Pre prints.org

Article Not peer-reviewed version

On the Complete Analogy of Complex
Analysis and Real Analysis in the Field of
Vectors V2

Branko Saric ~
Posted Date: 20 February 2025
doi: 10.20944/preprints202502.1614 v1

Keywords: geometric product; the field of vectors

Preprints.org is a free multidisciplinary platform providing preprint service
5 that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of
(=] Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/4000973

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2025 d0i:10.20944/preprints202502.1614.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
On the Complete Analogy of Complex Analysis and
Real Analysis in the Field of Vectors V;

Branko Sari¢

Faculty of Technical Sciences, University of Kragujevac, Catak 32000, Serbia; saric.b@mts.rs

Abstract: On the basis of the isomorphic algebraic structures of the field of complex numbers C and
the 2-dimensional Euclidean field of vectors V, in terms of identical geometric products of elements,
in this paper vector integral identities have been derived for scalar and vector fields in V;, which
are vector analogues of the well-known integral identities of complex analysis. In doing so, special
attention is given to the vector analogue in V; of Cauchy’s calculus of residues.
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1. Introduction

A geometric algebra (Clifford algebra) is an extension of elementary algebra to work with geo-
metrical objects such as vectors. It is built out of two fundamental operations addition and geometric
product, [2]. The multiplication of vectors alone results in objects called multivectors, among which are
bivectors, the name applied in this paper to the objects of the bivector field R?, corresponding to the
field of vectors V,. Compared with other formalisms for manipulating geometric objects, geometric
algebra supports dividing by a vector. The geometric product was first mentioned by Grassmann,
who founded the so-called external algebra, [3]. After that, Clifford himself greatly expanded upon
Grassmann’s work, to form geometric algebra, named after him Clifford algebra [2], by unifying both
Grassmann’s algebra and Hamilton’s quaternion algebra. In the middle of the 20th century, Hestenes
repopularized the term geometric algebra [4,5].

On the other hand, although rarely used explicitly, a geometric representation of complex numbers
is implicitly based on its structure of the Euclidean 2-dimensional vector space. If the binary operation
of the product @z, of two complex numbers @ and z, is considered as the sum of the inner product
woz = (Wz+ wz)/2 = 1 Re(wz) and outer product w Az = (wz — wz)/2 = § Im(@z), where
1= (1,i0) and § = (0,7), and i is an imaginary unit, it can be said that @0z is in the form of a geometric
product of two ivectors (two complex numbers), as two geometric objects belonging to the ivector
field C (to the field of complex numbers C). For any complex number z, its absolute value |z| is its
Euclidean norm denoted by 7, and the argument arg z is the polar angle ¢. Since ordered pairs represent
both complex numbers and vectors, the binary operation of the product of two complex numbers
(two ordered pairs), in the form of the geometric product wz (wz = @ o z + @ A z), will be the basis
for modifying Grassmann’s geometric product of vectors, which is defined as the sum of the inner
(scalar) and outer (vector) products of two vectors. By this modification, the geometric product of
two vectors becomes commutative, similar to the product of complex numbers themselves, which still
supports vector division. In this manner, a complete analogy is established between the algebra of
complex numbers and the modified Clifford algebra in the Euclidean 2-dimensional field of vectors V.
On the basis of that analogy, the paper presents the most important vector integral identities, in the
real Euclidean field of vectors V,, which are vector analogies to the well-known integral identities of
complex analysis.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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1.1. Realireal Vector Space V¢

The ordered pairs 1 = (1,i0) and § = (0, i) are the basis of the 2-dimensional realireal vector
space V¢ [6], which is the Cartesian product Vg x iVR of a 1-dimensional real vector space Vi and a
1-dimensional ireal vector space iV, and as such, V¢ is an additive Abelian (commutative) group of
elements (x,iy) = 1x+jy. As both of these 1-dimensional vector spaces are defined over the field of
real numbers R, the real vector space Vi can be said to be a field of real numbers R, whereas the ireal
vector space iV cannot be a field, and therefore not a field of imaginary numbers iy. On the other
hand, if the vector space V¢ is complemented by a binary operation of the product of two elements
(a,ib) and (c, id), which corresponds to the matrix product, in such a manner that

a ib c id
ib a]lid c]_ 1

| ac—bd i(ad+ bc)
~ | i(ad +bc) ac—bd

(a,ib)(c,id) =

= (ac — bd,i(ad + bc)),

where both the commutative axiom of multiplication and the associative axiom of multiplication are
satisfied, as well as the distributive axiom, and in addition the element (x, —iy)/(x? + y*), which
.11
. . 1 . . . .
corresponds to the inverse matrix 4 , is the inverse element of the element (x, iy) # (0,10),
X

