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Article 
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and Their Infinite and Finite X-Orthogonal 

Reductions 

Gregory Natanson 

Independent Researcher, Silver Spring, MD 20904, USA; greg_natanson@yahoo.com or 

gregorynatanson@gmail.com 

Abstract: The paper advances the new technique for constructing the exceptional differential 

polynomial systems (X-DPSs) and their infinite and finite orthogonal subsets. First, using Wronskians 

of Jacobi polynomials (JPWs) with a common pair of the `indexes, we generate the Darboux-Crum 

nets of the rational canonical Sturm-Liouville equations (RCSLEs). It is shown that each RCSLE in 

question has four infinite sequences of quasi-rational solutions (q-RSs) such that the polynomial 

components from each sequence form a X-Jacobi DPS composed of simple pseudo-Wronskian 

polynomials (p-WPs). For each p-th order rational Darboux Crum transform of the Jacobi-reference 

(JRef) CSLE used as the starting point, we formulate two rational Sturm-Liouville problems (RSLPs) 

by imposing the Dirichlet boundary conditions on the solutions of the so-called ‘prime’ SLE at the 

ends of the intervals (-1,+1) or (+1,∞). Finally, we demonstrate that the polynomial components of the 

q-RSs representing the eigenfunctions of these two problems have the form of simple p-WPs 

composed of p Romanovski-Jacobi (R-Jacobi) polynomials with the same pair of the indexes and a 

single classical Jacobi polynomial or accordingly p classical Jacobi polynomials with the same pair of 

positive indexes and a single R-Jacobi polynomial. The common fundamentally important feature of 

all the simple p-WPs involved is that they do not vanish at the finite singular endpoints –the main 

reason of why they were selected for the current analysis in the first place. The discussion is 

accompanied by a sketch of the one-dimensional quantum-mechanical problems exactly solvable by 

the aforementioned infinite and finite EOP sequences. 

Keywords: rational Sturm-Liouville equation; pseudo-Wronskian polynomial; Darboux-Crum 

transformation; exceptional differential polynomial system; exceptional orthogonal polynomial 

system; exceptional orthogonal polynomials; Romanovski-Jacobi polynomials; Dirichlet problem 

MSC: 34B24 

 

1. Introduction 

Nearly two decades ago Gȯmez-Ullate, Kamran, and Milson [1,2] discovered new infinite 

sequences of orthogonal polynomial solutions of a second-order differential eigenequation with 

rational coefficients. Since each sequence either does not start from a constant or lacks the first-degree 

polynomial, the discovered polynomials are not covered by Bochner’s classical proof [3].  

However, as stressed by Kwon and Littlewood [4], Bochner himself “did not mention the 

orthogonality of the polynomial systems that he found. The problem of classifying all classical 

orthogonal polynomials was handled by many authors thereafter” based on his analysis of possible 

polynomial solutions of complex second-order differential eigenequations. This observation brought 

the author [5] to the concept of exceptional eigenpolynomials which satisfy a differential eigenequation 

of Bochner type but violate his theorem because each sequence either does not start from a constant 
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or lacks the first-degree polynomial. Thereby we refer to these sequences as complex exceptional 

differential polynomial systems (X-DPSs) with the term ‘DPS’ used in exactly the same sense it is 

done by Everitt et al [6,7] for the conventional sequences of eigenpolynomials obeying the Bochner 

theorem. 

It has been proven by Kwon and Littlejohn [4] that all the real field reductions of the complex 

DPSs constitute quasi-definite orthogonal polynomial sequences [8] and for this reason the cited 

authors refer to the latter as ‘OPSs’. However this is not true for the X-DPS and we thus preserve the 

term ‘X-OPS’ solely for the sequences formed by positively definite orthogonal polynomials. 

Compared with the rigorous mathematical analysis of the X-OPSs in [9,10], the concept of the X-

DPSs put forward by us in [7] represents the parallel direction dealing with the solvable rational 

CSLEs (RCSLEs) and related X-Bochner ordinary differential equations (ODEs), instead of the 

(generally irregular) exceptional Bochner (X-Bochner) operators in [10]. 

The interrelation between the two approaches is closely related to the dual use of the term 

’Darboux transformation’ (DT), following the discovery by Andrianov et al [11,12] that the renowned 

transformation of the Schrödinger equation initially suggested by Darboux [13] for the generic 

second-order canonical differential eigenequation (long before the birth of the quantum mechanics) 

is equivalent to its intertwining factorization. We refer the reader to a comprehensive overview of 

this issue in [14]. 

More recently Gȯmez-Ullate et al. [15] initiated the new direction in the theory of the rational 

Sturm-Liouville equations (RSLEs) by applying the intertwining factorization to the second-order 

differential eigenoperator. This operation was termed ’Darboux transformation’, based on the 

dualism existent in the particular case of the Schrödinger operator. This innovation followed by its 

extension to the Xm-Jacobi and Xm-Laguerre OPSs [9,16] laid the foundation for their rigorous theory 

more recently advanced to the more sophisticated level in [10,17]. 

The author (being accustomed [18] to the strict use of the mentioned term) took the different 

turn in the extension of the DTs to the SLEs, based on the nearly forgotten paper by Rudjak and 

Zakharov [19] in the late eighties. In Appendix A we outline the most essential features of the 

‘Rudjak-Zakhariev transformations’ (RZTs) applied to the generic canonical SLE (CSLE). The RZTs 

turn into the conventional DTs if both leading coefficient function and weigh are identically equal to 

1. 

We refer to a RZT of the rational CSLE (RCSLE) as ‘rational’ (RRZT) , if it uses a quasi-rational 

transformation function (q-RTF). In the recent papers [20] and [21] the author has demonstrated the 

power of the suggested approach by constructing X1- and respectively Xm-Jacobi DPSs and then 

extracting from them infinite and finite exceptional orthogonal polynomial (EOP) sequences. 

We take advantage of Schulze-Halberg’s formalism for the so-called ‘foreign auxiliary equations’ 

[22] to generalize the notion of the Darboux-Crum [13,23] transformations (DCTs) to the CSLEs. It is 

proven in Appendix B that sequential RZTs give rise to a DCT defined in such a way. We refer to a 

DCT of the RCSLE as ‘rational’ (RDCT) if it uses quasi-rational seed functions. 

In this paper we focus solely on the RDCTs using quasi-rational seed functions with polynomial 

components formed by Jacobi polynomials with a common pair of the indexes [24]. It was shown that 

the rational Darboux-Crum transform ( RDCT ) of the Jacobi-reference (JRef) CSLE, which is defined 

via (1)–(3) in Section 2, has four infinite sequences of quasi-rational solutions (q-RSs). While one of 

these sequences is formed by Jacobi polynomial Wronskians (JPWs), the polynomials components of 

three others are represented by the so-called [21] ‘simple’ pseudo-Wronskian polynomials ( WPs-p }. 

Namely, we refer to a pseudo-Wronskian of Jacobi polynomials [25] as ‘simple’ if only a single 

polynomial in the given set of Jacobi polynomials has at least one Jacobi index with a different sign 

(compared with the sign of the common index of the seed Jacobi polynomials). As proven in this 

paper, the simple WPs-p  remain finite at the singular points ±1 and as a results obey the X-Bochner 

differential equations with polynomial coefficients, forming a X-Jacobi DPS.  

From our perspective, this is the significant achievement, compared to the paper by Bonneux 

[26], who studied a more general manifold of the pseudo-Wronskians of Jacobi polynomials (referred 
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to as ‘generalized Jacobi polynomials’), while completely skipping the discussion of exceptional 

Jacobi operators [9,10] -- the X-Bochner differential equations in the framework of this paper. Let us 

remind the reader that the Bochner-type differential equation can be trivially converted to the 

eigenequation with rational coefficients. As a result, the polynomials in the given X-DPS represent 

the set of the eigenpolynomials for the corresponding exceptional Jacobi operator. Our 

understanding is that it is generally a more challenging problem to construct the latter operator 

(assuming that all of its singular points are regular) if the WPs-p  have a more complicated structure. 

To pinpoint infinite and finite EOP sequences in the given X-DPS, we [27] put forward the 

concept of the ‘prime’ SLEs (p-SLEs) chosen in such a way that the two characteristic exponents 

(ChExps) for the poles at the endpoints differ only by sign. As a result, the energy spectrum of the 

given Sturm-Liouville problem can be obtained by solving the given p-SLE under the Dirichlet 

boundary conditions (DBCs). This in turn allows one to take advantage of the rigorous theorems 

proven in [28] for eigenfunctions of the generic SLE solved under the DBCs. As it has been already 

illustrated in [24] and illuminated more thoroughly here, the new approach allows one to treat in 

parallel both infinite and finite EOP sequences, as different orthogonal subsets of the same X-DPS. 

Before continuing our discussion, let us first point to the dubious use of the term ‘EOP’ in the 

literature, similar to the slang use of the term ‘orthogonal Jacobi polynomials’, instead of ‘classical 

Jacobi polynomials’, which disregards the existence of the finite orthogonal subsets formed by the 

Romanovski-Jacobi (R-Jacobi) polynomials [29–31]. Similarly, Gȯmez-Ullate, Milson et al. [9,10,32] 

use the term ‘EOPs’ as the synonym for ‘X-OPS’, with a few puzzling exceptions. For example, when 

referring to the studies on the EOPs in [32], the cited authors mentioned the papers [33,34], which 

deal solely with the problems solved by the finite EOP sequences. This is also true for Refs. [8,16,17] 

in [10]. The reference to the paper of Ho et al. [35] (and similarly to the study by Yadav et al. [36] on 

rationally extended Eckart potential) is misleading because the absolute majority of all the rational 

potentials examined in this paper are quantized by polynomials with degree-dependent indexes and 

therefore irrelevant to the subject. The only exception is the RDC sT of the hyperbolic Pöschl-Teller (h-

PT) potential, which are indeed quantized by finite EOP sequences. 

Similarly, Refs. [21,25,27,30,48,49] in their work with Grandati [37] are pointed to the rational 

extensions of the translationally shape-invariant potentials (TSIPs) of group B in Odake and Sasaki’s 

[38] TSIP classification scheme. The common feature of the potentials of this group is that the 

corresponding quasi-rational eigenfunctions are composed of Jacobi or Laguerre polynomials with 

degree-dependent indexes and as a results has nothing to do with the EOPs, contrary to the statement 

in [37]. We shall come back to this issue, while summarizing the paper results in Section 8.  

Let us also stress that our paper solely focuses on the infinite and finite EOP sequences which 

represent the so-called ‘standard examples’ in Durán‘s terms [39], with the absolute value of each 

Jacobi index being exactly the same for all the Jacobi polynomials forming the pseudo-Wronskian in 

question. 

