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Abstract: The paper advances the new technique for constructing the exceptional differential
polynomial systems (X-DPSs) and their infinite and finite orthogonal subsets. First, using Wronskians
of Jacobi polynomials (JPWs) with a common pair of the ‘indexes, we generate the Darboux-Crum
nets of the rational canonical Sturm-Liouville equations (RCSLEs). It is shown that each RCSLE in
question has four infinite sequences of quasi-rational solutions (q-RSs) such that the polynomial
components from each sequence form a X-Jacobi DPS composed of simple pseudo-Wronskian
polynomials (p-WPs). For each p-th order rational Darboux Crum transform of the Jacobi-reference
(JRef) CSLE used as the starting point, we formulate two rational Sturm-Liouville problems (RSLPs)
by imposing the Dirichlet boundary conditions on the solutions of the so-called ‘prime’” SLE at the
ends of the intervals (-1,+1) or (+1,0). Finally, we demonstrate that the polynomial components of the
g-RSs representing the eigenfunctions of these two problems have the form of simple p-WPs
composed of p Romanovski-Jacobi (R-Jacobi) polynomials with the same pair of the indexes and a
single classical Jacobi polynomial or accordingly p classical Jacobi polynomials with the same pair of
positive indexes and a single R-Jacobi polynomial. The common fundamentally important feature of
all the simple p-WPs involved is that they do not vanish at the finite singular endpoints —the main
reason of why they were selected for the current analysis in the first place. The discussion is
accompanied by a sketch of the one-dimensional quantum-mechanical problems exactly solvable by
the aforementioned infinite and finite EOP sequences.

Keywords: rational Sturm-Liouville equation; pseudo-Wronskian polynomial; Darboux-Crum
transformation; exceptional differential polynomial system; exceptional orthogonal polynomial
system; exceptional orthogonal polynomials; Romanovski-Jacobi polynomials; Dirichlet problem
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1. Introduction

Nearly two decades ago Gomez-Ullate, Kamran, and Milson [1,2] discovered new infinite
sequences of orthogonal polynomial solutions of a second-order differential eigenequation with
rational coefficients. Since each sequence either does not start from a constant or lacks the first-degree
polynomial, the discovered polynomials are not covered by Bochner’s classical proof [3].

However, as stressed by Kwon and Littlewood [4], Bochner himself “did not mention the
orthogonality of the polynomial systems that he found. The problem of classifying all classical
orthogonal polynomials was handled by many authors thereafter” based on his analysis of possible
polynomial solutions of complex second-order differential eigenequations. This observation brought
the author [5] to the concept of exceptional eigenpolynomials which satisfy a differential eigenequation
of Bochner type but violate his theorem because each sequence either does not start from a constant
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or lacks the first-degree polynomial. Thereby we refer to these sequences as complex exceptional
differential polynomial systems (X-DPSs) with the term ‘DPS” used in exactly the same sense it is
done by Everitt et al [6,7] for the conventional sequences of eigenpolynomials obeying the Bochner
theorem.

It has been proven by Kwon and Littlejohn [4] that all the real field reductions of the complex
DPSs constitute quasi-definite orthogonal polynomial sequences [8] and for this reason the cited
authors refer to the latter as ‘OPSs’. However this is not true for the X-DPS and we thus preserve the
term “X-OPS’ solely for the sequences formed by positively definite orthogonal polynomials.

Compared with the rigorous mathematical analysis of the X-OPSs in [9,10], the concept of the X-
DPSs put forward by us in [7] represents the parallel direction dealing with the solvable rational
CSLEs (RCSLEs) and related X-Bochner ordinary differential equations (ODEs), instead of the
(generally irregular) exceptional Bochner (X-Bochner) operators in [10].

The interrelation between the two approaches is closely related to the dual use of the term
"Darboux transformation” (DT), following the discovery by Andrianov et al [11,12] that the renowned
transformation of the Schrédinger equation initially suggested by Darboux [13] for the generic
second-order canonical differential eigenequation (long before the birth of the quantum mechanics)
is equivalent to its intertwining factorization. We refer the reader to a comprehensive overview of
this issue in [14].