then the 2-dimensional realireal vector space V¢ can be said to be defined over the field of complex
numbers C, that is, V is the field of complex numbers C. More precisely, on the one hand, the ordered
pair (V¢, R) is the vector space Vi over the scalar field of real numbers R, and on the other hand, after
complementation with the binary operation of the product of the elements, the ordered pair (V¢, C)
is the vector space over the ivector field C, that is, V¢ is the ivector field C. Accordingly, complex
numbers z can be said to be ivectors (x,iy) = 1x+jy, the elements of the vector space V, that is, of the
ivector field C and as such can be multiplied either by real numbers as scalars or by complex numbers
z as ivectors. When the ivector (g, ib) is multiplying by the imaginary unit i, then the order of of the
elements, in the resulting ordered pair, is changed, so the resulting ordered pair is not an element
of the ivector field C. Therefore, from that perspective, multiplying complex numbers by imaginary
numbers is absolutely unacceptable. A complex number can be multiplied by the ivector j, so that
(x,iy)i = i(x,iy) = =yl +xi = (—y,ix) and i* = ji = —1.

How the operator cjs- = (cos-,isin-) = 1cos - + i sin - has the most important properties of an
exponential function, since cjs-cis- = cis(- + -), (cis-) ! = cis(—-) and d(cjs-) = jcis-d-, the operator
exp(j-) can be said to be the exponential form of the operator cjs-. For above reason, multiplication of
the operator cjs- = exp(j-) by imaginary numbers is unacceptable, but multiplication by either a real
number or an ivector is acceptable.

1.2. The Field of Vectors V;

The basis of the 2-dimensional real vector space Vg2 (the Cartesian square of the 1-dimensional real
vector space V), as an additive Abelian group of elements (x, ), consists of ordered pairs 1 = (1,0)
and 1 = (0,1), such that (x,y) = x1 + y1. Analogous to the binary operation of the product of the
elements, which we used to complement the realireal vector space V¢, it is also possible to complement
the vector space Vi2, with the binary operation of the product of two elements (a,b) and (c, d), which
corresponds to the matrix product, in such a manner that

(a,0)(c.d) = [ o bH © d] = @

l ac — bd ad + bc

(ad + bc) ac —bd = (ac —bd, ad +be),
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where the element (x/(x* +y?), —y/ (x* +y?)), which corresponds to the inverse matrix xy Z ] ,
is the inverse element of the vector space Vi, = Vg2\{(0,0)}. In this case both the commutative axiom
of multiplication and the associative axiom of multiplication are satisfied, as well as the distribu-
tive axiom. Therefore, on the one hand, the ordered pair (Vj2,R) is the vector space V2 over the
scalar field of real numbers R, whereas on the other hand, the ordered pair (Vi2, R?) is a vector
space over the bivector field R2, that is, Vg2 is the bivector field R2, whose elements are the bivectors
(x,y) = x1 + y1. Accordingly, the bireal numbers w are bivectors (x,y), elements of the vector space
Ve, that is, of the bivector field R? and as such can be multiplied either by real numbers as scalars or
by bireal numbers as bivectors.

The field of vectors V, corresponds to the bivector field R?, in the sense of the correspondence:
1= e and 1 = &, where the unit vectors e and & are orthogonal basis vectors of the field of vectors V5.
The vectors r = xe + y&, as elements of the field V;, correspond to the bireal numbers w € RZ. In other
words, there is a one to one correspondence between the field of vectors V; and the set of bireal numbers
Y22 ‘ is the norm over the field of
2

R2. If (x,—y) = xe —yé = §, thenr = ||| = ||(x, —y)|| =

vectors V, and over the bivector field R?, simultaneously. In addition, r = (x, —y)(x,y) = 1?1 = r%e
and r2r~! = % It is quite clear that the inverse element r~! allows division by a vector in the field of
vectors Vs.

