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Abstract: In silico prediction of the in vivo efficacy of siRNA ionizable-lipid nanoparticles is desira-
ble yet never achieved before. This study aims to computationally predict siRNA nanoparticles in
vivo efficacy, which saves time and resources. A data set containing 120 entries was prepared by
combining molecular descriptors of the ionizable lipids together with two nanoparticles formula-
tion characteristics. Input descriptor combinations were selected by an evolutionary algorithm.
Artificial neural networks, support vector machines and partial least squares regression were used
for QSAR modeling. Depending on how the data set is split, two training sets and two external
validation sets were prepared. Training and validation sets contained 90 and 30 entries respec-
tively. The results showed the successful predictions of validation set log(dose) with R%va = 0.86 —
0.89 and 0.75 — 80 for validation sets one and two respectively. Artificial neural networks resulted
in the best R?al for both validation sets. For predictions that have high bias, improvement of R%vai
from 0.47 to 0.96 was achieved by selecting the training set lipids lying within the applicability
domain. In conclusion, in vivo performance of siRNA nanoparticles was successfully predicted by
combining cheminformatics with machine learning techniques.
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1. Introduction

The process of developing short interfering RNA (siRNA) lipid nanoparticles is
lengthy and time consuming because it involves the initial chemical synthesis of a usu-
ally large number of ionizable lipids and lipid-like molecules [1-3], the formulation of
siRNA nanoparticles and the subsequent in vitro and in vivo evaluation of these nano-
particles, in an attempt to find the best ionizable lipid that is suitable for clinical use in
terms of efficacy and safety. Alnylam’s small interfering RNA (siRNA) stable nucleic acid
lipid nanoparticles, currently marketed as Onpattro™ (Patisiran), obtained FDA ap-
proval in 2018. This was followed by FDA approval of Alnylam’s Givosiran™ and
Lumasiran™ in 2019 and 2020 respectively [4].

Gene silencing by double-stranded RNA (dsRNA) was reported by Fire and Mello in
Caenorhabditis elegans[5] and later siRNA duplexes of length 21-22 nucleotides proved to
promote post-transcriptional gene silencing in mammalian cells [6]. Since then, the po-
tential of siRNA as a therapeutic macromolecule against many diseases has been inves-
tigated, with more than 40 siRNA based therapies already reaching phases 2, 3 or 4 of
clinical trials.[7-9] The major barriers against the successful employment of therapeutic
siRNA include the lack of stability of the siRNA duplex, the immune response mediated
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by TOL-like receptors, the rapid renal clearance of naked siRNA, and the difficulty of the
intracellular delivery of unmodified siRNA due to its large size and the large number of
negative charges on its back-bone [10,11].

One method to overcome the barriers of siRNA delivery is to formulate it as siRNA
ionizable lipid nanocomplexes (lipoplexes) or lipidic nanoparticles [12-15]. These nano-
particles are multicomponent and may also contain helper lipids, PEG-lipids and phos-
pholipids. An ideal delivery system should ensure response reproducibility,
non-immunogenicity, good payload and ease of manufacturing [13].

The process of preparing siRNA lipoplexes and nanoparticles involves many steps:
the synthesis of the ionizable lipids, their purification and characterization, then the
process of preparing the nanoparticels including determining the siRNA to cationic lipid
ratio, the cationic lipid to helper lipid (if any) ratio, and nanoparticles characterization in
terms of their size, zeta potential, pKa, stability and in vivo evaluation of their safety and
silencing efficacy. All of these steps require time and resources and indeed if the in vivo
efficacy, as measured by either the siRNA dose or knockdown efficiency, could be pre-
dicted within reasonable accuracy by using computational means, the process of devel-
oping siRNA nanomedicines would be vastly improved in terms of time and costs.
Therefore it is important to attempt to predict the in vivo efficacy of siRNA cationic lipid
nanoparticles by using machine learning techniques. These techniques can be generally
classified into two main groups; supervised and unsupervised learning methods. Super-
vised learning is used in tasks such as regression and classification, i.e. when there is a
dependent variable and one or more independent variables.

Artificial neural networks (ANNSs) are a collection of linear and non-linear functions
that map an input to an output. These functions can approximate a nonlinear complex
function. The idea behind the inner working of ANNSs is that input data (x) are scaled and
combined in a linear manner in the form of Wx + b, where W is the weights matrix and b
is bias, and then the output of this linear combination is fed into a non-linear function
(called activation function), the output of which could be used as an input to the next
layer and/or to a final output layer [16].

