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Abstract: In silico prediction of the in vivo efficacy of siRNA ionizable-lipid nanoparticles is desira-

ble yet never achieved before. This study aims to computationally predict siRNA nanoparticles in 

vivo efficacy, which saves time and resources. A data set containing 120 entries was prepared by 

combining molecular descriptors of the ionizable lipids together with two nanoparticles formula-

tion characteristics. Input descriptor combinations were selected by an evolutionary algorithm. 

Artificial neural networks, support vector machines and partial least squares regression were used 

for QSAR modeling. Depending on how the data set is split, two training sets and two external 

validation sets were prepared. Training and validation sets contained 90 and 30 entries respec-

tively. The results showed the successful predictions of validation set log(dose) with R2val = 0.86 – 

0.89 and 0.75 – 80 for validation sets one and two respectively. Artificial neural networks resulted 

in the best R2val for both validation sets. For predictions that have high bias, improvement of R2val 

from 0.47 to 0.96 was achieved by selecting the training set lipids lying within the applicability 

domain. In conclusion, in vivo performance of siRNA nanoparticles was successfully predicted by 

combining cheminformatics with machine learning techniques. 
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1. Introduction 

The process of developing short interfering RNA (siRNA) lipid nanoparticles is 

lengthy and time consuming because it involves the initial chemical synthesis of a usu-

ally large number of ionizable lipids and lipid-like molecules [1-3], the formulation of 

siRNA nanoparticles and the subsequent in vitro and in vivo evaluation of these nano-

particles, in an attempt to find the best ionizable lipid that is suitable for clinical use in 

terms of efficacy and safety. Alnylam’s small interfering RNA (siRNA) stable nucleic acid 

lipid nanoparticles, currently marketed as Onpattro™ (Patisiran), obtained FDA ap-

proval in 2018. This was followed by FDA approval of Alnylam’s Givosiran™ and 

Lumasiran™ in 2019 and 2020 respectively [4].  

Gene silencing by double-stranded RNA (dsRNA) was reported by Fire and Mello in 

Caenorhabditis elegans[5] and later siRNA duplexes of length 21-22 nucleotides proved to 

promote post-transcriptional gene silencing in mammalian cells [6]. Since then, the po-

tential of siRNA as a therapeutic macromolecule against many diseases has been inves-

tigated, with more than 40 siRNA based therapies already reaching phases 2, 3 or 4 of 

clinical trials.[7-9] The major barriers against the successful employment of therapeutic 

siRNA include the lack of stability of the siRNA duplex, the immune response mediated 
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by TOL-like receptors, the rapid renal clearance of naked siRNA, and the difficulty of the 

intracellular delivery of unmodified siRNA due to its large size and the large number of 

negative charges on its back-bone [10,11]. 

One method to overcome the barriers of siRNA delivery is to formulate it as siRNA 

ionizable lipid nanocomplexes (lipoplexes) or lipidic nanoparticles [12-15]. These nano-

particles are multicomponent and may also contain helper lipids, PEG-lipids and phos-

pholipids. An ideal delivery system should ensure response reproducibility, 

non-immunogenicity, good payload and ease of manufacturing [13].  

The process of preparing siRNA lipoplexes and nanoparticles involves many steps: 

the synthesis of the ionizable lipids, their purification and characterization, then the 

process of preparing the nanoparticels including determining the siRNA to cationic lipid 

ratio, the cationic lipid to helper lipid (if any) ratio, and nanoparticles characterization in 

terms of their size, zeta potential, pKa, stability and in vivo evaluation of their safety and 

silencing efficacy. All of these steps require time and resources and indeed if the in vivo 

efficacy, as measured by either the siRNA dose or knockdown efficiency, could be pre-

dicted within reasonable accuracy by using computational means, the process of devel-

oping siRNA nanomedicines would be vastly improved in terms of time and costs. 

Therefore it is important to attempt to predict the in vivo efficacy of siRNA cationic lipid 

nanoparticles by using machine learning techniques. These techniques can be generally 

classified into two main groups; supervised and unsupervised learning methods. Super-

vised learning is used in tasks such as regression and classification, i.e. when there is a 

dependent variable and one or more independent variables.  

Artificial neural networks (ANNs) are a collection of linear and non-linear functions 

that map an input to an output. These functions can approximate a nonlinear complex 

function. The idea behind the inner working of ANNs is that input data (x) are scaled and 

combined in a linear manner in the form of Wx + b, where W is the weights matrix and b 

is bias, and then the output of this linear combination is fed into a non-linear function 

(called activation function), the output of which could be used as an input to the next 

layer and/or to a final output layer [16].  

