

1 **Integrative proteomic and metabolomic analysis reveals the**
2 **cotton plant defense mechanisms induced by insect**
3 **(*Adelphocoris suturalis* Jakovlev) feeding**

4
5 Hui Lu^{1,2,3}, Shuai Zhang¹, JunYu Luo¹, ChunYi Wang¹, LiMin Lv¹, LiJuan Zhang¹,
6 XiangZhen Zhu¹, Li Wang¹, XueKe Gao¹, HongXia Hua², JinJie Cui^{1*}

7
8
9 ¹ State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang
10 455000, China.

11
12 ² Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory,
13 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan,
14 430070, China.

15
16 ³ Hetao college, Inner Mongolia, 015000, China.

17
18 *Corresponding Author:
19 Dr. JinJie Cui
20 Plant Protection Department, Institute of Cotton Research, Chinese Academy of Agricultural
21 Sciences, No. 38, Huanghe Road, Anyang 455000, Henan, People's Republic of China.
22 Tel/Fax: 0086-0372-2562296
23 Email: aycuijinjie@163.com

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43 **Abstract**

44 Cotton (*Gossypium hirsutum* Linn.) is widely cultivated in China. The polyphagous insect
45 *Adelphocoris suturalis* (Jakovlev) is a serious insect pest in cotton growing regions. Plants have
46 evolved sophisticated systems to cope with herbivore attacks. However, the cotton defense
47 mechanisms induced by *A. suturalis* feeding have lagged behind. We carried out untargeted
48 proteomic analysis using the iTARQ technique and metabolomics based on LC-MS/MS analysis
49 of cotton leaves fed upon by *A. suturalis*. Proteomic analysis identified 775 upregulated proteins
50 and 477 downregulated proteins in plants that were infested by *A. suturalis* compared to the
51 controls. Metabolomic analysis identified 50 differentially expressed metabolites in the positive
52 ion mode and 14 in the negative ion mode compared to the controls. The tryptophan metabolism
53 pathway was significantly changed in both the positive and negative ion mode in the
54 metabolomics analysis. The alpha-linolenic acid pathway was significantly changed in both the
55 proteomic and metabolomics analyses. Furthermore, the result was validated by RT-qPCR
56 analysis of 5 related genes involved in alpha-linolenic acid pathway. These results indicate that
57 tryptophan metabolism and the alpha-linolenic acid pathway may be important in cotton defense
58 against herbivores and would enhance our understanding of plant defenses induced by *A. suturalis*
59 feeding.

60
61 **Keywords:** *Gossypium hirsutum* L.; *Adelphocoris suturalis* (Jakovlev); alpha-linolenic acid
62 pathway; tryptophan metabolism; plant defence
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89 1. Introduction

90 Plants have successfully colonized most environments where herbivores are common because
91 they have evolved sophisticated systems to cope with herbivore feeding [1]. Some plants can
92 release volatile organic chemicals (VOCs) after herbivore infestation [2], while other plants have
93 developed structural defenses, such as spines, trichomes, and thick, tough leaves [3]. When plants
94 receive physical and chemical cues from herbivorous insects, such as elicitors in oral secretions
95 and compounds in oviposition fluids, they can alter their proteins and metabolites. Plant defense
96 responses induced by herbivores can occur in both wounded and in undamaged regions [4].
97 Herbivores, in turn, have responded to plant defenses by evolving counter adaptations that make
98 plant defenses less effective or render them useless. This can lead to an evolutionary “arms race”
99 between plants and their herbivore enemies [5,6].

100 Cotton (*G. hirsutum*) is an important cash crop worldwide. In China, the development and
101 widespread adoption of transgenic Bt (*Bacillus thuringiensis*) cotton has led to a substantial
102 reduction in the use of broad-spectrum insecticides. This in turn has led to frequent outbreaks of
103 mirids [7-9]. Two species in the Miridae, *Adelphocoris suturalis* and *Apolygus lucorum*, are
104 emerging as the most destructive pests in the major cotton growing regions. These species are
105 highly polyphagous and attack a broad range of cultivated crops, such as cotton, beans, alfalfa,
106 vegetables, and fruit crops [10]. Both the nymphs and adults of these species suck plant sap from
107 cotton flower buds, tender shoots, and buds, resulting in abscission, wilting, abnormal growth, and
108 losses in lint yield and quality [11].

109 The detection and quantification of multiple proteins and metabolites can be accomplished
110 using techniques such as LC-Q/TOF-MS-based metabolomics [12-15]. Quantitative iTRAQ-LC–
111 MS/MS proteomics can be a sensitive method for high-throughput protein identification and
112 quantification [16]. It has been used in insects and plants, including the silkworm[17], brown
113 planthopper[18], pine beetle[19], locust[20], and cotton [21,22]. These techniques can provide a
114 global view of dynamic proteomic and metabolomic variation and allow for the discovery of key
115 proteins and metabolites that are essential for plant defenses. However, there have been few
116 reports on cotton proteins and chemical metabolite changes after attacks by *A. suturalis*. In this
117 study, we used a proteomic and metabolomic approach to study cotton plant defenses in response
118 to *A. suturalis* feeding. Tryptophan metabolism and alpha-linolenic acid metabolism are important
119 pathways that regulate plant development and defense responses induced by pathogens and insects
120 [23-26]. We evaluate the new data and discuss how the tryptophan metabolism and alpha-linolenic
121 acid pathways play essential roles in cotton defenses. The present study provides a new insight
122 into the molecular mechanism of plant defense induced by insect feeding.

123

124 2. Results

125 2.1. iTRAQ identified the different proteins in the cotton treatment with *A. suturalis* infested for
126 48 h and the control without insect pressure

127 Cotton proteomic analysis by iTRAQ was performed on three replicates as previously
128 described [21,22,27-29]. A total of 371575, 374246, and 373127 spectra were generated in the
129 treatments of P48E, and the two controls of P48C and P0C. P48E represents plants infested with
130 insects for 48 h; P48C represents plants grown for 48 h without insect infestation; and P0C
131 represents experimental cotton plants without insect infestation. We obtained 52750, 48103, and
132 52474 unique spectra, 17865, 16116, and 16483 identified peptides, including 12906, 11903, and
133 12135 unique peptides and 5520, 5210, and 5313 identified proteins from the cotton in P48E,

134 P48C, and P0C, respectively, with a false discovery rate (FDR) of <1% (Table S1). And finally, a
135 total of 8302 proteins were identified (Table S1).

136 2.2. Functional categories of differentially expressed proteins

137 In this study, any proteins with a ≥ 1.2 -fold difference and a q -value <0.05 were designated
138 as significant differently expressed proteins (DEPs) [30-34]. We got q -value through p -value
139 corrected for false discovery rate (FDR) by Benjamini-Hochberg (BH). A total of 1015 (56%)
140 proteins were upregulated and 796 (44%) were downregulated in P48E compared to the control
141 P0C. A total of 775 (62%) proteins were upregulated and 477 (38%) were downregulated in P48E
142 compared to the control P48C. There were 485 (48%) proteins that were upregulated and 520
143 (52%) were downregulated in P48C compared to the control P0C (Fig. 1A, Table S2). Venn
144 diagram shows common or uniquely up- and down-regulated proteins in different experimental
145 groups. (Fig. 1B, 1C). The remaining pathway enrichment categories are shown in Table 1. The
146 results suggest that plants can alter their proteins when attacked by herbivorous insects, and then
147 plant defense responses are induced.

148 To study the functional categories of the insect feeding treatment (P48E) and its control
149 (P48C), we conducted GO enrichment analysis of DEPs. DEPs were classified into three groups:
150 biological process, cellular component, and molecular function (Fig. 1D). For biological process,
151 the proteins were predominantly distributed in the metabolic process (258), single-organism
152 process (225), cellular process (58), response to stimulus (45), and localization (38). For cellular
153 components, the proteins were predominantly distributed in the organelle part (98), organelle (90),
154 cell part (83), membrane part (46), and macromolecular complex (27). For molecular function, the
155 proteins were predominantly distributed in the catalytic activity (527), binding (125), transporter
156 activity (31), structural molecule activity (29), and antioxidant activity (26) (Fig. 1D).

157 For analysis of the metabolic pathways of the cotton plants infested by *A. suturalis*, DEPs
158 were also investigated using the KEGG database (ver. 81). We first compared the two control
159 groups, P48C and P0C (Table S3), and then removed the pathway changes arising from plant
160 growth. These changes were considered as background noise. Then, we compared experimental
161 P48E with the control P48C, and found that the DEPs were enriched in alpha-linolenic acid
162 metabolism (1.85%), fructose and mannose metabolism (2.53%), amino sugar and nucleotide
163 sugar metabolism (4.09%), selenocompound metabolism (1.17%), protein digestion and
164 absorption (0.49%). The remaining pathway enrichment categories are shown in Table 1. Those
165 results indicated that metabolic pathway may play an important role in plant defense.