The binary operation of the product of two vectors ¥} = ae —bé € Vo and rp = ce +-dé € Vy, as
follows

1 1
Firp = E(flrz +18) + E(flrz —nk):=(f he— (f xk) xe= 3)
=(r;-r)e+ (r; X 1) x e = [(ae + bé) - (ce + deé)]e + [(ae + bé) x (ce +deé)] x e,

where 11 - rp = [|11]|||r2]| cos @ and (r] X 1) x e = ||r1]|||r2|| sin 6&, which is obviously commutative
and corresponds to the product (a, —b)(c,d) = (ac + bd, ad — bc) of two bivectors (a, —b) and (¢, d), is
the geometric product of these two vectors. Here,

%(fer +11fy) ;= (r;-r2)e =101, = (a,b) o (c,d) and 4)
E(flrz —ni)=(r xXn)xe=rArn=(ab)A(c¢d). )

In addition, (a, —b)(c,d) = (a,b) o (c,d) + (a,b) A (c,d) and
[(a,b) o (c,d)]* = [(a,b) A (¢, d)* = (a,~b)(c,d) (¢, ~d)(a,b) = 6)

= (a,~b)(c,d)(a,b)(c, ~d) = || (a,b)|*[|(c, d) 1.

The previously introduced concepts of the geometric product and bivector are closely related
to the same concepts in Clifford algebra [2]. However, there is evidently a crucial difference between
Clifford algebra and the algebra of the field of vectors Vy, which is reflected in the fact that the geometric
product of the elements of the field of vectors V;, on the one hand, is the element of the field of vectors
V3, corresponding to the bivector, the element of the bivector field R2, and on the other hand, it is also
commutative, which means that the field of vectors Vj, in addition to being an additive Abelian group,
is also a multiplicative Abelian group.

If rg is the unit vector of the vector r (r = rrg), then r 1= §yand

rp -
j =1, ¥, = (1‘01 . roz)e — (1‘01 X 1‘02) xXe, (7)
>
that is,
1 1y, 1o .. 1,1, 1o
roloroz:7(—2+—1)11‘01Ar0227( z 1 (8)

- ’
2 ro, 19, 2 o, ro,
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where 1, o1, = (19, - 1p,)e i1y, A1g, = (ro, X r,) X e are the symmetric and antisymmetric parts
of the geometric product ¥y, ro,, respectively. Therefore, to emphasize once again, the geometric
product of two vectors is a vector in V;. Accordingly, re = (¥-e)e + (F x e) x e = xe + y& = r and
ré = (F-&)e+ (F x &) x e = r . The vector r, is orthogonal to the vector r, that is, r, is the vector
obtained by rotating the vector r = rry = r(e cos ¢ + &sin ¢), where ¢ is the angle between the vector
r and the vector e, by 77/2 radians in the positive mathematical direction. In addition, the unit vector
) = cos gpe — sin @@ is the inverse vector r, 1 of the unit vector ry of the vector r, and therefore also the
unit vector of the inverse vector r~! of the vector r, so that r ! = #;/r and ¥ = r¥.

The main purpose of the paper is to derive vector integral identities, in the field of vectors V,
which are analogous to the known integral identities of complex analysis, on the basis of the analogy
of the ivector field C and the bivector field R?, which corresponds to the field of vectors V.

2. The Main Results

As cés-cés = cés(- + ), (cés-)™! = cés(—-) i d(cés:) = écés-d-, the bivector operator cés:
= ecos- + &sin- also has the properties of an exponential function, similar to the ivector operator
cjs-. The operator exp(&-) is the exponential form of the operator cés-. Since ry = cés¢ = exp(€¢),
one more analogy with complex analysis is the notion of the so-called vector logarithmic function
logr = Inre + @&, where 2¢& = 2logry = log(ry/¥p). In addition, Log r = Inre + (¢ £ 27tn)&, n € N.
Let £y = frgll = esing + &cos ¢ = sécy = &iy. The ordered pair of vectors (¥, fp) is the inverse
orthonormal basis with respect to the orthonormal basis (ry, ro, ) of the field of vectors V,. For an
arbitrary vector ¢ € V», the vector gr, is the rotated vector g, in the positive mathematical direction,
by the angle ¢, and the vector ¢r,, by the angle 71/2 + ¢. The geometric products of the vector ¢
with the inverse basis vectors ¥y and f( rotate the vector ¢ by the angles —¢ and 77/2 — ¢, respectively,
in the positive mathematical direction. On the basis of the geometric products ee = e, eé = & and

A A

éé = —e, thatis,
rorg = (Fo - 1p)e + (T X rg) X e = (cos® ¢ — sin® p)e + 2(cos @sin ¢)8, )

rofp = e and rofy = & (¥ = ¥é), all other combinations of geometric products of the basis vectors r,
1o, To and £y can also be obtained.