Support vector machines (SVM) are a supervised machine learning technique. For 

classification, SVM aims to find a hyperplane (decision surface) that can separate two 

classes of observations with a maximum margin of separation [17].  Similarly, SVM re-

gression follows the same logic of finding a hyperplane, but with a fixed margin width, 

epsilon (ε), within which the prediction error is considered zero, and the hyperplane 

found should minimize the sum of squared error, i.e., the sum of the difference between 

the actual and predicted values: ∑  n
i=1 yi - (WTxi + b).  To enable the formulation of non-

linear decision surfaces, a kernel function is applied. The general form of the kernel 

functions is K(x1,x2) = <φ(x1),φ(x2)>, where x1 and x2 are two data points. The kernel 

function thus avoids the actual calculation of the function φ [18]. 

Partial least squares (PLS) regression is another supervised learning technique [19]. 

PLS combines dimensionality reduction of the data with a regression model. PLS for-

mulation of the latent variables (scores or components) is carried out with the aim of 

maximizing the covariance of the  components with the response variable, which dif-

ferentiates PLS from regular principle component analysis (PCA) [20].  The response 

variable in PLS may be univariate or multivariate. For the prediction of a new data point 

response 𝑦̂𝑜
′  from a predictor point 𝑥𝑜

′ , the following equation applies: 𝑦̂𝑜
′ =

 
1

𝑛
∑ 𝑦𝑖

′ + 𝑩𝑇(𝑥𝑜 −  
1

𝑛
∑ 𝑥𝑖

′𝑛
𝑖=1 )𝑛

𝑖=1 . B is the matrix of regression coefficients, and is defined as: 

B = W(TTT)-1TTY, where W is the matrix of weights and T = XW [20]. 

 In order to extract chemical information from the structures of the molecules under 

investigation, molecular descriptors, which are important cheminformatics tools, are 

employed to carry out this task [21,22]. Molecular descriptors are numerical values re-

sulting from either an experimental procedure or from a set of mathematical and/or log-

ical algorithms that are performed on chemical structures [23]. The descriptors can be 

generally classified as 0D and 1D, when only molecular formula or constitutional prop-

erties of a molecule are considered, while 2D descriptors are calculated based on topo-
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logical properties of a molecule and 3D descriptors depend on geometrical properties of a 

molecule. Further classifications include 2.5D chiral descriptors and descriptors with 

more than three dimensions [24,25]. Molecular descriptors have been used as predictors 

of the self-assembly of drug molecules into nanoparticles [26], to model drug binding 

kinetics [27], in QSAR modeling [28] and in target identification [29]. Molecular de-

scriptors were also used to successfully predict the binding energy between drug mole-

cules and their nanocarriers and hence predict drug loading onto lipidic and polymeric 

nanoparticles [30].  

Previous QSAR studies on nanoparticles have mostly addressed predicting the cel-

lular uptake and toxicological properties of inorganic nanoparticles, with either unmod-

ified or modified surfaces [31-33], however, developing QSAR models for predicting 

siRNA in vivo efficacy has not been achieved before.  

In the current work, a data set is prepared using five publications [1,34-37]. This data 

set contains the 1D and 2D descriptors of ionizable lipids together with both of the for-

mulation descriptor (PEG mol%) and the percentage knockdown resulting from a specific 

siRNA dose. The siRNA nanoparticles in vivo efficacy when formulated with these ion-

izable lipids was included as the response variable; logarithm of the dose resulting in a 

specific knockdown percent of the target gene. The data set is split into training and 

validation sets, where the training set is used to construct the machine learning models, 

and the validation set is used as an external test set that is used only to evaluate the pre-

dictive models constructed by modeling the training set. An evolutionary algorithm is 

used to select the best descriptor combinations and is combined with three machine 

learning techniques; ANN, SVM and PLS regression, to build the predictive models. The 

performance of the predictive models using the three machine learning techniques and 

the quality of predictions and how to improve them is presented and discussed. Figure 1 

shows the work flow of the modeling and evaluation process. 

 

Figure 1. The workflow of the predictive model building process. 

2. Materials and Methods 

2.1 Data set preparation 

2.1.1 Data selection from available literature 

For preparing the data set, five publications[1,34-37] were retrieved after carrying 

out online search using PUBMED and Google Scholar servers, where all of them fulfilled 

the following requirements: siRNA is delivered by means of ionizable lipids, siRNA in 

vivo performance is evaluated in vivo against factor FVII expression, all nanoparticles 

contained the ionizable lipid, DSPC, cholesterol and PEG-lipid (with PEG average mo-

lecular weight = 2000), and the PEG-lipid mole % in the formulation is either given or can 

be calculated. In addition, both the siRNA dose and the percentage knockdown or per-

centage gene expression resulting from a specific siRNA dose must be provided. Five 

papers were selected to prepare the data set [1,34-37]. Wherever the values for the gene 
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expression or dose were not provided numerically, these values were obtained from the 

relative figures using WebPlotDigitizer v4.2. In case two or more lipids had the same 2D 

structure, one of them was retained. If an ionizable lipid lacked a well defined in vivo ef-

ficacy measure, such as a definite dose or knockdown %, it was omitted.   