166 2.3. Metabolome changes in cotton plant in response to *A. suturalis* feeding

167 Reproducibility of the UPLC-Q-TOF-MS was determined from ten replicates with the same
168 quality control (QC) sample interspersed throughout the analysis (Fig. 2A). In all of the QC
169 samples, ions with relative standard deviation (RSD) $> 30\%$ were deleted. We then had 7513
170 positive ions (RSD $\leq 30\%$, 96.44%) of the total 7790, and 4053 negative ions (RSD $\leq 30\%$,
171 93.71%) of the total 4325. To investigate cotton metabolic changes in response to *A. suturalis*
172 feeding, all of the observations, acquired in both positive and negative ion modes, were analyzed
173 using two components principal component analysis (PCA) score (Fig. 2B). To best analyze the
174 metabolic variations of the *A. suturalis* feeding groups, all of the observations acquired in both ion
175 modes were analyzed using orthogonal partial least squares-discriminant analysis (OPLS-DA).
176 The differential metabolites were selected according to the variable important for the projection
177 (VIP) threshold (VIP > 1) in the OPLS-DA model with the q -value ($q < 0.05$) after FDR
178 correction [32-34]. The plots of the OPLS-DA model discriminated the insect feeding groups from
179 their corresponding control groups, and exhibited satisfactory classification (Fig. 2C). Under this

180 standard, there were 70 (18 upregulated and 52 downregulated) metabolites in the positive ion
181 mode and 15 (all downregulated) in the negative ion mode (Table S4). A clear metabolite
182 separation was observed between the *A. suturalis* feeding groups and the corresponding control
183 groups as illustrated in a heat-map (Fig. 3, Table S4). The results suggest that metabolites were
184 downregulated and this may induce cotton' defense against herbivorous insects.

185 To further analyze the cotton metabolic pathways, different metabolites were studied using
186 the KEGG database. Comparing the insect feeding group with the control group, in positive ion
187 mode, the top 6 pathways were metabolic pathways, biosynthesis of secondary metabolites,
188 sesquiterpenoid and triterpenoid biosynthesis, tryptophan metabolism, isoquinoline alkaloid
189 biosynthesis, tropane, piperidine and pyridine alkaloid biosynthesis. In the negative ion mode, the
190 top 6 pathways were metabolic pathways, biosynthesis of secondary metabolites, alpha-linolenic
191 acid metabolism, tryptophan metabolism, phenylpropanoid biosynthesis, isoquinoline alkaloid
192 biosynthesis. The metabolites in metabolic pathways, biosynthesis of secondary metabolites,
193 alpha-linolenic acid metabolism and tryptophan metabolism were significantly changed in both
194 positive and negative ion modes (Table 2).

195 2.4. Tryptophan metabolism in cotton after feeding by *A. suturalis*

196 We integrated positive and negative ion mode data to analyze the tryptophan metabolism
197 pathway in the treatment cotton feeding by *A. suturalis* compared to the control cotton. We found
198 that there were 21 metabolites including 18 metabolites in positive ion mode and 3 metabolites in
199 negative ion mode were downregulated compared to the control group; while only 4 metabolites in
200 positive ion mode were upregulated compared to the control group; and there was 1 metabolite in
201 negative ion mode was downregulated but it was upregulated in positive ion mode (Fig. 4A; Table
202 3). The results showed that among 26 changed metabolites in tryptophan metabolism pathway, 21
203 (80.8%) metabolites were downregulated and only 4 (15.4%) metabolites were upregulated, these
204 results indicated that most of metabolites in tryptophan metabolism pathway were downregulated
205 and this may be an important response for cotton to defend against herbivores, the results described
206 here in Fig. 4B.

207 2.5. Integrating proteomics and metabolomics data to analyses alpha-linolenic acid metabolism 208 pathway

209 Interestingly, we found that the alpha-linolenic acid metabolism pathway was significantly
210 changed in both the proteomic and metabolomic analyses (Table 1, 2). We investigated the
211 pathway enrichment of P48E vs P48C in both omics. Most of the metabolites were downregulated
212 (Fig. 5, blue rectangular box), except for volicitin and 3-hexenol (Fig. 5, red rectangular box),
213 while most related proteins were upregulated (Fig. 5, red elliptic box). These proteins included
214 allene oxide synthase (AOS), cytochrome P450 allene oxide synthase (CytP450), phospholipase A
215 (PLA), alcohol dehydrogenase (ADH), allene oxide cyclase 4 (AOC4), 12-oxophytodienoate
216 reductase (OPR), AMP-dependent CoA ligase, acyl-CoA oxidase 4 (ACO4), acyl-CoA oxidase 3
217 (ACO3), and 3-ketoacyl-CoA thiolase 2(3-KAT-2) (Table S5). This finding indicated proteins as
218 the upstream regulator increased led to the downstream metabolites deceased in alpha-linolenic
219 acid metabolism pathway. The reconfiguration of proteins and metabolites may be one of the ways
220 that plants cope with insect-feeding stress. There were several unknown proteins that may also
221 play important roles in alpha-linolenic acid metabolism (Fig. 5). We selected 5 proteins including
222 AOS, PLA1, AOC4, and two OPR proteins named OPR1 and OPR2, which were related to the
223 alpha-linolenic acid metabolism pathway (Table S5), and performed quantitative reverse
224 transcription PCR (RT-qPCR) analysis. Two housekeeping genes [35] (*GhHis3* with GenBank

225 accession AF024716 and *GhUBQ7* with GenBank accession DQ116441) were used. The RT-
226 qPCR analysis validated our sequencing results (Fig. 6).

227 3. Discussion

228 Plants have evolved sophisticated systems to cope with herbivore attacks. When plants
229 perceive herbivore-derived physical and chemical cues, they can dramatically reshape their
230 transcriptomes, proteomes, and metabolomes. These responses involve specific changes in
231 metabolism, gene expression, and in the pattern of plant growth and development[36-38].

232 Secondary metabolic compounds of plants are an important biochemical basis for plant
233 resistance to insects [39]. Research with many plant species has revealed a great variety of small
234 molecules with toxic or antifeedant effects on insect herbivores. For example, many terpenoids, the
235 most metabolically diverse class of plant secondary metabolites, play important roles in plant
236 defenses. Alkaloids (e.g., caffeine, nicotine, morphine, strychnine, and cocaine) are also secondary
237 plant metabolites that help protect plants from herbivores [40]. Other well-studied classes of plant
238 secondary metabolites with defensive properties include furanocoumarins, cardenolides, tannins,
239 saponins, glucosinolates, and cyanogenic glycosides [41,42]. Cotton plants, coping with the stress
240 from insect feeding, have evolved numerous inducible defense mechanisms that help them respond
241 to biotic stress, including the synthesis of volatile terpenes, phytoalexins, gossypol, tannins,
242 tyloses, pathogenesis-related proteins, as well as lignification, and the release of active oxygen
243 species [39,42-45].

244 Tryptophan is the amino acid metabolic precursor of many important secondary metabolites.
245 Tryptophan biosynthesis plays a direct role in regulating plant development, pathogen defense
246 responses, and plant-insect interactions [25,44-47]. In plants, several important secondary
247 metabolites are derived from tryptophan or its indolic precursors. These include the plant growth
248 regulator indole-3-acetic acid (IAA) and the pathogen defense compounds indole glucosinolates
249 (IGs) and indolic phytoalexins [45]. In the present study, we examined the molecular responses of
250 cotton to insect feeding stress using metabolomics based on LC-MS/MS analysis. Among changed
251 metabolites associated with the tryptophan metabolism pathway we found that there were 5
252 upregulated and 22 downregulated. Tryptophan metabolism is mainly downregulated and this may
253 promote the effectiveness of the plant immune system.

254 Jasmonate (JA) modulates numerous physiological processes that are related to plant
255 development and defense responses [24,25]. Oxygenation of alpha-linolenic acid is the initial step
256 in JA biosynthesis [25]. Alpha-linolenic acid is a stress signal released by lipase activity on
257 chloroplast membranes. It is the substrate for numerous oxygenated compounds collectively called
258 oxylipins, including JA, which comprise JA, MeJA (methyl jasmonate), JA amino acid conjugates,
259 and further JA metabolites [4,24]. It can be released into the plastid under stress conditions [4,24].
260 The related proteins in the alpha-linolenic acid metabolism pathway AOS, AOCs (AOC1, 2, 3,
261 and 4), and OPR3(12-Oxophytodienoate reductase 3) are key proteins involved in the synthesis of
262 JA. AOSs belong to the CYP74A enzyme family [48]. The AOC is the subsequent enzyme of the
263 AOS branch [49]. OPR3 belong to a family of flavoproteins identified first with Warburg's old
264 yellow enzyme (OYE), and then from 13-hydroperoxylinolenic acid (13-HPOTrE) [24]. This fatty
265 acid hydroperoxide is then dehydrated by AOS and cyclized by AOC to the cyclopentenone 12-
266 oxo-phytodienoic acid (12-OPDA) [24]. OPDA is a potent gene regulator in the wound response
267 and can protect plants against the attack of insect or fungal pathogens when JA is absent [50]. In
268 our present study, we integrated proteomic and metabolomic data of the alpha-linolenic acid
269 metabolism pathways and we found that proteins, such as AOS, AOC4, OPR1, OPR2, were
270 upregulated, and this is similar to the result which were found in the rice feeding by stem borers

271 [51], while in metabolites, such as 13(s)-HpOTrE, 9,10-EoTrE, colnelenic acid, O-OPDA, 12-
272 OPDA, and 9(s)-HpOTrE, were downregulated. This result indicated that proteins as the upstream
273 regulators increased and led to a decrease in downstream metabolites. Volicitin (N-(17-
274 hydroxylinolenoyl)-L-glutamine) was first isolated from oral secretions of beet armyworm
275 caterpillars [52]. The linolenic acid derivative volicitin induces maize (*Zea mays* L.) seedlings to
276 release volatile compounds (terpenoids and indole) that are similar to those released from plants
277 damaged by caterpillar feeding [52]. And in our present result, volicitin were upregulated in the
278 alpha-linolenic acid pathway after feeding by *A. suturalis*, this suggest that volicitin may function
279 the cotton defense.

