the components in dis-

tributed system, DACS policy management needs to be autonomous and includes security awareness 

to reason over the access policy adjustment as per the risk level in operational context [6,7]. Security 

awareness is a form of self-awareness [11,12], defined as the knowledge that enables the ability to 

investigate a system's or interacting actor’s behavior to evaluate system’s security state, detect and 

assess changes in security states, and reason about potential adjustments needed to maintain a secure 

state [13,14]. 

Continuous monitoring and risk management are critical components to embed security 

awareness in DACS for implementing the Zero Trust (ZT) model [4]. Continuous monitoring allows 

for the early detection of emerging risks, such as compromised devices or insider threats, as they 

occur. Risk management incorporates a proactive risk assessment mechanism to evaluate potential 

threats and provide actionable insights for mitigation, thereby strengthening the overall security 

posture. Security awareness in DACS enables the ability to evaluating access control decisions in real 

time, adjusting access per-mission based on the latest risk indicators [6–8,15]. This security aware 

approach minimizes the attack surface and protects sensitive resources by ensuring that access 

privileges remain appropriate and do not escalate into security threats. Traditional centralized policy 

management systems, however, often struggle to balance the dynamic, scalable, and context-aware 

requirements of the ZT model [16]. Decentralized policy management using blockchain technology 

addresses these challenges by storing policies and access logs on an immutable ledger [7,17]. This 

tamper-proof system ensures that policies remain transparent and auditable, creating an unalterable 

record of access control decisions. By integrating blockchain with access control systems, 

organizations can establish a ZT framework where smart contracts govern access decisions, 

continuously validated through consensus mechanisms [17]. This setup provides a secure, resilient, 

and scalable solution for managing access in distributed Zero Trust environments. 

This paper introduces a DACS framework with embedded security awareness for implementing 

the ZT model in distributed systems by leveraging blockchain technology. The framework’s novelty 

lies in enhancing smart contract functionality to enable continuous risk assessment and runtime 

policy adjustments, thereby eliminating the need for specific trusted nodes to act as policy 

management units or conduct risk assessments for other nodes. In [7,18,19], authors have employed 

blockchain technology to enforce DACS; however, they rely on some distinguished trusted nodes 

deployed in the network to monitor access requests and manage policies. This reliance renders the 

trusted nodes attractive targets for attackers. Moreover, these approaches lack a mechanism to verify 

the actions of trusted nodes, which contradicts the core principles of the ZT model. 

In our proposed framework, each blockchain node is equipped with policy management 

capabilities for its own resources (referred to as objects) through smart contracts that reference the 

ACL, specifying which nodes in the blockchain have access permissions and the permitted operations 

for each object. ACL also includes impact levels associated with those operations, where higher 

impact levels signify greater potential harm to the system in cases of unauthorized access. 

Organizations define these impact levels based on the potential damage unauthorized operations 

could cause [20], aligning them with their business security requirements. Researchers in [7,21] 

introduced trust values to quantify the trustworthiness of actors during access decisions, they did not 

consider the impact levels of unauthorized access attempts. Our framework extends smart contract 
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capabilities to perform ongoing risk assessments for every access request, dynamically adjusting 

access policies based on behavior analysis and contextual risk. The current contextual risk for a node 

is evaluated by analyzing incoming access requests within an organization-defined time window. 

Risk increases as the number of unauthorized access requests grows, indicating potential broken 

access control attacks [22], where attackers exploit legitimate nodes or infiltrate the network as 

insiders to probe for vulnerabilities. 

To quantify risk, we introduce a metric called the Risk Factor (RF) and its probability estimation. 

Each blockchain node is assigned a Trust Metric (TM), which reflects its trustworthiness based on its 

operational context and behavioral actions. A penalty enforcement mechanism is triggered for 

anomalous behaviors, considering both the RF and the impact levels of unauthorized access attempts. 

Prior research [6,7,17] has explored penalty enforcement mechanisms, but these typically rely on 

predefined penalties that fail to account for the dynamism of contextual risk. Such approaches are 

insufficient to address the uncertainty posed by evolving attack surfaces and the dynamic 

interactions in distributed systems. Organizations also define a threshold TM for each operation, 

aligning the required trust level with the operation’s impact level. The policy management 

mechanism evaluates each access request by referencing both the ACL and the requester’s TM. Access 

permission is granted or denied based on a comparison with the threshold value assigned to the 

requested operation, enabling dynamic policy adjustments in real time. This penalty enforcement 

and risk-aware policy adjustment approach aligns with the ZT principle, delivering an adaptive 

access control solution tailored to the organization’s security and business requirements. To ensure 

transparency and resilience, we adopt the Proof of Stake (PoS) consensus mechanism [23] to validate 

each transaction, including policy adjustments and TM updates, supporting the ZT model. To 

evaluate the framework, we implemented a testbed on the Ethereum blockchain platform. Smart 

contracts were developed using the Remix IDE, demonstrating the framework’s effectiveness in 

providing resilient and adaptable access control. 