2.1.2 Calculation of the 2D molecular descriptors 

The structures of the ionizable lipids were drawn using ACD Chemsketch, and the 

structures were saved as either individual MDL .mol files or combined together into a 

single .sdf file using OpenBabel v2.4 [38]. The following software packages were used for 

the calculation of the 1D/2D molecular descriptors: Padel Descriptor v2.21 [39], RDKit 

2017, and ToMoCoMD QuBiLS-MAS 2020 [25]. For the calculation of the QuBiLS-MAS 

descriptors, the following settings were selected: linear algebraic form, atom-based, 

non-stochastic matrix form, and total groups.   

2.1.3 Data set preprocessing 

The initial data set containing the descriptors was further processed by removing 

columns having one or more of either missing or not available (NA) entries. Columns 

with same-value entries were also removed. If certain columns in the data set showed a 

high correlation (cutoff r = 0.98) with each other [40], all the columns were removed ex-

cept for one column which has the lowest average correlation with the other descriptor 

(predictor) columns in the data set. In addition, the formulation descriptor (PEG mol%) 

and percentage knockdown resulting from a specific siRNA dose were added as predic-

tors. The data set descriptor columns were scaled by calculating the z-scores. The siRNA 

nanoparticles in vivo efficacy was included as the response variable; logarithm of the dose 

resulting in a specific knockdown percent.  

2.2. Principle component analysis (PCA) of data set 

PCA of the scaled data set predictor columns (without response columns) was car-

ried out using ChemometricsWithR package through R software v3.5.  

2.3. Splitting the data set into training and validation sets 

For modeling purposes, the data set entries were split into a training set (75% of 

entries) and a validation set (25% of entries). This process was carried out two times 

separately on the data set where the validation set entries (or observations) were selected 

either by random selection or by selecting sequentially every fourth entry in the set, with 

the remainder of the entries in the data set taken as the training set.     

2.4. Machine learning models 

The modeling process was carried out using either R software version 3.5 or Mi-

crosoft Open R v3.5.  The following R packages were used for all modeling methods: 

caret [41] and Metrics [42]. For artificial neural networks modeling, nnet package was 

used. The hyperparameters were one hidden layer, two nodes and a weight decay of 0.1 

for training and 0.001 for final validation set predictions. The support vector machine 

regression modeling (epsilon-regression) was carried out using kernlab package[43], 

with epsilon value of 0.1 and the kernel chosen to be the Gaussian radial basis function 

kernel defined as 𝑲(𝒙, 𝒙𝒊) = −𝝈||𝒙 − 𝒙𝒊||
𝟐 ,where σ is the inverse width parameter and is 

determined by the package’s sigest function.  The partial least squares modeling was 

carried out using pls package [44] with the number of principle components covering 

98% of the variance.  

2.5. Selection of the molecular descriptors by the evolutionary algorithm  
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An evolutionary algorithm was written as an R script to select the best descriptors 

for model building. 400 initial parent combinations of descriptors were randomly se-

lected, and then each one of them was used as an input to construct the machine learning 

models that are used to predict the training set log(dose) values and their associated 

RMSEs (training RMSE).  

The training RMSE is calculated as follows: the training set is split into three folds, 

two folds are used to construct the machine learning model, and the third fold is used as 

a test set to calculate training RMSE. After evaluating the training RMSE for all predictor 

combinations, the best combinations are kept as parents and are used to construct off-

spring combinations. The process is repeated until no further improvement in training 

RMSE for this specific test fold. The whole selection process is repeated for each of the 

remaining two test folds. The parameters for the evolutionary algorithm are as follows: 

population size 400, 25% elitism, 20% mutation, number of generations 10-20 and mul-

tipoint cross-over. 

RMSE is calculated as: 

 𝐑𝐌𝐒𝐄 =  √
∑ (𝐏𝐢−𝐀𝐢)𝟐𝐧

𝐢=𝟏

𝐧
 

Bias is calculated as: 

 𝐁𝐢𝐚𝐬 =  𝐏𝐢 − 𝐀𝐢 

Where Pi and Ai are the predicted and actual log(dose) values of observation (lipid or 

entry) i respectively, and n is the number of observations. 

