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Abstract: On the basis of the isomorphic algebraic structures of the field of complex numbers C and
the 2-dimensional Euclidean field of vectors V2, in terms of identical geometric products of elements,
in this paper vector integral identities have been derived for scalar and vector fields in V2, which
are vector analogues of the well-known integral identities of complex analysis. In doing so, special
attention is given to the vector analogue in V2 of Cauchy’s calculus of residues.
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1. Introduction
A geometric algebra (Clifford algebra) is an extension of elementary algebra to work with geo-

metrical objects such as vectors. It is built out of two fundamental operations addition and geometric
product, [2]. The multiplication of vectors alone results in objects called multivectors, among which are
bivectors, the name applied in this paper to the objects of the bivector field R2, corresponding to the
field of vectors V2. Compared with other formalisms for manipulating geometric objects, geometric
algebra supports dividing by a vector. The geometric product was first mentioned by Grassmann,
who founded the so-called external algebra, [3]. After that, Clifford himself greatly expanded upon
Grassmann’s work, to form geometric algebra, named after him Clifford algebra [2], by unifying both
Grassmann’s algebra and Hamilton’s quaternion algebra. In the middle of the 20th century, Hestenes
repopularized the term geometric algebra [4,5].

On the other hand, although rarely used explicitly, a geometric representation of complex numbers
is implicitly based on its structure of the Euclidean 2-dimensional vector space. If the binary operation
of the product w̄z, of two complex numbers w̄ and z, is considered as the sum of the inner product
w ◦ z = (w̄z + wz̄)/2 = 1 Re(w̄z) and outer product w ∧ z = (w̄z − wz̄)/2 = į Im(w̄z), where
1 = (1, i0) and į = (0, i), and i is an imaginary unit, it can be said that w̄z is in the form of a geometric
product of two ivectors (two complex numbers), as two geometric objects belonging to the ivector
field C (to the field of complex numbers C). For any complex number z, its absolute value |z| is its
Euclidean norm denoted by r, and the argument arg z is the polar angle φ. Since ordered pairs represent
both complex numbers and vectors, the binary operation of the product of two complex numbers
(two ordered pairs), in the form of the geometric product wz (wz = w̄ ◦ z + w̄ ∧ z), will be the basis
for modifying Grassmann’s geometric product of vectors, which is defined as the sum of the inner
(scalar) and outer (vector) products of two vectors. By this modification, the geometric product of
two vectors becomes commutative, similar to the product of complex numbers themselves, which still
supports vector division. In this manner, a complete analogy is established between the algebra of
complex numbers and the modified Clifford algebra in the Euclidean 2-dimensional field of vectors V2.
On the basis of that analogy, the paper presents the most important vector integral identities, in the
real Euclidean field of vectors V2, which are vector analogies to the well-known integral identities of
complex analysis.
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1.1. Realireal Vector Space VC

The ordered pairs 1 = (1, i0) and į = (0, i) are the basis of the 2-dimensional realireal vector
space VC [6], which is the Cartesian product VR × iVR of a 1-dimensional real vector space VR and a
1-dimensional ireal vector space iVR, and as such, VC is an additive Abelian (commutative) group of
elements (x, iy) = 1x+į y. As both of these 1-dimensional vector spaces are defined over the field of
real numbers R, the real vector space VR can be said to be a field of real numbers R, whereas the ireal
vector space iVR cannot be a field, and therefore not a field of imaginary numbers iy. On the other
hand, if the vector space VC is complemented by a binary operation of the product of two elements
(a, ib) and (c, id), which corresponds to the matrix product, in such a manner that

(a, ib)(c, id) ≒

[
a ib
ib a

][
c id
id c

]
= (1)

=

[
ac − bd i(ad + bc)

i(ad + bc) ac − bd

]
≓ (ac − bd, i(ad + bc)),

where both the commutative axiom of multiplication and the associative axiom of multiplication are
satisfied, as well as the distributive axiom, and in addition the element (x,−iy)/(x2 + y2), which

corresponds to the inverse matrix

[
x iy
iy x

]−1

, is the inverse element of the element (x, iy) ̸= (0, i0),

then the 2-dimensional realireal vector space VC can be said to be defined over the field of complex
numbers C, that is, VC is the field of complex numbers C. More precisely, on the one hand, the ordered
pair (VC,R) is the vector space VC over the scalar field of real numbers R, and on the other hand, after
complementation with the binary operation of the product of the elements, the ordered pair (VC,C)
is the vector space over the ivector field C, that is, VC is the ivector field C. Accordingly, complex
numbers z can be said to be ivectors (x, iy) = 1x+į y, the elements of the vector space VC, that is, of the
ivector field C and as such can be multiplied either by real numbers as scalars or by complex numbers
z as ivectors. When the ivector (a, ib) is multiplying by the imaginary unit i, then the order of of the
elements, in the resulting ordered pair, is changed, so the resulting ordered pair is not an element
of the ivector field C. Therefore, from that perspective, multiplying complex numbers by imaginary
numbers is absolutely unacceptable. A complex number can be multiplied by the ivector į, so that
(x, iy)į = į(x, iy) = −y1 + xį = (−y, ix) and į2 = įį = −1.