Support vector machines (SVM) are a supervised machine learning technique. For
classification, SVM aims to find a hyperplane (decision surface) that can separate two
classes of observations with a maximum margin of separation [17]. Similarly, SVM re-
gression follows the same logic of finding a hyperplane, but with a fixed margin width,
epsilon (¢), within which the prediction error is considered zero, and the hyperplane
found should minimize the sum of squared error, i.e., the sum of the difference between
the actual and predicted values: Y., yi -(W™: + b). To enable the formulation of non-
linear decision surfaces, a kernel function is applied. The general form of the kernel
functions is K(x1,x2) = <¢(x1),p(x2)>, where x1 and x2 are two data points. The kernel
function thus avoids the actual calculation of the function ¢ [18].

Partial least squares (PLS) regression is another supervised learning technique [19].
PLS combines dimensionality reduction of the data with a regression model. PLS for-
mulation of the latent variables (scores or components) is carried out with the aim of
maximizing the covariance of the components with the response variable, which dif-
ferentiates PLS from regular principle component analysis (PCA) [20]. The response
variable in PLS may be univariate or multivariate. For the prediction of a new data point
response y, from a predictor point x,, the following equation applies: P, =
rll ™. yi+ BT (x, — %Z?zl x;). B is the matrix of regression coefficients, and is defined as:
B = W(T'T)'TTY, where W is the matrix of weights and T = XW [20].

In order to extract chemical information from the structures of the molecules under
investigation, molecular descriptors, which are important cheminformatics tools, are
employed to carry out this task [21,22]. Molecular descriptors are numerical values re-
sulting from either an experimental procedure or from a set of mathematical and/or log-
ical algorithms that are performed on chemical structures [23]. The descriptors can be
generally classified as 0D and 1D, when only molecular formula or constitutional prop-
erties of a molecule are considered, while 2D descriptors are calculated based on topo-
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logical properties of a molecule and 3D descriptors depend on geometrical properties of a
molecule. Further classifications include 2.5D chiral descriptors and descriptors with
more than three dimensions [24,25]. Molecular descriptors have been used as predictors
of the self-assembly of drug molecules into nanoparticles [26], to model drug binding
kinetics [27], in QSAR modeling [28] and in target identification [29]. Molecular de-
scriptors were also used to successfully predict the binding energy between drug mole-
cules and their nanocarriers and hence predict drug loading onto lipidic and polymeric
nanoparticles [30].

Previous QSAR studies on nanoparticles have mostly addressed predicting the cel-
lular uptake and toxicological properties of inorganic nanoparticles, with either unmod-
ified or modified surfaces [31-33], however, developing QSAR models for predicting
siRNA in vivo efficacy has not been achieved before.

In the current work, a data set is prepared using five publications [1,34-37]. This data
set contains the 1D and 2D descriptors of ionizable lipids together with both of the for-
mulation descriptor (PEG mol%) and the percentage knockdown resulting from a specific
siRNA dose. The siRNA nanoparticles in vivo efficacy when formulated with these ion-
izable lipids was included as the response variable; logarithm of the dose resulting in a
specific knockdown percent of the target gene. The data set is split into training and
validation sets, where the training set is used to construct the machine learning models,
and the validation set is used as an external test set that is used only to evaluate the pre-
dictive models constructed by modeling the training set. An evolutionary algorithm is
used to select the best descriptor combinations and is combined with three machine
learning techniques; ANN, SVM and PLS regression, to build the predictive models. The
performance of the predictive models using the three machine learning techniques and
the quality of predictions and how to improve them is presented and discussed. Figure 1
shows the work flow of the modeling and evaluation process.

1) Data set 2) Assign lipids to 3) Construct machine learning

preparation train and - models using training set lipids,

validation sets
4) Prediction of training set in

vive performance.

5) Selection of best descriptor
combinations.