2.6. Ensemble learning by averaging of the validation set predictions 

The best descriptor combinations that result in the lowest training RMSE were used 

as inputs for the machine learning modeling algorithm that was used in the training; ei-

ther ANN, SVM or PLS regression. The central tendency of the validation set predictions 

were calculated as median of these values for each validation set lipid. The validation set 

RMSE (RMSEval) and coefficient of determination (R2val) were calculated using these me-

dian values. The R2val is calculated as: 

𝐑𝐯𝐚𝐥
𝟐 =

(∑ (𝐱𝐢 − 𝐱̅)(𝐲𝐢 − 𝐲̅)𝐧
𝐢=𝟏 )𝟐

∑ (𝐱𝐢 − 𝐱̅)𝟐 ∑ (𝐲𝐢 − 𝐲̅)𝟐𝐧
𝐢=𝟏

𝐧
𝐢=𝟏

 

where xi and yi are the ith predicted (the median value) and actual responses respectively, 

𝒙 and 𝒚̅ are the mean values of predicted and actual responses respectively. 

2.7. Y-Randomization of data set 

To evaluate the validity of the resulting descriptor combinations, and the possibility 

that the obtained validation set predictions might be due to random chance, a 

Y-randomization of the training data set was carried out by randomizing the training set 

responses [45]. The predictive models were then constructed by using these randomized 

responses for model training and subsequent validation as described in section 2.6. 

3. Results 

3.1. Data set preprocessing and preparation 

The number of observations included in the data set after omitting the lipids or en-

tries that fit the omitting criteria explained in section 2.1.1 was 120 entries (rows). The 

resulting data set contained 438 predictor columns; 436 columns of molecular de-
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scriptors, and 2 columns for PEG mol % and knockdown %. In addition, one response 

column was included; logarithm of siRNA dose that results in a specific knockdown of 

the target gene. Table 1 provides summary of the data set. 

Table 1. Summary of data set. The entries represent either distinct lipids or the same lipid but with 

different PEG mol % and/or knockdown %.   

Index of 

entries 

Number 

of entries 

per study 

Reference 

1-30 30 K. Rajappan et 

al.[34] 

31-62 32 C. A. Alabi  et 

al.[37] 

63-95, 105 34 M. Jayaraman et 

al.[1] 

96-104 9 V. Kumar et 

al.[36] 

106-120 15 K. A. Whitehead 

et al.[35] 

  

3.2. Splitting the data set into training and validation sets 

Two different methods were used to select the validation set entries, with the re-

mainder of the entries in each splitting method being used for training the machine 

learning models. These selection processes resulted in the following data sets: training 

set1, validation set 1, training set 2 and validation set 2.  These sets are shown in Table 2. 

Each training and validation set contained 90 and 30 entries, respectively. 

To investigate the relationships between the training and validation entries, PCA 

was carried out, to project the data points on the newly formed principle components, 

capturing as much as possible of the variance of the data. The PCA score plots are shown 

in Figure 2. Principle components 1, 2 and 3 (PC 1, PC 2 and PC 3) contributed to 22%, 

19% and 12% of the total variance, respectively. The observations of validation set 1 and 

2, shown as colored triangles, show homogenous spread among those of training set 1 

and 2 respectively, which is an important characteristic of any training and external val-

idation samples, as the training set must reasonably represent the characteristics of the 

validation set as well as capturing the general characteristics of the whole data set. Both 

splitting methods of the data set, whether random splitting or sequential selection of the 

validation entries, resulted in good spread of the validation entries among the training 

ones, with no significant presence of outlier observations of the validation sets with re-

spect to their respective training set.  

Table 2. Training and validation sets 1 and 2.  

Set Training entries index Validation entries 

index 

1 3,  4,  5,  6,  8,  9, 10, 11, 13, 14, 

18, 20, 21, 24, 25, 26, 27, 28, 29, 30, 

33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 

45, 46, 47, 48, 49, 51, 54, 55, 56, 57, 

58, 59, 60, 62, 63, 64, 66, 67, 68, 69, 

1, 2, 7, 12, 15, 16, 17, 

19, 22, 23, 31, 32, 38, 

44, 50, 52, 53, 61, 65, 

70, 74, 76, 77, 81, 85, 

87, 88, 91, 109, 116. 
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71, 72, 73, 75, 78, 79, 80, 82, 83, 84, 

86, 89, 90, 92, 93, 94, 95, 96, 97, 98, 

99, 100, 101, 102, 103, 104, 105, 106, 

107, 108, 110, 111, 112, 113, 114, 

115, 117, 118, 119, 120. 

2 1,  2,  3,  5,  6,  7,  9, 10, 11, 13, 

14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 

27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 

41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 

54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 

67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 

81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 

94, 95, 97, 98, 99, 101, 102, 103, 105, 

106, 107, 109, 110, 111, 113, 114, 

115, 117, 118, 119. 