How the operator cįs· = (cos ·, i sin ·) = 1 cos ·+ į sin · has the most important properties of an
exponential function, since cįs·cįs· = cįs(·+ ·), (cįs·)−1 = cįs(−·) and d(cįs·) = įcįs·d·, the operator
exp(į·) can be said to be the exponential form of the operator cįs·. For above reason, multiplication of
the operator cįs· = exp(į·) by imaginary numbers is unacceptable, but multiplication by either a real
number or an ivector is acceptable.

1.2. The Field of Vectors V2

The basis of the 2-dimensional real vector space VR2 (the Cartesian square of the 1-dimensional real
vector space VR), as an additive Abelian group of elements (x, y), consists of ordered pairs 1 = (1, 0)
and 1̂ = (0, 1), such that (x, y) = x1 + y1̂. Analogous to the binary operation of the product of the
elements, which we used to complement the realireal vector space VC, it is also possible to complement
the vector space VR2 , with the binary operation of the product of two elements (a, b) and (c, d), which
corresponds to the matrix product, in such a manner that

(a, b)(c, d) ≒

[
a b
−b a

][
c d
−d c

]
= (2)

=

[
ac − bd ad + bc

−(ad + bc) ac − bd

]
≓ (ac − bd, ad + bc),
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where the element (x/(x2 + y2),−y/(x2 + y2)), which corresponds to the inverse matrix

[
x y
−y x

]−1

,

is the inverse element of the vector space V∗
R2 = VR2\{(0, 0)}. In this case both the commutative axiom

of multiplication and the associative axiom of multiplication are satisfied, as well as the distribu-
tive axiom. Therefore, on the one hand, the ordered pair (VR2 ,R) is the vector space VR2 over the
scalar field of real numbers R, whereas on the other hand, the ordered pair (VR2 ,R2) is a vector
space over the bivector field R2, that is, VR2 is the bivector field R2, whose elements are the bivectors
(x, y) = x1 + y1̂. Accordingly, the bireal numbers w are bivectors (x, y), elements of the vector space
VR2 , that is, of the bivector field R2 and as such can be multiplied either by real numbers as scalars or
by bireal numbers as bivectors.

The field of vectors V2 corresponds to the bivector field R2, in the sense of the correspondence:
1 ≒ e and 1̂ ≒ ê, where the unit vectors e and ê are orthogonal basis vectors of the field of vectors V2.
The vectors r = xe + yê, as elements of the field V2, correspond to the bireal numbers w ∈ R2. In other
words, there is a one to one correspondence between the field of vectors V2 and the set of bireal numbers
R2. If (x,−y) ≒ xe − yê = r̄, then r = ∥r̄∥ = ∥(x,−y)∥ =

∣∣∣ 2
√

x2 + y2
∣∣∣ is the norm over the field of

vectors V2 and over the bivector field R2, simultaneously. In addition, r̄r ≓ (x,−y)(x, y) = r21 ≒ r2e
and r2r−1 = r̄. It is quite clear that the inverse element r−1 allows division by a vector in the field of
vectors V2.

The binary operation of the product of two vectors r̄1 = ae − bê ∈ V2 and r2 = ce + dê ∈ V2, as
follows

r̄1r2 =
1
2
(r̄1r2 + r1 r̄2) +

1
2
(r̄1r2 − r1 r̄2) := (r̄1 · r̄2)e − (r̄1 × r̄2)× e = (3)

= (r1 · r2)e + (r1 × r2)× e = [(ae + bê) · (ce + dê)]e + [(ae + bê)× (ce + dê)]× e,

where r1 · r2 = ∥r1∥∥r2∥ cos θ and (r1 × r2)× e = ∥r1∥∥r2∥ sin θê, which is obviously commutative
and corresponds to the product (a,−b)(c, d) = (ac + bd, ad − bc) of two bivectors (a,−b) and (c, d), is
the geometric product of these two vectors. Here,

1
2
(r̄1r2 + r1 r̄2) := (r1 · r2)e = r1 ◦ r2 ≓ (a, b) ◦ (c, d) and (4)

1
2
(r̄1r2 − r1 r̄2) := (r1 × r2)× e = r1 ∧ r2 ≓ (a, b) ∧ (c, d). (5)

In addition, (a,−b)(c, d) = (a, b) ◦ (c, d) + (a, b) ∧ (c, d) and

[(a, b) ◦ (c, d)]2 − [(a, b) ∧ (c, d)]2 = (a,−b)(c, d)(c,−d)(a, b) = (6)

= (a,−b)(c, d)(a, b)(c,−d) = ∥(a, b)∥2∥(c, d)∥21.

The previously introduced concepts of the geometric product and bivector are closely related
to the same concepts in Clifford algebra [2]. However, there is evidently a crucial difference between
Clifford algebra and the algebra of the field of vectors V2, which is reflected in the fact that the geometric
product of the elements of the field of vectors V2, on the one hand, is the element of the field of vectors
V2, corresponding to the bivector, the element of the bivector field R2, and on the other hand, it is also
commutative, which means that the field of vectors V2, in addition to being an additive Abelian group,
is also a multiplicative Abelian group.