2. Four Distinguished Infinite Sequences of q-RSs  

Let us start our analysis with the Jacobi-reference (JRef) CSLE 

2
o 2

o o2

d
I ; ] (1 ) [ ] [ ; ] 0

d
[

  
+   + −       = 

  

sgn     (1) 

with the single pole density function 

2

1
[ ] :

| 1|
 =

 −
        (2) 

and the reference polynomial fraction (RefPF) parameterized as follows: 
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2 2 2
o; o; o;o

o
2 2

1 1
I ; ]

4(1 ) 4(1 )
[



 

+ −

=

−  −  − 
  +

−  − 
     (3) 

2
o;

2 2

11 1

12(1 ) 4(1 )



 =

− 
= −

− −  − 
,   (4) 

where o; are the ExpDiffs for the poles at 1 and the energy reference point is chosen by the 

requirement that the ExpDiff for the singular point at infinity vanishes at zero energy, i. e., 

( )2 o
o

| |

1I ; ] .
4

[
→

  =lim     (5) 

The energy sign is chosen in such a way: 
2( ) (1 ) = − sgn sgn      (6) 

that the sought-for eigenvalues are positive (negative) when the Sturm-Liouville problem in question 

is formulated on the finite interval 1 1−     (or respectively on the positive infinite interval 

1    ). An analysis of solutions of the CSLE (1) on the negative infinite interval 1−   − can 

be skipped without loss of generality due to the symmetry of the RefPF (2) under reflection of its 

argument, accompanied by the interchange of the exponents differences (ExpDiffs) o;  for the 

CSLE poles at ±1.  

Let us now consider the gauge transformation 

o 0F[ ; ] : [ ; ] / [ ; ]  =         ,    (7) 

where  

1 1( (
2 2

1) 1)
0[ ; ]: (1 ) |1 |− + +  +

  = +  −    ( 1 1−    ).  (8) 

Keeping in mind that 

0 00
1 1

[ ; ] : [ ; ] / [ ; ]
2( 1) 2( 1)

•
− + +  +

   =      = +
+ −

ld ,   (9) 

coupled with (3), one finds 

2[ ; ] / [ ; ] [ ; ] [ ; ]
•• •

    =   +        ld ld    (10) 

2
o

o
2

( 1)
I ; ] ,

4(1 )
[ − + +  +

= −  −
− 

    (11) 

with dot standing for the derivative with respect to . i.e., the quasi-rational function (8) is the 

solution of the JRef CSLE at || equal to  

21
0 4

( ) ( 1)− + =  +  + .      (12) 

It then directly follows from the identity 

o 0
o0 2

( )
[ ; ; ] / [ ; ] I ; ] F[ ; ; ] F[ ; ; ]

1
[

•• ••  
       −  +   +   

−   


     

02 [ ; ] F[ ; ; ]
•

+      ld     (13) 

that the function (7) satisfies the Bochner-type ordinary differential equation (ODE) with the 

polynomial coefficients: 
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2
( , )2 21 |
1 42

d d
( 1) 2P ( ) ( 1) | F[ ; ] 0

dd

+ − 
−− +

 
 − +  +  +  +     = 

  

   (14) 

with the polynomial coefficients. It is essential that the resultant ODE is well-defined for any real 

values of the variable , including the border points | | 1− =  or | | 1+ = between the LP and LC 

regions (which require a special attention and were sidelined for this reason in our current 

discussion). The ODE (14) turns into the conventional Jacobi equation 

( , ) ( , ) ( , )2( 1)P ( ) 2P ( )P ( )m m1

•• •

+ − + − + −     
 −  +   +   (15) 

( , )
m( m 1)P ( ) 0m

+ − 
 +  + +  =+ −   

at the energies  

21( )m 4
| | ( 2m 1)+ − =  =  +  + + .     

 (16)  
In following [5,20,21], we say that the polynomials in question form the Jacobi DPS. 

Note that, in addition with the renowned polynomial solutions, the ODE (14) has 3 other infinite 

sequences of the q-RSs listed in Table 1 in [26] (or Table 2 in [17]). It is worth pointing out to the 

difference in our terminology, compared with that in {17,26]. Namely, we restrict the term 

‘eigenfunction’ only to a solution of a Sturm-Liouville problem (SLP), i.e., in our terms only the 

classical Jacobi polynomials constitute the eigenfunctions of the Sturm-Liouville differential 

expression ( ), assuming that the corresponding polynomial SLP (PSLP] is formulated on the interval 

(-1,+1), using the boundary conditions (10) in [9]. 

By choosing  

, , m k− + − +   +  +  −  for any positive integer k m   (17) 

(see [42, Chapter 6.72]), we assure that the Jacobi polynomial in question has exactly m simple zeros 

( ;m) l , i.e., using its monic form, 

( , )
m mP̂ ( ) [ ; ( ;m)]+ − 

 =     ,    (18) 

where by definition 

m

m
1

[ ; ] : [ ]
=

   = −  l
l

.    (19) 

It is crucial that the Jacobi indexes do not depend on the polynomial degree, in contrast with the 

general case [40,41]. This remarkable feature of the CSLE under consideration is the direct 

consequence of the fact that the density function (2) has only simple poles in the finite plane [25] and 

as a result the ExpDiffs for the CSLE poles at ±1 become energy-independent [1].  

We conclude that the JRef CSLE with the density function (2) has four infinite sequences of the 

q-RSs 

1 1( (
2 2

1) 1) ( , )
m m[ ; ] |1 | |1 | P ( )− + + − +  +  

   = +  −      (20) 

 o;(| | )  =      

at the energies (16), with the vector parameter   restricted to the one of the four quadrants for each 

sequence.  
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Each infinite sequence starts from the q-RS (8) with   restricted to the corresponding quadrant. 

Substituting (9) into the identity 

2[ ; ] / [ ; ] [ ; ] [ ; ]
•• •

       +        ld ld ,  (21) 

where the symbolic expression ld f[] denotes the logarithmic derivative of the function f[], we find 

that the function (8) is the solution of the Riccati equation 

2 o 0
0 0 2

( )
[ ; ] [ ; ] I ; ] 0

1
[

•  
   −    +   + =

− 
l d ld   (22) 

3. ‘Prime’ Forms of J-Ref CSLE on Finite and Infinite Intervals of 

Orthogonalization 

The gauge transformation 

1
2[ ; ] [ ] [ ; ]

−
   =    p p   ,   (23) 

with an arbitrarily chosen positive function [ ]p , converts the JRef CSLE (1) into the SLE of the 

generic form: 

2d d
[ ] [ ] (1 ) [ ] [ ; ] 0

d d
{ } −  + −       =

 
ppqp    sgn w , (24) 

with the weight 

[ ] : [ ] / [ ] =  p p w  .    (25) 

The PF representing the zero-energy free term is given by the following generic formula [42]:  

o[ ; ] [ ]I [ ; ] [ ]{ } =   + Ipq p p     (26) 

with 

21 1{f[ ]}: f [ ] / f[ ] f [ ]
4 2

• ••

 =   − I
 

   (27) 

and the sign of the sought-for spectral parameter  is dictated by the constraint (6). 

Let us choose the leading coefficient function in such a way: 

21 for 1 1,
[ ] [ ] :

1 for 1

 −  −    +


 =  = 
 −  


p p   (28) 

that the SLP of our interest can be formulated as the Dirichlet problem: 

j[ ; ] 0
→

   =lim    (29) 

at the ends of the given interval of orthogonalization 1=  or 1,− += =   . It has been 

proven in [28] that the eigenfunctions of this Dirichlet problem must be square-integrable: 

2
j

d [ ; ] [ ]
+

−





       w    (30) 

and mutually orthogonal: 
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j o j od [ ; ] [ ; ] [ ] 0 ( j j ),
+

−






       =    w   (31) 

with the weight  

:
1 1

2

1 for 1 1,
[ ] [ ]

(1 ) for 1.

=
 −


−    +


  = 

 +    


pw w   (32) 

Due to the very special choice of the leading coefficient function (28) for the ‘prime’ SLE (24), the 

two ChExps for each singular endpoint differ by sign, while having exactly the same absolute value, 

which assures [42] that each DBC unambiguously selects PFS near the given end. In other words, the 

DBCs (28) unequivocally determine the PFSs near the both singular ends of the given interval of 

orthogonalization. 

Substituting (28) into (27) gives [43]: 

2 1

11
4

(1 ) for 1 1,

( 1) for 1,

[ ]{ }

−

−

− −  +

−  




 = 



I p   (33) 

which shows the free-energy term of the prime SLE with the leading coefficient function (28) has 

simple poles in the finite plane. 

As discussed in Section 7, the concept of the prime SLEs allows one to select the sequences of the 

nodeless PFSs, which assure that the corresponding X-Bochner operators are regular inside the given 

interval of orthogonalization. This is one of the most important achievements of this paper. 

3.1. Dirichlet Problem on Interval (-1,+1) 

The crucial advantage of representing the conventional Jacobi equation in the prime SLE form is 

that the q-RS 

1 1
2 2 ( , )

j j
[[ ; ] (1 ) (1 ) P ( )− + + −   

   = +  −     (34) 

represents the PFS near the poles at 1  iff the corresponding Jacobi index  is positive. In 

particular, the q-RSs 

1 1
o; o;o; o;2 2

( , )
j o j
[[ ; ] (1 ) (1 ) P ( )+ −− +   

   = +  −    (-1<  < 1) (35) 

formed by the classical Jacobi polynomials with positive indexes necessarily satisfy the DBCs at 1  

and as a result constitute the eigenfunctions of the given Dirichlet problem. The orthogonality 

relations (30) thus turn into the conventional orthogonality relations for the classical Jacobi 

polynomials 

o; o; o; o;
1 ( , ) ( , )

m oj j
1

d P ( )P ( ) [ ; ] 0+ − + −
+    


−

     = W  ( j j )   (36) 

with the weight function 

m[ ; ] : (1 ) (1 )− + 
  = +  − W  for -1<  < 1.  (37) 

Since the jth+1-solution has exactly j zeros between -1 and +1 and the positive eigenvalues 

converges to 0 as the polynomial degree tends to infinity, the Dirichlet problem in question may not 

have any other eigenfunctions. 
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One still needs to prove that the q-RSs (34) form the complete set of the eigenfunctions of the 

given Dirichlet problem. This can be performed, for example, by converting the JRef CSLE (1) to the 

hypergeometric equation on the interval (0,+1) and then follow the arguments presented by the 

author [40] for the exactly solvable JRef CSLE with the properly chosen density function. 

On other hand, choosing 

1 12[ ; ]: (1 ) [ ; ] (1 ) (1 )− + +  +
 = −   = +  − p  W ,    (38) 

we come to the Sturm-Liouville form [44] of the Jacobi equation: 

( , )
j o j

d d
[ ; ] [ ; ] ) [ ; ] P ( ) 0.

d d
{ } + − 

 −  +    =
 

pp q  ( W   (39) 

It is crucial that the leading coefficient function (38) for 1  −  vanishes at the ends of the 

interval [-1,+1], which assures that the ‘generalized’ [45] Wronskian (g-W) of two classical Jacobi 

polynomials 

o; o;( , ) ( , )( , ) ( , )
j jj j

P ( ),P ( ) [ ; ]W P ( ),P ( )}{ }: {+ − + −+ − + −
      

     =pW p   (40) 

maxjfor 0 j j   

vanishes at ±1. 