Repeat steps 3 to 5 until no

8) Improve 6) Predict responses further improvement in predictive
predictions by of external performance
determining validation sets
applicability o Validation of the Machine
domains S—] 7) Y-randomization | learning Models

Figure 1. The workflow of the predictive model building process.
2. Materials and Methods

2.1 Data set preparation

2.1.1 Data selection from available literature

For preparing the data set, five publications[1,34-37] were retrieved after carrying
out online search using PUBMED and Google Scholar servers, where all of them fulfilled
the following requirements: siRNA is delivered by means of ionizable lipids, siRNA in
vivo performance is evaluated in vivo against factor FVII expression, all nanoparticles
contained the ionizable lipid, DSPC, cholesterol and PEG-lipid (with PEG average mo-
lecular weight = 2000), and the PEG-lipid mole % in the formulation is either given or can
be calculated. In addition, both the siRNA dose and the percentage knockdown or per-
centage gene expression resulting from a specific siRNA dose must be provided. Five
papers were selected to prepare the data set [1,34-37]. Wherever the values for the gene
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expression or dose were not provided numerically, these values were obtained from the
relative figures using WebPlotDigitizer v4.2. In case two or more lipids had the same 2D
structure, one of them was retained. If an ionizable lipid lacked a well defined in vivo ef-
ficacy measure, such as a definite dose or knockdown %, it was omitted.

2.1.2 Calculation of the 2D molecular descriptors

The structures of the ionizable lipids were drawn using ACD Chemsketch, and the
structures were saved as either individual MDL .mol files or combined together into a
single .sdf file using OpenBabel v2.4 [38]. The following software packages were used for
the calculation of the 1D/2D molecular descriptors: Padel Descriptor v2.21 [39], RDKit
2017, and ToMoCoMD QuBiL.S-MAS 2020 [25]. For the calculation of the QuBiL.S-MAS
descriptors, the following settings were selected: linear algebraic form, atom-based,
non-stochastic matrix form, and total groups.

2.1.3 Data set preprocessing

The initial data set containing the descriptors was further processed by removing
columns having one or more of either missing or not available (NA) entries. Columns
with same-value entries were also removed. If certain columns in the data set showed a
high correlation (cutoff r = 0.98) with each other [40], all the columns were removed ex-
cept for one column which has the lowest average correlation with the other descriptor
(predictor) columns in the data set. In addition, the formulation descriptor (PEG mol%)
and percentage knockdown resulting from a specific siRNA dose were added as predic-
tors. The data set descriptor columns were scaled by calculating the z-scores. The siRNA
nanoparticles in vivo efficacy was included as the response variable; logarithm of the dose
resulting in a specific knockdown percent.

2.2. Principle component analysis (PCA) of data set

PCA of the scaled data set predictor columns (without response columns) was car-
ried out using ChemometricsWithR package through R software v3.5.

2.3. Splitting the data set into training and validation sets

For modeling purposes, the data set entries were split into a training set (75% of
entries) and a validation set (25% of entries). This process was carried out two times
separately on the data set where the validation set entries (or observations) were selected
either by random selection or by selecting sequentially every fourth entry in the set, with
the remainder of the entries in the data set taken as the training set.

2.4. Machine learning models

The modeling process was carried out using either R software version 3.5 or Mi-
crosoft Open R v3.5. The following R packages were used for all modeling methods:
caret [41] and Metrics [42]. For artificial neural networks modeling, nnet package was
used. The hyperparameters were one hidden layer, two nodes and a weight decay of 0.1
for training and 0.001 for final validation set predictions. The support vector machine
regression modeling (epsilon-regression) was carried out using kernlab package[43],
with epsilon value of 0.1 and the kernel chosen to be the Gaussian radial basis function
kernel defined as K(x,x;) = —o||x — x;||> ,where o is the inverse width parameter and is
determined by the package’s sigest function. The partial least squares modeling was
carried out using pls package [44] with the number of principle components covering
98% of the variance.

2.5. Selection of the molecular descriptors by the evolutionary algorithm
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An evolutionary algorithm was written as an R script to select the best descriptors
for model building. 400 initial parent combinations of descriptors were randomly se-
lected, and then each one of them was used as an input to construct the machine learning
models that are used to predict the training set log(dose) values and their associated
RMSEs (training RMSE).

The training RMSE is calculated as follows: the training set is split into three folds,
two folds are used to construct the machine learning model, and the third fold is used as
a test set to calculate training RMSE. After evaluating the training RMSE for all predictor
combinations, the best combinations are kept as parents and are used to construct off-
spring combinations. The process is repeated until no further improvement in training
RMSE for this specific test fold. The whole selection process is repeated for each of the
remaining two test folds. The parameters for the evolutionary algorithm are as follows:
population size 400, 25% elitism, 20% mutation, number of generations 10-20 and mul-
tipoint cross-over.