2. Background 

Distributed systems, composed of diverse components, applications, and services operating 

across varied environments, present unique and pressing security challenges [1]. Traditional security 

models, rooted in the outdated concept of a trusted perimeter, were once effective but now fail to 

meet the demands of increasingly decentralized infra-structures [2]. Their reliance on implicit trust 

and static access controls creates critical vulnerabilities, leaving systems exposed to insider threats, 

unauthorized access, and operational inefficiencies [3]. Addressing these challenges requires a 

paradigm shift toward innovative, adaptable, and scalable security frameworks [4]. The Zero Trust 

(ZT) security model has emerged as a transformative approach to securing distributed systems [4,17]. 

Emphasizing the principles of “never trust, always verify,” ZT validates user identities, continuously 

monitors behavior, and enforces fine-grained access controls across all network resources. ZT 

principles have been successfully implemented across various domains, including healthcare [24], 

supply chains [25], and communication networks [26,27]. 

Despite its promise, implementing ZT in distributed systems introduces complexities, 

particularly regarding scalability and reliance on centralized security administration. The 

advancement of blockchain technology addresses these challenges by providing a decentralized, 

tamper-proof foundation for managing security policies [26,27]. Block-chain-based ZT solutions 

enable secure access to resources while dynamically adjusting access control to account for changing 

operational contexts. 

One critical enhancement to ZT is the integration of Dynamic Access Control Scheme (DACS), 

which adapts access permissions in real-time based on actors' behavior, attack patterns, and evolving 

network or system architecture [6–8]. DACS incorporate security mechanisms that extend traditional 

ACLs with contextual attributes, enabling flexible and adaptive access control. Ali et al. [29] 

developed the d-CAP framework, an ML-based dynamic ACL system for Software-Defined 

Networks (SDNs), which optimizes access con-troll rules in real-time, reducing latency and 
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processing overheads. Similarly, Jung et al. [30] proposed PortCatcher, a scalable architecture that 

enhances ACL rule management using a TCAM-SRAM hybrid design, maximizing space efficiency 

while minimizing latency. To effectively implement DACS, robust policy management is essential. 

This includes components like the Policy Enforcement Point (PEP), which intercepts and evaluates 

access requests; the Policy Administration Point (PAP), which defines and updates access rules in 

alignment with security contexts and compliance standards; and the Policy Decision Point (PDP), 

which dynamically evaluates access requests to adjust policies based on real-time contextual 

information [6,9,10]. DACS must also embed security awareness, enabling systems to continuously 

evaluate their security state, detect threats, and adapt policies accordingly [11,12,14]. 

Blockchain-based distributed DACS further addresses key limitations of centralized systems, 

such as single points of failure and lack of auditability. Sun et al. [32] introduced a Blockchain-enabled 

Provenance-based Dynamic Access Control (BPDAC) scheme, which uses smart contracts to 

automate access-related decision-making while maintaining decentralized governance. Nakamura et 

al. [33] demonstrated an Ethereum-based Capability-Based Access Control (CapBAC) system that 

manages permissions with granular control, offering flexibility and security in hierarchical 

organizations. Gong et al. [5] proposed SDACS, a blockchain-powered architecture for IoT systems 

based on Hyperledger Fabric and IPFS, leveraging Attribute-Based Access Control (ABAC) to ensure 

fine-grained and decentralized access management. The combination of blockchain and DACS offers 

a promising future for access control in distributed systems. By eliminating reliance on trusted third 

parties and central authorities, these technologies empower organizations to implement 

decentralized, scalable, and context-aware security policies. Research has shown that blockchain can 

revolutionize access control by enabling secure policy enforcement under complex and dynamic 

conditions [34,35]. The integration of ZT principles, DACS, and blockchain technologies marks a 

critical evolution in distributed systems security. 

3. Approach 

This paper presents a DACS framework with embedded security awareness designed to 

implement a ZT model in distributed systems, utilizing blockchain technology for enhanced security 

and reliability. This section provides a detailed explanation of the core components of the framework, 

including blockchain nodes and smart contract functionalities, which are integral to the system's 

operations. The framework leverages blockchain nodes to enable decentralized and tamper resistant 

logging, ensuring that all access attempts are continuously monitored and recorded. Smart contracts 

facilitate real-time detection of unauthorized access attempts and perform runtime risk assessments. 

These assessments evaluate the RF of the operational context by analyzing various parameters, such 

as the node's trustworthiness, access history, and behavioral patterns. 

The policy management functionality within the framework is a cornerstone of its ZT 

implementation. It includes mechanisms to process and enforce access requests based on an ACL and 

the TM associated with the participating nodes. This functionality ensures that access decisions are 

dynamically informed by the most current contextual and trust-related data. Additionally, the policy 

management module incorporates dynamic adaptability to evolving security contexts. It evaluates 

and updates the TM of the requesting nodes, reflecting changes in their behavior or operational 

environment. Furthermore, the system dynamically modifies access policies in response to these 

changes, ensuring a robust and responsive access control mechanism that aligns with ZT principles. 

By combining continuous monitoring, runtime risk assessment, and adaptive policy management, 

the proposed DACS framework provides a comprehensive solution for securing distributed systems 

while maintaining operational flexibility and resilience against emerging threats. 