If we introduce the differential operator d = drd, + d@dy, then dr = drrg + der,. Hence,
dr, = édr = drrg, —der and dt = &df = &(drfy — dot) = drty + dF. Since 2r cos pe = r + F and
2rsin p& = r — T, the vector operators of partial derivatives are introduced, as a vector analogue of the
Virtinger operators [16],

1 f = 1
O = 3070, + 0:pdy = 5 (F0d; — 20,) and B = B = - (10D, + 2-0y). (10)
Here,
1., § o _rdE, -28F &
Ort = Zrarr =5 and ;¢ = cos” @or tan ¢ = ( P ) 7(r+f)2 =5 (11)

It is important to emphasize that when geometric products and geometric quotients are differentiated,
the same rules apply as when ordinary products and quotients are differentiated. Namely,

r 1., 1, 2 1
d- = (dr—z)r + r—zdr = —2(7—3dr— r—zrdr) = (12)

1

tdr — rdt
272 ’

2 _ 1 _ _ 1._
= —2[274(rdr + rdf) — r—zrdr] = — 2[5 (¥dr + rd¥) — f—zrdr] ===

The vector orerator

d = ro(dr0; + di0z) = 2ro(dr o O0z) = ro(drd, +d@dy) = rod, (13)
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as a symmetrical part of the geometric product 2drd,, is a radial vector differential operator. The
antisymmetric part

d, = ro(drd; — didz) = —2ry(dr N Oz) = 1o, (rdpd, — %draq,) =rp.d (14)

is a transverse vector differential operator. It is obvious that the vector operator 20; is a gradient
operator in polar coordinates. The symmetric part of the geometric product 29,F is the divergence
vector ( div) of the vector field F = Frg + F, ry |, and the antisymmetric part is the curl of the vector
field F, since

%90z o FoF + Fod A FoF = 103y (FF) = —%F +9,Fand (15)
1, - 1, -
O,F = r—Z(rﬁf ofF) + r—z(rF)f N TF), (16)
so that _ _
For For
20.F = 2 [0, (rF) +9gF ] + =2 [0,(rFL) — 9pF] = (17)
= Torg divF 4+ curlF X Fgry,
that is,
F
20:F = @(rarp —9,F) + ‘Orrﬂ (r3:F\ +3,F) — = = gradF, (18)
where 1
190y 0 TgF + 190y A FoF = f05f(f0F) = TO(EF + f'oéfF), (19)

divF = %(fﬁf -TF) and curlF = r%(iﬁf x TF).

On the other hand, as r = rcés¢ = rexp(¢e@), it follows that 2¢pé = log(r/¥),

dg = rodg = 1o (0, @dr + Oz pdt) = —%dlog(%) and (20)
dr = rodr = ro(Orrdr + Ozrdi) = rod(rf)% = ;dlog(rf). (21)
Therefore,
Yo drdg = idlog(rf)dlog(g). (22)
In addition,
1 = r r% = = (= - r% - 132 2
Zdlog(rr)dlog(%) = @(rdr—&— rdf) (¥dr — rdf) = Z[(I‘Odl‘) — (rod®)7]. (23)

In accordance with above,
1o(dE A dr) = 1o (rodF A Todr) = 2r  drd, (24)

since df = fodr = dr. The vector identity just derived can be obtained explicitly, if we introduce the
determinant of the Jacobi matrix (Jacobian) of the bijective mapping Vo, — V), defined by the system of
vector equations 2Inre = log(r¥) and 2¢& = log(r/¥), as follows

2rle 0
0 28

= e (25)

J— orlog(r)  dylog(rE) |
| orlog(r/¥) 9plog(r/F) |

N |

In this case, 4rry drdp = r*Jdrdgp = r?’dlog(rf)dlog(r/%), which leads to (22). The vector dS =
(dt Adr)/2 = rdrdgry | Ty = dSeé, corresponding to the bivector rdrd g1 of the bivector field R?, is the
Lebesgue measure of the infinitesimal surface of the field of vectors V;. In accordance with above, the
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vector integral operator over the closed smooth Jordan curve <y, which is the boundary of an arbitrary
region G in the vector field V, is defined as follows

O O O
Ut/ fo(d+d,) = ZUt/ drd, = vt/ [(dro grad) — (dr A grad)], (26)
At At ot
where vt denotes the total value of an improper integral [9]-[14], such that

n O
ot dr5 = lim dr?j = hm / dr5r+2/ drdy) = (27)
as = Jac,

e—0t

o o, O O
—op [ dr5r+z lim | (21 e, ot [ dr6r+z lim [ [ 60
v e i€

—16—0% Je(rie) —1 0"

and vp denotes the Cauchy principal value of an improper integral, r; are isolated points on the curve
7, surrounded by circles c(r;, €) centered at the points r; and with an arbitrarily small radius ¢, which
at the points r1, and r,, intersect the curve v and do not intersect each other. The set of points r;, of
Lebesgue measure zero, is the set of singular points, on curve v, of a field on which the vector integral
operator is applied. If also in region G, bounded by the curve 7, there are isolated singular points
0j, which can be surrounded by circles c(gj, €), which do not intersect each other, then it is possible
to form a simply connected region S, within which all singularities are, by connecting the circles
C(Qj, g), successively, the first with the second, the second with the third, etc., using parallel straight
line segments /;, and [;,, at a mutual distance 6; < ¢, as well as by connecting the circles c(ri, €) on

the curve 7y with the circles c(gj, ¢), using the parallel straight line segments /; and I;,, at a mutual