RMSE is calculated as:

n A2
RMSE = /z—iﬂ“:i A

Bias is calculated as:
Bias = Pi - Ai

Where Pi and Ai are the predicted and actual log(dose) values of observation (lipid or
entry) i respectively, and 7 is the number of observations.

2.6. Ensemble learning by averaging of the validation set predictions

The best descriptor combinations that result in the lowest training RMSE were used
as inputs for the machine learning modeling algorithm that was used in the training; ei-
ther ANN, SVM or PLS regression. The central tendency of the validation set predictions
were calculated as median of these values for each validation set lipid. The validation set
RMSE (RMSEvar) and coefficient of determination (R?va1) were calculated using these me-
dian values. The R2alis calculated as:

CLixi =D - M)°

R2
L — 2L, (i — 9)?

val =

where xi and yi are the i predicted (the median value) and actual responses respectively,
X and y are the mean values of predicted and actual responses respectively.

2.7. Y-Randomization of data set

To evaluate the validity of the resulting descriptor combinations, and the possibility
that the obtained validation set predictions might be due to random chance, a
Y-randomization of the training data set was carried out by randomizing the training set
responses [45]. The predictive models were then constructed by using these randomized
responses for model training and subsequent validation as described in section 2.6.

3. Results
3.1. Data set preprocessing and preparation

The number of observations included in the data set after omitting the lipids or en-
tries that fit the omitting criteria explained in section 2.1.1 was 120 entries (rows). The
resulting data set contained 438 predictor columns; 436 columns of molecular de-
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scriptors, and 2 columns for PEG mol % and knockdown %. In addition, one response
column was included; logarithm of siRNA dose that results in a specific knockdown of
the target gene. Table 1 provides summary of the data set.

Table 1. Summary of data set. The entries represent either distinct lipids or the same lipid but with
different PEG mol % and/or knockdown %.

Index of Number Reference
entries of entries
per study
1-30 30 K. Rajappan et
al.[34]
31-62 32 C.A. Alabi et
al.[37]
63-95, 105 34 M. Jayaraman et
al.[1]
96-104 9 V. Kumar et
al.[36]
106-120 15 K. A. Whitehead
et al.[35]

3.2. Splitting the data set into training and validation sets

Two different methods were used to select the validation set entries, with the re-
mainder of the entries in each splitting method being used for training the machine
learning models. These selection processes resulted in the following data sets: training
setl, validation set 1, training set 2 and validation set 2. These sets are shown in Table 2.
Each training and validation set contained 90 and 30 entries, respectively.

To investigate the relationships between the training and validation entries, PCA
was carried out, to project the data points on the newly formed principle components,
capturing as much as possible of the variance of the data. The PCA score plots are shown
in Figure 2. Principle components 1, 2 and 3 (PC 1, PC 2 and PC 3) contributed to 22%,
19% and 12% of the total variance, respectively. The observations of validation set 1 and
2, shown as colored triangles, show homogenous spread among those of training set 1
and 2 respectively, which is an important characteristic of any training and external val-
idation samples, as the training set must reasonably represent the characteristics of the
validation set as well as capturing the general characteristics of the whole data set. Both
splitting methods of the data set, whether random splitting or sequential selection of the
validation entries, resulted in good spread of the validation entries among the training
ones, with no significant presence of outlier observations of the validation sets with re-
spect to their respective training set.

Table 2. Training and validation sets 1 and 2.

Set Training entries index Validation entries
index

1 3, 4 5 6, 8 910,11,13, 14, 1,2,7,12,15,16, 17,
18, 20, 21, 24, 25, 26, 27, 28, 29, 30, 19, 22, 23, 31, 32, 38,
33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44,50, 52, 53, 61, 65,
45, 46, 47, 48, 49, 51, 54, 55, 56, 57, 70,74,76,77,81, 85,
58, 59, 60, 62, 63, 64, 66, 67, 68, 69, 87, 88, 91, 109, 116.
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71,72,73,75,78,79, 80, 82, 83, 84,
86, 89, 90, 92, 93, 94, 95, 96, 97, 98,
99, 100, 101, 102, 103, 104, 105, 106,
107, 108, 110, 111, 112, 113, 114,
115,117, 118, 119, 120.

2 1, 2, 3 5 6 7, 910,11,13, 4,8,12, 16, 20, 24, 28,
14,15, 17,18, 19, 21, 22, 23, 25, 26, 32, 36, 40, 44, 48, 52,
27,29, 30, 31, 33, 34, 35, 37, 38, 39, 56, 60, 64, 68, 72, 76,

41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 80, 84, 88, 92, 96,
54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 100, 104, 108, 112,
67,69,70,71,73,74,75,77,78, 79, 116, 120.