More recently Gomez-Ullate et al. [15] initiated the new direction in the theory of the rational
Sturm-Liouville equations (RSLEs) by applying the intertwining factorization to the second-order
differential eigenoperator. This operation was termed 'Darboux transformation’, based on the
dualism existent in the particular case of the Schrodinger operator. This innovation followed by its

extension to the Xm-Jacobi and Xm-Laguerre OPSs [9,16] laid the foundation for their rigorous theory
more recently advanced to the more sophisticated level in [10,17].

The author (being accustomed [18] to the strict use of the mentioned term) took the different
turn in the extension of the DTs to the SLEs, based on the nearly forgotten paper by Rudjak and
Zakharov [19] in the late eighties. In Appendix A we outline the most essential features of the
‘Rudjak-Zakhariev transformations’ (RZTs) applied to the generic canonical SLE (CSLE). The RZTs
turn into the conventional DTs if both leading coefficient function and weigh are identically equal to
1.

We refer to a RZT of the rational CSLE (RCSLE) as ‘rational” (RRZT) , if it uses a quasi-rational
transformation function (q-RTF). In the recent papers [20] and [21] the author has demonstrated the

power of the suggested approach by constructing X1- and respectively Xm-Jacobi DPSs and then
extracting from them infinite and finite exceptional orthogonal polynomial (EOP) sequences.

We take advantage of Schulze-Halberg’s formalism for the so-called ‘foreign auxiliary equations’
[22] to generalize the notion of the Darboux-Crum [13,23] transformations (DCTs) to the CSLEs. It is
proven in Appendix B that sequential RZTs give rise to a DCT defined in such a way. We refer to a
DCT of the RCSLE as ‘rational’ (RDCT) if it uses quasi-rational seed functions.

In this paper we focus solely on the RDCTs using quasi-rational seed functions with polynomial
components formed by Jacobi polynomials with a common pair of the indexes [24]. It was shown that
the rational Darboux-Crum transform (RDCS§ ) of the Jacobi-reference (JRef) CSLE, which is defined
via (1)-(3) in Section 2, has four infinite sequences of quasi-rational solutions (q-RSs). While one of
these sequences is formed by Jacobi polynomial Wronskians (JPWs), the polynomials components of
three others are represented by the so-called [21] ‘simple’ pseudo-Wronskian polynomials (p-WPs}.
Namely, we refer to a pseudo-Wronskian of Jacobi polynomials [25] as ‘simple’ if only a single
polynomial in the given set of Jacobi polynomials has at least one Jacobi index with a different sign
(compared with the sign of the common index of the seed Jacobi polynomials). As proven in this
paper, the simple p-WPs remain finite at the singular points +1 and as a results obey the X-Bochner
differential equations with polynomial coefficients, forming a X-Jacobi DPS.

From our perspective, this is the significant achievement, compared to the paper by Bonneux
[26], who studied a more general manifold of the pseudo-Wronskians of Jacobi polynomials (referred
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to as ‘generalized Jacobi polynomials’), while completely skipping the discussion of exceptional
Jacobi operators [9,10] -- the X-Bochner differential equations in the framework of this paper. Let us
remind the reader that the Bochner-type differential equation can be trivially converted to the
eigenequation with rational coefficients. As a result, the polynomials in the given X-DPS represent
the set of the eigenpolynomials for the corresponding exceptional Jacobi operator. Our
understanding is that it is generally a more challenging problem to construct the latter operator
(assuming that all of its singular points are regular) if the p-WPs have a more complicated structure.