1p7
distance J; < e. The boundary 9S of the singular region S (blue region in Figure 1), inside region G,

divides region G into n subregions G;.

Figure 1.

gligk » drESr =2rmé ERes (O, ;) + Z /i+ drd,— /l, dr0y;)+ (28)

ng— 1
+27é Z Res(y, 0j) + Z /l+ drd,— /r drd,),
j= J j

I

where - -
li dr0, = 27éRes (0, 1;), li dr0, = 27téRes(0y, 0;), 29
B o) 270 = 2meRes(Or ), limy J ) @10 = 2mERes (Br, ) @)
/ dro, = hm droy and/ drd, = lim drOy,
ll_ e—0t li2
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is the residue operator in region G of the field of vectors V;. The vector integral operator in region G is
as follows

20t //(di'/\ dr)d% = 2up // (dF A dr)d% + 11m s dr5 = (30)
G+

=op / / rdrdg(®ory div grad + forg x curl grad) + hm » drar,

where vp ff (dF A dr)0% = lim,_,o+ Y1, ff (df A dr)0%, 2tdrdg = (df A dr)%,, ot ff (d¥ A dr)d% —

ot [[(dEA dr)?ﬁrf =27&Y.", Res(dy, 7;) and
o

6$r_56r_@(r8 5)+@x(r6fxfaf)= (31)
To [t0[rd, (rd,) +0%,] + 1, (9%, —3%,)] = f‘—O(ro div grad+ rp x curl grad)
4 12 @2 1 \Yr¢ Qr 4 :
Here,
div grad = %(Iﬁf - T05) = rlz[ra,(rar) + 85)2] and (32)
curl grad = %(fzﬁf X i) = :2” (0%, — 97,). (33)

If the set of singular points, either on the contour <y or in the region G, is an empty set, the choice of a

representative point (r on the contour 7y or ¢ in the region G, respectively) is arbitrary. If the field is

uniform [7], then flf drd, = fl; drd;, so that the choice of representative points is not necessary.
Finally, on the basis of the result of the Kelvin-Stokes theorem (Green'’s theorem) [6],

vt/ drd, = vt/ [(drod;) — (drAdp)] = (34)

= %vt // #drdg(ro div grad+ rp x curl grad) = ot //(di'/\ dr)0Z%.

If there is a limit lim,_,q+ f © drdy, and fgg drd; tends to infinity as € tends to zero, then the limit

lim,_ o+ Y04 fBG drd, = op f [(df A dr)d% is also infinite. In this emphasized case, the limit

lim,_,+ f e drd; leads to the 1ndeterm1nate form of the difference of two infinities, which has a
finite value. According to (34), since

(dr A dF)(0F; — 07,) = —Rorg, rdrde]| curl grad|| = Forodrde (37, — 95,), (35)

it follows that

O O -
f'orovt/+ d = Ut/+(dr3r + di0z) = vt //(df/\ dr)(E§ff —9%) = (36)
¥ ¥
i

= Forovt / / drdp(32, — 2,).
G+

If 92, = 97, and r9,(rd,) = —afaz, then 8% = 9%, = 0. In addition,

1

i 1
9% = 0,0, = 570[?832 — (92, — ~9p)] = 100, (D), (37)

since

—_

1 1
0% = 0:0r = (%09 — f0-9p) (Tod; — B0 0y) = (38)
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= T0 15019, (r3,) — 32y — 260)] — 22, + 32, — 23,)]
) (A ARA%? @2 r I or ) . @)l
Clearly, 92 2= 5rz
2.1. Integrals of Scalar and Vector Fields
The vector differential of a scalar field F : Vo, — R is as follows
dF = ro(0,Fdr + 0:Fdt) = ro(fdr + fdt), (39)

where f = 0,F. The second vector partial derivative of F is the first vector partial derivative of the
vector field f, so that

I
Opf = 05F = ﬁ[[rar(raf) — 02,F — 210, F)fo— (40)
2
—[(a;,P + 8%¢F) - ;aq,F]f'] and