4, 8, 12, 16, 20, 24, 28, 

32, 36, 40, 44, 48, 52, 

56, 60, 64, 68, 72, 76, 

80, 84, 88, 92, 96, 

100, 104, 108, 112, 

116, 120. 
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Figure 2. PCA score plots. A - C: training and validation set 1 entries are shown as black circles and pink triangles re-

spectively. D - F: training and validation set 2 entries are shown as black circles and orange triangles respectively.  

3.3. Selection of the molecular descriptors by the evolutionary algorithm 

When constructing the descriptor combinations to be used as inputs for the machine 

learning algorithm, the PEG mol % and the knockdown % were always included in the 

combinations. Any additional molecular descriptors were added and selected by the 

evolutionary algorithm.  Figure 3 shows the top six molecular descriptors with the 

highest frequencies of appearance in the descriptor combinations that are selected by the 

evolutionary algorithm.  For each machine learning method, ANN, SVM or PLS, the 

descriptor with highest frequency was considered 100 % and the other descriptors fre-

quencies were calculated relative to it. It is evident that each machine learning model 

resulted in different top descriptors. It is also clear that the training sets one and two re-

sulted in different top descriptors for the same machine learning method. The only 

common descriptors, taking the two training sets and the three machine learning meth-
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ods in consideration, were PEOE VSA9, GATS3m and GATS8p.  PEOE_VSA9 is a Van 

der Waals surface area descriptor that describes atomic partial charges.  GATS3m and 

GATS8p are Geary autocorrelation - lag 3 weighted by atomic masses and Geary auto-

correlation - lag 8 weighted by atomic polarizabilities respectively. It should be noted 

that these descriptors are present in combinations of descriptors (predictors) including 

the PEG mol % and the knockdown %, thus, their direct influence on the in vivo perfor-

mance of the ionizable lipids should be limited to this context. 

The number of molecular descriptors in each descriptor combination as selected by 

the evolutionary algorithm is listed in Table 3. It is to be noted that these molecular de-

scriptors are present in each combination in addition to both PEG mol % and knockdown 

%, with the later two being present in each predictor combination. The number of final 

combinations for all methods for each training set was 300 combinations. It was noticed 

that there were repeated combinations in the final 300 combinations, as omission of de-

scriptors by the evolutionary algorithm results eventually in offspring combinations of 

the same descriptors. For example, there were 73 unique combinations among the final 

300 combinations selected by the evolutionary algorithm and ANN training of set one.      

Table 3. The minimum, maximum and median number of the molecular descriptors in the final 

predictor combinations for each training set and machine learning method. 

Training 

Set 

Machine 

learning 

method 

min max median 

1 ANN 2 7 5 

1 SVM 3 7 4 

1 PLS 3 7 3 

2 ANN 4 9 5 

2 SVM 4 9 6 

2 PLS 4 9 6 

  

The improvement in predictions of the validation set responses at the end of the 

evolutionary algorithm is shown in Table 4. The RMSEval in the table are calculated as the 

first quartile of the RMSE of predictions using the initial 400 descriptor combinations and 

the final 400 descriptor combinations at the end of the evolutionary algorithm iterations. 

It is clear that there were improvement in the quality of individual predictions for both 

validation sets and for all methods as evident by the decrease in the RMSEval. 

The predictive performance of the machine learning models was evaluated by 

predicting the validation sets responses. The validation sets were neither used in the 

selection of best descriptor combinations by the evolutionary algorithm nor they were 

used in the training of the predictive models, thus, the validation sets represent external 

unkown test samples for the machine learning models. Using the descriptor 

combinations selected by the evolutionary algorithm, the median (averaged) predictions 

of the validation sets one and two resulted in R2val of 0.72 to 0.89 and RMSEval of 0.23 to 

0.36 (Table 5). The machine learning method used to predict the validation set responses 

had a strong effect on the predictive performance, with the ANN predictions resulting in 

the highest R2val of 0.89 and 0.80 for validation sets one and two respectively. Similarly, 

ANN resulted in the lowest RMSEval of 0.23 and 0.30 for validation sets one and two 

respectively.  There were also a difference in the predictive performance between 

validation sets one and two (Table 5), which reflects the effect of both the training set and 

validation sets compositions.  
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Figure 3. Relative frequencies of descriptors in the descriptor combinations selected by the evolutionary algorithm. A: training set 1. 

B: training set 2. Blue: ANN, red: SVM and green: PLS.  

 

 

Table 4. Improvement of quality of individual validation set predictions by the evolutionary algorithm. 