3.1. Define Node in Proposed Blockchain-Based DACS Framework 

In our blockchain infrastructure, any active actor in distributed system such as devices, 

components, services, or user accounts that collaborate to maintain operations is represented as a 

node. Each node plays a vital role in maintaining, validating, and, at times, broadcasting transactions 
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and blocks within the network. The blockchain network comprises a set of such nodes, collectively 

referred to as AllNodes. We define a node, 𝑁 as 

𝑁 =  (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑁 , ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦𝐼𝑛𝑓𝑜𝑁 , 𝑂𝑁 , 𝐴𝐶𝐿𝑁 , 𝑇𝑀𝑁) 

Here, 𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑁  includes the fundamental information required to uniquely identify and 

instantiate the node, 𝑁 within the blockchain network. As shown in Figure 1, nodeName is a unique 

identifier of a node. 

 

Figure 1. Node Architecture. 

ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦𝐼𝑛𝑓𝑜𝑁  represents the hierarchical relationships within the blockchain network, if 

applicable. It includes the information of the node’s parent, which is another active node in the 

network. Such hierarchical relationships model interdependencies among system components, 

reflecting organizational or functional structures. 

  𝑂𝑁 denotes the set of objects owned by the node. 

For each object 𝑜𝑖 ∈ 𝑂𝑁, the node maintains an ACL: 

 𝐴𝐶𝐿𝑁(𝑜𝑖) =  ⋃ {(𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑛 , (𝑂𝑝𝑝, 𝐼, 𝑚𝑖𝑛𝑇𝐻)} 

𝑛 ∈𝐴𝑙𝑙𝑁𝑜𝑑𝑒𝑠

 

Each entry in 𝐴𝐶𝐿𝑁 defines the permitted operation (𝑂𝑝𝑝 ∈ 𝑂𝑃) that a node 𝑛 can perform on 

the object, 𝑜𝑖 . Each operation has an organization defined impact level, 𝐼 and 𝑚𝑖𝑛𝑇𝐻 specifying the 

minimum required trustworthiness of node 𝑛 to perform the operation. 

𝑂𝑃 is the set of all possible operations. In this paper, we are dealing with create (C), read (R), 

update(U), delete(D) operations. So, 𝑂𝑃 =  {𝐶, 𝑅, 𝑈, 𝐷} 

𝑇𝑀𝑁  represents the trust metric (TM) assigned to the node 𝑁 . The trust metric reflects the 

reliability and security posture of the node, dynamically adjusted based on its actions and behavior 

within the network. 

A node encompasses a range of critical functionalities that enable its role within the blockchain 

infrastructure as shown in Figure 1. It includes the ability to instantiate ACLs for its owned objects, 

either by creating new policies or modifying existing ones, ensuring that access policies are enforced 

in accordance with organizational requirements. Additionally, the node adjusts its TM based on 

computations confirmed by other nodes regarding its actions and behavior within the system, 

reflecting its evolving trustworthiness. The node is also responsible for performing operations on its 

objects, such as create, read, update, and delete (CRUD), based on the decisions made by the access 
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control mechanism. These operations ensure that policies are enforced consistently across the 

network. 

Beyond these access control and policy enforcement functionalities, the node provides essential 

blockchain infrastructure services. These include block creation, transaction processing, and ledger 

maintenance, which collectively enable the decentralized, secure, and tamper-resistant operation of 

the blockchain network. 

3.2. Enhanced Smart Contract for DACS with Embedded Security Awareness 

The ZT model necessitates three core functionalities: continuous monitoring, risk assessment, 

and trust evaluation [4]. These components form the backbone of DACS, which rely on a robust policy 

management mechanism to ensure secure access to objects [6,7]. Continuous Monitoring 

functionality provides real-time surveillance of every access request. It scrutinizes request patterns, 

identifies requesters, and analyzes their behaviors. This process ensures that any deviation from 

expected patterns or anomalous activities can be promptly detected. Continuous monitoring creates 

a detailed behavioral profile for each requester, offering a granular view of access dynamics over 

time. The risk assessment procedure evaluates the data collected from continuous monitoring to 

quantify the risk associated with each access request. By analyzing factors such as the sensitivity of 

the requested resource, the requester’s historical behavior, and the current access context, this step 

assigns a RF to every access permission. The RF acts as a crucial input for decision-making, enabling 

proactive responses to potential threats. Trust evaluation complements risk assessment by 

determining the trustworthiness of the requester. It leverages the insights from continuous 

monitoring, focusing on the requester's behavioral consistency, compliance with security policies, 

and alignment with expected access patterns. This process results in a TM that reflects the reliability 

of the requester under the given access context. To implement DACS, we enhanced smart contract 

functionality by embedding security awareness, enabling the system to extract insights by 

aggregating the outcomes of continuous monitoring, risk assessment, and trust evaluation. Using 

predefined ACLs along with the calculated RF and TM, the embedded security awareness 

mechanism dynamically evaluates and adjusts access permissions. This adaptive approach ensures 

that access is granted only when the requester meets the required security and trust thresholds, 

aligning with ZT model principles to mitigate risks and uphold security in real-time. 
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Figure 2. Enhanced smart contract functionalities for embedding security awareness in DACS to implement ZT 

model. 