81, 82, 83, 85, 86, 87, 89, 90, 91, 93,
94, 95, 97, 98, 99, 101, 102, 103, 105,
106, 107, 109, 110, 111, 113, 114,
115,117,118, 119.
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Figure 2. PCA score plots. A - C: training and validation set 1 entries are shown as black circles and pink triangles re-
spectively. D - F: training and validation set 2 entries are shown as black circles and orange triangles respectively.

3.3. Selection of the molecular descriptors by the evolutionary algorithm

When constructing the descriptor combinations to be used as inputs for the machine
learning algorithm, the PEG mol % and the knockdown % were always included in the
combinations. Any additional molecular descriptors were added and selected by the
evolutionary algorithm. Figure 3 shows the top six molecular descriptors with the
highest frequencies of appearance in the descriptor combinations that are selected by the
evolutionary algorithm. For each machine learning method, ANN, SVM or PLS, the
descriptor with highest frequency was considered 100 % and the other descriptors fre-
quencies were calculated relative to it. It is evident that each machine learning model
resulted in different top descriptors. It is also clear that the training sets one and two re-
sulted in different top descriptors for the same machine learning method. The only
common descriptors, taking the two training sets and the three machine learning meth-
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ods in consideration, were PEOE VSA9, GATS3m and GATS8p. PEOE_VSA9 is a Van
der Waals surface area descriptor that describes atomic partial charges. GATS3m and
GATSS8p are Geary autocorrelation - lag 3 weighted by atomic masses and Geary auto-
correlation - lag 8 weighted by atomic polarizabilities respectively. It should be noted
that these descriptors are present in combinations of descriptors (predictors) including
the PEG mol % and the knockdown %, thus, their direct influence on the in vivo perfor-
mance of the ionizable lipids should be limited to this context.

The number of molecular descriptors in each descriptor combination as selected by
the evolutionary algorithm is listed in Table 3. It is to be noted that these molecular de-
scriptors are present in each combination in addition to both PEG mol % and knockdown
%, with the later two being present in each predictor combination. The number of final
combinations for all methods for each training set was 300 combinations. It was noticed
that there were repeated combinations in the final 300 combinations, as omission of de-
scriptors by the evolutionary algorithm results eventually in offspring combinations of
the same descriptors. For example, there were 73 unique combinations among the final
300 combinations selected by the evolutionary algorithm and ANN training of set one.

Table 3. The minimum, maximum and median number of the molecular descriptors in the final
predictor combinations for each training set and machine learning method.

Training Machine min  max median

Set learning
method

1 ANN 2 7 5

1 SVM 3 7 4

1 PLS 3 7 3

2 ANN 4 9 5

2 SVM 4 9 6

2 PLS 4 9 6

The improvement in predictions of the validation set responses at the end of the
evolutionary algorithm is shown in Table 4. The RMSEval in the table are calculated as the
first quartile of the RMSE of predictions using the initial 400 descriptor combinations and
the final 400 descriptor combinations at the end of the evolutionary algorithm iterations.
It is clear that there were improvement in the quality of individual predictions for both
validation sets and for all methods as evident by the decrease in the RMSEval.

The predictive performance of the machine learning models was evaluated by
predicting the validation sets responses. The validation sets were neither used in the
selection of best descriptor combinations by the evolutionary algorithm nor they were
used in the training of the predictive models, thus, the validation sets represent external
unkown test samples for the machine learning models. Using the descriptor
combinations selected by the evolutionary algorithm, the median (averaged) predictions
of the validation sets one and two resulted in R of 0.72 to 0.89 and RMSEva of 0.23 to
0.36 (Table 5). The machine learning method used to predict the validation set responses
had a strong effect on the predictive performance, with the ANN predictions resulting in
the highest R%va1 of 0.89 and 0.80 for validation sets one and two respectively. Similarly,
ANN resulted in the lowest RMSEvai of 0.23 and 0.30 for validation sets one and two
respectively. There were also a difference in the predictive performance between
validation sets one and two (Table 5), which reflects the effect of both the training set and
validation sets compositions.
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Figure 3. Relative frequencies of descriptors in the descriptor combinations selected by the evolutionary algorithm. A: training set 1.
B: training set 2. Blue: ANN, red: SVM and green: PLS.