Since our approach allows one to formulate the spectral problem only for positive values of the 

Jacobi indexes, this limitation restricts one’s ability to construct the X-Jacobi OPSs formed by the

RDC sT of the classical Jacobi polynomials with negative indexes, as it has already become clear 

[20,21] in the particular case of Xm-Jacobi OPSs. However, the certain advantage of our approach is 

that it allows one to treat in parallel the RSLPs for both intervals (-1,+1) and (1,∞) as seen from the 

simplest example discussed in next subsection. 

Our next step is first to consider all the q-RSs of the given prime SLE, which vanish at one of the 

endpoints of the infinite interval (-1, +1) and then select the subsets of the collected PFSs below the 

lowest eigenvalue. 

In following our olden study [18] on the Darboux transforms ( D sT ) of radial potentials, we use 

the letters a and b  to specify the PFS near the singular endpoints 1  (cases I and II in Quesne’s 

[46] commonly used classification scheme of q-RSs according to their behavior near the endpoints). 

We use the letters c and d  [18] to identify the nc  eigenfunctions and respectively all the q-RSs (34) 

not vanishing at both ends (case III in Quesne’s classification scheme). For the given SLP there is the 

one-to-one correlation between the labels =t a , ,b ,c d  and the sign  of the Jacobi indexes 

, as specified in Table 1. 

Re-writing the dispersion formula (16) for  =   as 

2
,m o; o;( 2m 1)( )  − +  =    − −       (41) 

Table 1. Correlation between labels t  and signs of Jacobi indexes. 

t   a  b  c  d  

- + + - - + + + + - 

We find the PFSs of types a or b  lie below the lowest eigenvalue 

2
,0 o; o;( 1)( ) − +  =  +  +c    (42) 

iff 
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o;m + + − =   ( o; =  )   (43) 

or 

o;m − − − =   ( o; ) =     (44) 

accordingly. 

It has been proven by us in [27] that the Jacobi polynomials do not have zeros between -1 and +1 

iff 

( )o; o;
1m

2 − − + +  −  +  −     (45) 

And 

m
m m

( ) 1 1− +−  +  + =  

m m m m
m 1 1 m 0− + − +− −  + =  + − −  ,  (46) 

where 
m

  is the rising factorial [48]. We come to (43) and (44) by choosing  

.+ − = −  

3.2. Dirichlet Problem on Interval (1,∞) 

Examination of the q-RSs 

1 1 1
o; o;o; o;2 2 2

( , )
j o; o; j
[[ ; , ] (1 ) ( 1) P ( )

− + −− +  − 
− +  −  = +  −   (47) 

reveals that they satisfy the DBCs at the both ends of the interval (1,∞) for 

o; o;
10 j ( , 1)

2 − +   − −    (48) 

and therefore represent the eigenfunctions of the RSLP in question, which brings us to the 

orthogonality relations  

o; o; o; o;( , ) ( , )
m oj j

1

d P ( )P ( ) [ ; ] 0+ − + −
  −  −

     = W  ( j j )  (49) 

with the weight function 

o; o;
m o[ ; ] : (1 ) ( 1)− +− 

  = +  −W  for  >1.   (50) 

One can easily verify that (49) is nothing but another form of the conventional orthogonality 

relations for the R-Jacobi polynomials 

( , ) ( , )
,j j

0

dz J (z)J (z) [z] 0


   
   =  (j ≠ j)   (51) 

with the weight function 

| |
, [z] : z (z 1) − 

  = +  for [1, )    (52) 

under constraint  > 0,  < 0, where we adopted Askey’s [49] definition of the R-Jacobi polynomials 

which, as proven by Chen and Srivastava [50], is equivalent to the elementary formula  

( , ) ( , )
n nJ (z) : P (2z 1) for 1, 2n 0
   

= +   −  +  ,  (53) 
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with 

1
2

z : ( 1)=  − .   (54) 

Note that we [5,20,21,24] (see also [51]) changed the symbol R for J to avoid the confusion with 

R-Routh (Romanovski/pseudo-Jacobi [30,31] polynomials denoted in the recent publications [51–55] 

by the same letter ‘R’.  

Our next step is to determine all the q-RSs vanishing at one of the endpoints of the infinite 

interval [+1, +∞) and then select the subsets of the collected PFSs below the lowest eigenvalue. To 

explicitly reveal the behavior of the Jacobi-seed (JS) q-RSs (54) near the singular endpoints in 

question, we [5,20,21,47] label them as indicated in Table 2 below, with  specifying either the 

decay (+) or growth (-) of the given JS at infinity.  

We underline the symbol t by tilde to indicate that the classification of the JS solutions is done 

on the infinite interval (1, ∞). We then mark the given symbol by prime if the polynomial components 

of the given sequence of the q-RSs do not include a constant. (Note that the ‘secondary’ sequences of 

such a type do not exist for the potentials with infinitely many discrete energy levels which were the 

focal point of Quesne’s analysis [46].) 

By definition 

m ,m ,m( )  ( )    −  t
   (55) 

Note that the PFSs of the series b may exist only if the SLE does not have the discrete energy 

spectrum. We thus need to consider the three sequences of the quasi-rational PFSs: two primary 

(starting from m=0) sequences a and b  as well as the infinite secondary sequence a  starting from 

m n .= c  

Table 2. Classification of JS solutions on the infinite interval (1, ∞) based on their asymptotic behavior near the 

endpoints. 

mt  − +                   m 

a   +   +  −           0 m    

a   −   +   −         maxm n j 1 = +c  

b   −   −  + 1
o; o;2

0 m ( 1)− +   +  −  

b   −  +   + 1
o; o;2

0 m ( 1)+ −   −  −  

c  −   +   +      max0 m j   

d  +   −   −   1
o; o;2

( 1) m+ − −  −     

d  −   −   −    1
o; o;2

m ( 1)− +  +  −  
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The primary sequence a  is formed by classical Jacobi polynomials and consequently may not 

have zeros between 1 and ∞. As expected, all the PFSs of this type lie at the energies 

,m ,m( )  ( ) + +   −  a    (56) 

below the lowest eigenvalue 

,0 ,0( )  ( ) + −   −  c    (57) 

The PFSs from the primary sequence b  at the energies 

,m,m ( )  ( ) −−   −  b    (58) 

for  

1
o; o;2

0 m ( 1)− +   +  −   (59) 

do not have real zeros larger than 1 iff 

,0 o; o;, 4( 1)( ) 0,( ) − ( ) =  − +    −  − −  − cb m mm  (60) 

i.e., iff  

o; o;0 1+ −     −m .  (61) 

Similarly the PFSs from the secondary sequence a  at the energies 

,m ,m( ) = ( )  + −   −  a   for m n c  62) 

do not have real zeros larger than 1 iff 

, ,0 o; o;4 ( 1) 0( ) − ( ) =   + −    −  −  + + a cm m m   (63) 

or, in other words, iff 

o; o; 1− +  −  −m . (64) 

4. RDCT of JRef SLE Using Seed Jacobi Polynomials with Common Pair of 

Indexes 

We call the DCT rational if it uses quasi-rational seed functions. In this Section we focus solely 

on the RDCTs using the seed functions (20) with the common Jacobi indexes  . Let us consider the 

RDCT using an arbitrary set of p seed functions, 

p 1 pM : m ,...,m= . 

Denoting the Jacobi polynomial Wronskian (JPW) as 

k 1,...,pp

( , ) ( , )
p m(M )

W [ | M ]: W P ( ){ }+ − + −

=

   
 = 

N
 (65) 

and substituting the Wronskian 

k 1,...,p p

( , )p
m p0 (M )

W [ ; ] [ ; ]W [ | M ]{ } + −
=

 
   =    

N
  (66) 

into (A18), we come to the RCSLE 

2
o 2

p p2

d
I [ ; |M ] (1 ) [ ] [ ; ; |M ] 0

d

  
+  + −       = 

  

 sgn    (67) 
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with the RefPF [22] 

o o 0
op

[ ; ]d
I [ ; |M ] I ; ] 2p [ ] p(p 2) [ ]

d [ ]
[ { }

  
 =  +  − − 

 
J 

ld
 



p

( , )
p(M )

W [ | M ]
d

2 [ ] .
d [ ]

+ − 


+ 
 

N
ld




 (68) 

Let us now show that the first three summands can be then re-arranged as 

o o 0
o

[ ; ]d
I ; p1] I ; ] 2p [ ]

d [ ]
[ [

  
 + =  + 

 
 

ld



      (69) 

p

( , )
p(M ) 2

W [ | M ]
d

2 [ ] p(p 2) |1 |
d [ ]

{ }

+ − 


+  − − − 
 

ld
N

J


 

and then prove that 

p

( , )o o
p p(M )

I [ ; |M ] I ; p1] 2 W [ | M ][
•

+ − 
 =  + +   ld

N
 

p

( , )
p(M )

[ ] W [ | M ]+ − 
−  ld ld

N
 (70) 

which represents one of the most important results of this section. To prove (70), we first re-write the 

second summand in (69) as 

0
0 0

[ ; ]d
2p [ ] 2p [ ; ] p [ ] [ ; ]

d [ ]

•  
 =    −    

 

ld
ld ld ld 


.  (71) 

Taking into account (9), coupled with 

1 1
[ ] ,

1 1
 = − −

+ −
ld    (72) 

gives 

0
0

[ ; ]d
2p [ ] 2p [ ; ] p [ ] [ ; ]

d [ ]

•  
 =   −    

 
 

ld
ld ld ld 


   (73) 

2 2 2

p( 1) p( 1) p( 2)

2( 1) 2( 1) 2( 1)

+ − − + +  +  +  +
= − − +

− +  −
.  (74) 

Combining (74) with the definition (3) of the RefPF of the JRef CSLE (1), and also taking into 

account that [  ] 

2
2 2 2

1 1 1
|1 |

4( 1) 4( 1) 2( 1)
{ }−  = + −

− +  −
J ,  (75) 
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one can directly confirm that the three distinguished singularities appearing in the right-hand side of 

(74) can be grouped as follows 

o o0
o

[ ; ]d
2p [ ] I ; p1] I ; ]

d [ ]
[ [

  
 =  + −  +

 
 

ld



       (76) 

2p(p 2) |1 |{ }+ − − J . 

Before proceeding with the further analysis of the RefPF (66), let us first illuminate some 

remarkable features of the JPW (65). 

Theorem 1: The JPW (65) is finite at the singular point 1  if 0.   