280 We chose 5 proteins and performed RT-qPCR, and we found the expression of those genes
281 validated our sequencing results. At the beginning of the insect infested time (3-6h), all of the
282 genes are at a low expression level, and then at 24 h and 48 h, there is a peak expression level,
283 after that, the expression begin to decrease (Fig.6). This result suggest that plant can regulate their
284 proteins to cope with insect feeding. Finally, a better understanding of why the plant reshapes its
285 proteins and metabolites after insect attack is important to explain the relationship between the
286 plant and the insect. Future research should focus on the unknown proteins in the alpha-linolenic
287 acid metabolism pathway.

288 4. Materials and Methods

289 4.1. Insect rearing

290 *A. suturalis* were reared at 26°C, 75 ± 5% relative humidity, with a photoperiod of 16:8h
291 (L:D) in cages (30x30x30 cm, ~1000 nymphs/cage). Insects were fed green beans, mung bean
292 seeding, and cotton bollworm (*Helicoverpa armigera* Hübner) eggs [53].

293 4.2. Plant Material and insect infestation

294 Potted cotton plants (*G. hirsutum*) were soil grown in controlled-environment chambers under
295 a regime of either a 10-h (short-day) or 16-h (long-day) light period at 25°C and 65% relative
296 humidity, unless otherwise indicated. After 3 weeks of growth, cotton plant was transferred into
297 one 30-cm square cage, and 9 adult bugs were released on the cotton leaves. Our preliminary
298 experiment indicated that 24 h and 48 h were the optimal termination time and this result was
299 similar to the rice feeding by stem borers [51]. After 48 h of insect infestation, all of the insects
300 were removed. The leaves were immediately frozen in liquid nitrogen and stored at -80°C until
301 use. For proteomic sequencing, each treatment had three experimental replicates, with P48E
302 representing the plants that were infested with insects for 48 h. The P48C control plants were not
303 infested but simply grown for 48 h. The P0C controls were the experimental cotton plants without
304 insect infestation. And for RT-qPCR analysis, we selected 5 proteins and performed 6 experiments,
305 P3E, P6E, P12E, P24E, P48E and P72E, which represent 3 h, 6 h, 12 h, 24 h, 48 h, and 72 h of
306 insect infestation, respectively. The control plants were not infested but simply grown for 3 h, 6
307 h, 12 h, 24 h, 48 h, and 72 h, respectively. The main leaf and cotyledon were immediately frozen in
308 liquid nitrogen, respectively, and stored at -80°C until use. For metabolomic sequencing, each
309 treatment had ten experimental replicates, with group 1 representing plants that were infested with
310 insects for 48 h and group 2 representing plants without insect infestation but grown for 48 h as the
311 controls.

312 4.3. Protein preparation and iTRAQ labeling

313 The iTRAQ analysis was conducted at BGI (Shenzhen, China). Total proteins were extracted
314 from cotton plants using a previously reported phenol extraction procedure [54]. Protein
315 concentrations were determined using the Bradford method [55]. Three independent biological
316 replicates were performed in the experiment. A total of 25 µg total protein from each sample was

317 used for each experiment. Protein was digested by sequencing grade trypsin (Promega) at a ratio
318 of 1:10 (w:w) for 12 h at 37°C, and then labeled using iTRAQ 8-plex kits (AB Sciex Inc., MA,
319 USA) according to the manufacturer's instructions. The samples were labeled with iTRAQ tags
320 113 (P48E, 48 h experiment), 119 (P48C, 48 h CK), and 121 (P0C, 0 h CK), respectively.
321

4.4. LC-MS/MS analysis

322 LC-MS/MS analysis was performed as described previously [21,22]. After labeling all of the
323 samples mixing, HPLC separation, and LC-MS/MS analysis. For MS, balance group can show the
324 same m/z no matter which report ion label peptide. In MS2, neutral loss happened to the balance
325 group, the intensity of the report ion can reflect the relative abundance of the peptides. Data was
326 collected with the AB SCIEX Triple TOF 5600 System (Concord, USA) fitted with a Nanospray
327 III source (Concord, USA) with a pulled quartz tip as the emitter (New Objectives, Woburn,
328 USA). The MS was operated with an RP greater than or equal to 30,000 FWHM for TOF MS
329 scans.

330 4.5. iTRAQ protein identification and quantification

331 Protein identification and quantification were performed with the Mascot 2.3.02 search
332 engine (Matrix Science, Boston, MA). The protein mass is predicted by website ([http://](http://www.expasy.ch/tools/)
333 www.expasy.ch/tools/) based on the protein sequences. Search settings were used as described
334 previously [22]. The Searches were made against database from the Institute of cotton research of
335 Chinese Academy of Agriculture Science website
[\(<http://cgp.genomics.org.cn/page/species/index.jsp>\)](http://cgp.genomics.org.cn/page/species/index.jsp). The search parameters were in Table S6. To
336 demonstrate the reproducibility of the replicates, protein abundances between various biological
337 replicates were compared, and ratios for each protein in each comparison were normalized to 1.
338 For quantitative changes, a 1.2-fold cutoff was set to determine upregulated and downregulated
339 significant proteins, with q-value < 0.05 (FDR corrected by BH) present in at least one replicate
340 [30-34].

341 The mass spectrometry proteomics data were deposited in the ProteomeXchange Consortium
342 (<http://proteomecentral.proteomexchange.org>) via the PRIDE partner repository [56] with the
343 dataset identifier PXD007518. The ProteomeXchange reviewer account:
344 reviewer77720@ebi.ac.uk password: DzF4ptow.

345 4.6. Bioinformatic analysis of proteins

346 Functional annotation of proteins was conducted using the Blast2GO program against the
347 non-redundant protein database (NR; NCBI). The KEGG database (<http://www.genome.jp/kegg/>)
348 and the Clusters of Orthologous Groups (COG) database (<http://www.ncbi.nlm.nih.gov/COG/>)
349 were used to classify and group identified proteins. GO and pathway enrichment analysis were
350 performed to determine which functional subcategories and metabolic pathways were
351 overrepresented by the differentially accumulated proteins.
352

353 4.7. LC-MS-based metabolomics

354 The LC-MS-based targeted metabolomic analysis was performed according to a previously
355 described protocol [34,51]. Unbiased metabolomic profiles of cotton samples were obtained using
356 HPLC-MS. All of the cotton samples were rapidly flash-frozen in liquid nitrogen and stored at
357 -80°C until processing. A 25-mg sample was ground in liquid nitrogen, and transferred into a 1.5-
358 ml polypropylene tube. Then, 800 µL of chilled methanol/water (1:1) buffer solution, and two
359 small balls were added to each tube. A tissue Lyser was set at the frequency of 60 Hz and the tube
360 contents were shaken for 5 min followed by centrifugation at 25000 rpm for 10 min at 4°C. We
361 used QC samples to assess the reproducibility and reliability of the LC-MS system. Each tube was
362 centrifuged with 200 µL supernatant (sample code + up) and we then centrifuged another 200 µL

363 supernatant mixed for QC mark. We added 200 μ L supernatant to each tube as a QC sample and
364 then dried it via vacuum freezing. We removed all of the supernatant and dried precipitate, then
365 added 800 μ L ice-cold mixture of dichloromethane/methanol (3:1) The tissue Lyser was set at a
366 frequency of 60 Hz, shaken for 5 min, and the mixture was centrifuged at 25000 rpm for 10 min at
367 4°C. Each tube centrifuged 200 μ L supernatant (sample code + down) and then centrifuged another
368 200 μ L supernatant mixed for QC mark. Each tube had 200 μ L supernatant added as the QC
369 sample and then dried by vacuum freezing. Samples-up and samples-down were dissolved with
370 50% methanol, shaken for 1 min, centrifuged at 25000 rpm for 10 min at 4°C. We added 100 μ L
371 supernatant to 96-well plates.