Table 4. Improvement of quality of individual validation set predictions by the evolutionary algorithm.

Validation Machine Initial First Final First
Set learning quartile quartile
method RMSEva RMSEva



https://doi.org/10.20944/preprints202108.0254.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2021 d0i:10.20944/preprints202108.0254.v1

1 ANN 0.41 0.33
1 SVM 0.40 0.31
1 PLS 0.41 0.29
2 ANN 0.40 0.35
2 SVM 0.39 0.36
2 PLS 0.44 0.37

3.4. Evaluation of predicitive performance by predicting validation set responses

Figure 4 shows that the three machine learning methods resulted in good validation
sets predcitions, as evident from the predicted points being close to the straight lines
(shown in red and representing perfect correlation) in the actual vs predicted plots. It is
also clear that the different machine learning models were capable of differentiating
between the lipids (entries) with low log(dose), which are the desirable lipids (or
formulations), and the lipids/formulations with higher doses.

Table 5. Evaluation of predicitive performance of the different machine learning models.

Set Machine learning RMSEva RZva
Model
1 ANN 0.23 0.89
1 SVM 0.32 0.81
1 PLS 0.26 0.86
2 ANN 0.30 0.80
2 SVM 0.36 0.72
2 PLS 0.34 0.75

The curated scaled data set together with an example of the resulting 300 predictor
combinations (training set 1) after selection by the evolutionary algorithm and ANN is
provided as supplementary materials. An R script for calculating the median predictions
of validation set 1 and the assocciated R*»a and RMSEva using the data set and the
descriptor combinations is also provided as supplementary material.
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Figure 4. Actual vs predicted log(dose) plots. A-C: Validation set 1, A: ANN, B: SVM and C: PLS. D-F: Validation set 2, D: ANN, E:
SVM and F: PLS.
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Figure 5. Actual vs. predicted responses of validation sets after Y-randomization of training sets responses. A — C: validation set
one. A: ANN, B: SVM and C: PLS. D - F: validation set two. D: ANN, E: SVM and F: PLS.

3.5. Y-randomization of training set responses

Y-randomization involves randomizing the responses column and then training the
predictive models using one of the machine learning methods, with the input descriptors
and the responses being mismatched due to the randomization of the responses [46].
Y-randomization was carried-out using the final combinations selected by the evolu-
tionary algorithm as inputs. The resulting predictions together with the actual responses
are shown in Figure 5. It can be seen that there is no correlation between the predicted
and actual responses for both validation sets and for all of the machine learning methods
used. The R values ranged from 0.014 to 0.116, with RMSEva values between 0.66 and
0.68. This lack of correlation proves that the results obtained without randomization of
the responses (Figure 4 and Table 5) where not due to random chance.

3.6. Effect of setting the formulation descriptor PEG mol % to either the maximum or the
minimum value
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To examine if the predictive models capture the changes in the formulation
descriptor; the PEG mol %, the values of this descriptor were set to either its maximum
value or rather its minimum counterpart. It is well known that when using siRNA
lipoplexes, there is a certain PEG mol % that results in the maximum in vivo efficacy in
addition to stabilization of the nanoparticles [36,47,48]. The general trend is that
increasing the PEG mol % more than a specific mole percent results in decreasing the in
vivo efficacy. It is generally found that PEG mol % that is equal to 10 decreases efficacy,
while values around 1.5% results in good in vivo efficacy [1,36]. Hypothetically, it is
assumed that if the PEG mol % descriptor values were set to the maximum (equivalent to
10%), the in vivo efficacy should decrease, i.e., the log(dose) should increase. On the other
hand, if the PEG mol % values are set to the minimum (equivalent to 1.5%), then the in
vivo efficacy should generally improve for the validation sets lipids that have PEG mol %
higher than 1.5%.