We enhance the smart contract functionality within our blockchain infrastructure to serve as a 

decentralized policy management mechanism for DACS, as illustrated in Figure 2. This integration 

enables secure, automated, and distributed management of access requests. When a blockchain node 

receives a new access request, the getAccessRequest function within the smart contract associated with 

that node is triggered. This function initiates the monitoring process by passing the access request to 

the monitorAccessRequest function. The monitoring process evaluates the access request against the 

predefined ACLs and generates actionable insights based on the request's characteristics and context. 

Let, 𝑅𝑒𝑞𝑁 represent the set of access requests directed to node 𝑁. Each individual access request, 𝑟𝑒𝑞 

is defined as: 

𝑟𝑒𝑞 = ( 𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑁̅ , 𝑜𝑁 , 𝑂𝑝𝑝, 𝑇𝑀𝑁) 

It specifies which node  𝑁̅̅̅ ∈ 𝐴𝑙𝑙𝑁𝑜𝑑𝑒𝑠 \{𝑁}  requests access to the object 𝑜𝑁  to perform the 

operation 𝑂𝑝𝑝, as well as the TM of the node  𝑁̅̅̅. This 𝑇𝑀𝑁 is a critical decision factor for policy 

enforcement. 

The Policy Enforcement Mechanism includes decideAccessRequest, which evaluates and decides 

on access requests based on insights from monitorAccessRequest in real time. Based on this evaluation, 

there are three possible outcomes: 

1. Access Granted: If the requesting node,  𝑁̅̅̅ has the necessary access permissions as per the ACL 

and maintains a TM above the minimum threshold, the operation is allowed, and the node retains 

its current permissions. 

2. Access Denied – Insufficient Permissions: If the requesting node,  𝑁̅̅̅ does not have the required 

access permissions in the ACL, the operation is denied outright. 

3. Access Denied – Low Trust Metric: If the requesting node,  𝑁̅̅̅  has the required access 

permissions but its TM falls below the minimum threshold, the operation is denied due to 

insufficient trustworthiness. 
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In the third scenario, where access is denied because the node,  𝑁̅̅̅ maintains a TM below the 

acceptable threshold despite having access permissions. In this case, decideAccessRequest triggers a 

critical follow-up process that invokes Policy Administration mechanism: 

Policy Generation: The generateAccessPolicy function, part of the Policy Administrator, is 

activated. This function generates a revised access policy to revoke the access permissions of node , 

 𝑁̅̅̅ due to its low TM. 

Policy Adjustment: The adjustAccessPolicy function then updates the ACL to reflect the revoked 

permissions. This adjustment ensures that the node's access rights are aligned with the current trust 

evaluation. 

ACL Update: Finally, an updated ACL is instantiated for node N that includes the adjusted 

policy for node,  𝑁̅̅̅, ensuring that the latest trust and access policies are enforced across the system. 

This dynamic trust evaluation and policy adjustment ensure that access permissions are not only 

granted based on predefined rules but also adjusted in response to behavioral and contextual 

changes, thereby maintaining a robust security posture. Moreover, the continuous monitoring 

functionality, denoted as CMFunc, encompasses a crucial component called logAccessRequestForCM. 

This component is responsible for systematically logging each access request alongside the 

corresponding access decision. This functionality is integral to ensuring traceability and enabling 

comprehensive analysis of access control activities within the system. For every access request 𝑟𝑒𝑞 ∈

𝑅𝑒𝑞𝑁 the CMFunc generates a detailed outcome encapsulating essential information. The outcome 

can be expressed as: 

∀𝑟𝑒𝑞 ∈ 𝑅𝑒𝑞𝑁 , 𝐶𝑀𝐹𝑢𝑛𝑐𝑁: 𝑟𝑒𝑞 → (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑁 , 𝑜𝑁  , (𝑂𝑝𝑝, 𝐼, 𝑚𝑖𝑛𝑇𝐻), 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑇𝑀𝑁 ) 

The outcome includes 𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑁 , 𝑜𝑁  , 𝑂𝑝𝑝, 𝑇𝑀𝑁 derived from the request, 𝑟𝑒𝑞 entry, while 𝐼 

and 𝑚𝑖𝑛𝑇𝐻 are obtained from the ACL for the associated 𝑂𝑝𝑝 on the corresponding 𝑜𝑁 . 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

represents the final access control outcome, specifying whether the request is approved or denied. 

The risk assessment functionality in smart contract enables dynamic risk assessment according 

to organization defined observation window. The observation window determines the number of 

recent access requests that must be analyzed to accurately assess and contextualize the current 

security posture. To support this, the collectObservationRecords method retrieves a batch of the most 

recent access requests from the outcomes of 𝐶𝑀𝐹𝑢𝑛𝑐𝑁 as specified by the observation window. This 

approach ensures that the system continuously monitors and evaluates access patterns in real time. 