O:f = O%F = iz[[ra,(rarF) + 022 Flro + (97, F — 95, F)r . (41)

If f = 0,F and f = OF are uniform vector fields, then by applying the vector integral operator
(36) to the scalar field F, a vector integral identity is obtained

®) O O -
Foro0t / dF — ot / 0, Fdr + 0;FdE — ot / Fdr + fde = (42)
A+ A+ ot

—vt//@zp O2.F)(dE A dr) frorovt// (33, F — 2, F)drdg =

Ny ng ny ng
= (27@)[}_ Res(f, i) + ) Res(f, ¢j) + ) Res(f, i) + ) Res(f, ¢j)],
i=1 j=1 i=1 j=1
where lim,_,y+ fa% fdt = (2mé) [T, Res(f,r;) + nG 1 Res(f, ¢j)]. The integral identity of complex
analysis, which is an analogue of the vector integral 1dent1ty (42), is the integral identity of Cauchy’s

integral theorem [7].
As a%,,rp = E)%q,F and if, in addition, 79, (rd,F) = —afsz, then 3, f = Oz f = 0, that is,

rd; f = —19, dpf and (43)
10, f = 105 F = 13, (d,F) = ro, f. (44)
A vector field f, satisfying the Cauchy-Riemann condition rd, f = —ry| d,f, is said, analogous to

complex analytic functions, to be an analytic vector field. Hence, an analytic vector field is a vector
derivative of the Laplace scalar field F. Clearly, the coordinate components of the analytic vector field f
are also Laplace scalar fields.

Assume that the analytic vector field f, as the vector derivative of the Laplace scalar field F, is
not defined at the point ¢ € int.G, where G is a region in the field of vectors V;, bounded by a closed
smooth Jordan curve v, as well as at point r on curve <. The vector integral identity

O O O
forovt/ dF = vt/ O Fdr = vt/ fdr = (45)
a a i

= (278)[Res(f,*) + Res(f, 0)] +/I+ fdf*/lf fdr,
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is a vector analogue of the integral identity of Cauchy’s integral theorem, which is slightly generalized,
since in this emphasized case

O
t || 0% F(dEAdr) = li dr = 46
UG// Rf(AEAdr) = lim [ - far (46)

= (27t&)[Res(f,r) + Res(f, 0)] +/l+ fdr — /l* fdr.

If f is a differentiable (regular) vector field, but not an analytic vector field, in an arbitrary region
G of the vector field V;, bounded by a closed smooth Jordan curve v, the integral identity

. 1 /@
Singk ?v/”r fdr = 20:f (o) = gradf(ex) (47)

where 2S,, = f $ r Adr, is a vector analogue, in the field of vectors V3, of the surface (spatial) derivative,
which was introduced, into complex analysis, by Pompeiu [8], originally calling it the areolar derivative.
Similarly, based on the vector identity (17), the so-called cumulative surface (spatial) derivative of the
vector field f can be defined as follows

lim —/ fdt = —20,f(0x) = Torg x curlf(gx) — Foro divf(ox)- (48)

According to (47), if f is a regular and uniform vector field in the e-neighborhood C?\ {0} of its singular
point ¢ = 0 and limy—,0 Jz(r*f) = @, € V2, then

O
Res(f,0) = (2ré) ! lim / fdr=— lim — rzfdr = (49)

e—0t e—0t 27T€2
Iim — =1 = 0,-
s;r(r)hsovt//5 f)ds = 1m5( 2f) = 0,

If 0z f = 0, then Res(f,0) = limyorf = @o, which is another vector analogy to the well-known
result of complex analysis. Let F be an analytic vector field, such that lim, o+ (F/Inr) leads to the
determinate form only after the application of L'Hospital’s rule n times. Then, the vector formula for
Res(f,0), being analogous to the complex analysis formula, can be obtained via the vector identity
rf = ro,F, see (44), where f = 0,F. Namely, since the same vector identity applies to the analytic
vector field " f = r"0,Fry...ry, it follows that

——

n—1
Oe(r"f) = (nr"10,F 4+ r"9% F)ro...xg and (50)
n—2
0% (X" f) = [n(n — 1)r""29,F + 2nr" 105 F + r"9% F]ro...xg. (51)
n—3
Accordingly, applying L'Hospital’s rule,
kak
1 wl e oml & o1 o F
G e ) = oy im L ) S 52)
" _ lim, o+ "0 F  (—1)""1
= [ -1k " oS lim r"9),F.
[k;( ) (n—k)] (n—1)! (n—l).rg(l)hr !
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Further, since the vector field f = Fy0,F is an analytic vector field, it follows that
oL f = “ ) 0" F and (53)
—————lim(—1)"3" 1 f = (G lim 7"}, F = limrf. (54)
(n—1) >0 vl (n—1)! 50+ " 1—0