372 Sample analysis was conducted in both positive electrospray ionization (ESI+) and negative
373 ion (ESI-) modes. The test instruments were the 2777C UPLC system (Waters, USA) for liquid
374 chromatography and SYNAPT G2 XS QTOF (Waters, USA) for mass spectrum analysis.
375 Nitrogen was used as the dry gas and cone gas with the parameters described in Table S6. The
376 separation of all of the samples (injection volume 10 μ L) was performed on a ACQUITY UPLC
377 BEH C18 column (Waters, USA) (dimension 100 \times 2.1 mm, 1.7 μ m particle size). Liquid
378 Chromatographic column parameters with mobile phase A (water), mobile phase B (acetonitrile),
379 and the speed 0.4 mL/min, and the gradient of mobile phase were 0~2 min with 100% A-100% A,
380 2~12 min with 100% A-0% A, 12~14 min with 0% A-0% A, 14~15 min with 0%-100% A.
381

4.8. Data processing and statistics

382 Insect-infested samples and their corresponding control groups were prepared as described
383 above. The MS original data was analyzed by Progenesis QI (ver. 2.2) software to obtain the peak
384 (mz) retention time and ion area. The normalized data were introduced to SIMCA-P V11.0
385 (Umetrics, Sweden) for PCA and for OPLS-DA analysis. We analyzed the QC samples with PCA,
386 and their TIC (total ion current) map (Fig. S1). TIC map was used to determine the status of the
387 instrument, the greater the overlap of the QC sample replicates, the more stable of the instrument.
388 We then conducted univariate analysis by *t* test and the *p*-value in the *t* test after FDR correction
389 then produced *q*-values. The results were considered to be significant when the *q*-value was less
390 than 0.05. OPLS-DA was carried out to investigate and visualize the pattern of metabolite changes.
391 The differential metabolites were selected when the statistically significant threshold of VIP values
392 obtained from the OPLS-DA model was larger than one. Log2 fold change (FC \geq 1.2 or \leq 0.8) was
393 used to show how these selected differential metabolites varied between groups [32-34]. The
394 related pathways of each metabolite were also listed by searching the KEGG pathway database
395 (<http://www.genome.jp/kegg/>), and the metabolite molecular formula of matched metabolites was
396 further identified by isotopic distribution measurement.

397 Metabolomics data have been deposited to the EMBL-EBI MetaboLights database with the
398 identifier MTBLS573. The complete dataset can be accessed here :
399 <http://www.ebi.ac.uk/metabolights/MTBLS573>

4.9. Data analysis

400 We used Microsoft Excel 15. 37, Mac Preview (8.1), Adobe Photoshop (2017.0.0) and Prims
401 6 to analyze the data and prepare the figures. We used the R package (Ver. 3.2.3). for heat map
402 analysis. We used the online Venn Diagram Generator
403 (<http://www.pangloss.com/seidel/Protocols/venn.cgi>) for Venn map analysis.

4.10. Real Time Quantitative PCR (RT-qPCR)

404 The plant samples were collected followed by the previously description. Total RNA from
405 each sample was extracted using the RNApreg Pure Plant Kit (TIANGEN, China) according to the
406 manufacturer's protocol. Approximately 1 μ g RNA was reverse transcribed to cDNA using a

409 PrimeScriptTM RT reagent kit (perfect real time) (TaKaRa, Dalian, China) following the
410 manufacturer's protocol. The RT-qPCR was carried out using GoTaq Qpcr Master Mix (Promega,
411 USA) on an Eppendorf Mastercycler eprealplex 2.2 (Germany) with three biological replicates and
412 three technical replicates. The thermal cycle conditions used in the RT-qPCR were 95°C for 2 min,
413 followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. The relative gene expression was
414 processed using the $2^{-\Delta\Delta Ct}$ method [57], and two housekeeping genes [35] (*GhHis3* with GenBank
415 accession AF024716 and *GhUBQ7* with GenBank accession DQ116441) were used in the RT-
416 qPCR analysis. The three hours control group was set as the reference sample for data
417 normalization. All of the primer pairs used for RT-qPCR were designed using the online
418 PrimerQuest Tool (<http://sg.idtdna.com/PrimerQuest/Home/Index>) and are listed in Table S6.
419 Differences in expression level were tested for significance by a one-way ANOVA with means
420 separation using Tukey's HSD (IBM SPSS Statistics Ver.22).

421

422

423 **Author Contributions**

424 HL, SZ, HX H and JJ C designed the research. HL performed the research. HL, JYL, CYW, LML,
425 LJ Z, XZ Z, LW and XKG contributed reagents/materials/analyses. HL and SZ wrote the paper
426 All authors reviewed the final manuscript.

427

428

429

430 **Acknowledgements**

431 Project support was provided by the National Natural Science Foundation of China (Grant No.
432 31572015) and the National Special Transgenic Project of China (Grant No.2016ZX08012-004).
433 We appreciated Bio information analysis engineer Qi Yin of BGI-Shenzhen for technical
434 assistance.

435

436

437 **Conflict of interest disclosure**

438 The authors declare no competing financial interests.

439

440

441

442 **References**

443 1. Kessler, A.; Baldwin, I. T. Plant responses to insect herbivory: the emerging molecular
444 analysis. *Annual Review of Plant Biology*. **2002**, 53, 299-328.

445 2. Truong, D. H.; Heuskin, S.; Delaplace, P.; Francis, F.; Lognay, G. VOC emissions and protein
446 expression mediated by the interactions between herbivorous insects and *Arabidopsis* plant. A
447 review. *Biotechnol. Agron. Soc. Environ.* **2014**, 18, 455-464.

448 3. Hanley, M. E.; Lamont, B. B.; Fairbanks, M. M.; Rafferty, C. M. Plant structural traits and
449 their role in anti-herbivore defence. *Perspectives in Plant Ecology, Evolution and Systematics*.
450 **2007**, 8, 157-178.

451 4. Wu, J.; Baldwin, L.T. New insights into plant responses to the attack from insect herbivores.
452 *Annual Review of Genetics*. **2010**, 44, 1-24.

453 5. Bergelson, J.; Dwyer, G.; Emerson, J. J. Models and data on plant-enemy coevolution. *Annual*
454 *Review of Genetics*. **2001**, 35, 469-499.

455 6. Meaux, J. de; Mitchell-Olds, T. Evolution of plant resistance at the molecular level: ecological
456 context of species interactions. *Heredity*. **2003**, 91, 345-352.

457 7. Wu, K. M.; Lu, Y. H.; Feng, H. Q.; Jiang, Y. Y.; Zhao, J. Z. Suppression of cotton bollworm
458 in multiple crops in China in areas with Bt toxin-containing cotton. *Science*. **2008**, 321, 1676-
459 1678.

460 8. Lu, Y. H.; Wu, K. M.; Jiang, Y.Y.; Xia, B.; Li, P.; Feng, H. Q.; Wyckhuys, K. A.G.; Guo,
461 Y. Y. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in
462 China. *Science*. **2010**, 328, 1151-1154.

463 9. Lu, Y. H.; Qiu, F.; Feng, H. Q.; Li, H. B.; Yang, Z. C.; Wyckhuys, K. A. G.; Wu, K. M.
464 Species composition and seasonal abundance of pestiferous plant bugs (Hemiptera: Miridae)
465 on Bt cotton in China. *Crop. Prot.* **2008**, 27, 465-472.

466 10. Lu, Y. H.; Wu, K. M. Mirid bugs in China: pest status and management strategies. *Outlooks on*
467 *Pest Management*. **2011**, 22, 84-88.

468 11. Luo, J.; Liu, X. Y.; Liu, L.; Zhang, P. Y.; Chen, L. J.; Gao, Q.; Ma, W. H.; Chen, L. Z.; Lei, C.
469 L. *De novo* analysis of the *Adelphocoris suturalis* Jakovlev metathoracic scent glands
470 transcriptome and expression patterns of pheromone biosynthesis-related genes. *Gene*. **2014**,
471 551, 271-278.

472 12. Theodoridis, G.; Gika, H. G.; Wilson, I. D. LC-MS-based methodology for global metabolite
473 profiling in metabolomics / metabolomics. *Trac-Trend. Anal. Chem.* **2008**, 27, 251-260.

474 13. Zhou, B., Xiao, J. F., Tuli, L.; Ressom, H. W. LC-MS-based metabolomics. *Mol. Biosyst.*
475 **2012**, 2, 470-481.

476 14. Xia, J; Sinelnikov, I. V.; Han, B.; Wishart, D. S. MetaboAnalyst 3.0-making metabolomics
477 more meaningful. *Nucleic Acids Res.* **2015**, 43, 251-257.

478 15. Zhu, H. J.; Wang, J. H.; Zhu, Z. J.; Johnson, C. H.; Patti, G.; Siuzdak, G. Liquid
479 chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites
480 guided by the METLIN database. *Nature Protocols*. **2013**, 8, 451-60.

481 16. Wu, W. W.; Wang, G.; Baek, S. J.; Shen, R. F. Comparative study of three proteomic
482 quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. *J*
483 *Proteome Res.* **2006**, 5, 651- 658.

484 17. Li, Y.; Wang. X.; Hou, Y.; Zhou, X. Y.; Chen, Q. M.; Guo. C.; Xia, Q. Y.; Zhang, Y.; Zhao, P.
485 Integrative proteomics and metabolomics analysis of insect larva brain: novel insights into the
486 molecular mechanism of insect wandering behavior. *J. Proteome Res.* **2016**, 15, 193-204.

487 18. Huang, H. J.; Liu, C. W.; Huang, X. H.; Zhou, X.; Zhou, J. C.; Zhang, C. X.; Bao, Y. Y.
488 Screening and functional analyses of *Nilaparvata lugens* salivary proteome. *J. Proteome Res.*
489 **2016**, *15*, 1883–1896.

490 19. Keeling, C. I.; Li, M.; Sandhu, H. K.; Henderson, H.; Yuen, M. M. S.; Bohlmann, J.
491 Quantitative metabolome, proteome and transcriptome analysis of midgut and fat body tissues
492 in the mountain pine beetle, *Dendroctonus ponderosae* Hopkins, and insights into pheromone
493 biosynthesis. *Insect Biochemistry and Molecular Biology*. **2016**, *70*, 170-183.