A significant number of unauthorized access requests within the observation window serves as an 

indicator that the node is being targeted, potentially signaling an elevated security risk. In this 

context, risk in dynamic access control is defined as the combination of two factors: the likelihood of 

unauthorized access occurring and the impact such access could have on the system’s operations or 

sensitive data. We formulate the probability of a single request to a specific node, N being 

unauthorized as: 

𝑝𝑁  (𝑢𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 𝑎𝑐𝑐𝑒𝑠𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡)  =  
|(𝑂𝑁  × 𝑂𝑃 × 𝐴𝑙𝑙𝑛𝑜𝑑𝑒𝑠)| −  |𝐴𝐶𝐿𝑁|

|(𝑂𝑁  × 𝑂𝑃 × 𝐴𝑙𝑙𝑛𝑜𝑑𝑒𝑠)| 
 

The RF increases as the number of unauthorized access requests rises, indicating that the node 

is being targeted by malicious actors. The evaluateRisk estimates the likelihood, 𝐿𝑁  of an 

unauthorized access request based on the records within the observation window, as derived from 

the outcomes of 𝐶𝑀𝐹𝑢𝑛𝑐𝑁. The likelihood is computed using the formula: 

𝐿𝑁(𝑢𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 𝑎𝑐𝑐𝑒𝑠𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡)  =  (
𝑚

𝑘
)  ×  𝑝𝑁

𝑘  × (1 − 𝑝𝑁) (𝑚−𝑘) 

Here, 𝑚  is total number of access requests within the observation window from 

𝐶𝑀𝐹𝑢𝑛𝑐𝑁 outcomes. 

𝑘 is number of access requests identified as unauthorized within the observation window from 

𝐶𝑀𝐹𝑢𝑛𝑐𝑁 outcomes. The RF for a specific request, 𝑟𝑒𝑞 to access the node, 𝑁 is defined: 

𝑅𝐹𝑁(𝑟𝑒𝑞) =  𝐿𝑁(𝑢𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 𝑎𝑐𝑐𝑒𝑠𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡)  × 𝐼 × {
0, 𝑖𝑓 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑔𝑟𝑎𝑛𝑡𝑒𝑑

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

The Trust Evaluation functionality within the smart contract is designed to evaluate the TM for 

a node,  𝑁̅̅̅, that initiates an access request. To enhance security, a penalty enforcement mechanism is 
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incorporated, which is triggered when an unauthorized access request is detected. The TM of the 

node,  𝑁̅̅̅ is dynamically adjusted based on the RF at the specific moment of evaluation. The penalty 

enforcement and trust metric adjustment are formulated as follows: 
𝑇𝑀𝑁𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  =  𝑇𝑀𝑁  − 𝑇𝑀𝑁  × 𝑅𝐹𝑁 

With high 𝑅𝐹𝑁, penalty will be high and dynamically estimated. The adjusted TM will be new 

TM for the node, 𝑁. PublishchangeInTrustMetric allows node, N to instantiate a transaction to publish 

the changes so that the affected node, 𝑁 of which the TM has adjusted can validate the actions and 

update its current TM. The smart contract associated with each node repeats the process continuously 

on every access request to include DACS for implementing ZT model. Our trust evaluation 

mechanism does not reward a node for behaving as expected. In other words, the TM cannot increase 

dynamically. The rationale behind this is that persistent attackers may wait for a certain period before 

attempting unauthorized access to evade detection. In such cases, if a node’s TM falls below the 

threshold, the system administrator can investigate the actor represented by the node and manually 

reassign the TM based on their findings. 

4. Experiment 

To evaluate our approach, we designed a blockchain network using the Ethereum blockchain, a 

decentralized, open-source platform that facilitates the creation and deployment of smart contracts 

and decentralized applications (DApps). Ethereum's robust infrastructure and support for 

programmable contracts make it an ideal platform for implementing our solution. We enhanced the 

functionality of smart contracts using Remix IDE, a powerful web-based development environment 

tailored for Ethereum blockchain development. Remix IDE is widely recognized for its capabilities in 

writing, deploying, testing, and debugging smart contracts. It supports Solidity, the most commonly 

used programming language for Ethereum smart contracts and provides a suite of tools to interact 

seamlessly with the Ethereum network. One notable advantage of Remix IDE is its interactive 

interface, which allows developers to test both public and internal functions of smart contracts 

directly. This feature was instrumental in validating the logic and functionality of our enhanced smart 

contracts before deployment. 

After successfully implementing and deploying the defined node functionalities and enhanced 

smart contracts, we designed a blockchain network comprising 10 interconnected nodes ( 𝑆𝐴 to 𝑆𝐽), 

as outlined in Table 1. This network simulates a decentralized environment, enabling us to rigorously 

test and analyze the performance and security of our proposed system in a realistic and scalable 

setup. By leveraging the Ethereum blockchain and its associated tools, we ensured that our 

experimental setup aligns with industry standards, providing a robust and flexible foundation for 

evaluating our approach. 

For simplicity, we assume that each node is associated with a single object, resulting in a total of 

10 objects in the entire application, as outlined in Table 1. CRUD (Create, Read, Update, and Delete) 

operations can be performed on these objects, and each operation is assigned an impact level based 

on its potential severity to the application if performed without proper authorization. The impact 

levels are categorized as follows: 

High (H): Impact score of 0.9 

Moderate (M): Impact score of 0.5 

Low (L): Impact score of 0.2 

Table 1. Access Control Lists (ACLs) Matrix: Node-Wise Permissions (Rows) vs. Object-Wise Operations 

(Columns) for Create (C), Read (R), Update (U), and Delete (D). 