It can be seen in Figure 6A and 6C that setting the PEG mol % to the minimum
values resulted in a decrease in log(dose) as expected, as evident by the shift of the
predictions towards the left hand side. Similarly, setting PEG mol % to the maximum
value resulted in shifting of the predicted log(dose) towards higher values as it would be
expected (Figure 6B and 6D). These results prove that the predictive models were capable
of capturing the significance of the formulation descriptor in a correct manner. ANN was
the method used to train the models because it resulted in the best predictions as shown
in Figure 4 and Table 5. Similar results were obtained with SVM and PLS regression (data
not shown).
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3.7. Refining the predictions by determining the applicability domain (AD)
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AD represents a theoretical region in the chemical space of the training set samples.
It is expected that predicting the response of unknown samples, e.g., an external valida-
tion set, results in more reliable predictions when the unknown samples falls within this
region [49,50]. One method to determine this region is by applying PCA on the training
and validation data, and constructing the region of applicability accordingly [49]. Figure
7A shows the score plot of one fold of training set one and lipid 15 which belongs to
validation set one (shown as a red circle). The descriptors combination used to perform
PCA were chosen randomly from one of the final combinations selected by the evolu-
tionary algorithm. The region encircled by the blue line is the AD, and it was determined
manually by excluding from the training entries under consideration those which are far
from lipid 15 in the space generated by plotting PC 1 and PC 2. The first two components
capture 66% of the variance in the data. The training lipids selected within the AD were
then used by ANN to predict the response of lipid 15. This procedure was repeated for
another three lipids from the same validation set. The four lipids selected were chosen
based on them having the highest biases in their predicted values (Table 6). It is clear by
comparing the predicted responses in Table 6 before and after carrying out the selection
of training lipids lying in the AD that there was a vast improvement in the quality of the
predictions as seen from the much lower bias values before and after selection. In addi-
tion, the R? for the four lipids was 0.47 and 0.96 before and after applying AD lipid se-
lection respectively, showing significant improvement in the prediction accuracy of these
lipids. The impact of improvement of predictions can be seen in Figure 7 B and C, where
the predictions lies much closer to the red line in Figure 7C compared to 7B. Since this
procedure is carried out manually, we suggest that is should be performed as a refining
step for the set of lipids that will be chosen for further wet lab experimentations.

Table 6. Refinement of predictions by selecting training lipids within AD

Lipid Actual Predicted  Predicted Bias before Bias after
index response response response applying  applying
Log(dose) before after AD AD
applying applying selection selection
AD AD
15 -1.52 -0.55 -1.43 0.97 0.09
16 -1.52 -0.47 -1.40 1.05 0.12
70 0.18 -0.47 -0.04 -0.65 -0.22
109 0.17 -0.43 0.37 -0.60 0.20

4. Discussion

This study provides a computational framework to predict in silico the in vivo per-
formance of the siRNA lipid nanoparticles. The main question answered in this manu-
script is how to predict the siRNA dose of siRNA lipid nanoparticles given a set of mo-
lecular descriptors, formulation characteristics and a required knockdown percent.
From the results presented in this work, it is evident that this objective was successfully
achieved. In order to produce high quality predictions, the following aspects were care-
fully considered; (1) The selection of the optimal descriptor combinations (2) The mod-
eling approach (3) Validation of the machine learning models using external validation
sets and (4) Improving the predictive outcome of the final models by selecting the train-
ing set lipids according to the applicability domain.

When preparing the data set, 2D descriptors were calculated from the ionizable lipid
structures rather than 3D descriptors. The reason for avoiding the use of 3D descriptors is
that not all the lipids were defined in terms of their stereochemistry. In addition, the op-
timized 3D structure of a single molecule present in the solution state might differ from
the 3D structure of the same molecule if present in close contact with other molecules as
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in the case of nanoparticles. The effect of the source of the 3D structure and its prepara-
tion method and energy minimization in relation to the quality of predictions of three
classes of molecules (anilines, carboxylic acids and phenols) has been previously shown
[51]. There are other potentially important formulation factors that may play a role in the
modeling, e.g., particle size and siRNA to lipid ratio, however, they were not included as
they were not reported consistently in the selected literature. For example, particle size
was reported on occasions as a wide range instead of well defined values. Nanoparticles
pKa was also not included in the descriptors as it is not initially a controllable variable
that could be pre-determined compared to the formulation parameters, the lipid struc-
ture (by its design) and the required percent knock-down.

As for the descriptor selection, an evolutionary algorithm was used. The evolution-
ary algorithm comprised: (a) ‘selection” of the descriptor combinations based on an op-
timization criterion; the RMSE of the test set after splitting the training set into three folds
during training, (b) ‘crossover’ of the selected parent combinations to make new off-
spring combinations and (c) ‘mutations’ of certain descriptors in offspring combinations.
These processes are main elements in any evolutionary algorithm [52]. Evolutionary al-
gorithms are suitable for solving the problem of finding optimized solutions of combi-
nations from a set of inputs (descriptors in this case) where an exhaustive search that
covers all possible combinations is computationally not feasible [53]. Accordingly, evo-
lutionary algorithms and their variants, such as genetic algorithms, were used to refine
the structure of Au nanoparticles [54] and to optimize descriptor combinations in coun-
ter-propagation artificial neural networks models used to classify drugs as being either
hepatotoxic or nonhepatotoxic [55].