If r0 is the unit vector of the vector r (r = rr0), then r−1
0 = r̄0 and

r01

r02

= r01 r̄02 = (r01 · r02)e − (r01 × r02)× e, (7)

that is,

r01 ◦ r02 =
1
2
(

r02

r01

+
r01

r02

) i r01 ∧ r02 =
1
2
(

r02

r01

−
r01

r02

), (8)
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where r01 ◦ r02 = (r01 · r02)e i r01 ∧ r02 = (r01 × r02)× e are the symmetric and antisymmetric parts
of the geometric product r̄01 r02 , respectively. Therefore, to emphasize once again, the geometric
product of two vectors is a vector in V2. Accordingly, re = (r̄ · e)e + (r̄ × e)× e = xe + yê = r and
rê = (r̄ · ê)e + (r̄ × ê)× e = r⊥. The vector r⊥ is orthogonal to the vector r, that is, r⊥ is the vector
obtained by rotating the vector r = rr0 = r(e cos φ + ê sin φ), where φ is the angle between the vector
r and the vector e, by π/2 radians in the positive mathematical direction. In addition, the unit vector
r̄0 = cos φe − sin φê is the inverse vector r−1

0 of the unit vector r0 of the vector r, and therefore also the
unit vector of the inverse vector r−1 of the vector r, so that r−1 = r̄0/r and r̄ = rr̄0.

The main purpose of the paper is to derive vector integral identities, in the field of vectors V2,
which are analogous to the known integral identities of complex analysis, on the basis of the analogy
of the ivector field C and the bivector field R2, which corresponds to the field of vectors V2.

2. The Main Results
As cês·cês· = cês(· + ·), (cês·)−1 = cês(−·) i d(cês·) = êcês·d·, the bivector operator cês·

= e cos ·+ ê sin · also has the properties of an exponential function, similar to the ivector operator
cįs·. The operator exp(ê·) is the exponential form of the operator cês·. Since r0 = cêsφ = exp(êφ),
one more analogy with complex analysis is the notion of the so-called vector logarithmic function
log r = ln re + φê, where 2φê = 2 log r0 = log(r0/r̄0). In addition, Log r = ln re + (φ ± 2πn)ê, n ∈ N.
Let r̂0 = −r−1

0⊥ = e sin φ + ê cos φ = sêcφ = êr̄0. The ordered pair of vectors (r̄0, r̂0) is the inverse
orthonormal basis with respect to the orthonormal basis (r0, r0⊥) of the field of vectors V2. For an
arbitrary vector ϱ ∈ V2, the vector ϱr0 is the rotated vector ϱ, in the positive mathematical direction,
by the angle φ, and the vector ϱr0⊥ by the angle π/2 + φ. The geometric products of the vector ϱ

with the inverse basis vectors r̄0 and r̂0 rotate the vector ϱ by the angles −φ and π/2 − φ, respectively,
in the positive mathematical direction. On the basis of the geometric products ee = e, eê = ê and
êê = −e, that is,

r0r0 = (r̄0 · r0)e + (r̄0 × r0)× e = (cos2 φ − sin2 φ)e + 2(cos φ sin φ)ê, (9)

r0 r̄0 = e and r0 r̂0 = ê (r̂ = r̄ê), all other combinations of geometric products of the basis vectors r0,
r0⊥, r̄0 and r̂0 can also be obtained.

If we introduce the differential operator d = dr∂r + dφ∂φ, then dr = drr0 + dφr⊥. Hence,
dr⊥ = êdr = drr0⊥ − dφr and dr̂ = êdr̄ = ê(drr̄0 − dφr̂) = drr̂0 + dφr̄. Since 2r cos φe = r + r̄ and
2r sin φê = r − r̄, the vector operators of partial derivatives are introduced, as a vector analogue of the
Virtinger operators [16],

ðr = ∂rr∂r + ∂r φ∂φ =
1
2
(r̄0∂r −

r̂0

r
∂φ) and ðr̄ = ð̄r =

1
2
(r0∂r +

r0⊥
r

∂φ). (10)

Here,

∂rr =
1
2r

∂rr2 =
r̄0

2
and ∂r φ = cos2 φ∂r tan φ = (

r + r̄
2r

)2 −2êr̄
(r + r̄)2 = − r̂0

2r
. (11)

It is important to emphasize that when geometric products and geometric quotients are differentiated,
the same rules apply as when ordinary products and quotients are differentiated. Namely,

d
r
r̄
= (d

1
r2 )r

2 +
1
r2 dr2 = −2(

r2

r3 dr − 1
r2 rdr) = (12)

= −2[
r2

2r4 (r̄dr + rdr̄)− 1
r2 rdr] =− 2[

1
2r̄2 (r̄dr + rdr̄)− 1

r̄2 r̄dr] =
r̄dr − rdr̄

r̄2 .