Validation 

Set 

Machine 

learning 

method 

Initial First 

quartile 

RMSEval 

Final First 

quartile 

RMSEval 
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1 ANN 0.41 0.33 

1 SVM 0.40 0.31 

1 PLS 0.41 0.29 

2 ANN 0.40 0.35 

2 SVM 0.39 0.36 

2 PLS 0.44 0.37 

 

3.4. Evaluation of predicitive performance by predicting validation set responses   

Figure 4 shows that the three machine learning methods resulted in good validation 

sets predcitions, as evident from the predicted points being close to the straight lines 

(shown in red and representing perfect correlation) in the actual vs predicted plots. It is 

also clear that the different machine learning models were capable of differentiating 

between the lipids (entries) with low log(dose), which are the desirable lipids (or 

formulations), and the lipids/formulations with higher doses.  

Table 5. Evaluation of predicitive performance of the different machine learning models. 

Set Machine learning 

Model 

RMSEval R2val 

1 ANN 0.23 0.89 

1 SVM 0.32 0.81 

1 PLS 0.26 0.86 

2 ANN 0.30 0.80 

2 SVM 0.36 0.72 

2 PLS 0.34 0.75 

 

The curated scaled data set together with an example of the resulting 300 predictor 

combinations (training set 1) after selection by the evolutionary algorithm and ANN is 

provided as supplementary materials. An R script for calculating the median predictions 

of validation set 1 and the assocciated R2val  and RMSEval using the data set and the 

descriptor combinations is also provided as supplementary material. 
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Figure 4. Actual vs predicted log(dose) plots. A-C: Validation set 1, A: ANN, B: SVM and C: PLS. D-F: Validation set 2, D: ANN, E: 

SVM and F: PLS.  
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Figure 5. Actual vs. predicted responses of validation sets after Y-randomization of training sets responses. A – C: validation set 

one. A: ANN, B: SVM and C: PLS.  D – F: validation set two. D: ANN, E: SVM and F: PLS.  

3.5. Y-randomization of training set responses 

Y-randomization involves randomizing the responses column and then training the 

predictive models using one of the machine learning methods, with the input descriptors 

and the responses being mismatched due to the randomization of the responses [46].  

Y-randomization was carried-out using the final combinations selected by the evolu-

tionary algorithm as inputs. The resulting predictions together with the actual responses 

are shown in Figure 5. It can be seen that there is no correlation between the predicted 

and actual responses for both validation sets and for all of the machine learning methods 

used. The R2val values ranged from 0.014 to 0.116, with RMSEval values between 0.66 and 

0.68. This lack of correlation proves that the results obtained without randomization of 

the responses (Figure 4 and Table 5) where not due to random chance.  

 

  3.6. Effect of setting the formulation descriptor PEG mol % to either the maximum or the 

minimum value 
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To examine if the predictive models capture the changes in the formulation 

descriptor; the PEG mol %, the values of this descriptor were set to either its maximum 

value or rather its minimum counterpart. It is well known that when using siRNA 

lipoplexes, there is a certain PEG mol % that results in the maximum in vivo efficacy in 

addition to stabilization of the nanoparticles [36,47,48]. The general trend is that 

increasing the PEG mol % more than a specific mole percent results in decreasing the in 

vivo efficacy. It is generally found that PEG mol % that is equal to 10 decreases efficacy, 

while values around 1.5% results in good in vivo efficacy [1,36]. Hypothetically, it is 

assumed that if the PEG mol % descriptor values were set to the maximum (equivalent to 

10%), the in vivo efficacy should decrease, i.e., the log(dose) should increase. On the other 

hand, if the PEG mol % values are set to the minimum (equivalent to 1.5%), then the in 

vivo efficacy should generally improve for the validation sets lipids that have PEG mol % 

higher than 1.5%.   

It can be seen in Figure 6A and 6C that setting the PEG mol % to the minimum 

values resulted in a decrease in log(dose) as expected, as evident by the shift of the 

predictions towards the left hand side. Similarly, setting PEG mol % to the maximum 

value resulted in shifting of the predicted log(dose) towards higher values as it would be 

expected (Figure 6B and 6D). These results prove that the predictive models were capable 

of capturing the significance of the formulation descriptor in a correct manner. ANN was 

the method used to train the models because it resulted in the best predictions as shown 

in Figure 4 and Table 5. Similar results were obtained with SVM and PLS regression (data 

not shown).  
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Figure 6. Actual vs. predicted responses of validation sets after setting the values of the PEG mol % descriptor to either the 

minimum value (A and C) or the maximum value (B and D). The modeling was carried out by ANN. A and B: validation set one. C 

and D: validation set 2. The validation sets entries with the actual PEG mol% being the maximum value were omitted from A and 

C, while those with the actual PEG mol % being the minimum were omitted from B and D for visualization clarity.     