494 20. Tu, X. B.; Wang, J.; Hao, K.; Whitman, D. W.; Fan, Y. L.; Cao, G. C.; Zhang, Z. H.
495 Transcriptomic and proteomic analysis of pre-diapause and non- diapause eggs of migratory
496 locust, *Locusta migratoria* L. (Orthoptera: Acridoidea). *Sci. Rep.* **2015**, *5*, 1-13.

497 21. Chen, T. T.; Zhang, L.; Shang, H. H.; Liu, S. D.; Peng, J.; Gong, W. K; Shi, Y. Z.; Zhang, S.
498 P.; Li, J. W.; Gong, J.W.; *et al.* iTRAQ-based quantitative proteomic analysis of cotton roots
499 and leaves reveals pathways associated with salt stress. *Plos One*. **2016**, *11*, 1-15.

500 22. Liu, J.; Pang, C. Y.; Wei, H. L., Song, M. Z.; Meng, Y. Y.; Ma, J. H.; Fan, S. L.; Yu, S. X.
501 iTRAQ-facilitated proteomic profiling of anthers from a photosensitive male sterile mutant
502 and wild-type cotton (*Gossypium hirsutum* L.). *Journal of Proteomics*. **2015**, *126*, 68-81.

503 23. Radwanski, E. R.; Last, R. L. Tryptophan biosynthesis and biochemical and molecular
504 genetics. *The Plant Cell*. **1995**, *7*, 921-934.

505 24. Wasternack, C. Jasmonates: An update on biosynthesis, signal transduction and action in plant
506 stress response, growth and development. *Annals of Botany*. **2007**, *100*, 681-697.,

507 25. Wasternack, C.; Hause, B. Jasmonates: biosynthesis, perception, signal transduction and action
508 in plant stress response, growth and development. An update to the 2007 review in Annals of
509 Botany. *Annals of Botany*. **2013**, *111*, 1021-1058.

510 26. Cao, J. J.; Li, M. Y.; Chen, J.; Liu, P.; Li, Z. Effects of MeJA on *Arabidopsis* metabolome
511 under endogenous JA deficiency. *Sci. Rep.* **2016**, *6*, 1-13.

512 27. Petricka, J. J.; Schauer, M. A.; Megraw, M.; Breakfield, N. W.; Thompson, J.W.; Georgiev, S.;
513 Soderblom, E. J.; Ohler, U.; Moseley, M. A.; Grossniklaus, U.; *et al.* The protein expression
514 landscape of the *Arabidopsis* root. *Proc. Natl. Acad. Sci. U.S.A.* **2012**, *109*, 6811–6818.

515 28. Walley, J. W.; Shen, Z. X.; Sartor, R.; Wu, K. J.; Osborn, J.; Smith, L. G.; Wu, K. J.; Urich,
516 M. A.; Nery, J. R.; Schnable, J.C. *et al.* Integration of omic networks in a developmental atlas
517 of maize. *Science*. **2016**, *353*, 814-818.

518 29. Walley, J. W., Shen Z. X., Sartor, R.; Wu, K. J.; Osborn, J.; Smith, L. G.; Briggs, S. P.
519 Reconstruction of protein networks from an atlas of maize seed proteotypes. *Proc. Natl. Acad.
520 Sci. U.S.A.* **2013**, *110*, E4808–E4817.

521 30. Zhu, M. M.; Dai, S. J.; McClung, S.; Yan, X. F.; Chen, S. X. Functional differentiation of
522 *Brassica napus* guard cells and mesophyll cells revealed by comparative proteomics.
523 *Molecular & Cellular Proteomics*. **2009**, *8*, 752-766 .

524 31. Wen, B.; Zhou, R.; Feng, Q.; Wang, Q. H.; Wang, J.; Liu, S. Q. IQuant: An automated
525 pipeline for quantitative proteomics based upon isobaric tags *Proteomics*. **2014**, *14*, 2280–
526 2285.

527 32. Chu, P.; Yan, G. X.; Yang, Q.; Zhai, L. N.; Zhang, C.; Zhang, F. Q.; Guan, R. Z. iTRAQ-
528 based quantitative proteomics analysis of *Brassica napus* leaves reveals pathways associated
529 with chlorophyll deficiency. *Journal of Proteomics*. **2015**, *113*, 244–259.

530 33. Chen, Y. Z.; Pang, Q. Y.; He, Y.; Zhu, N.; Branstrom, I.; Yan, X. F.; Chen, S. X. Proteomics
531 and metabolomics of *Arabidopsis* responses to perturbation of glucosinolate biosynthesis. *Mol
532 Plant*. **2012**, *5*, 1138–50.

533 34. Zhou, C. X.; Zhou, D. H.; Elsheikha, H. M.; Zhao, Y.; Suo, X.; Zhu, X. Q. Metabolomic
534 profiling of mice serum during toxoplasmosis progression using liquid chromatography-mass
535 spectrometry. *Sci. Rep.* **2016**, *6*, 1-13.

536 35. Wang, M.; Wang, Q.; Zhang, B. Evaluation and selection of reliable reference genes for gene
537 expression under abiotic stress in cotton (*Gossypium hirsutum* L.). *Gene*. **2013**, *530*, 44–50.

538 36. Turlings, T. C.; Tumlinson, J. H.; Lewis, W. J. Exploitation of herbivore-induced plant odors
539 by host-seeking parasitic wasps. *Science*. **1990**, *250*, 1251-1253.

540 37. Kessler, A.; Baldwin, I. T. Plant responses to insect herbivory: the emerging molecular
541 analysis. *Annual Review of Plant Biology*. **2002**, *53*, 299-328.

542 38. Bede, J. C.; Musser, R. O.; Felton, G. W.; Korth, K. L. Caterpillar herbivory and salivary
543 enzymes decrease transcript levels of *Medicago truncatula* genes encoding early enzymes in
544 terpenoid biosynthesis. *Plant Molecular Biology*. **2006**, *4*, 519-531.

545 39. Wu, G.; Guo, J. Y.; Wan, F. H.; Xiao, N. W. Responses of three successive generations of beet
546 armyworm, *Spodoptera exigua*, fed exclusively on different levels of gossypol in cotton
547 leaves. *Journal of Insect Science*. **2010**, *10*, 1-11.

548 40. Aharoni, A.; Jongsma, M. A.; Bouwmeester, H. J. Volatile science? Metabolic engineering of
549 terpenoids in plants. *Trends in Plant Science*. **2005**, *10*, 594-602.

550 41. Howe, G. A.; Jander, G. Plant immunity to insect herbivores. *Annual Review of Plant Biology*.
551 **2008**, *59*, 41-66.

552 42. Du, L.; Ge, F.; Zhu, S.; Parajulee, M. N. Effect of cotton cultivar on development and
553 reproduction of *Aphis gossypii* (Homoptera: Aphididae) and its predator *Propylaea japonica*
554 (Coleoptera: Coccinellidae). *Journal of Economic Entomology*. **2004**, *97*, 1278-1283.

555 43. McAuslane, H. J.; Alborn, H. T. Systemic induction of allelochemicals in glanded and
556 glandless isogenic cotton by *Spodoptera exigua* feeding. *Journal of Chemical Ecology*. **1998**,
557 *24*, 399-416.

558 44. Townsend, B. J.; Poole, A.; Blake, C. J.; Llewellyn, D. J. Antisense suppression of a (+)-delta-
559 cadinene synthase gene in cotton prevents the induction of this defense response gene during
560 bacterial blight infection but not its constitutive expression. *Plant Physiology*. **2005**, *138*, 516-
561 528.

562 45. Morawo, T.; Fadamiro, H. Duration of plant damage by host larvae affects attraction of two
563 parasitoid species (*Microplitis croceipes* and *Cotesia marginiventris*) to cotton: implications
564 for interspecific competition. *Journal of Chemical Ecology*. **2014**, *40*, 1176-1185.

565 46. Sanchez-Vallet, A.; Ramos, B.; Bednarek, P.; López, G.; Piślewska-Bednarek, M.; Schulze-
566 lefert, P.; Molina, A. Tryptophan-derived secondary metabolites in *Arabidopsis thaliana*
567 confer non-host resistance to necrotrophic *Plectosphaerella cucumerina* fungi. *The Plant
568 Journal*. **2010**, *63*, 115-127.

569 47. Grant, M. R.; Jones, J. D. Hormone (dis)harmony moulds plant health and disease. *Science*.
570 **2009**, *324*, 750-752.

571 48. Feussner, I.; Wasternack, C. The lipoxygenase pathway. *Annual Review of Plant Biology*.
572 **2002**, *53*, 275-297.

573 49. Ziegler, J.; Stenzel, I.; Hause, B.; Maucher, H.; Hamberg, M.; Grimm, R.; Ganal, M.;
574 Wasternack, C. Molecular cloning of allene oxide cyclase: the enzyme establishing the
575 stereochemistry of octadecanoids and jasmonates. *Journal of Biological Chemistry*. **2000**, *275*,
576 19132-19138.

577 50. Stintzi, A.; Weber, H.; Reymond, P.; Browse, J.; Farmer, E. E. Plant defense in the absence of
578 jasmonic acid: the role of cyclopentenones. *Proc Natl Acad Sci USA*. **2001**, *98*, 12837-12842.