The vector orerator

d = r0(drðr + dr̄ðr̄) = 2r0(dr ◦ ðr̄) = r0(dr∂r + dφ∂φ) = r0d, (13)
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as a symmetrical part of the geometric product 2drðr, is a radial vector differential operator. The
antisymmetric part

d⊥ = r0(drðr − dr̄ðr̄) = −2r0(dr ∧ ðr̄) = r0⊥(rdφ∂r −
1
r

dr∂φ) = r0⊥d̂ (14)

is a transverse vector differential operator. It is obvious that the vector operator 2ðr̄ is a gradient
operator in polar coordinates. The symmetric part of the geometric product 2ðrF is the divergence
vector ( div) of the vector field F = Fr0 + F⊥r0⊥, and the antisymmetric part is the curl of the vector
field F, since

r̄0ðr̄ ◦ r̄0F + r̄0ðr̄ ∧ r̄0F = r0ðr(r̄0F) = − r̄0

2r
F + ðrF and (15)

ðrF =
1
r2 (r̄ðr̄ ◦ r̄F) +

1
r2 (r̄ðr̄ ∧ r̄F), (16)

so that
2ðrF =

r̄0r0

r
[∂r(rF) + ∂φF⊥] +

r̄0r0⊥
r

[∂r(rF⊥)− ∂φF] = (17)

= r̄0r0 divF + curlF × r̄0r0,

that is,

2ðr̄F =
r0r0

r
(r∂rF − ∂φF⊥) +

r0r0⊥
r

(r∂rF⊥ + ∂φF)− F
r̄
= gradF, (18)

where
r0ðr ◦ r̄0F + r0ðr ∧ r̄0F = r̄0ðr̄(r̄0F) = r̄0(

1
2r

F + r̄0ðr̄F), (19)

divF =
2
r2 (r̄ðr̄ · r̄F) and curlF =

2
r2 (r̄ðr̄ × r̄F).

On the other hand, as r = rcêsφ = r exp(φê), it follows that 2φê = log(r/r̄),

dφ = r0dφ = r0(ðr φdr + ðr̄ φdr̄) = − r0⊥
2

d log(
r
r̄
) and (20)

dr = r0dr = r0(ðrrdr + ðr̄rdr̄) = r0d(rr̄)
1
2 =

r
2

d log(rr̄). (21)

Therefore,
r0⊥drdφ =

r
4

d log(rr̄)d log(
r
r̄
). (22)

In addition,

r2

4
d log(rr̄)d log(

r
r̄
) =

r2
0

4r2 (r̄dr + rdr̄)(r̄dr − rdr̄) =
r2

0
4
[(r̄0dr)2 − (r0dr̄)2]. (23)

In accordance with above,

r0(dr̄ ∧ d̄r) = r0(r0dr̄ ∧ r̄0dr) = 2r⊥drdφ, (24)

since dr̄ = r̄0dr = d̄r. The vector identity just derived can be obtained explicitly, if we introduce the
determinant of the Jacobi matrix (Jacobian) of the bijective mapping V2 → V2, defined by the system of
vector equations 2 ln re = log(rr̄) and 2φê = log(r/r̄), as follows

J =

∣∣∣∣∣ ∂r log(rr̄) ∂φ log(rr̄)
∂r log(r/r̄) ∂φ log(r/r̄)

∣∣∣∣∣ =
∣∣∣∣∣ 2r−1e 0

0 2ê

∣∣∣∣∣ = 4
r

ê. (25)

In this case, 4rr0⊥drdφ = r2Jdrdφ = r2d log(rr̄)d log(r/r̄), which leads to (22). The vector dS =

(dr̄ ∧ d̄r)/2 = rdrdφr0⊥ r̄0 = dSê, corresponding to the bivector rdrdφ1̂ of the bivector field R2, is the
Lebesgue measure of the infinitesimal surface of the field of vectors V2. In accordance with above, the

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 February 2025 doi:10.20944/preprints202502.1614.v1

https://doi.org/10.20944/preprints202502.1614.v1


6 of 12

vector integral operator over the closed smooth Jordan curve γ, which is the boundary of an arbitrary
region G in the vector field V2, is defined as follows

vt
∫ ⟲

γ+
r̄0(d + d⊥) = 2vt

∫ ⟲

γ+
drðr = vt

∫ ⟲

γ+
[(dr ◦ grad) − (dr ∧ grad)] , (26)

where vt denotes the total value of an improper integral [9]-[14], such that

vt
∫ ⟲

γ+
drðr = lim

ε→0+

∫ ⟲

γ+
ε

drðr = lim
ε→0+

(
∫ ⟲

∂S
drðr +

n

∑
i=1

∫ ⟲

∂Gi

drðr) = (27)

= vp
∫ ⟲

γ
drðr+

nγ

∑
i=1

lim
ε→0+

∫ ↶
r2i r1i

c(ri ,ε)
drðr = vt

∫ ⟲

γ−
drðr+

nγ

∑
i=1

lim
ε→0+

∫ ⟲

c(ri ,ε)
drðr,

and vp denotes the Cauchy principal value of an improper integral, ri are isolated points on the curve
γ, surrounded by circles c(ri, ε) centered at the points ri and with an arbitrarily small radius ε, which
at the points r1i and r2i intersect the curve γ and do not intersect each other. The set of points ri, of
Lebesgue measure zero, is the set of singular points, on curve γ, of a field on which the vector integral
operator is applied. If also in region G, bounded by the curve γ, there are isolated singular points
ϱj, which can be surrounded by circles c(ϱj, ε), which do not intersect each other, then it is possible
to form a simply connected region S, within which all singularities are, by connecting the circles
c(ϱj, ε), successively, the first with the second, the second with the third, etc., using parallel straight
line segments lj1 and lj2 , at a mutual distance δj ≪ ε, as well as by connecting the circles c(ri, ε) on
the curve γ with the circles c(ϱj, ε), using the parallel straight line segments li1 and li2 , at a mutual
distance δi ≪ ε. The boundary ∂S of the singular region S (blue region in Figure 1), inside region G,
divides region G into n subregions Gi.