This means that L'Hospital’s rule can be explicitly applied to the vector field rf.
If some analytic vector field f is regular in an arbitrary region G bounded by a closed smooth
Jordan curve v, then for the vector field

n—1 1.k
f(r+oa)—[f(ea)+ k—zl 6’:kf(QA)H]/

where {0,04} C int.G, according to (45), (52) and (54), the following is true

°Q n—1 l‘k dr
i ot [, F(x-+ 0a) = [f(ea) + X5 O f(ea) ) s = 55)
= 2é lim rln{f(H ea) —[f(ea) + ’g5fkf(eA)i]} = 2néw,
Hence
2ne /f r:;fA dr = Op f(0a), (56)

O
since vt [_r "dr = 0, whenever n > 2. This is the vector analogue of the well-known Cauchy’s integral
¥ g Y g

formula.

If the vector field F = Frg + F| rp, is such that the scalar fields F and F| have continuous first
partial derivatives in region G, bounded by the closed smooth Jordan curve v, almost everywhere
(everywhere except on the singular set of points of Lebesgue measure zero), then by applying the vector
integral operator (36) to the vector field F, one comes to the following vector integral identity

O O -
ot / _dF = ot / (0uFdr + OgFdr) = ot / / (0%F — 04 F)(dE A dr) = (57)
Y Y

ey nG Ly ng
= (2718)[}_ Res(O;F, ;) + ) _ Res(0:F, ¢;) + ) Res(3zF,r;) + ) Res(3:F, ¢;)],

i=1 j=1 i=1 j=1
since
95, F — 07, F = 10(93, F — 07, F) + 10 (95,F| —97,F 1) = 0and (58)
1
O2F = 0%4F = 50x(foro divF + curlF x forp) = (59)

19y (royF) + ai,zF div gradF
472 - 4 '

Clearly, in the general case curl gradF = 4(70; x ¥0;)F/r?> = 0is not the same as curl(¥y gradF) =
4(¥0z x ¥10zF)/ 2. Namely,

1
:—g(fﬁf o iy gradF) = %[8321: + 7—2(824121: —dyF| )] and (60)

1
(r5 N TEg gradF) = 2 [8 »F| + = (agza +0yF)]. (61)
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So, div gradF = 4(0; - 70z )F/r? differs from div(¥y gradF) = 4(#0; - ¥o0:F) /r>. Accordingly,

402 F = 20, gradF = div gradF = 2}%(?6? o ¥fy gradF + 70z A Ffy gradF)+ (62)

—l—r?O gradF = r div(¥y gradF) + curl(¥ gradF) x ro + rT? gradF,

since
ro(FoOz o FoFg gradF + F(0z A FoFp gradF) = ry[ro0;(FoFo gradF)| = (63)

= _r70 gradF + 0, gradF and
20, (Fo gradF) = forp div(Fo gradF) + curl(¥y gradF) X ¥oro, (64)

which can be explicitly obtained if in (17) F is formally replaced by ¥y gradF. Therefore, the two

identities 5. and 6., on page 85., in Section 3.16., Chapter 3., in [15], should be replaced by: 5.

curl gradF = 0 and 6. div gradF = 0 if F is either an analytic vector field (0zF = 0) or a Laplace vector

field (0,F = 0). In both of these cases, the vector field F satisfies Laplace’s equation 79, (rd,F) = —a; ,E.
Consequently,

O 1 O
ot / Y (4F 4+ d,F) = ot / 0, Fdr — (65)
2 1t

= vt// 0% F(dEAdr) = rOZOL ot //r div gradFdrde.
Gt Gt

On the other hand, let F = Frg + F| 1y, be continuous in an arbitrary region G bounded by a
closed smooth Jordan curve vy, in which the partial derivatives d,F, d,F, 9,F | and d,F | exist and satisfy
the Cauchy-Riemann equations

8,13 = %84,11 and B,FL = —%a(pl:. (66)

Then, according to the Looman-Menchoff theorem [1], both the analytic vector field FoF and the Laplace
vector field roF can be said to be regular (holomorphic) vector fields in G. Therefore, on the basis of

(56),
1 [© FF foF limy_,0 Oy (FoF)
ay—1 0 _ 0 _ lmy—o 0

(27e) L SO = Res(25,0) = 5 (F), 67)

In addition, 5

F T F
re) ' [ Tar—op ] @dq — F(0) and (69)
7 G
O F v i
(Zné)*l[ / Edi‘—i-vp // rg divF + curlF x rOdS] — _E(0), 69)
v T r
G

where ¥ gradF = —FirdivF — r x curlF = —F. These vector integral formulas are analogous to the

Cauchy-Pompeiu integral formula of complex analysis [17].