579 51. Liu, Q. S.; Wang, X. Y.; Tzin, V.; Romeis, J.; Peng, Y. F.; Li, Y. H. Combined transcriptome
 580 and metabolome analyses to understand the dynamic responses of rice plants to attack by the
 581 rice stem borer *Chilo suppressalis* (Lepidoptera: Crambidae). *BMC Plant Biology*. **2016**, *16*, 1-
 582 17.

583 52. Alborn, H. T.; Turlings, T. C. J.; Jones, T. H.; Stenhammar, G.; Loughrin, J. H.; Tumlinson, J. H.
 584 An elicitor of plant volatiles from beet armyworm oral secretion. *Science*. **1997**, *276*, 945-949.

585 53. Lu, Y. H.; Wu, K. M.; Cai, X. M.; Liu, Y.Q. A rearing method for mirids using the green bean,
 586 *Phaseolus vulgaris* in the laboratory. *Acta Phytophylacica Sinica*. **2008**, *35*, 251-269.

587 54. Saravanan, R. S.; Rose, J. K. C. A critical evaluation of sample extraction techniques for
 588 enhanced proteomic analysis of recalcitrant plant tissues. *Proteomics*. **2004**, *4*, 2522-2532.

589 55. Kruger, N. J. The bradford method for protein quantitation. *Basic Protein and Peptide
 590 Protocols*. 2nd Edition. **1994**, 15-21.

591 56. Vizcaino, J. A.; Cote, R. G.; Csordas, A.; Dianes, J. A.; Fabregat, A.; Forster, J. M.; Griss, J.;
 592 Alpi, E.; Birim, M.; Contell, J.; *et al.* The proteomics identifications (PRIDE) database and
 593 associated tools: status in 2013. *Nucleic Acids Res.* **2013**, *41*, D1063-1069.

594 57. Livak, K. J.; Schmittgen, T. D. Analysis of relative gene expression data using real-time
 595 quantitative PCR and the $2^{-\Delta\Delta Ct}$. *Methods*. **2001**, *25*, 402-408.

596

597

598

Table 1. Pathway enrichment analysis of DEPs of P48E-VS-P48C

Pathway	DEPs	q-value	Pathway ID	Primary /Secondary Metabolites	
				Metabolites	
1 alpha-linolenic acid metabolism	19	0.0001	ko00592	b	
2 Fructose and mannose metabolism	26	0.0001	ko00051	a	
3 Amino sugar and nucleotide sugar metabolism	42	0.0007	ko00520	a	
4 Selenocompound metabolism	12	0.0009	ko00450		
5 Protein digestion and absorption	5	0.0013	ko04974	a	
6 Biosynthesis of unsaturated fatty acids	11	0.0018	ko01040	a	
7 Biosynthesis of amino acids	69	0.0023	ko01230	a	
8 D-Glutamine and D-glutamate metabolism	4	0.0024	ko00471	a	
9 Ascorbate and aldarate metabolism	23	0.0114	ko00053		
10 beta-alanine metabolism	13	0.0210	ko00410	a	
11 Glutathione metabolism	23	0.0236	ko00480	a	

12	Cysteine and methionine metabolism	26	0.0288	ko00270	a
13	Fatty acid degradation	15	0.0291	ko00071	a
14	Lysine degradation	8	0.0354	ko00310	a
15	Valine, leucine and isoleucine degradation	17	0.0364	ko00280	a
16	Citrate cycle (TCA cycle)	19	0.0428	ko00020	a

600 a, primary ; b, secondary metabolites

601

602

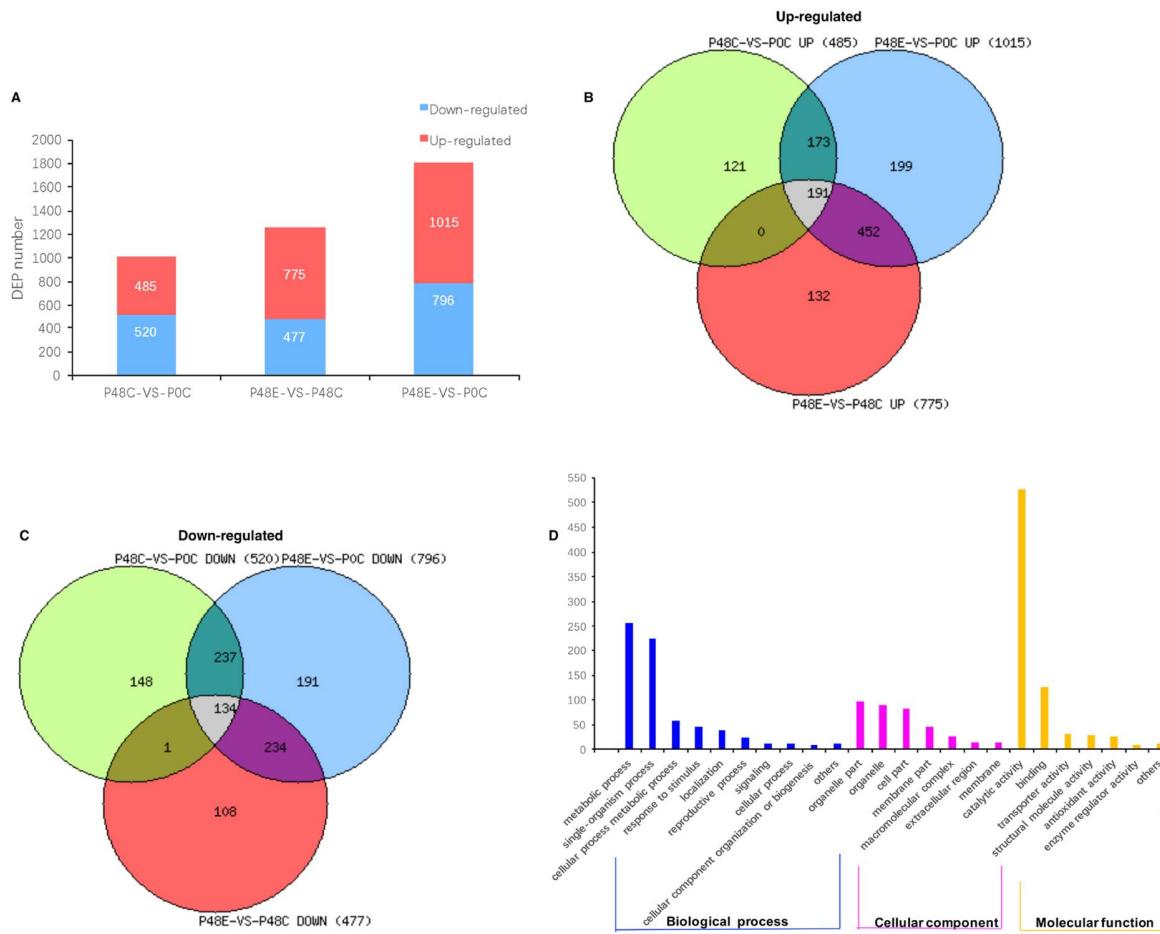
603 **Table 2. KEGG classification of metabolic pathway of in positive (ESI+) and negative(ESI-)**
604 **ion mode.**

	Pathway	No. All ^a	Mode	Pathway ID
1	Metabolic pathways	269	ESI+	map01100
2	Biosynthesis of secondary metabolites	213	ESI+	map01110
3	Sesquiterpenoid and triterpenoid biosynthesis	40	ESI+	map00909
4	Tryptophan metabolism	26	ESI+	map00380
5	Isoquinoline alkaloid biosynthesis	22	ESI+	map00950
6	Tropane, piperidine and pyridine alkaloid biosynthesis	20	ESI+	map00960
7	Diterpenoid biosynthesis	20	ESI+	map00904
8	Phenylpropanoid biosynthesis	20	ESI+	map00940
9	Biosynthesis of amino acids	18	ESI+	map01230
10	Amino sugar and nucleotide sugar metabolism	18	ESI+	map00520
11	ABC transporters	18	ESI+	map02010
12	Limonene and pinene degradation	16	ESI+	map00903
13	alpha-linolenic acid metabolism	16	ESI+	map00592
14	Monoterpene biosynthesis	16	ESI+	map00902
15	Fructose and mannose metabolism	16	ESI+	map00051
16	Phenylalanine metabolism	15	ESI+	map00360
17	Metabolic pathways	38	ESI-	map01100
18	Biosynthesis of secondary metabolites	37	ESI-	map01110
19	alpha-linolenic acid metabolism	10	ESI-	map00592
20	Tryptophan metabolism	8	ESI-	map00380
21	Phenylpropanoid biosynthesis	6	ESI-	map00940

22	Isoquinoline alkaloid biosynthesis	5	ESI-	map00950
23	Porphyrin and chlorophyll metabolism	4	ESI-	map00860
24	Phenylalanine metabolism	4	ESI-	map00360
25	Biosynthesis of amino acids"	4	ESI-	map01230
26	Cysteine and methionine metabolism	4	ESI-	map00270
27	Flavonoid biosynthesis	4	ESI-	map00941
28	Cutin, suberine and wax biosynthesis	3	ESI-	map00073
29	Monoterpeneoid biosynthesis	3	ESI-	map00902
30	Glucosinolate biosynthesis	3	ESI-	map00966