Figure 1.

lim
ε→0+

∫ ⟲

∂S
drðr = 2πê

nγ

∑
i=1

Res(ðr, ri) +
nγ

∑
i=1

(
∫

l+i
drðr−

∫
l−i

drðr)+ (28)

+2πê
nG

∑
j=1

Res(ðr, ϱj) +
nG−1

∑
j=1

(
∫

l+j
drðr−

∫
l−j

drðr),

where

lim
ε→0+

∫ ⟲

c(ri ,ε)
drðr = 2πêRes(ðr, ri), lim

ε→0+

∫ ⟲

c(ϱj ,ε)
drðr = 2πêRes(ðr, ϱj), (29)

∫
l+i

drðr = lim
ε→0+

∫
li1

drðr and
∫

l−i
drðr = lim

ε→0+

∫
li2

drðr,
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is the residue operator in region G of the field of vectors V2. The vector integral operator in region G is
as follows

2vt
∫∫
G+

(dr̄ ∧ d̄r)ð2
rr̄ = 2vp

∫∫
G

(dr̄ ∧ d̄r)ð2
rr̄ + lim

ε→0+

∫ ⟲

∂S
drðr = (30)

= vp
∫∫
G

rdrdφ(r̂0r0 div grad + r̂0r0 × curl grad) + lim
ε→0+

∫ ⟲

∂S
drðr,

where vp
∫∫
G

(dr̄ ∧ d̄r)ð2
rr̄ = limε→0+ ∑n

i=1
∫∫
Gi

(dr̄ ∧ d̄r)ð2
rr̄, 2r̂drdφ = (dr̄ ∧ d̄r)r̄0, vt

∫∫
G+

(dr̄ ∧ d̄r)ð2
rr̄ −

vt
∫∫
G−

(dr̄ ∧ d̄r)ð2
rr̄ = 2πê ∑

nγ

i=1 Res(ðr, ri) and

ð2
rr̄ = ðr̄ðr =

r̄0r0

r2 (r̄ðr̄ · r̄ðr̄) +
r̄0r0

r2 × (r̄ðr̄ × r̄ðr̄) = (31)

=
r̄0

4r2 [r0[r∂r(r∂r) + ∂2
φ2 ] + r⊥(∂

2
rφ − ∂2

φr)] =
r̄0

4
(r0 div grad+ r0 × curl grad).

Here,

div grad =
4
r2 (r̄ðr̄ · r̄ðr̄) =

1
r2 [r∂r(r∂r) + ∂2

φ2 ] and (32)

curl grad =
4
r2 (r̄ðr̄ × r̄ðr̄) =

r0 × r⊥
r2 (∂2

φr − ∂2
rφ). (33)

If the set of singular points, either on the contour γ or in the region G, is an empty set, the choice of a
representative point (r on the contour γ or ϱ in the region G, respectively) is arbitrary. If the field is
uniform [7], then

∫
l+i

drðr =
∫

l−i
drðr, so that the choice of representative points is not necessary.

Finally, on the basis of the result of the Kelvin-Stokes theorem (Green’s theorem) [6],

vt
∫ ⟲

γ+
drðr = vt

∫ ⟲

γ+
[(dr ◦ ðr̄) − (dr ∧ ðr̄)] = (34)

=
1
2

vt
∫∫
G+

r̂drdφ(r0 div grad+ r0 × curl grad) = vt
∫∫
G+

(dr̄ ∧ d̄r)ð2
rr̄.

If there is a limit limε→0+
∫ ⟲

γ+
ε

drðr, and
∫ ⟲

∂S drðr tends to infinity as ε tends to zero, then the limit

limε→0+ ∑n
i=1

∫ ⟲
∂Gi

drðr = vp
∫∫
G

(dr̄ ∧ d̄r)ð2
rr̄ is also infinite. In this emphasized case, the limit

limε→0+
∫ ⟲

γ+
ε

drðr leads to the indeterminate form of the difference of two infinities, which has a
finite value. According to (34), since

(d̄r ∧ dr̄)(ð2
rr̄ − ð2

r̄r) = −r̂0r0⊥rdrdφ∥ curl grad∥ = r̄0r0drdφ(∂2
rφ − ∂2

φr), (35)

it follows that

r̄0r0vt
∫ ⟲

γ+
d = vt

∫ ⟲

γ+
(drðr + dr̄ðr̄) = vt

∫∫
G+

(dr̄ ∧ d̄r)(ð2
rr̄ − ð2

r̄r) = (36)

= r̄0r0vt
∫∫
G+

drdφ(∂2
φr − ∂2

rφ).