Proof. Let us examine more thoroughly the TF (A19) for the rational RZT (RRZT) applied to the 

RCSLE (67). Making use of (66), one can easily verify that it has the following quasi-rational form 

p 1

p 1 1 p
2

p

( , )
0 p 1(M )

m p
( , )

p(M )

[ ; ]W [ | M ]

[ ; |M ]

[ ]W [ | M ]

+ −

+

+
+ −

 
+

 

   

  =

 

N

N




,  (77) 

i.e., taking into account (2) and (8), 

p 1

p 1

p

( , )
0 p 1(M )

m p ( , )
p(M )

[ ; p1]W [ | M ]

[ ; |M ]
W [ | M ]

+ −

+

+ + −

 
+

 

   + 

  =


N

N

 . (78) 

If we assume that the JPW in the denominator of the PF on the right remains finite at 1 , then, 

according to (70), the power exponent of ±1 coincides with one of the two characteristic exponents 

for the pole of the RCSLE (67) at 1 . The TF (78) thus represents the PFS near the pole in question iff 

0.   This implies that that the numerator of the PF may not have the zero at 1 . This completes 

the proof of Theorem 1, since it necessarily holds for p=1 due to the constraint (17) imposed on the 

seed Jacobi polynomial. □ 

Corollary 1: The Wronskian of classical Jacobi polynomials with positive indexes may not have zeros at 1 .  

As illuminated in subsection 7.2, this corollary plays the crucial role in the theory of the TRDC s

of the R-Jacobi polynomials using the quasi-rational seed functions formed by the classical Jacobi 

polynomials with positive indexes. 

Preposition 1: The JPW does not generally have zeros at 1 , regardless of the sign of .  

Preposition 2: The JPWs in the numerator and denominator of the fraction (77) do not have common zeros. 

Theorem 2: The JPW in the numerator of the fraction (77) has only simple zeros, assuming that both 

Prepositions 1 and 2 hold. 

Proof. Based on our prepositions, any zero of the JPW in the numerator of the fraction (77) is a 

regular point of the RCSLE (67) and therefore the polynomial in question may not have zeros of 

order higher than 1. (Otherwise the solution (77) of the RCSLE (67)  and its first derivative would 

vanish at the same point which is possible only for the trivial solution identically equal to zero). □  

Let 
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pp p=1,..., (M )( | M ) : ( | M ) =  N l  (79) 

be the p(M )N zeros of the JPW (65), i.e., 

pp

( , ) ( )
p p(M )(M )

Ŵ [ | M ] [ ; ( |M )]:+ − 
 =    =N

NN
 

p(M )

p
1

[ ( |M )]
=

 − 

N

  (80) 

Re-writing (72) as 

2

2
[ ]

1


 = −

 −
ld  (81) 

and taking into account that 

m

m 2
1

1
Q[ ; ] : [ ; ]

[ ]

•

=

  =    = −
 − 


l l

ld ,  (82) 

we can decompose the RefPF (70) as follows 

p(M )
o o

p 2
1 p

2
I [ ; |M ] I ; p1]

[ ( |M )]
[

=

 =  + − 
 − 

 
l

N

 (83) 

p(M )

2
p1

2 1

( |M )1 =


+ 

 −  −

N

l
, 

in agreement with (87) in [21] for p=1. 

The indicial equation for the extraneous poles of the RCSLE (67) has exactly the same form 

𝜌(𝜌-1) -2 = 0.    84) 

The equation has two roots -1 and 2, which implies that the JPW in the numerator of the fraction 

(78) may have a zero of the third order [56]. However, as it becomes obvious from the analysis 

presented in [56], this is a relatively exotic case which will be simply disregarded here.   

5. Four Infinite Sequences of q-RSs with Polynomial Components Represented 

by Simple sp WP-  

The RCSLE (67) has 4 infinite sequences of the q-RSs: 

k 1,...,p

1 p
2

k 1,...,p

m j

, j p

m

W{ [ ; ], [ ; ]}
[ ; |M ]

[ ]W{ [ ; ]}

=

−

=



     
  =

   




  (85) 

with  

 =     (86) 

and 
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o;| | =  .    (87) 

The q-RSs (78) represent the simplest case (  = + ) when the polynomial components turn into 

the JPWs. 

Theorem 3: The polynomial components of the q-RSs (74) can be represented in the form of simple p WPs-  

defined via (92) below. 

Proof. In following [26}, let us first introduce the eigenfunctions of the Jacobi operator: 

( , )
j

[ ; | j] : [ ; | ]P ( )+ −  
  =   f f    , (88) 

where 

0 0[ ; | ] : [ ; ] / [ ; ]   =       f    ,   (89) 

1
2

(1 1)
|1 |  




− 

=

= −  ,   (90) 

(see Table 1 in [26] for details). We can then re-write the Wronskian in the numerator of the PF (85) 

as 

k 1,...,pm jW{ [ ; ], [ ; ]}
=

       (91) 

k 1,...,p

( , )p 1
0 m

[ ; ] W P ( ), [ ; j]{ }.+ −

=

 +
=         f  

Making use of Jacobi polynomial relations (92) in [25], we can represent the derivatives of 

functions (4.1) in in the explicitly quasi-rational form:  

j;

p ( )
n (p )

d
[ ; | j] [ ; | 0] [ ] [ ; | ]

d 

−
−

 =      
      
l

l
ll

f f P  (92) 

with the polynomial components:  

1
2

j;| 2

( , )( ) ( )
, jn ( ) j

[ ; | ] : d ( ) [ ] P ( ),+ + − −



  +  + 
 − 

  =   
  −  

  
l

l ll l k
k

P  (93) 

where 

( )
1

2

1
2

1 1
[ ] : (1 ) 




−


=

  = − − 
,  (94) 

1 1+ − +     = ,   (95) 

and 

j;|n ( ) j 1 ( 11)(1 )
2 = − + + −    k k . (96) 

The proportionality factors in (93) are determined by the elementary formulas [25]: 
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2

( )
, j

j 1 if ,

( 2) j 1 if ,

d ( )

( 1) j if .

j if ,

−

+

+ −



−

   +  + + = + +


 − + =− −


 = 
 − + =− +



+  = + −














l

l

l

l

l

l

l

l

   (97) 

The listed formulas can be directly verified by expressing the hypergeometric functions in terms 

of Jacobi polynomials in 2.1(20), 2.1(27), 2.1(24), and 2.1(22) in [57], with a = -m. While all four Jacobi 

polynomial relations (92), (93), and (97) were obtained in [25] based on the translational shape-

invariance of the trigonometric Pöschl-Teller (t-PT) potential, we prefer to refer the reader to the more 

general relations 2.1(7), 2.1(9), 2.1(8), and 2.1(22) for hypergeometric functions in [57] as the starting 

point for validating (92). The cited relations are valis are within a broader range of the parameters, 

beyond the limits of the Liouville transformations implicitly used in [18]. 

Substituting the derivatives (92) into the Wronskian in the right-hand side of (86), we can 

represent the quasi-rational form 

1
2

pk 1,...,p

( , ) p
p( M ; j)m

W P ( ), [ ; j] [ ; | ] [ ] [ ; M ; j],{ }+ −

=

  −


         = − 
       NPf f   (98) 

with the polynomial component represented by the polynomial determinant: 

p p( M ; j)[ ; M ; j] :


 =   NP     (99) 

( , ) ( , ) ( , )p
jm m 11 2

2
( , ) ( , ) (1)
m m n (p 1)1 2 j;|

p p
( , ) ( , ) (p)
m m n (0)p p1 2 j;|

P ( ) P ( ) [ ]P ( )

d d
P ( ) P ( ) ... [ ; | ]

d d

d d
P ( ) P ( ) ... [ ; | ]

d d

...

... .

      + − + − + −



   + − + −
−

   + − + −



    

   
 

   
 

− 





 

 

P

P

 

Keeping in mind that 

j;|n (0) j 1
2 = −     ,   (100) 

one verify that the polynomial determinant (99) has the degree not larger than 

p p( M ; j) ( M )+ j 1
2

=  −     N N ,  (101) 

where [58] 

p

kp
k 1

1(M ) m p(p 1).
2

=

= − −N   (102) 

One can easily verify (101) using the cofactor expansion of the determinant (99) in terms of the (

p − l , p+1) minors ( l =0,…,p). The first term in the sum brings us directly to (101), while the degree 

of the( p+1 l− )-th column element and degree of the corresponding cofactor polynomial minor then 

increases and respectively decreases by 1 as l  grows. confirming that all the polynomial summands 

have the common degree. As stressed by  Bonneux [26], the determinant degree can be smaller for 

some particular values of the Jacobi indexes. Here we assume that the degree of the polynomial 
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determinant (99) is equal exactly to (101) and we refer the refer the reader to [26] for the discussion 

of the necessary constraints on the Jacobi indexes. 

The numerator of the fraction (85) thus takes the form: 

k 1,...,p

p p
m j 00

W{ [ ; ], [ ; ]} [ ; ] [ ] [ ; ]
=

−


       =          

p p( M )+ j[ ; M ; j]


  NP      (103) 

Making use of the identity 

p
0 0[ ] [ ; ] [ ; p ( 1 1)]

−


      =    +  −  , (104) 

we can then re-write (103) as  

k 1,...,p

p
m j 00

W{ [ ; ], [ ; ]} [ ; ] [ ; p( 1 1)]
=

       =       +  −  

p p( M )+ j[ ; M ; j]


  NP     ,(105) 

so the fraction takes the sought-for form: 

p

p

p( M )+ j

, j p 0 ( , )
p(M )

[ ; M ; j]

[ ; |M ] [ ; ( p1)]
W [ | M ]+ −


  

 
  =     +



N

N

P    

  , (106) 

which completes the proof. □ Setting p = 1, 1M m=  brings us to (125) in [21], as expected. 

In particular, if we choose  = − +  , ,+ − =   =  i.e., 

[ ; , | ] (1 )− −  = + f − +  (107) 

and 

[ ] 1  = + − + ,  (108) 

we come to the generalized Jacobi polynomials (2.7) in [26], with p1r = and 12r = . 

It is however crucial for our discussion that the power exponents of  1  for the weight function 

of the PF in the right-hand side of (106) coincides with one of the characteristic exponents for the pole 

of the CSLE (63) at 1 , This is the unique feature of the simple sp WP-  which by definition have 

only one column formed by polynomials (88). As illuminated in Section 6, it assures that the sp WP-  

in question form a X-DPS. 