 

Figure 7. Determination of the applicability domain (AD) of four lipids from validation set one. A: PCA of training set together 

with one of the validation set lipids (lipid 15) shown in red circle. B: The actual vs predicted plot before determining AD. C: The 

actual vs predicted plot after determining AD. Predictions in C and B are carried out by ANN. The red line in B and C represents 

perfect correlation between actual and predicted values. 

 

3.7. Refining the predictions by determining the applicability domain (AD) 
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AD represents a theoretical region in the chemical space of the training set samples. 

It is expected that predicting the response of unknown samples, e.g., an external valida-

tion set, results in more reliable predictions when the unknown samples falls within this 

region [49,50]. One method to determine this region is by applying PCA on the training 

and validation data, and constructing the region of applicability accordingly [49]. Figure 

7A shows the score plot of one fold of training set one and lipid 15 which belongs to 

validation set one (shown as a red circle). The descriptors combination used to perform 

PCA were chosen randomly from one of the final combinations selected by the evolu-

tionary algorithm. The region encircled by the blue line is the AD, and it was determined 

manually by excluding from the training entries under consideration those which are far 

from lipid 15 in the space generated by plotting PC 1 and PC 2. The first two components 

capture 66% of the variance in the data. The training lipids selected within the AD were 

then used by ANN to predict the response of lipid 15. This procedure was repeated for 

another three lipids from the same validation set. The four lipids selected were chosen 

based on them having the highest biases in their predicted values (Table 6).  It is clear by 

comparing the predicted responses in Table 6 before and after carrying out the selection 

of training lipids lying in the AD that there was a vast improvement in the quality of the 

predictions as seen from the much lower bias values before and after selection. In addi-

tion, the R2 for the four lipids was 0.47 and 0.96 before and after applying AD lipid se-

lection respectively, showing significant improvement in the prediction accuracy of these 

lipids. The impact of improvement of predictions can be seen in Figure 7 B and C, where 

the predictions lies much closer to the red line in Figure 7C compared to 7B. Since this 

procedure is carried out manually, we suggest that is should be performed as a refining 

step for the set of lipids that will be chosen for further wet lab experimentations. 

Table 6. Refinement of predictions by selecting training lipids within AD 

Lipid 

index 

Actual 

response 

Log(dose) 

Predicted 

response 

before 

applying 

AD 

Predicted 

response 

after 

applying 

AD 

Bias before 

applying 

AD 

selection 

Bias after 

applying 

AD 

selection 

15 -1.52 -0.55 -1.43 0.97 0.09 

16 -1.52 -0.47 -1.40 1.05 0.12 

70 0.18 -0.47 -0.04 -0.65 -0.22 

109 0.17 -0.43 0.37 -0.60 0.20 

  

4. Discussion 

This study provides a computational framework to predict in silico the in vivo per-

formance of the siRNA lipid nanoparticles. The main question answered in this manu-

script is how to predict the siRNA dose of siRNA lipid nanoparticles given a set of mo-

lecular descriptors, formulation characteristics and a required knockdown percent.  

From the results presented in this work, it is evident that this objective was successfully 

achieved. In order to produce high quality predictions, the following aspects were care-

fully considered; (1) The selection of the optimal descriptor combinations (2) The mod-

eling approach (3) Validation of the machine learning models using external validation 

sets and (4) Improving the predictive outcome of the final models by selecting the train-

ing set lipids according to the applicability domain. 

When preparing the data set, 2D descriptors were calculated from the ionizable lipid 

structures rather than 3D descriptors. The reason for avoiding the use of 3D descriptors is 

that not all the lipids were defined in terms of their stereochemistry. In addition, the op-

timized 3D structure of a single molecule present in the solution state might differ from 

the 3D structure of the same molecule if present in close contact with other molecules as 
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in the case of nanoparticles. The effect of the source of the 3D structure and its prepara-

tion method and energy minimization in relation to the quality of predictions of three 

classes of molecules (anilines, carboxylic acids and phenols) has been previously shown 

[51]. There are other potentially important formulation factors that may play a role in the 

modeling, e.g., particle size and siRNA to lipid ratio, however, they were not included as 

they were not reported consistently in the selected literature. For example, particle size 

was reported on occasions as a wide range instead of well defined values. Nanoparticles 

pKa was also not included in the descriptors as it is not initially a controllable variable 

that could be pre-determined compared to the formulation parameters, the lipid struc-

ture (by its design) and the required percent knock-down. 

As for the descriptor selection, an evolutionary algorithm was used. The evolution-

ary algorithm comprised: (a) ‘selection’ of the descriptor combinations based on an op-

timization criterion; the RMSE of the test set after splitting the training set into three folds 

during training, (b) ‘crossover’ of the selected parent combinations to make new off-

spring combinations and (c) ‘mutations’ of certain descriptors in offspring combinations. 