 𝑂𝐴 

(C=H, 

R=H, 

U=H, 

D=H) 

𝑂𝐵 

(C=H, 

R=M, 

U=H, 

D=H) 

𝑂𝐶  

(C=H, 

R=M, 

U=H, 

D=H) 

𝑂𝐷 

(C=M, 

R=L, 

U=L, 

D=M) 

𝑂𝐸  

(C=M, 

R=L,  

U=L, 

D=M) 

𝑂𝐹  

(C=M, 

R=L,  

U=L, 

D=M) 

𝑂𝐺  

(C=M, 

R=L, 

U=L, 

D=M) 

𝑂𝐻  

(C=L, 

R=L, 

U=M, 

D=L) 

𝑂𝐼  

(C=L, 

R=L, 

U=L, 

D=L) 

𝑂𝐽 

(C=L, 

R=L, 

U=M, 

D=L) 
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𝑆𝐴 C, R, 

U, D 

C, R, 

U, D 

C, R, U, 

D 

C, R, 

U, D 

C, R, U, 

D 

C, R, U, 

D 

C, R, 

U, D 

C, R, 

U, D 

C, R, 

U, D 

C, R, 

U, D 

𝑆𝐵 C C, R, 

U, D 

C, R C, R, 

U, D 

C, R, U, 

D 

R R R, U R, U R, U 

𝑆𝐶  C C, R C, R, U, 

D 

R R C, R, U, 

D 

C, R, 

U, D 

R R R 

𝑆𝐷  C  C, R, 

U, D 

C, R C, R C, R C, R, 

U, D 

C, R, 

U, D 

R 

𝑆𝐸  C  C, R C, R, U, 

D 

C, R C, R R R C, R, 

U, D 

𝑆𝐹   C C, R C, R C, R, U, 

D 

C, R R R R 

𝑆𝐺    C C, R C, R C, R C, R, 

U, D 

R R R 

𝑆𝐻    C    C, R, 

U, D 

C, R C, R 

𝑆𝐼     C    C, R C, R, 

U, D 

C, R 

𝑆𝐽     C   C, R C, R C, R, 

U, D 

Each object and its associated operations are assigned a minimum threshold value for TM, as 

detailed in Table 2. The methodology for determining the impact levels and minimum threshold 

values for TM is beyond the scope of this paper. For our experiment, we assume these values are 

provided by domain experts, guided by organizational policies and risk assessments. 

Table 2. Minimum required trust metric for perform CRUD operations on objects. 

 𝑂𝐴 

 

𝑂𝐵 

 

𝑂𝐶  

 

𝑂𝐷 

 

𝑂𝐸  

 

𝑂𝐹  

 

𝑂𝐺  

 

𝑂𝐻  

 

𝑂𝐼  

 

𝑂𝐽 

 

Create 

(C) 

0.95 0.8 0.8 0.65 0.65 0.65 0.65 0.55 0.55 0.55 

Read (R) 0.95 0.75 0.75 0.6 0.6 0.6 0.6 0.55 0.55 0.55 

Update 

(U) 

0.95 0.8 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

Delete 

(D) 

0.95 0.8 0.8 0.65 0.65 0.65 0.65 0.55 0.55 0.55 

Each node’s ACL contains entries only for its own objects. For instance, node 𝑆𝐹 owns the object, 

𝑂𝐹 . So, the ACL for node 𝑆𝐹 for object, 𝑂𝐹  would be: 

𝐴𝐶𝐿𝐹(𝑜𝐹) =  {(𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐴
, (𝐶, 𝑀, 0.65), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐴

, (𝑅, 𝐿, 0.6), 

(𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐴
, (𝑈, 𝐿, 0.6), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐴

, (𝐷, 𝑀, 0.65), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐵
, (𝑅, 𝐿, 0.6), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐶

, (𝐶, 𝑀, 0.65), 

(𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐶
, (𝑅, 𝐿, 0.6), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐶

, (𝑈, 𝐿, 0.6), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐶
, (𝐷, 𝑀, 0.65), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐷

, (𝐶, 𝑀, 0.65), 

(𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐷
, (𝑅, 𝐿, 0.6), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐸

, (𝐶, 𝑀, 0.65), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐸
, (𝑅, 𝐿, 0.6), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐹

, (𝐶, 𝑀, 0.65), 

(𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐹
, (𝑅, 𝐿, 0.6), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐹

, (𝑈, 𝐿, 0.6), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐹
, (𝐷, 𝑀, 0.65), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐺

, (𝐶, 𝑀, 0.65), (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐺
, (𝑅, 𝐿, 0.6)

} 

After designing the blockchain network and successfully instantiating the nodes, assigning their 

ACLs, and specifying the corresponding TM and minimum TM thresholds for each operation, we 

conducted experiments on various scenarios. In these scenarios, a node receives access requests—

both authorized and unauthorized—for its objects. The node dynamically determines the RF, 

evaluates the access request based on the ACL policy, RF, and the current TM of the requesting node, 

and decides whether to grant or deny access. 
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Below, we describe three scenarios in detail: 