The modeling approach in the current work involved three machine learning
methods; ANN, SVM and PLS. These methods differ in their inner workings. The ANNs
are considered a collection of linear and non-linear functions that are governed by the
choice of the ANN architecture and activation functions. The SVM belongs to the class of
kernel algorithms while PLS regression depends on the construction of latent compo-
nents (principle components) that result in the best covariance with the response varia-
ble. Thus, the difference in their predictive performance could be expected. In order to
improve the predictive outcome of the final models, averaging of the predicted response
values was carried out. Averaging of predictions belongs to a set of machine learning
methods called ensemble learning, and usually results in better prediction outcome [56].

Machine learning models require reliable validation to be sure about their ability to
successfully predict unknown observations responses. For this purpose, many metrics
were suggested and used such as R?, Q? and external validation set R2. Similarly, RMSE of
training set predictions, cross-validation RMSE and external validation RMSE are used
for the same purpose. In addition, techniques such as Y-randomization are used to ex-
clude the possibility of the model predictions being due to random chance. Q2 the
cross-validation coefficient of determination, does not necessarily correlate with good
predictive performance for external validation sets [57]. Thus, in this work the validation
of the final machine learning models was carried out by predicting responses of two ex-
ternal validation sets as well as performing Y-randomization of training set responses,
conforming to the best model validation practices [50,58]. The results showed that the
obtained models are reliable.

It is suggested that training set composition and/or the relevant properties of the
validation set in relation to the training set governs the predictive performance [59,60].
One way to overcome this is to make sure that the validation set observations are within
the applicability domain of the training set [50,58]. In the current work, rather than se-
lecting the validation set observations that lie within the training set applicability do-
main, a reverse approach was followed; a subset of the training set elements were se-
lected to be close in the predictor space to the validation element under investigation, i.e.,
these selected training set elements were used to construct the applicability domain. PCA
of the training set and the validation set lipid was carried out to determine this applica-
bility domain visually (Figure 7A). It is evident from the results presented in Figure 7B
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and 7C and Table 6 that this protocol resulted in significant improvement in perfor-
mance.

Recently, in vitro cellular uptake of siRNA nanoparticles formulated with hydro-
phobic derivatives of polyethyleneimine (PEI) was predicted by QSAR modeling using
either linear regression, random forests or multilayer perceptron, with the nonlinear
methods proving to be more efficient than linear regression [61]. The R? of the external
test set ranged between 0.34 to 0.50 depending on the machine learning method used and
on the number of input descriptors, with the initial number of 26 descriptors being re-
duced either by binary encoding or by backward elimination.

Overall, in the current work for the first time, in vivo performance of siRNA nano-
particles could be predicted accurately by combining machine learning techniques with
cheminformatics. This framework will greatly enhance the development of siRNA na-
nomediciens.

5. Conclusions

The in vivo efficacy of siRNA ionizable lipid nanoparticles could be predicted with
excellent accuracy provided careful modeling choices. Calculating molecular descriptors
of a series of ionizable lipids followed by selecting best descriptor combinations using an
evolutionary algorithm in combination with machine learning modeling by ANN, SVM
and PLS and then finally making an ensemble of the predictions by calculating the me-
dian of validation set predictions resulted in successful predictions of in vivo activity of
siRNA ionizable lipids nanoparticles. Depending on the machine learning method and
the validation set, R%a of up to 0.89 could be achieved. Further improvement of valida-
tion set entries with high bias was achievable by selecting training lipids within the ap-
plicability domain, with R%a improvement from 0.47 to 0.96.

This is the first study to predict in vivo performance of siRNA lipoplexes formulated
with ionizable lipids, based on the lipids structure and certain nanoparticle characteris-
tics. This in silico approach allows the evaluation of virtually an endless number of ion-
izable lipids prior to their actual synthesis and wet lab evaluation and hence saving val-
uable resources and time while exploring the vast chemical space of these lipids and their
formulations.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Data set:
data_set.csv, example of descriptor combinations for validation set 1 using ANN: combina-
tions.RData, R script to calculate the median of predictions using the provided descriptor combi-
nations: predict_dose.R.
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