To illustrate the above assertion, let us represent the Wronskian (103) in the alternative p W-  

form: 

k 1,2

4 2
m j 0 0

W{ [ ; ], [ ; ]} [ ] [ ; ] [ ; ]
=

−


       =            (109) 

1 2( m ,m j) 1 2[ ; j;m ,m ]      NP , 

where 

1 2( m ,m j) 1 2[ ; j;m ,m ]:  =    NP   (110) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 March 2025 doi:10.20944/preprints202503.1653.v1

https://doi.org/10.20944/preprints202503.1653.v1


 18 of 37 

 

1 2

1 2

1 2

( , ) ( , ) ( , )2 2
jm m

( , )(1) (1)
jm m

2 2 2 2

( , )(2) (2)
jm m

2 2 2 2

[ ]P ( ) [ ]P ( ) P ( )

[ ; | ] [ ; | ] P ( )

[ ; | ] [ ; | ] P ( )

•

••

+ − + − + −

+ −

+ − + −

+ −

+ − + −

      

 

  
   − − − −   

  
   − − − −   

      

   

   

P P

P P

 

   

   

 

(the generalized Jacobi polynomial (2.7) in {26], with , ,+ − =   = − 1,1r = and 2).2r =  

Comparing (109) with (103) gives  

1 2 p

2
( m ,m j) 1 2 p( M ; j)[ ; j;m ,m ] [ ] [ ; M ; j], 

 =      
     N NP P  (111) 

i.e., the sp WP-  (108) vanish at least at one of the points 1 , other than the trivial case  = + + , 

when the polynomials in question turn into the polynomial Wronskians. This is the main reason why 

we restrict our analysis solely to the simple sp WP- , which do remain finite at both points, at least if 

the ExpDiffs for the poles of the RCSLE (67) are not positive integers.  

6. X-Jacobi DPSs Composed of Simple p WP- s  

Our next step is to prove that both JPW (65) and all three p WPs-  in the numerator of the fraction 

in the right-hand side of (106) for  + +  satisfy the Bochner-type ODEs. 

Theorem 4: The polynomials (99) satisfy the Bochner-type ODEs and therefore form four distinguished X-

Jacobi DPSs. 

Proof: Let us consider the four alternative gauge transformations 

o p 0 o p o p[ ; ; |M ] [ ; |M ; ] F[ ; ; |M ; ]   =            (112) 

with the gauge function 

p

0
0 p ( , )

p(M )

[ ; ( p1)]
[ ; |M ; ]

W [ | M ]+ − 

    +
  =




 

N

  (113) 

satisfying the RCSLE 

o 0
p p 0 p0 0 2

( p 1)
[ ; |M ; ] I [ ; |M ] [ ; |M ; ] 0

1

••    +  
  +  −   =  

 −  


      (114) 

with the RefPF 

o o ( )
p p0

I [ ; |M ]: I [ ; p ] 2Q[ ; ( |M )] =  +    +  N
 (115) 

p

( , )
0 p(M )

2 [ ; ( p1)] W [ | M ]+ − 
+     + ld ld

N
, 

where [47] 

2
1

m m2

d1Q[ ; ] : [ ; ] [ ; ]
2

d

−  = −      


  (116) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 March 2025 doi:10.20944/preprints202503.1653.v1

https://doi.org/10.20944/preprints202503.1653.v1


 19 of 37 

 

2

2
m m

m m

[ ; ][ ; ]1
2 [ ; ] [ ; ]

•••

    
= −

     
.  (117) 

The PF (116) is related to the Quesne PF [59–61] 

2

2
m m

)
mm

[ ; ][ ; ]
Q[ ; ] :

[ ; ][ ; ]

•••

    
  = −

    
  (118) 

in the elementary fashion: 

m

m

[ ; ]
Q[ ; ] Q[ ; ]

2 [ ; ]

••

  
  =   +

  
  (119) 

m m

2
m1

1 [ ; ]

2 [ ; ][ ]

••

=

  
= − +

   − l l

.  (120) 

In our earlier works [47,62] we adopted the Quesne PF in the form (118) (see, i.g., (39) in [61], 

with 
( )


 g standing for m[ ; ]    here), overlooking its alternative form (82) without any mixed 

simple poles at 1,...,ml= . 

Substituting (112) into the RCSLE (67) and taking advantage of (114), coupled with (115) and 

(120), we come to the second-order ODE:   

pp p o p(M )( |M ; ) C [ M ] F[ ; ; |M ] 0{ } +     =        ND , (121) 

where p( |M ; )  D is an abbreviated notation for the second-order differential operator in : 

p

2
2

p p(M ) 2

d
( |M ; ) ( 1) [ ; ( | M )]

d
 =  −   


  (N)

ND   (122) 

p p(M ) 1
d

2B ; | M ;
d

[ ]++  


 N  

with the polynomial coefficient function of the first derivative 

p p

2
p p(M ) 1 (M )B ; | M ; : ( 1) [ ; ( | M )][ ]+  =  −     (N)

N N
 

p(M )

p1

( +1) 1 1

2( 1) ( ;M )

 

 = =

 
  +  − 

  −  − 
 

ll

N
. (123) 

The -dependent polynomial of degree m representing the free term of the ODE (121) is linear 

in the energy: 

p p pp p p( ) (M ) (M )C [ ; |M ] C [ |M ] [ ; ( | M )]  =  −        M
(N)

N N N , (124) 

with the energy-independent part represented by the following polynomial of degree p(M )N : 

p

( )
p 0 p( )C [ |M ] ( p 1) ( |M ) +   +      M

N
N  
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 
p

( , )2 o o
p p p0(M )

= ( 1)W [ | M ] I [ ; |M ] I [ ; |M ]+ − 
 −   − 

N
    (125) 

p

( 1, 1) ( , )
p1 (M )

2 P ( ) W [ | M ]
•

+ + − − + −  +  +    = −  
  

 

N
 

p

( , )2
p(M )

( 1) W [ | M ]
••

+ − 
−  − 

N
. (126) 

Making use of the Jacobi equation (15), one can verify that (121) turns into (151) in [121] for p=1, 

1M m.=  
 

7. ‘Prime’ Forms of RDC sT of J-Ref CSLE on Finite and Infinite Intervals of 

Orthogonalization 

Starting from this point, we discuss only the admissible sets p 1 p,...,=M m m  of JS solutions 

assuring that the corresponding JPWs do not have nodes within the given interval of 

orthogonalization for the specified ranges of the parameters ,− +  .   

Using the gauge transformations 

1
22

p p[ ; | ] (1 ) [ ; | ]
−

   = −     M M  (127) 

and 

1
2

p p[ ; | ] ( 1) [ ; | ]
−

   = −    M M , (128) 

we then convert the RCSLE (67) to its prime forms on the intervals ( 1, 1)− + and ( 1, )+  : 

2
p p

d d
(1 ) [ | ] [ ; | ] 0

d d
{ }−  −  +     =

   M Mq    (129) 

for ( 1, 1) − +  

and 

p p
d d

( 1) [ | ] [ ; | ] 0
d d 1

{ }
− −  +    =

  + M Mq      (130) 

for (1, )  , 

with the leading coefficient function and weight function defined via to (28) and (32) respectively. 

In this paper we only discuss the seed solutions represented by the PFSs near the same endpoint 

under condition that they lie below the lowest eigenvalue. Since the RDCTs using the seed functions 

of types + - and - + are specified by same series of the Maya diagrams [25], any RCSLE using an 

arbitrary combination of these seed functions can be alternatively obtained by considering only 

infinitely many combinations p 1 2 p: {m ,m ,...,m }M = of the PFSs of the same type + - or - + [25,63]. In 

particular, the Jacobi polynomial of order m with the indexes   can be represented as the 

Wronskian of Jacobi polynomials of the sequential degrees m=1,...,m  with the indexes − . 

Here we consider only the Wronskian net of the Jacobi polynomials with the indexes 
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o; =   for ||<1 and o =   for  > 1, (131) 

while  

 =   (  = − + ) in both cases.  (132) 

We will refer to the X-Jacobi DPS constructed using p seed Jacobi polynomials of the degrees 

1 2 pm ,m ,...,m  as being of series J1(p). The selection (131)-(132) for the WEOP-p sequences under 

consideration is consistent with (2.9) in [26], with o; ,+ =  o;− =   However, it is worth noting 

that the net of X-Jacobi OPSs of our choice starts from the Xm-Jacobi OPSs of series J1, but not with 

the traditional Xm-Jacobi OPSs [9,16], referred to in our works as being of series J2.  

Note that Gȯmez-Ullate et al. [9,16] took advantage of the Klein formulas [64] to select all the Jacobi 

polynomials without zeros between -1 and +1 under constraint 

1 0, 1 2+ − = − −   =  −  − , (133) 

whereas our approach allows us to identify only the bulk part of those polynomials with one of the 

first Jacobi indexes restricted solely to positive values. However, to our knowledge there is no theory 

extending Klein’s renowned results to the JPWs. This is why we consider Preposition 2 as one of the 

most significant achievements of this paper. 

Coming back to our discussion, we conclude that the chain of the sequential RRZTs  of the 

prime SLE (129) specified by the Jacobi indexes (131) must be truncated when the ExpDiff for the pole 

at -1 reaches its minimum value 

max
o;
(p )

maxo;0 * p 1− −  =  −    (134) 

with 

max o;p − =   . (135) 

Below we always assume that p in (129) does not exceed (135), without explicitly mentioning 

this restriction. 

Examination of the q-RS  

p

p

p( ) j

, j P 0 ( , )
p( )

[ ; ; j]

[ ; | ] [ ; p, p]
W [ | ]+ −

+

−+ − +  



  =   − −  + 


  − + 


M

M

M
M

M

N

N

P
  (136) 

for maxj j0  , 
where 

1 1
2 2

1 1(
2 2

0
1)

(1 ) (1 ) for | | 1,
[ ; , ]

(1 ) ( 1) for 1,

− +

− +

 

− +
 + 


+  −   

    = 


+   −  


 (137) 

reveals that it obeys the DBCs at the endpoints ±1 and therefore represents the eigenfunction of the 

prime SLE (129). Consequently it is the PFS of this SLE near the singular endpoint +1 at the energy 

j( )  . The latter assertion also valid for the branch of this q-RS on the interval (1,∞) with the energy 

j j( ) ( )   = −  . 
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Furthermore, since the functions 0 o, o;[ ; , ]− +  −   and 0 o, o;[ ; p, p]− +  − −  +  have exactly 

the same asymptotics at infinity and the eigenfunction (47) of the prime SLE (24) on the interval (+1,∞) 

vanishes at the upper end by definition, we conclude that the q-RS (136) obeys the DBC at infinity 

and therefore represents the eigenfunction of the corresponding prime SLE (130) at the energy (j ) 

. 

Theorem 5. A PFS near one of the endpoints ±1 may not have zeros inside the given interval of 

orthogonalization if it lies below the lowest eigenvalue of the given Sturm-Liouville problem. 