605

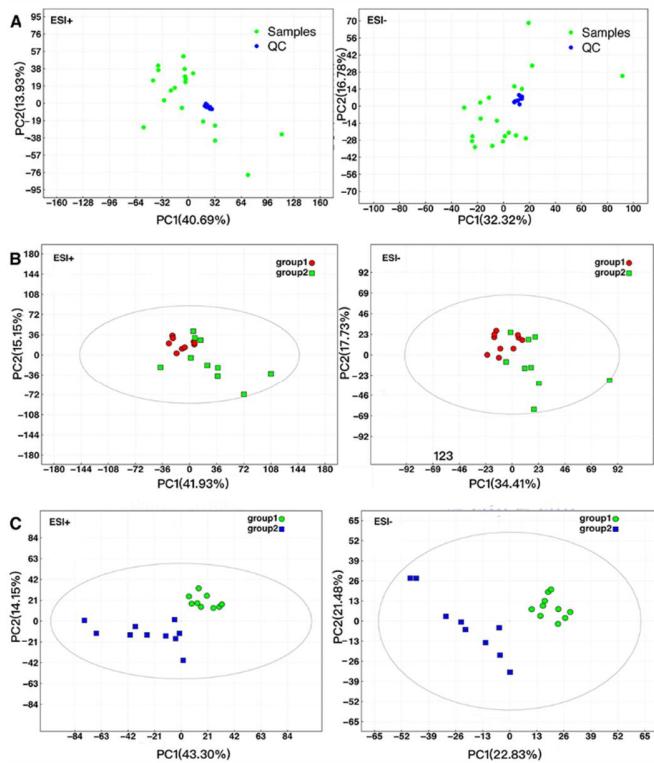
a, the total number of differentially expressed on proteins


606

607
**Table 3. Up/down regulated metabolite in Tryptophan metabolism pathway in cotton after
608 feeding by *A. suturalis***

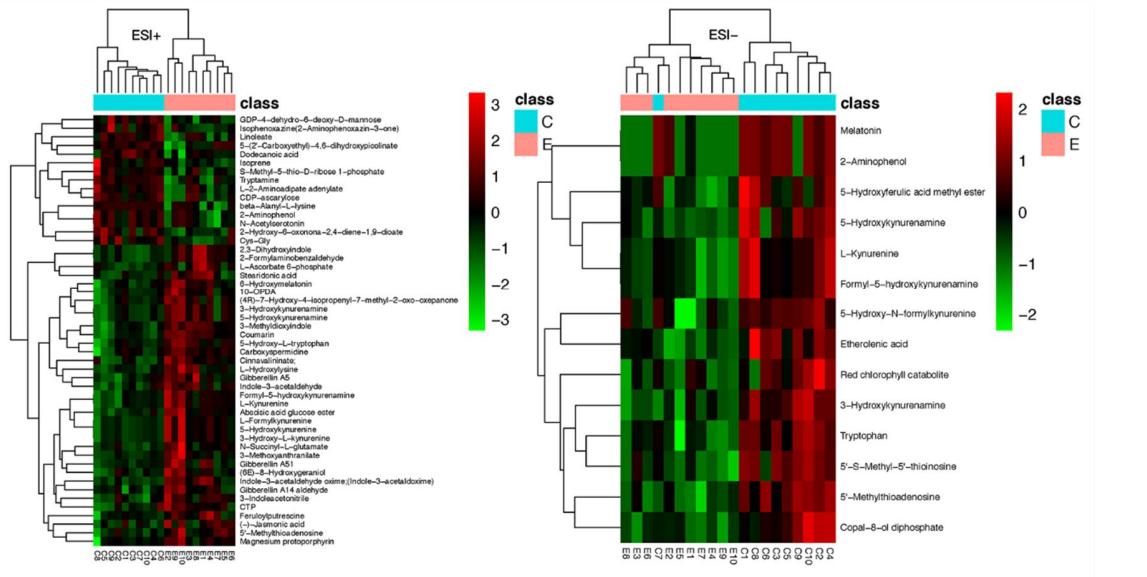
	Metabolite	Up/down-regulated	ESI+/ ESI-Mode
1	5-hydroxykynurenamine	down	ESI+
2	5-hydroxykynurenine	down	ESI+
3	5-hydroxy-L-tryptophan	down	ESI+
4	6-hydroxymelatonin	down	ESI+
5	formyl-5-hydroxykynurenamine	down	ESI+
6	2-formylaminobenzaldehyde	down	ESI+, ESI-
7	N-formylkynurenine	down	ESI+
8	L-kynurenine	down	ESI+
9	3-hydroxy-L-kynurenine	down	ESI+
10	3-hydroxykynurenamine	down	ESI+
11	2,3-dihydroxyindole	down	ESI+
12	indole-3-acetaldehyde	down	ESI+, ESI-
13	indole-3-acetaldoxime	down	ESI+
14	indole-3-acetonitrile	down	ESI+, ESI-
15	Indole-3-acetamide	down	ESI+, ESI-
16	3-methyldioxyindole	down	ESI+
17	3-methoxyanthranilate	down	ESI+
18	Cinnavalininate	down	ESI+
19	tryptophan	down	ESI-
20	5-hydroxy-N-formylkynurenine	down	ESI-

21	melatonin	down	ESI-
22	tryptamine	up	ESI+
23	5-(2'-carboxyethyl)-4,6-dihydroxypicolinate	up	ESI+
24	N-acetylserotonin	up	ESI+
35	Isophenoxazine	up	ESI+
26	2-aminophenol	down	ESI+
27	2-aminophenol	up	ESI-