If ∂2
φr = ∂2

rφ and r∂r(r∂r) = −∂2
φ2 , then ð2

rr̄ = ð2
r̄r = 0. In addition,

ð2
r2 = ðrðr =

1
2

r̄0

r
[r̄∂2

r2 − r̂0(∂
2
φr −

1
r

∂φ)] = r̄0∂r(ðr), (37)

since
ð2

r2 = ðrðr =
1
4
(r̄0∂r − r̂0

1
r

∂φ)(r̄0∂r − r̂0
1
r

∂φ) = (38)
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=
r̄0

4r2 [r̄0[r∂r(r∂r)− ∂2
φ2 − 2r∂r]− r̂(∂2

φr + ∂2
rφ − 2

r
∂φ)].

Clearly, ð2
r̄2 = ð̄2

r2 .

2.1. Integrals of Scalar and Vector Fields

The vector differential of a scalar field F : V2 → R is as follows

dF = r0(ðrFdr + ðr̄Fdr̄) = r0( f dr + f̄ dr̄), (39)

where f = ðrF. The second vector partial derivative of F is the first vector partial derivative of the
vector field f , so that

ðr f = ð2
r2 F =

r̄0

4r2 [[r∂r(r∂rF)− ∂2
φ2 F − 2r∂rF])r̄0− (40)

−[(∂2
φrF + ∂2

rφF)− 2
r

∂φF]r̂] and

ðr̄ f = ð2
rr̄F =

r̄0

4r2 [[r∂r(r∂rF) + ∂2
φ2 F]r0 + (∂2

rφF − ∂2
φrF)r⊥]. (41)

If f = ðrF and f̄ = ðr̄F are uniform vector fields, then by applying the vector integral operator
(36) to the scalar field F, a vector integral identity is obtained

r̄0r0vt
∫ ⟲

γ+
dF = vt

∫ ⟲

γ+
ðrFdr + ðr̄Fdr̄ = vt

∫ ⟲

γ+
f dr + f̄ dr̄ = (42)

= vt
∫∫
G+

(ð2
rr̄F − ð2

r̄rF)(dr̄ ∧ d̄r) = r̄0r0vt
∫∫
G+

(∂2
φrF − ∂2

rφF)drdφ =

= (2πê)[
nγ

∑
i=1

Res( f , ri) +
nG

∑
j=1

Res( f , ϱj) +
nγ

∑
i=1

Res
(

f̄ , ri
)
+

nG

∑
j=1

Res( f̄ , ϱj)],

where limε→0+
∫ ⟲

∂S f̄ dr̄ = (2πê)[∑
nγ

i=1 Res
(

f̄ , ri
)
+ ∑nG

j=1 Res( f̄ , ϱj)]. The integral identity of complex
analysis, which is an analogue of the vector integral identity (42), is the integral identity of Cauchy’s
integral theorem [7].

As ∂2
φrF = ∂2

rφF and if, in addition, r∂r(r∂rF) = −∂2
φ2 F, then ðr f̄ = ðr̄ f = 0, that is,

r∂r f = −r0⊥∂φ f and (43)

rðr f = rð2
r2 F = r∂r(ðrF) = r∂r f . (44)

A vector field f , satisfying the Cauchy-Riemann condition r∂r f = −r0⊥∂φ f , is said, analogous to
complex analytic functions, to be an analytic vector field. Hence, an analytic vector field is a vector
derivative of the Laplace scalar field F. Clearly, the coordinate components of the analytic vector field f
are also Laplace scalar fields.

Assume that the analytic vector field f , as the vector derivative of the Laplace scalar field F, is
not defined at the point ϱ ∈ int.G, where G is a region in the field of vectors V2, bounded by a closed
smooth Jordan curve γ, as well as at point r on curve γ. The vector integral identity

r̄0r0vt
∫ ⟲

γ+
dF = vt

∫ ⟲

γ+
ðrFdr = vt

∫ ⟲

γ+
f dr = (45)

= (2πê)[Res( f , r) + Res( f , ϱ)] +
∫

l+
f dr −

∫
l−

f dr,
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is a vector analogue of the integral identity of Cauchy’s integral theorem, which is slightly generalized,
since in this emphasized case

vt
∫∫
G+

ð2
rr̄ f (dr̄ ∧ d̄r) = lim

ε→0+

∫ ⟲

∂S
f dr = (46)

= (2πê)[Res( f , r) + Res( f , ϱ)] +
∫

l+
f dr −

∫
l−

f dr.

If f is a differentiable (regular) vector field, but not an analytic vector field, in an arbitrary region
G of the vector field V2, bounded by a closed smooth Jordan curve γ, the integral identity

lim
Sγ→ϱk

1
Sγ

∫ ⟲

γ
f dr = 2ðr̄ f (ϱk) = grad f (ϱk) (47)

where 2Sγ =
∫ ⟲

γ r∧ dr, is a vector analogue, in the field of vectors V2, of the surface (spatial) derivative,
which was introduced, into complex analysis, by Pompeiu [8], originally calling it the areolar derivative.
Similarly, based on the vector identity (17), the so-called cumulative surface (spatial) derivative of the
vector field f can be defined as follows

lim
Sγ→ϱk

1
Sγ

∫ ⟲

γ
f dr̄ = −2ðr f (ϱk) = r̄0r0 × curl f (ϱk)− r̄0r0 div f (ϱk). (48)

According to (47), if f is a regular and uniform vector field in the ε-neighborhood C0
ε \{0} of its singular

point ϱ = 0 and limr→0 ðr̄(r2 f ) = ϱ0 ∈ V2, then

Res( f , 0) = (2πê)−1 lim
ε→0+

∫ ⟲

c0
ε

f dr = − lim
ε→0+

ê
2πε2

∫ ⟲

c0
ε

r2 f dr = (49)

= lim
ε→0+

1
Sc0

ε

vt
∫∫
C0

ε

ðr̄(r2 f )dS = lim
r→0

ðr̄(r2 f ) = ϱ0.