Proof: For the Sturm-Liouville problem on the interval of orthogonalization (-1,+1) the formulated 

assertion directly follows from the Sturm comparison theorem (see, i.g., Theorem 3.1 in Section XI 

of Hartman’s monograph [65]), keeping in mind that the logarithmic derivatives for the all PFSs 

(including the eigenfunction in question) have the same asymptotics near the pole in question: 

(p)
o;

2
o; p

1
(1 ) [ , ; | ] * −− +

→−

 −     = − 
  

M  − +lim ld ,

   (138) 

and as a result the condition (3.4) in [65] turns into the identity. To apply the Sturm Theorem to the 

PFSs near the upper end +1, one simply needs to replace  for the reflected argument -.  

It is a more challenging problem to satisfy Sturm’s constraint for the logarithmic derivatives in 

the limit →∞ and we refer the reader to the proof of this assertion given in Appendix B in [21] for 

the PFSs of the prime SLE (24) solved under the DBCs at the ends of the interval (+1,∞). The arguments 

presented in support of this proof can be equally applied to the prime SLE (130) without any 

modification. □ 

Theorem 6. If the sequence of the eigenfunctions (136) starts from a nodeless eigenfunction, then the set of 

the seed functions p 1+M  is admissible (assuming that the latter is true for pM ).  

Proof: Let us consider the q-RS 

p 1

p 1

p

( , )
p 1( )

,m p 0 o; o; ( , )
p( )

W [ | ]

[ ; | ] [ ; p, p]
W [ | ]

+ −

+

+ + −

 
+

−+ − +  



  =   − +  + 


N

N


M

M

M

M
M

 (139) 

used as the TF for the RRZT converting the prime SLEs (129) and (130) into the next SLE in the given 

chain of the TRDC s of the prime SLE (24) on the intervals (-1,+1) and (+1,∞) accordingly. Repeating 

the arguments presented by us for the q-RS (136), we assert that it is the PFS near the pole at +1. Since 

the eigenfunction (136) is nodeless for j = 0 and the energy of the (p+1)-th seed solution is smaller than 

the eigenvalue in question, the PFS may not have zeros inside the given interval of orthogonalization 

and therefore this must be also true for the numerator of the PF in the right-hand side (139). □ 

The proven theorem represents the very important milestone in our analysis of the admissible 

JPWs. The concluding step is to confirm that the WEOP-p starting the given sequence does not have 

zeros inside the interval of orthogonalization. It is proven in Appendix D that the TRDC s in question 

constitute the isospectral net of the solvable RSLPs, in particular assuring that the necessary 

prerequisite for Theorem 5 to be automatically hold. 

It has been proven in [28] that the eigenfunctions of the generic SLE solved under the DBCs must 

be mutually orthogonal with the equation weight function on the interval in question. Therefore 

, j p , j p od [ ; | ] [ ; | ] [ ] 0
+

−






       =   c cM M− + − + w   (140) 

max maxj , p p .for 0 j j    
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Consequently, the polynomial components of the quasi-rational eigenfunctions (136) must be 

mutually orthogonal with the weight function 

p

2
0

p o( , )
p(M )

[ ; p, p ]
[ ; | ] : [ ]

W [ | ]+ −

− +

 

  − − +
 = 


M

M
N

 
 − + 

− +
W w  ( maxp p ) (141) 

for || < 1 or  > 1; 

namely, 

p p
p p p( ; j) ( ; j )

d [ ; ; j] [ ; ; j ] [ ; | ] 0
+

−



 


       = M MM M M
N N
P P

 
  − +   − +  − +W  

maxj jfor 0 j   , maxp p . (142) 

In the following two subsections we discuss separately the X-Jacobi OPSs conventionally defined 

on the interval (-1,+1) and the RDC sT of the R-Jacobi polynomials orthogonal on the infinite interval 

(+1,∞). 
 

7.1. Infinite Net of Isospectral SLPs Solved by Simple p W- Ts  of Classical Jacobi Polynomials 

Let us set o; o;,− += −   , o =  , o;maxp − =   , and maxj =  . This brings us to the 

net of the X-Jacobi OPSs composed of the WEOPs-p  

p
o p( )+ j

[ ; ; j] : =
N
P   − +M M        (143) 

( , ) ( , ) ( , )po; o; o; o; o; o;
jm m1 2

( , ) ( , ) (1)o; o; o; o;
oj p 1m m1 2

p p( , ) ( , ) (p)o; o; o; o;
ojm mp p1 2

P ( ) P ( ) [ ]P ( )

d d
P ( ) P ( ) ... [ ; | ]

d d

d d
P ( ) P ( ) ... [ ; | ]

d d

...

... .

 −  −  + − + − + −

 −  −+ − + −
+ −

 −  −+ − + −

    

  
 

  
 



 − +

 − +

P

P

 

Note that the first p elements of the first row are represented by the R-Jacobi polynomials while 

the last element is the classical Jacobi polynomial multiplied by a constant. The weight function 

(143) takes the form: 

o; o;

p

2
o; o;0

o; o; p 2
( , )

p( )

[ ; p, p ]
[ ; , | ] :

W [ | ]+ −

− +
− +

 −

  − − +
 −  =

 
 

 N

 
− +

− +
M

M

M

W   (144) 

for −1<  < 1 ( o;p −    ), 

where the Wronskian in the denominator is formed by orthogonal R-Jacobi polynomials and 

therefore is the subject of the general conjectures formulated in [58] for zeros of the Wronskians of 

orthogonal polynomials inside the normalization interval (real zeros larger than 1 in our case). 

Preposition 2 in Section 5 assures that the polynomial denominator of the fraction (144) remains finite 

inside the interval (-1,+1). This was the main rationale for us to consider only the seed polynomials 

with common pairs of Jacobi indexes. 
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On other hand, we could not pinpoint the similar proof for the polynomial denominator of the 

quasi-rational weight function (2.36) in [26]. From our point of view, the definition of the X-Jacobi 

OPS is incomplete until one can assure that the weight function in question does not have poles in 

the interval (-1,+1). 

Another important new element of our approach is the proof that polynomials from each X-

Jacobi OPS obey the Bochner-type ODE (121) with the regular singularities.. This was the central 

reason for restricting our analysis solely to q-RSs with the polynomial components represented by 

the simple p W Ps- T . 

In particular, based on Theorem 2.1 in [58] (summarizing Karlin and Szego’s results [66]), we 

assert that any Wronskian of an even number of the R-Jacobi polynomials of sequential degrees may 

have only negative real zeros smaller than -1. This is one of rare cases when Preposition 2 above has 

been accurately confirmed. 

7.2. Infinite Net of Isospectral SLPs Solved by RDC sT  of R-Jacobi Polynomials 

An extension of Theorem 5 to the infinite interval (1,∞) is complicated by the mentioned 

constraint on the ratio of the logarithmic derivatives of two solutions as the prerequisite for the Sturm 

comparison theorem. We refer the reader to Appendix B in [21] for the rigorous arguments in support 

of Theorem 5 for the interval (1,∞). 

Below w focus solely on the RDCTs using the infinitely many PFS of type a  as the seed 

functions, i.e., by definition o=  and maxp =  . The corresponding eigenfunctions of the prime 

SLE (24) solved under the DBCs on the interval (+1, ∞) are care formed by the R-Jacobi polynomials 

with the Jacobi indexes o; o;, ,− + − =   , and their total number is equal to  

maxj o;n 1= − + =  c .   (145) 

This brings us to the net of the finite EOP sequences composed of the p-PWs  

p
o; o; p( )+ j

[ ; , ; j] :− + −  =
N
P  − +M M   (146) 

( , ) ( , ) ( , )po; o; o; o; o; o;
jm m1 2

( , ) ( , ) (1)o; o; o; o;
o; o;j p 1m m1 2

p p( , ) ( , ) (p)o; o; o; o;
o; o;jm mp p1 2

P ( ) P ( ) [ ]P (

d d
P ( ) P ( ) ... [ ; , | ]

d d

d d
P ( ) P ( ) ... [ ; , | ]

d d

...

...

     −+ − + − + −

   + − + −
− ++ −

   + − + −
− +

    

   − 
 

   − 
 



− +

− +

P

P

)

.  

This time the first p elements of the first row are represented by the classical Jacobi polynomials 

with positive indexes while the last element is the the R-Jacobi polynomial multiplied by a constant. 

The weight function (141) takes the form: 

o; o;

p

2[ ; p]o; o;0[ ; | ] :o; o; p ( , )
[ | ]p( )

p,
,

W + −

  − − + − +
 − =− +  


M

M

M
N

− +

− +

 
 W  (147) 

for −1 <  < 1, 

where the Wronskian in the denominator is formed by the classical Jacobi polynomials with positive 

indexes.  
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Again, based on Theorem 2.1 in [58], we conclude that any Wronskian of an even number of the 

classical Jacobi polynomials of sequential degrees may have only negative real zeros smaller than -1. 

However, this particular example is of less importance, compared with that on the finite integral of 

orthogonalization, because Theorem 5 assures that the JPW composed of the seed polynomials in 

question has no zeros larger than 1, which constitutes the question of fundamental significance for 

this study. 

8. Discussion 

Let us first point to the most essential element of our RSLP formalism – the advanced technique 

for selecting the sequences of the admissible RRZTs, using PFRs below the lowest eigenvalue as the 

q-RTFs. Each such sequence can be then re-interpreted as the admissible RDCT. In terms of [10] we 

suggested the systematic way for constructing a subfamily of the regular X-Bochner operators. To be 

more precise, we laid down the mathematical grounds for this innovation in Section 7 by converting 

the RCSLE (67) to its prime forms (129) and (130) on the intervals (-1,+1) and (+1,∞) accordingly and 

solving the resultant SLEs under the DBCs. The formulated SLPs allowed us to prove [27] that each

TRD of the PFS constitutes itself the PFS of the transformed SLE at the same energy. 

As mentioned in Introduction, the RZT represents the generalization of the DT (in its original 

sense [13]) to the CSLEs in the same way as the factorization of the X-Jacobi differential operators [10] 

constitutes the natural extension of the conventional factorization technique in the framework of the 

SUSY quantum mechanics. The factorization chain of the rational operators analyzed in [10] is 

equivalent to a RDCT of the JRef CSLE in our terms. 

To illuminate advantages of our formalism developed here, compared to the PSLP 

accomplishments [9,10,15], let us formally re-formulate the results of subsection 7.1, based on the 

argumentation used in [9] to derive the explicit expressions for the Xm-Jacobi polynomials. 

 
Let us start by introducing the Sturm-Liouville expression 

p p
d d

[ ; | ] [ | ]
d d

{  − 
 

pp q − + − +M M   (148) 

p
j p p( )+ j

) [ ; | ] [ ; ; j] 0}


+   =N
P


(  − +   MM MW  

with the leading coefficient function related to the weight function (144) via the generic formula 

2
p p[ ; | ] : (1 ) [ ; | ] = −  p  − +  − +M MW  for -1<  <+ 1,  (149) 

assuming that the density function of the corresponding CSLE is given by (2). Note that we replaced 

the indexes o; of the weight function (144) for   in an attempt to expand its definition 

beyond the limits supported by Preposition 1. 