Scenario 1: Access Request Granted 

Our first scenario is that node, 𝑆𝐹 receives an access request from node, 𝑆𝐵 to perform a read 

(R) operation to object 𝑂𝐹  as below: 

𝑟𝑒𝑞𝑠𝑐1 = ( 𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐵
 , 𝑜𝐹  , 𝑅, 1) 

The request includes the current TM of node 𝑆𝐵, denoted as, 𝑇𝑀𝐵 as 100%. Upon receiving the 

access request, the smart contract associated with node, 𝑆𝐹 triggers to evaluate the request. The smart 

contract checks the access policy defined ACL of node, 𝑆𝐹 for object, 𝑂𝐹 , denoted as 𝐴𝐶𝐿𝐹 (𝑂𝐹). 

According to 𝐴𝐶𝐿𝐹 (𝑂𝐹), the read operation is permitted (as shown in Table 1), and the minimum 

required TM threshold is 60% (as shown in Table 2). Since the current 𝑇𝑀𝐵 is 100%, which exceeds 

the required threshold, the access request is "granted." The decision is logged for continuous 

monitoring and appended to the outcome of the Continuous Monitoring Function (𝐶𝑀𝐹𝑢𝑛𝑐𝐹 ) as 

follows: 

𝐶𝑀𝐹𝑢𝑛𝑐𝐹: 𝑟𝑒𝑞𝑠𝑐1  → (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐵
 , 𝑜𝐹  , (𝑅, 0.2, 0.6), "𝑔𝑟𝑎𝑛𝑡𝑒𝑑", 1 ) 

Since, the request is “granted”, no risk assessment and trust evaluation have been performed. 

Scenario 2: Access Request Denied Due to No Permission 

In the second scenario, node 𝑆𝐹 receives an access request from node 𝑆𝐺  to perform an update 

(U) operation on object 𝑂𝐹 , with 𝑇𝑀𝐺  currently at 100%. The access request is defined as: 

𝑟𝑒𝑞𝑠𝑐2 = ( 𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐺
 , 𝑜𝐵  , 𝑈, 1) 

The smart contract evaluates the access request based on 𝐴𝐶𝐿𝐹 (𝑂𝐹) and 𝑇𝑀𝐺 . The decision is 

to deny the request, as node, 𝑆𝐺  lacks update operation permission for object, 𝑂𝐹  (as referenced in 

Table 1). The outcome generated by 𝐶𝑀𝐹𝑢𝑛𝑐𝐵  includes the decision and relevant information as 

follows: 

𝐶𝑀𝐹𝑢𝑛𝑐𝐵: 𝑟𝑒𝑞𝑠𝑐2  → (𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐺
 , 𝑜𝐹  , (𝑈, 0.2, 0.6), "𝑑𝑒𝑛𝑖𝑒𝑑", 1 ) 

Risk Assessment and Trust Metric Adjustment 

Risk Assessment mechanism is triggered to evaluate 𝑅𝐹𝑆𝐹
 (the Risk Factor for node, 𝑆𝐹) and 

adjust 𝑇𝑀𝐺   to penalize node, 𝑆𝐺 . Any unauthorized access request is considered a potential 

security compromise attempt. 

The risk assessment uses an observation window containing a specified number of recent 

records to determine the frequency of denied access requests. For demonstration, we consider 

variations in the observation window size and the resulting 𝑅𝐹𝑆𝐹
 and adjusted 𝑇𝑀𝐺 . The Risk Factor 

and adjusted TM vary depending on the observation window size and the number of unauthorized 

access requests within the window. These variations, along with their calculated to RF and TM 

adjustment, are summarized in Table 3. 

The probability of a single request to node, 𝑆𝐹 being unauthorized is calculated as below: 

𝑝𝑆𝐹
 (𝑢𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 𝑎𝑐𝑐𝑒𝑠𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡)  =  

(1 ×4 ×10)− 19

(1 ×4 ×10) 
 = 0.525 

In our experimenting observation window from 𝐶𝑀𝐹𝑢𝑛𝑐𝐵 outcomes, 25 recent records are 

considered, with 3 recorded as unauthorized access requests. The likelihood of an unauthorized 

access request (𝐿𝐵) is computed as: 

𝐿𝑆𝐹
(𝑢𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 𝑎𝑐𝑐𝑒𝑠𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡)  =  (

25

3
) ×  0.5253  × (1 − 0.525) 22 = 2.57 ×  10−5 

Risk Factor and Adjusted Trust Metric 

The 𝑅𝐹𝑆𝐹
 calculated after the denied access request, 𝑟𝑒𝑞𝑠𝑐2  is: 

𝑅𝐹𝑆𝐹
(𝑟𝑒𝑞𝑠𝑐2) =  2.57 × 10−5  ×  0.2 × 1 =  0.00000514 

And the adjusted. 𝑇𝑀𝐺  would be: 
𝑇𝑀𝐺𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  =  1 − 1 × 0.00000514 =  0.99999486 

The PublishchangeInTrustMetric function allows node, 𝑆𝐹 to initiate a transaction to notify node, 

𝑆𝐺  of its adjusted 𝑇𝑀𝐺  , which will be validated by node Sg and established in the network. 
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Table 3. Dynamic RF and adjusted TM estimation with variation in records across different observation 

windows (considering that we perform the calculation when node 𝑆𝐹  receives an access request from node 𝑆𝐺  to 

perform an update (U) operation on object 𝑂𝐹, and the request has been “denied”). 