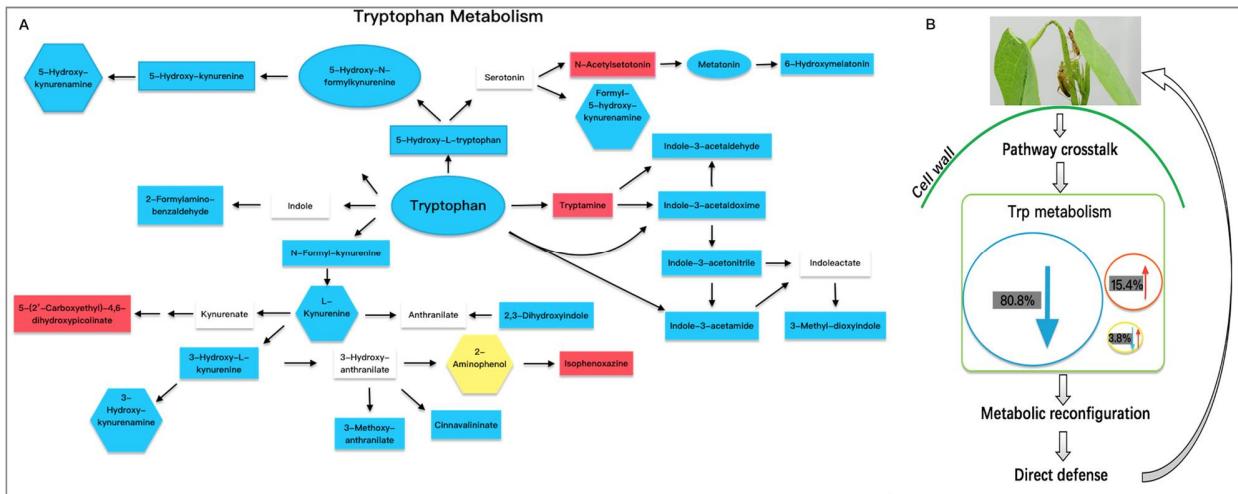

609

610 **Figures legends**

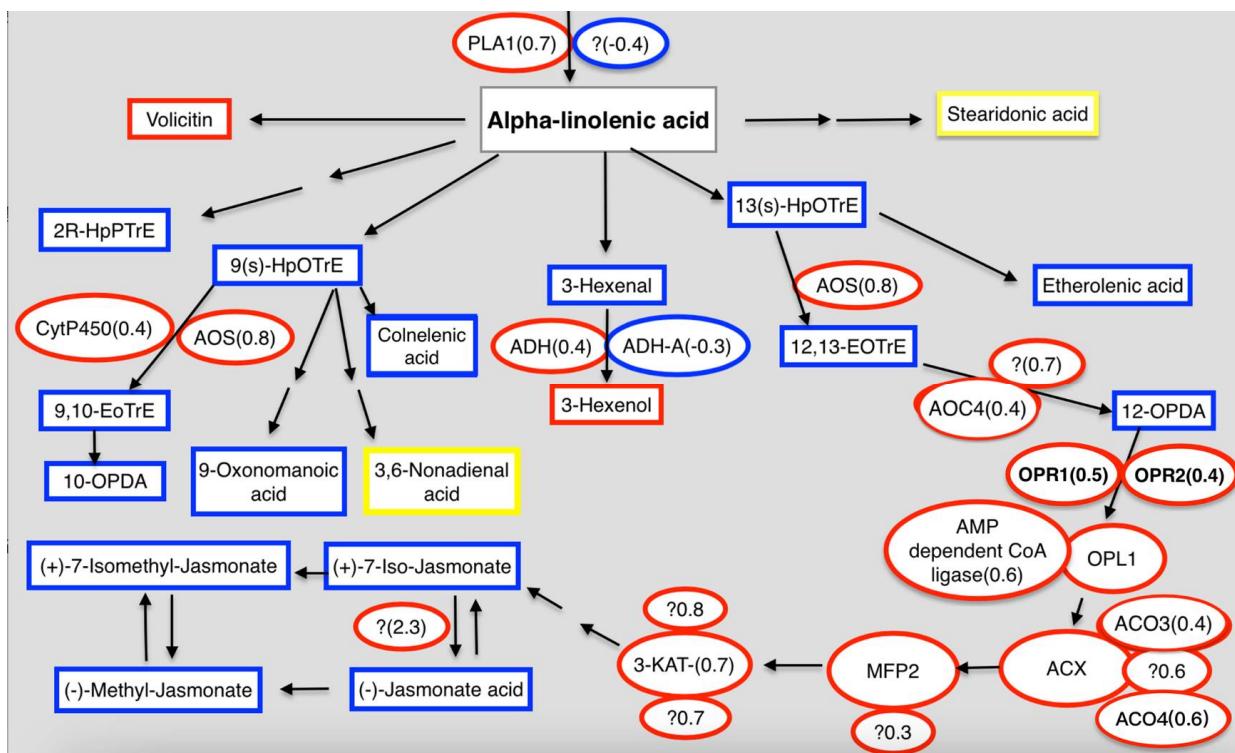
611


612 **Fig 1. Information of identified proteins and GO enrichment analysis of DEPs.** (A) Number
 613 of up- and down-regulated proteins in different experimental groups: P48C compared to P0C,
 614 P48E compared to POC, and P48E compared to P48C. (P48E represents the plants that were
 615 infested with insects for 48 h. P48C represents the control plants that were not infested but simply
 616 grown for 48 h. P0C represents control plants that were the experimental cotton plants without

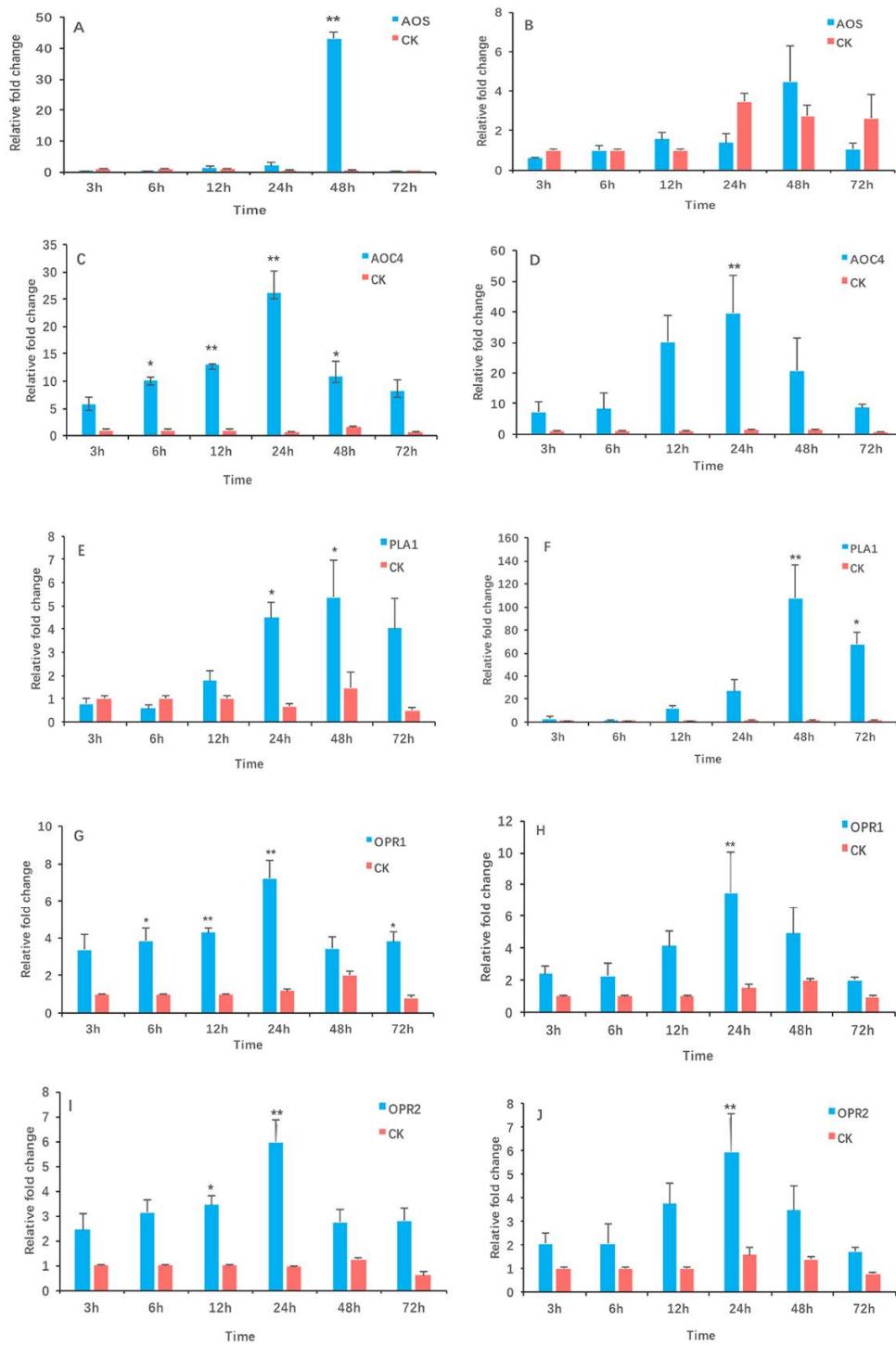
617 insect infestation). (B) Venn diagram showing common or uniquely up-regulated proteins in
 618 different experimental groups. (C) Venn diagram showing common or uniquely down-regulated
 619 proteins in different experimental groups. (D) GO annotation and functional classification of the
 620 differentially expressed proteins in cotton plants.


621

622 **Fig 2. PCA and OPLS-DA score plot.** (A) PCA of QC sample. (B) PCA score plot of *A.*
 623 *suturalis* infected and control groups. (C) OPLS-DA score plot of *A. suturalis* infected and control
 624 groups (with $R^2=0.861$, $Q^2=0.626$ in positive ion mode, and $R^2=0.904$, $Q^2=0.690$ in negative ion
 625 mode). Group1 represents the plants that were infested with insects for 48 h, group 2 represents
 626 the plant that were not infested but simply grown for 48 h. ESI+ represents positive ion mode,
 627 ESI- represent negative ion mode.


628

629 **Fig 3. Heat maps comparison of metabolites of the *A. suturalis* infected group and control**
630 **group.** Heat maps represents the highly significantly differential variables between the insect
631 infected groups and the corresponding control groups using R package (Ver. 3.2.3). ESI+
632 represents positive ion mode, ESI- represents negative ion mode. E represents the insect infected
633 group, C represents the corresponding control group.



634

635 **Fig 4. Tryptophan metabolism pathway analysis.** (A) Metabolites changed in tryptophan
636 metabolism pathway. Red represents upregulated, blue represents downregulated, yellow
637 represents upregulated in positive mode, down regulated in negative mode, white represents
638 unchanged metabolites in both ion mode. Rectangular box represents metabolites changed in
639 positive ion mode, elliptic box represents metabolites changed negative ion mode, regular hexagon
640 box represents changed metabolites in both ion mode. (B) A schematic representation showing
641 how the metabolites in tryptophan metabolism pathway affect plant defense attacked by insect.
642 (The photo was taken by the author Hui Lu)

644
645 **Fig 5. Integrated proteomics and metabolomics analysis alpha-linolenic acid metabolism**
646 **pathway.** Rectangular box represents the changed metabolites, elliptic box represents the changed
647 proteins (the number represent the log2 fold change, “?” represents the unknown or predicted
648 protein), red represents upregulated, blue represents downregulated, yellow represents up and
649 downregulated, gray represents unchanged metabolites.

650

651 **Fig 6. The RT-qPCR analysis of proteins related to the alpha-linolenic acid metabolism**
 652 **pathway.** Cotton samples were collected as previously described, and total RNA was extracted for
 653 RT-qPCR analysis. A, C, E, G, I represent relative expression of different genes in cotton main
 654 leaf, respectively. B, D, F, H, J represent relative expression of different genes in cotton

655 cotyledon, respectively. AOS: allene oxide synthase (CotAD_35840), PLA1: phospholipase A1-
656 llgamma-like (CotAD_52791), AOC4: allene oxide cyclase 4 (Cotton_D_gene_10007844), OPR1:
657 12-oxophytodienoate reductase 1 (CotAD_59461), OPR2: 12-oxophytodienoate reductase 2
658 (Cotton_D_gene_10037325). The *GhHis3* and *GhUBQ7* gene were used as the reference gene.
659 Three biological replicates were performed. The three hours control group was set as the reference
660 sample for data normalization. Significant differences between treatments and their corresponding
661 control groups were identified by a one-way ANOVA with means separated using Tukey's HSD,
662 and two levels ("*" $p < 0.05$ and "****" $p < 0.01$) were adopted to judge the significance of
663 difference.