Examination of the numerator of the fraction 

o; o;

p

2 2
0

p 2
( , )

p( )

(1 ) [ ; p, p ]
[ ; | ]

W [ | ]+ −

− +

 −

−    − +
 =

 
 

 N

p
 

 − +

− +
M

M

M

   (150) 

shows that it vanishes at 1   

p+1> 0  ,         

 (151) 
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provided that the denominator remains finite at both singular ends. Preposition 1 assures that that 

the leading coefficient function vanishes under the latter constraint. As mentioned above, this was 

one of the reasons for restricting our analysis to the RefPFs (68).  

Based on the stated observation, we conclude that the WPs-p  forming the polynomial 

components of the q-RSs (139) under the constraints (151) obey the boundary conditions 

p p
p p( ; j) ( ; j )

1

[ ; ; j], [ ; ;0] 0{{ } 
=

   =
N N
P PW

 
  − +   − +M MM M  

max maxj (p p ),for 0 j j  
 (152) 

where 

j j p j jP ( ),P ( ) [ ; | ]W P ( ),P ( ){ }: { }     =pW p  − + M .  (153) 

Our next step would be to further narrow the range of the indexes  , restrained by (151), in 

such a way that the denominator of the fraction (150) does not have zeros between -1 and +1. For the 

Xm-Jacobi OPS this was achieved in [9], using the Klein formula [64] for the numbers of zeros of a 

Jacobi polynomial in the interval (-1,+1). However, even the fact that we deal with the Wronskian of 

the mutually orthogonal R-Jacobi polynomials does not give any additional insight into how to 

handle this problem for p>1. In particular, Durán et al.’s conjectures dealing with the zeros of the 

Wronskians of orthogonal polynomials focus on the numbers of zeros inside the interval of 

orthogonalization, i.e., on the numbers of real zeros larger than 1 in our case. On the contrary, we are 

interested in the question how many of other zeros lie between -1 and +1. The striking feature of our 

approach is the use of the completely different technique to answer this question.  

In summary, we have constructed the infinite net of the X-Jacobi DPSs composed of the simple 

WPs-p . Each X-DPS contains the finite EOP sequence formed by the RDCT of the R-Jacobi 

polynomials using the classical Jacobi polynomials with the common positive indexes as seed 

polynomials. In addition, a finite subnet of these X-DPSs contains X-Jacobi OPSs, using the R-Jacobi 

polynomials with the common pair of indexes as the seed polynomials. The crucial point of our 

approach is that all the constructed EOP sequences obey the X-Bochner ODEs with polynomial 

coefficients. In the case of the X-OPSs there exists the one-to-one correspondence between these ODEs 

and regular X-Bochner operators in terms of [10]. On other hand, the finite EOP sequences are 

generally formed by X-orthogonal eigenpolynomials of irregular X-Bochner operators. 

The net of the trigonometric (|| < 1) or radial ( > 1) quantum-mechanical potentials exactly 

solvable in terms of the constructed infinite or accordingly finite EOP sequences can be obtained in 

following the prescriptions outlined by us in [21] for p=1. 

The Liouville potentials quantized via the EOPs introduced in subsections 7.1 and 7.2 have the 

generic form: 

o; o; p PT oV ; , | ] V ; ][ [− + − −  =  M t   (154) 

 2 o o
o o; o; p(1 ) I [ ; ] I [ ; , | ]− ++ −   −  −  M for -1<  < 1 

and 

o p PT oV ; | ] V ; ][ [− =  M h    (155) 

 2 o o
o o p( 1) I [ ; ] I [ ; | ]+  −  −   M   for   > 1 

after being expressed in terms of the variables: 

(x) x = cos  ( x 0)−     (156) 
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and 

(r) r = cosh  (0 r )    (157) 

respectively, where the t-PT potential on the finite interval and the radial h-PT potential are 

parametrized as follows: 

2 21 1
ο;+ ο;4 4

PT o; o; 2 2
V [ (x); , ] ( x 0),

x x4 4
2 2

−
− + −

 −  −
   = + −  t

sin cos
 (158) 

and 

2 21 1
ο;+ ο;4 4

h PT o; o; 2 2
V (r; , ] (0 r ).

r r4 4
2 2

−
− + −

 −  −
  = +   

sinh cosh
   (159) 

As mentioned in Introduction, the rigorous mathematical studies [10,37] on the X-Jacobi and X-

Laguerre OPSs made a few misleading references to the quantum-mechanical applications of the 

EOPs. To a certain extent this misinformation is traceable to the fact that the cited applications do not 

properly distinguish between the terms ‘X-Jacobi DPS’, ‘X-Jacobi OPS’, and ‘finite EOP’ sequences’ 

(formed by the TRD s of the R-Jacobi polynomials), simply referring to the representatives of all the 

three manifolds as ‘X-Jacobi polynomials’.  

While the latter perplexity has already been detailed by us in [20,21], it seems useful to clarify 

again the sharp distinction between the TSIPs of groups A and B in Odake and Sasaki’s [38] TSIP 

classification scheme. Namely, the prominent feature of the density function (2) is that the latter has 

only simple poles in the finite plane [24], which assured the energy-independence of the ExpDiffs for 

the poles of the JRef CSLE (1) at 1 [47]. Consequently, the coefficient function of the first derivative 

of the second-order ODE with polynomial coefficients turned independent of the degrees of the 

sought-for polynomial solutions, which allowed one to convert this equation into the eigenequation 

with rational coefficients [9,10,16].   

The same comment is applied to the TRDC s of the three families of the Romanovski polynomials 

[29], namely, to the finite EOP sequences composed of the Romanovski-Bessel (R-Bessel) and 

Romanovski-Routh (R-Routh) polynomials analyzed by us in [67] and [68] respectively, as well as to 

the TRDC s of the R-Jacobi polynomials discussed in this paper. The associated Liouville potentials all 

belong to group A in Odake and Sasaki’s [38] TSIP classification scheme and are indeed solved via 

the finite EOP sequences. 

In the general case of the rational density function, allowing the solution of the JRef CSLE in 

terms of hypergeometric functions [40], the energy-dependent PF in (1) has second-order poles in the 

finite plane and as a result the associated Liouville potentials are quantized by the Jacobi polynomials 

with degree-dependent indexes. If the numerator of the given rational density function has no zeros 

at regular points of the JRef CSLE (or similarly of its confluent counterpart), then the associated 

Liouville potential turns into a TSIP of group B, with eigenfunctions expressible via the Jacobi (or 

respectively Laguerre) polynomials with at least one degree-dependent index, which have no direct 

relation to the theory of the EOPs. 

To conclude, let us point to the crucial difference between the TRDC s of the R-Jacobi polynomials 

and those of the R-Bessel and R-Routh polynomials analyzed by us in [67] and [68] respectively. The 

common feature of the latter RDC nets is that each net is specified by a single series of Maya 

diagrams and as a result any finite EOP sequence allows the Wronskian representation [69]. On other 

hand, the complete net of the TRDC s of the R-Jacobi polynomials is specified by the two series of 

Maya diagrams, similar to the TRDC s of the classical Jacobi and classical Laguerre polynomials 

forming the X-Jacobi and X-Laguerre OPSs accordingly [25]. This implies that we managed to 

construct only a tiny manifold of the finite EOP sequences composed of the TRDC s of the R-Jacobi 

polynomials.  
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We refer the reader to [25] for the scrupulous analysis of the equivalence relations between the 

various WPs-p . It should be however stressed that grouping of equivalent WPs-p  together 

represents only a part of the problem. The next step would be to select the preferrable representation. 

For example, the TRD of the h-PT potential with the TF ,mb  seems easier to be dealt with, compared 

with the TRDC of this potential with the m seed functions ,k=1,2,...,ma , though the final results will 

be absolutely the same. 

The additional complication comes from the fact that one has to analyze the order of WP-p
zeros at 1  to construct the appropriate X-Jacobi DPSs. And finally (assuming that the partitions 

selected in [26] are suitable) one has to require that the generalized Jacobi polynomials in the 

numerator of the weight function (2.36) in [26] do not have zeros inside the given interval of 

orthogonalization. The complexity of the outlined procedure helps to understand why our analysis 

was restricted merely to the relatively simple case of the seed Jacobi polynomials with the same pair 

of indexes. 
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Abbreviations 

ChExp characteristic exponent 

CSLE canonical Sturm-Liouville equation 

DBC Dirichlet boundary condition 

DPS differential polynomial system 

DCT Darboux-Crum transformation 

DCT  Darboux-Crum transform 

DT Darboux deformation 

DT  Darboux transform 

EOP exceptional orthogonal polynomial 

ExpDiff exponent difference 

GDT generalized Darboux transformation 

h-PT hyperbolic Pöschl-Teller 

JPW Jacobi-polynomial Wronskian 

JRef Jacobi-reference 

JS Jacobi-seed 

LC limit circle 

LDT Liouville-Darboux transformation 

LP limit point 

ODE ordinary differential equation 

OPS orthogonal polynomial system 

PD polynomial determinant 

PF polynomial fraction 

PFS principal Frobenius solution 

p-SLE prime Sturm-Liouville equation 

p WP-  pseudo-Wronskian polynomial 
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WEOP-p  pseudo-Wronskian exceptional orthogonal polynomial 

W- Tp  pseudo-Wronskian transform 

q-RS quasi-rational solution 

q-RTF quasi-rational transformation function 

RCSLE rational canonical Sturm-Liouville equation  

RDC rational Darboux-Crum 

RDCT rational Darboux-Crum transformation 

RDCT  rational Darboux-Crum transform 

RDT rational Darboux transformation 

RDT  rational Darboux transform 

restr-HRef restrictive Heun-reference 

R-Jacobi Romanovski-Jacobi 

R-Routh Romanovski-Routh 

TRRZ  rational Rudjak-Zakharov transform 

WT  Wronskian transform 

Appendix A. RZT of Generic CSLE 

Let o[ ; ]    be a nodeless solution of a CSLE 

2
o

o o2

d
I [ ; ] [ ] [ ; ; ] 0

d

  
+   +       = 

  

          (A1) 

at the energy  

o( )  = ,       (A2) 

i.e., 

2
o

o o o2

d
I [ ; ] ( ) [ ] [ ; ] 0

d
 

  
+   +       = 

  

 . (A3) 

We define the RZT of the given CSLE via the requirement that the function 

1
2

o
o

[ ]
* [ ; ]

[ ; ]

−





   =

  

 
    (A4) 

is the solution of the transformed CSLE: 

2
o

o o2

d
I [ ; | ] [ ] [ ; ; | ] 0

d

  
+    +        = 

  

   (A5) 

at the same energy (A2), i.e., 

2
o

o o o2

d
I [ ; | ] ( ) [ ] * [ ; ] 0.

d
 

  
+    +       = 

  

      (A6) 