If ðr̄ f = 0, then Res( f , 0) = limr→0 r f = ϱ0, which is another vector analogy to the well-known
result of complex analysis. Let F be an analytic vector field, such that limr→0+(F/ ln r) leads to the
determinate form only after the application of L’Hospital’s rule n times. Then, the vector formula for
Res( f , 0), being analogous to the complex analysis formula, can be obtained via the vector identity
r f = r∂rF, see (44), where f = ðrF. Namely, since the same vector identity applies to the analytic
vector field rn f = rn∂rFr0...r0︸ ︷︷ ︸

n−1

, it follows that

ðr(rn f ) = (nrn−1∂rF + rn∂2
r2 F)r0...r0︸ ︷︷ ︸

n−2

and (50)

ð2
r2(rn f ) = [n(n − 1)rn−2∂rF + 2nrn−1∂2

r2 F + rn∂3
r3 F]r0...r0︸ ︷︷ ︸

n−3

. (51)

Accordingly, applying L’Hospital’s rule,

1
(n − 1)!

lim
r→0

ðn−1
rn−1(r

n f ) =
n!

(n − 1)!
lim

r→0+

n

∑
k=1

(
n − 1
n − k

)
rk∂k

rk F

k!
= (52)

= [
n

∑
k=1

(−1)n−k(
n

n − k
)]

limr→0+ rn∂n
rn F

(n − 1)!
=

(−1)n−1

(n − 1)!
lim

r→0+
rn∂n

rn F.
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Further, since the vector field f = r̄0∂rF is an analytic vector field, it follows that

ðn−1
rn−1 f = (

r
r
)n∂n

rn F and (53)

− 1
(n − 1)!

lim
r→0

(−r)nðn−1
rn−1 f =

(−1)n−1

(n − 1)!
lim

r→0+
rn∂n

rn F = lim
r→0

r f . (54)

This means that L’Hospital’s rule can be explicitly applied to the vector field r f .
If some analytic vector field f is regular in an arbitrary region G bounded by a closed smooth

Jordan curve γ, then for the vector field

f (r + ϱA)− [ f (ϱA) +
n−1

∑
k=1

ðk
rk f (ϱA)

rk

k!
],

where {0, ϱA} ⊂ int.G, according to (45), (52) and (54), the following is true

lim
ε→0+

vt
⟲∫
c0

ε

{ f (r + ϱA)− [ f (ϱA) +
n−1

∑
k=1

ðk
rk f (ϱA)

rk

k!
]} dr

rn+1 = (55)

= 2πê lim
r→0

1
rn { f (r + ϱA)− [ f (ϱA) +

n−1

∑
k=1

ðk
rk f (ϱA)

rk

k!
]} = 2πê

ðn
rn f (ϱA)

n!
.

Hence
n!

2πê
vt

⟲∫
γ

f (r + ϱA)

rn+1 dr = ðn
rn f (ϱA), (56)

since vt
⟲∫
γr−ndr = 0, whenever n ≥ 2. This is the vector analogue of the well-known Cauchy’s integral

formula.
If the vector field F = Fr0 + F⊥r0⊥ is such that the scalar fields F and F⊥ have continuous first

partial derivatives in region G, bounded by the closed smooth Jordan curve γ, almost everywhere
(everywhere except on the singular set of points of Lebesgue measure zero), then by applying the vector
integral operator (36) to the vector field F, one comes to the following vector integral identity

vt
∫ ⟲

γ+
dF = vt

∫ ⟲

γ+
(ðrFdr + ðr̄Fdr̄) = vt

∫∫
G+

(ð2
rr̄F − ð2

r̄rF)(dr̄ ∧ d̄r) = (57)

= (2πê)[
nγ

∑
i=1

Res(ðrF, ri) +
nG

∑
j=1

Res(ðrF, ϱj) +
nγ

∑
i=1

Res(ðr̄F, ri) +
nG

∑
j=1

Res(ðr̄F, ϱj)],

since
∂2

φrF − ∂2
rφF = r0(∂

2
φrF − ∂2

rφF) + r0⊥(∂
2
φrF⊥ − ∂2

rφF⊥) = 0 and (58)

ð2
r̄rF = ð2

rr̄F =
1
2
ðr̄(r̄0r0 divF + curlF × r̄0r0) = (59)

=
r∂r(r∂rF) + ∂2

φ2 F

4r2 =
div gradF

4
.