Observation 

window size 

Number of 

unauthorized 

access     

requests 

RF Current TM Adjusted TM  

25 3 0.00000514 1 0.99999486 

50 7 0.00000236 1 0.99999764 

25 3 0.00000514 0.7 0.699996402 

50 7 0.00000236 0.7 0.699998348 

Scenario 3: Access Request Denied Due to Insufficient Trust Metric 

In the third scenario, node, 𝑆𝐹 receives an access request from node, 𝑆𝐶  to perform a read (R) 

operation on object 𝑂𝐹  . However, 𝑇𝑀𝐶  (current Trust Metric of node, 𝑆𝐶) is only 50%, as specified 

below: 

𝑟𝑒𝑞𝑠𝑐3 = ( 𝑏𝑎𝑠𝑖𝑐𝐼𝑛𝑓𝑜𝑆𝐶
 , 𝑜𝐹  , 𝑅, 0.5) 

The access request is denied, even though node, 𝑆𝐶  has read operation permission in 𝐴𝐶𝐿𝐹 (𝑂𝐹), 

(see Table 1) This denial occurs because the minimum required trust metric to perform read operation 

on 𝑂𝐹   is 60% (as referenced in Table 2), which node , 𝑆𝐶  fails to meet. 

Triggering Policy Adjustment 

This decision triggers the generateAccessPolicy mechanism to create a new access policy. The 

updated policy revokes previously granted permission to node, 𝑆𝐶  to perform the read operation on 

object, 𝑂𝐹 , reflecting its reduced trustworthiness. 

The adjustAccessPolicy function then updates 𝐴𝐶𝐿𝐹 (𝑂𝐹) to reflect the changes, creating a new 

instance of the Access Control List. 

5. Performance Analysis 

To evaluate the scalability of the proposed DACS framework, we measured key performance 

metrics, such as transaction validation time for processing access requests, as the number of 

participating nodes and access requests increased. Additionally, to assess the operational overhead 

introduced by the dynamic RF and TM adjustments in our approach, we compared the average 

transaction validation time with a basic block-chain-based access control management approach. The 

latter simply allows nodes to decide on access requests based on a predefined ACL for the node’s 

objects. The comparison results are presented in Table 4. We conducted the experiments on a personal 

computer running Linux (csx2 5.15.0-130-generic #140-Ubuntu SMP x86_64 x86_64 x86_64 

GNU/Linux). The results indicate that while the additional processes of risk evaluation and TM 

adjustment at individual nodes—validated by the PoS consensus mechanism—introduce some 

operational overhead, it remains within a tolerable range. In future work, we will explore 

optimizations to enhance the performance of our approach. 

Table 4. Performance comparison of our approach with a basic blockchain-based access control management 

approach by varying the number of nodes in the network. 

Number of Nodes Average Transaction 

Validation Time (Our 

Approach) in Seconds 

Average Transaction 

Validation Time (Basic 

Approach) in Seconds 

15 0.08523 0.002839 

50 0.261504 0.002834 

100 0.468003  0.002819 

500 2.31576  0.002814 
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1000 4.602902 0.002920 

6. Conclusions 

The rapid evolution of distributed systems has introduced complex security challenges, 

necessitating the implementation of the Zero Trust (ZT) model to address security threats effectively. 

Dynamic Access Control Scheme (DACS) are critical in realizing ZT principles, offering adaptive and 

context-aware security measures. Embedding security awareness into DACS enhances the ability to 

dynamically adjust access policies based on real-time contextual analysis. This paper presents an 

innovative DACS framework with embedded security awareness and leverages blockchain 

technology to eliminate the reliance on centralized trusted nodes, thereby improving security and 

scalability. By enhancing smart contract functionalities, the framework supports continuous risk 

assessment, real-time policy adjustments, and penalty enforcement that respond to evolving threats. 

Metrics such as Risk Factor (RF) and Trust Metric (TM) ensure granular and dynamic access control, 

aligning with organizational security objectives and the core principles of the ZT model. The 

proposed framework adopts a Proof of Stake (PoS) consensus mechanism to validate transactions 

related to access control policies and TM adjustments. However, the study acknowledges two 

limitations: (1) the absence of a procedural approach to determine the minimum required TM for 

operations based on organizational impact levels, and (2) the lack of a communication protocol to 

coordinate TM adjustments across multiple nodes. Future work will focus on addressing these gaps. 

An evaluation of our approach on the Ethereum blockchain demonstrates the framework's 

effectiveness in delivering resilient, adaptable, and decentralized access control. This solution not 

only strengthens the security posture of distributed systems but also lays the foundation for future 

innovations in secure, scalable, and context-aware access management in dynamic and open 

environments. 
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