These processes are main elements in any evolutionary algorithm [52]. Evolutionary al-

gorithms are suitable for solving the problem of finding optimized solutions of combi-

nations from a set of inputs (descriptors in this case) where an exhaustive search that 

covers all possible combinations is computationally not feasible [53]. Accordingly, evo-

lutionary algorithms and their variants, such as genetic algorithms, were used to refine 

the structure of Au nanoparticles [54] and to optimize descriptor combinations in coun-

ter-propagation artificial neural networks models used to classify drugs as being either 

hepatotoxic or nonhepatotoxic [55]. 

The modeling approach in the current work involved three machine learning 

methods; ANN, SVM and PLS. These methods differ in their inner workings. The ANNs 

are considered a collection of linear and non-linear functions that are governed by the 

choice of the ANN architecture and activation functions. The SVM belongs to the class of 

kernel algorithms while PLS regression depends on the construction of latent compo-

nents (principle components) that result in the best covariance with the response varia-

ble. Thus, the difference in their predictive performance could be expected. In order to 

improve the predictive outcome of the final models, averaging of the predicted response 

values was carried out. Averaging of predictions belongs to a set of machine learning 

methods called ensemble learning, and usually results in better prediction outcome [56].  

Machine learning models require reliable validation to be sure about their ability to 

successfully predict unknown observations responses. For this purpose, many metrics 

were suggested and used such as R2, Q2 and external validation set R2. Similarly, RMSE of 

training set predictions, cross-validation RMSE and external validation RMSE are used 

for the same purpose. In addition, techniques such as Y-randomization are used to ex-

clude the possibility of the model predictions being due to random chance. Q2, the 

cross-validation coefficient of determination, does not necessarily correlate with good 

predictive performance for external validation sets [57]. Thus, in this work the validation 

of the final machine learning models was carried out by predicting responses of two ex-

ternal validation sets as well as performing Y-randomization of training set responses, 

conforming to the best model validation practices [50,58]. The results showed that the 

obtained models are reliable.    

It is suggested that training set composition and/or the relevant properties of the 

validation set in relation to the training set governs the predictive performance [59,60]. 

One way to overcome this is to make sure that the validation set observations are within 

the applicability domain of the training set [50,58]. In the current work, rather than se-

lecting the validation set observations that lie within the training set applicability do-

main, a reverse approach was followed; a subset of the training set elements were se-

lected to be close in the predictor space to the validation element under investigation, i.e., 

these selected training set elements were used to construct the applicability domain. PCA 

of the training set and the validation set lipid was carried out to determine this applica-

bility domain visually (Figure 7A). It is evident from the results presented in Figure 7B 
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and 7C and Table 6 that this protocol resulted in significant improvement in perfor-

mance. 

Recently, in vitro cellular uptake of siRNA nanoparticles formulated with hydro-

phobic derivatives of polyethyleneimine (PEI) was predicted by QSAR modeling using 

either linear regression, random forests or multilayer perceptron, with the nonlinear 

methods proving to be more efficient than linear regression [61]. The R2 of the external 

test set ranged between 0.34 to 0.50 depending on the machine learning method used and 

on the number of input descriptors, with the initial number of 26 descriptors being re-

duced either by binary encoding or by backward elimination. 

Overall, in the current work for the first time, in vivo performance of siRNA nano-

particles could be predicted accurately by combining machine learning techniques with 

cheminformatics. This framework will greatly enhance the development of siRNA na-

nomediciens. 

5. Conclusions 

The in vivo efficacy of siRNA ionizable lipid nanoparticles could be predicted with 

excellent accuracy provided careful modeling choices. Calculating molecular descriptors 

of a series of ionizable lipids followed by selecting best descriptor combinations using an 

evolutionary algorithm in combination with machine learning modeling by ANN, SVM 

and PLS and then finally making an ensemble of the predictions by calculating the me-

dian of validation set predictions resulted in successful predictions of in vivo activity of 

siRNA ionizable lipids nanoparticles. Depending on the machine learning method and 

the validation set, R2val of up to 0.89 could be achieved. Further improvement of valida-

tion set entries with high bias was achievable by selecting training lipids within the ap-

plicability domain, with R2val improvement from 0.47 to 0.96.  

This is the first study to predict in vivo performance of siRNA lipoplexes formulated 

with ionizable lipids, based on the lipids structure and certain nanoparticle characteris-

tics. This in silico approach allows the evaluation of virtually an endless number of ion-

izable lipids prior to their actual synthesis and wet lab evaluation and hence saving val-

uable resources and time while exploring the vast chemical space of these lipids and their 

formulations.  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Data set: 

data_set.csv, example of descriptor combinations for validation set 1 using ANN: combina-

tions.RData, R script to calculate the median of predictions using the provided descriptor combi-

nations: predict_dose.R. 
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