Clearly, in the general case curl gradF = 4(r̄ðr̄ × r̄ðr̄)F/r2 = 0 is not the same as curl(r̄0 gradF) =
4(r̄ðr̄ × r̄r̄0ðr̄F)/r2. Namely,

r0

r2 (r̄ðr̄ ◦ r̄r̄0 gradF) =
r0

2
[∂2

r2 F +
1
r2 (∂

2
φ2 F − ∂φF⊥)] and (60)

r0

r2 (r̄ðr̄ ∧ r̄r̄0 gradF) =
r0⊥
2

[∂2
r2 F⊥ +

1
r2 (∂

2
φ2 F⊥ + ∂φF)]. (61)
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So, div gradF = 4(r̄ðr̄ · r̄ðr̄)F/r2 differs from div(r̄0 gradF) = 4(r̄ðr̄ · r̄r̄0ðr̄F)/r2. Accordingly,

4ð2
r̄rF = 2ðr gradF = div gradF =

2r0

r2 (r̄ðr̄ ◦ r̄r̄0 gradF + r̄ðr̄ ∧ r̄r̄0 gradF)+ (62)

+
r̄0

r
gradF = r0 div(r̄0 gradF) + curl(r̄0 gradF)× r0 +

r̄0

r
gradF,

since
r0(r̄0ðr̄ ◦ r̄0 r̄0 gradF + r̄0ðr̄ ∧ r̄0 r̄0 gradF) = r0[r0ðr(r̄0 r̄0 gradF)] = (63)

= − r̄0

r
gradF + ðr gradF and

2ðr(r̄0 gradF) = r̄0r0 div(r̄0 gradF) + curl(r̄0 gradF)× r̄0r0, (64)

which can be explicitly obtained if in (17) F is formally replaced by r̄0 gradF. Therefore, the two
identities 5. and 6., on page 85., in Section 3.16., Chapter 3., in [15], should be replaced by: 5.
curl gradF ≡ 0 and 6. div gradF = 0 if F is either an analytic vector field (ðr̄F = 0) or a Laplace vector
field (ðrF = 0). In both of these cases, the vector field F satisfies Laplace’s equation r∂r(r∂rF) = −∂2

φ2 F.
Consequently,

vt
∫ ⟲

γ+

r̄0

2
(dF + d⊥F) = vt

∫ ⟲

γ+
ðrFdr = (65)

= vt
∫∫
G+

ð2
rr̄F(dr̄ ∧ d̄r) =

r̄0r0⊥
2

vt
∫∫
G+

r div gradFdrdφ.

On the other hand, let F = Fr0 + F⊥r0⊥ be continuous in an arbitrary region G bounded by a
closed smooth Jordan curve γ, in which the partial derivatives ∂rF, ∂φF, ∂rF⊥and ∂φF⊥ exist and satisfy
the Cauchy-Riemann equations

∂rF =
1
r

∂φF⊥ and ∂rF⊥ = −1
r

∂φF. (66)

Then, according to the Looman-Menchoff theorem [1], both the analytic vector field r̄0F and the Laplace
vector field r0F̄ can be said to be regular (holomorphic) vector fields in G. Therefore, on the basis of
(56),

(2πê)−1
∫ ⟲

γ

r̄0F
rn+1 dr = Res(

r̄0F
rn+1 , 0) =

limr→0 ðn
rn(r̄0F)

n!
. (67)

In addition,

(2πê)−1[
∫ ⟲

γ

F
r

dr − vp
∫∫
G

r̄0 gradF
r

dS] = F(0) and (68)

(2πê)−1[
∫ ⟲

γ

F̄
r̄

dr̄ + vp
∫∫
G

r0 divF̄ + curlF̄ × r0

r
dS] = −F̄(0), (69)

where r̄ gradF = −F i r divF̄ − r × curlF̄ = −F̄. These vector integral formulas are analogous to the
Cauchy-Pompeiu integral formula of complex analysis [17].

On the basis of the previous results one can say that there is a complete analogy between complex
analysis in C and real vector analysis in V2, thus all the results of complex analysis are applicable to
scalar and vector fields in V2 and vice versa. In doing so, z is formally replaced by r, and the imaginary
unit i, more precisely the ivector į, is replaced by the vector ê and vice versa (z ⇄ r and į ⇄ ê). This
conclusion can be even more obvious if a formally analogous method of deriving previously obtained
vector identities is applied to the field of complex vectors VC, which corresponds to the ivector field
(field of complex numbers) C, in the sense of the correspondence: 1 ≒ e and į ≒ ê, where the unit
vector e and the pseudo-unit vector ê (ê · ê = −1) form an orthogonal basis of the field of complex
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vectors VC, whose algebraic structure is based on the geometric product of two complex vectors
r1 = ae + bê and r2 = ce + dê, as follows [9]

r̄1r2 =
1
2
(r̄1r2 + r1 r̄2) +

1
2
(r̄1r2 − r1 r̄2) := (r1 · r̄2)e − (r̄1 × r̄2)× e = (70)

= (r̄1 · r2)e + (r1 × r2)× e = [(ae − bê) · (ce + dê)]e + [(ae + bê)× (ce + dê)]× e.
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11. Sarić, B., On totalization of the H1-integral, Taiw. J. Math., 2011, 15(4), 1691-1700
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