Representing both CSLEs (A3) and (A6) in the Riccati form: 

o 2
o o o oI [ ; ] [ ; ] [ ; ] ( ) [ ]

•

    = −    −    −   ld ld         (A7) 
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and 

o 2
o o o oI [ ; | ] : * [ ; ] * [ ; ] ( ) [ ],

•

     = −    −    −   ld ld     (A8) 

subtracting one from another, and also taking into account that the logarithmic derivatives of the TF 

o[ ; ]    and its reciprocal (A4) are related in the elementary fashion: 

1
o o 2

* [ ; ] [ ; ] [ ]    = −    − ld ld ld
  

      (A9) 

one finds [70] 

o o o
o o

[ ; ]d
I [ ; | ] I [ ; ] 2 [ ] { [ ]},

d [ ]

  
   =   +  + 

 

ld
J 


   (A10) 

where the last summand represents the so-called [27] ‘universal correction’ defined via the generic 

formula  

d [ ]1[ ] : [ ]
2 d [ ]

f
{f } f

f


 = 

 

ld
J .   (A11) 

Appendix B. DCT of the Generic CSLE as a Sequence of RZTs 

Let 
2 o[ ; ]    be another solution of a CSLE (A1) at the energy 

2 o( )  . Then, as it was 

shown in [19], the CSLE (A6) with  ≡ 1 has the solution 

k 1,2

2 1
2

o
o 1

1 o

W [ ; ]
[ ; | ]

[ ] [ ; ]

{ }
=



  
    =

   

.     (A12) 

Using this solution as the TF for the next RZT, we come to the CSLE  

2
o

o o2

d
I [ ; | ] [ ] [ ; ; | ] 0

d

  
+    +        = 

  

    (A13) 

with the zero-energy free term 

o o
o k 1,2 o 1I [ ; | ] I [ ; | ]=  =       (A14) 

2 o 1[ ; | ]d
2 [ ] [ ]}

d [ ]
{

   
+  + 

 
 



ld
J . 

Substituting (A12) into (A14), coupled with (A10) and (A11), then gives [69} 

k 1,2 oo o
o k 1,2 o

W [ ; ]d
I [ ; | ] I [ ; ] 2 [ ]

d [ ]

{ }
=

=

  
  =  + 

 



 

ld
.  (A15) 

Let us now assume that the function [22,71] 
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k 1,...,p

p
2

k 1,...,p

o o

o k 1,...,p

o

W [ ; ], [ ; ]
[ ; | ]

[ ]W [ ; ]

{ }

{ }

=

=

 

 =



     
    =

   

   (A16) 

satisfies the CSLE 

2
o

o k 1,...,p o k 1,...,p2

d
I [ ; | ] [ ] [ ; ; | ] 0

d
= =

  
+    +        = 

  

      (A17) 

with the zero-energy free term [22] 

o o
o k 1,...,p oI [ ; | ] I [ ; ]=  =       (A18) 

k 1,...,p oW [ ; ]d
2 [ ] p(p 2) [ ]}.

d [ ]
{

{ }
=  

+  − − 
 

 


ld
J  

The RDT of the CSLE (A17) with the TF (A16) then results in the CSLE with the zero-energy free 

term defined by (A18) with p and k 1,...,p=  replaced for p+1 and k 1,...,p 1= +  accordingly. 

Theorem B. The function (A16) is the solution of the CSLE (A17) at the energy 
p o( )  . 

Proof: Suppose that both functions 
p o k 1,...,p 1[ ; | ] = −     and 

p 1 o k 1,...,p 1[ ; | ] + = −    are solutions 

of the CSLE (A17) with p replaced by p-1.  It is also assumed that the energies are equal to 
p o( )   

and 
p 1 o( ) +

   accordingly. Then, by definition of the CSLE (17), the function 

p 1 o k 1,...,p[ ; | ]
+ =          (A19) 

p p 1

p

1
2

o k 1,...,p 1 o k 1,...,p 1

o k 1,...,p 1

W [ ; | ], [ ; | ]

[ ] [ ; | ]

{ }  +



= − = −

= −

       
=

    

 

must be its solution at the energy 
p 1 o( ) +

  .  Replacing p and k 1,...,p=  in the right-hand side of 

(A16) for p-1 and k 1,...,p 1= −  accordingly and then setting p p 1, + =    we can re-write (A19) as 

p 1 o k 1,...,p[ ; | ]
+ =        (A20) 

 p p 1k 1,...,p

1 p
2

k 1,...,p 1

o o k 1,...,p 1 o

o

W W [ ; ] W [ ; | ], [ ; ]

[ ]W [ ; ]

{ }, { }

{ }

   +=

= −

= −



         

=

   

. 

Choosing m = p-1, n = p+1, n-m =2 in the general Wronskian decomposition formula in [72] then 

gives: 

k 1,...,p 1 oW [ ; ]{ } = +
       (A21) 
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 p p 1k 1,...,p

k 1,...,p 1

o o k 1,...,p 1 o

o

W W [ ; ] W [ ; | ], [ ; ]

W [ ; ]

{ }, { }

{

   +



=

= −

= −         

  
 

then brings us back to (A16) with p 1+ =  , which completes the proof. □ 

Here and in the other publications we refer to the CSLE (A17) with the zero-energy free term 

(A18) as ‘Darboux-Crum transform’ ( DCT ) of the CSLE (1) with the seed functions k 1,...,p= . 

Appendix C. RDC Sequences of PFSs Near a 2nd-Order Pole with an Energy-

Independent ExpDiff 

Let p[ ; ; |M ]    be the PFS of the RCSLE (63) near the pole at 1 . Then the functions  

1
22

p p[ ; |M ] (1 ) [ ; |M ]
−

− −   = −       for | | 1     (A22) 

and 

1
2

1
2

2
p

p

p

(1 ) [ ; |M ] for | | 1,

[ ; |M ]

( 1) [ ; |M ] for 1

−
+

+
−

+


−      

   = 


 −   −   








   (A23) 

are the solutions of the prime SLEs (129) and accordingly (130), satisfying the DBCs at the 

corresponding singular endpoints: 

p[ ; |M ] 0
→

   =lim .   (A24) 

Representing the TRRZ s  of the PFSs (A22) and (A23), 

1
2

m p pp 1
p 1

m pp 1

W [ ; ( )|M ], [ ; |M ]
[ ; |M ; ] ,

[ ] [ ; ( )|M ]

{ }
+

+

+

     
   =

   

  


 

 (A25) 

as 

1
22

p 1 p[ ; |M ; ] |1 | [ ; |M ]
•

+   = −          (A26) 

1
22

m p pp 1
|1 | [ ; ( )|M ] [ ; |M ]

+
− −         ld  

shows that 

p 1
1

[ ; |M ; ] 0+
→

   =lim     (A27) 

and therefore 

p 1 p 1[ ; |M ; ] [ ; |M ]+ +          (A28) 

iff the ExpDiff for the corresponding pole of the RCSLE (67) lies within the LP range: 

(p)
o;* | p | 1. =  +      (A29) 

Finally let us prove that the TRRZ  of the PFS p[ ; |M ]    of the prime SLE (130) near 

the pole at infinity vanishes in the limit →∞. Taking into account that differentiating of the function 

 decreases the power exponent, we find that both summands in 
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1
22

p 1 p[ ; |M ] ( 1) [ ; |M ]
•

+   =  −       (A30) 

1
22

m p pp 1
( 1) [ ; ( )|M ] [ ; |M ]+

−  −   −      ld , 

vanish at infinity which confirms that the q-RS (A30) is indeed the PFS of the transformed RCSLE 

near its pole at infinity. 

Appendix D. Exact Solvability of the Prime SLEs (129) and (130) Under the 

DBCs. 

Theorem 7. All the Dirichlet problems for the prime SLEs (129) or alternatively (130), under the constraints (131) and 

(132) in both cases, have exactly the same discrete energy spectrum as the precursor prime SLE (24) solved under the DBCs 

on the intervals (-1,+1) or (+1,∞) accordingly. 

Proof: Let us first remind the reader that the theorem statement necessarily holds for p=1. For the 

prime SLE (130) it has been proven in [22] and one can reproduce very similar arguments for the 

finite interval. We shall come back to these arguments in the general case of p > 1. 

Re-writing (78) with p =1 as  

2, o; o; 1 0 o; o;[ ; , | ] [ ; 1, 1]−+ − + − +  −  =   − −  +  m m    (A31) 

o; o;

1 2

o; o;

1

( , )
1 21

( , )

W [ | , ]

P ( )

− +−

− +

− 

+ −

− 





m m

m

m m
, 

we find that the power exponents of  1  coincide with halves of the ExpDiffs 

(p)
o; o;* | p | p 0. =  + =       (A32) 

Keeping in mind that the exponent powers o;( 1) / 2+ +  are positive in both cases, we conclude 

that the listed solution vanishes in the limits 1 → and therefore represents the PFS of both prime 

SLEs (129) and (130) near this singular endpoint. We thus assert that the JPW (65) with the Jacobi 

indexes restricted by the conditions (131) may not have zeros inside the corresponding interval of 

orthogonalization. 

Since each prime SLE (129) and (130) is exactly solvable for p=1 and 2M  is the admissible set 

of the polynomial seed solutions, we use the mathematical induction, assuming that the prime SLE 

(129) or (130) for the admissible set of the polynomial seed solutions, p P 1−=M M , has exactly the 

same discrete energy spectrum as the prime SLE (24) with the leading coefficient function (28). First, 

one can repeat the above arguments to prove that the JPW (65) with p PM = M is nodeless inside 

the corresponding interval of orthogonalization and therefore PM  is the admissible set of the 

polynomial seed solutions. Our next step is to prove that the given prime SLE with p P=M M  has 

exactly the same discrete energy spectrum as (24). 

Suppose that the given prime SLE has another eigenfunction ,n P[ ; | ]  c M  at an energy 

nE with the absolute value n j| E | ( )    for any j   jmax and therefore, by definition, it must obey 

the DBCs 
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,n P[ ; | ] 0
→

  = c Mlim .       

 (A33) 

If (P)
o;* 1−   (which assures ExpDiffs 

(P 1)
o;*

−
 lie within the LP range) then we can take 

advantage of the arguments presented in Appendix C to show that the RRZT with the TF 

1
2

P
P

m P 1
m P 1

[ ]
* [ ; | ]

[ ; | ]

−

−
−


  =

 
M

M





   (A34) 

converts the extraneous eigenfunction into the eigenfunction of the prime SLE (129) or (130) with 

p P 1−=M M . However this conclusion contradicts the assumption that the prime SLE in question 

has exactly the same energy spectrum as the prime SLE (24). We thus assert that q-RSs (136) represent 

all possible eigenfunctions of the prime SLEs (129) and (130), which completes the proof of Theorem 

7. □ 

The direct consequence of the proven theorem is that the WPs-p  (99) with p pM = M  and 

 = − + have exactly j real zeros larger than 1.   
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