On the basis of the previous results one can say that there is a complete analogy between complex
analysis in C and real vector analysis in V5, thus all the results of complex analysis are applicable to
scalar and vector fields in V; and vice versa. In doing so, z is formally replaced by r, and the imaginary
unit i, more precisely the ivector j, is replaced by the vector & and vice versa (z & r and j & &). This
conclusion can be even more obvious if a formally analogous method of deriving previously obtained
vector identities is applied to the field of complex vectors V¢, which corresponds to the ivector field
(field of complex numbers) C, in the sense of the correspondence: 1 = e and § = &, where the unit
vector e and the pseudo-unit vector & (& - & = —1) form an orthogonal basis of the field of complex
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vectors V¢, whose algebraic structure is based on the geometric product of two complex vectors
r; = ae + bé and r, = ce + dé, as follows [9]

1 1
I = E(f‘]l‘z + rlf'z) + E(f‘]l‘z — rlf'z) = (I‘] . f‘z)e — (f‘l X f‘z) X e = (70)
=(f 1rp)e+(r; Xxrpy) x e =[(ae —beé)- (ce +deé)le+ [(ae + bé) x (ce +deé)] x e.

References

1.  Arsova M., The Looman-Menchoff theorem and some subharmonic function analogues, 1955, Proc. Amer.
Math. Soc., 6 ,94-105

2. Clifford W., Applications of Grassmann’s Extensive Algebra, Amer. . Math., 1878, 1 (4): 350-358

Grassmann, H., Die lineale Ausdehnungslehre ein neuer Zweig der Mathematik: dargestellt und durch

b

Anwendungen auf die {ibrigen Zweige der Mathematik, wie auch auf die Statik, Mechanik, die Lehre vom
Magnetismus und die Krystallonomie erldutert, Leipzig: O. Wigand, 1844

Hestenes D., Multivector Calculus, J. Math. Anal. Appl., 1968, 24, 313-325

Hestenes D., Multivector Functions, J. Math. Anal. Appl., 1968, 24, 467-473

Marsden E. J., Tromba J. A., Vector Calculus, 6th Edition. New York: W. H. Freeman and Company, 2012
Mitrinovi¢ S. D., Ke¢ki¢ D. J., The Cauchy Method of Residues: Theory and Applications, D. Reidel Publishing
Company, 1984

NG

8.  Pompeiu D., Sur une classe de fonctions d’une variable complexe. Rendiconti del Circolo Matematico di
Palermo,1912, 33(1), 108-113

9. Sarié, B., The Fourier series of one class of functions with discontinuities, Dissertation, Date of defence:
October 20, 2009, at the University of Novi Sad, Faculty of Science, Department of Mathematics and
Informatics.

10.  Sari¢, B., Cauchy’s residue theorem for a class of real valued functions, Czech. Math. |., 2010, 60(4), 1043-1048

11.  Sari¢, B., On totalization of the Hy-integral, Taiw. J. Math., 2011, 15(4), 1691-1700

12.  Sari¢, B., On totalization of the Henstock-Kurzweil integral in the multidimensional space, Czech. Math. J.,
2011, 61(4), 1017-1022

13.  Sari¢, B., On an integral as an interval function, Sci. Bull., Series A, 2016, 78(4), 53-56

14. Sari¢, B., On the Hy-integration of spatial (integral) derivatives of multivector fields with singularities in
RN, Filomat, 2017, 31(8), 2433-2439

15. Spiegel, R. M., Lipschutz, S., Schiller, J. J. and Spellman, D., Schaum’s outline of theory and problems of
complex variables: with an introduction to conformal mapping and its application, 2th Edition, London:
McGraw-Hill Book Company, 1974

16. Tung C. C., On Wirtinger derivations, the adjoint of the operator 9, and applications, Izv. Math., 2018, 82(6),
1239-1264

17.  Tutschke W., Interactions between partial differential equations and generalized analytic functions, Cubo A
Math. J., 2004, 6(1), 281-292

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202502.1614.v1

	Introduction
	Realireal Vector Space VC
	The Field of Vectors V2

	The Main Results
	Integrals of Scalar and Vector Fields

	References