To pinpoint infinite and finite EOP sequences in the given X-DPS, we [27] put forward the
concept of the ‘prime’ SLEs (p-SLEs) chosen in such a way that the two characteristic exponents
(ChExps) for the poles at the endpoints differ only by sign. As a result, the energy spectrum of the
given Sturm-Liouville problem can be obtained by solving the given p-SLE under the Dirichlet
boundary conditions (DBCs). This in turn allows one to take advantage of the rigorous theorems
proven in [28] for eigenfunctions of the generic SLE solved under the DBCs. As it has been already
illustrated in [24] and illuminated more thoroughly here, the new approach allows one to treat in
parallel both infinite and finite EOP sequences, as different orthogonal subsets of the same X-DPS.

Before continuing our discussion, let us first point to the dubious use of the term ‘EOP’ in the
literature, similar to the slang use of the term ‘orthogonal Jacobi polynomials’, instead of ‘classical
Jacobi polynomials’, which disregards the existence of the finite orthogonal subsets formed by the
Romanovski-Jacobi (R-Jacobi) polynomials [29-31]. Similarly, Gomez-Ullate, Milson et al. [9,10,32]
use the term “‘EOPs’ as the synonym for “X-OPS’, with a few puzzling exceptions. For example, when
referring to the studies on the EOPs in [32], the cited authors mentioned the papers [33,34], which
deal solely with the problems solved by the finite EOP sequences. This is also true for Refs. [8,16,17]
in [10]. The reference to the paper of Ho et al. [35] (and similarly to the study by Yadav et al. [36] on
rationally extended Eckart potential) is misleading because the absolute majority of all the rational
potentials examined in this paper are quantized by polynomials with degree-dependent indexes and
therefore irrelevant to the subject. The only exception is the RDC8s of the hyperbolic Poschl-Teller (h-
PT) potential, which are indeed quantized by finite EOP sequences.

Similarly, Refs. [21,25,27,30,48,49] in their work with Grandati [37] are pointed to the rational
extensions of the translationally shape-invariant potentials (TSIPs) of group B in Odake and Sasaki’s
[38] TSIP classification scheme. The common feature of the potentials of this group is that the
corresponding quasi-rational eigenfunctions are composed of Jacobi or Laguerre polynomials with
degree-dependent indexes and as a results has nothing to do with the EOPs, contrary to the statement
in [37]. We shall come back to this issue, while summarizing the paper results in Section 8.

Let us also stress that our paper solely focuses on the infinite and finite EOP sequences which
represent the so-called ‘standard examples” in Durédn’s terms [39], with the absolute value of each
Jacobi index being exactly the same for all the Jacobi polynomials forming the pseudo-Wronskian in
question.

2. Four Distinguished Infinite Sequences of q-RSs

Let us start our analysis with the Jacobi-reference (JRef) CSLE

2
d - -
d—2+I°[n:xo]+sgn(1—n2)ap[n] ®[n;ho;e] =0 1)

n

with the single pole density function
1
pl=—— (2)
In” -1

and the reference polynomial fraction (RefPF) parameterized as follows:
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(3)

1 -G 1
21-12) x=x 1-%n 41-n?)

(4)

where L. are the ExpDiffs for the poles at £1 and the energy reference point is chosen by the

requirement that the ExpDiff for the singular point at infinity vanishes at zero energy, i. e.,
lim (n2|°[n;xo]):%. )
Inf—>c0
The energy sign is chosen in such a way: )
sgn(e) = sgn(1-n") 6)
that the sought-for eigenvalues are positive (negative) when the Sturm-Liouville problem in question
is formulated on the finite interval —1<m <1 (or respectively on the positive infinite interval

1<n< ). An analysis of solutions of the CSLE (1) on the negative infinite interval —00 <1< —1can
be skipped without loss of generality due to the symmetry of the RefPF (2) under reflection of its

argument, accompanied by the interchange of the exponents differences (ExpDiffs) Aq:.+ for the

CSLE poles at +1.
Let us now consider the gauge transformation
FInAsel= @ Ao;el/ dolmAlx, 7)
where
= A_+1 A+l
sl A= 20D 20D e )

Keeping in mind that

A+l A +1

1d ol 2= dgln: A1/ do[m: 7] =

+ ; )
2+ 2(n-1
coupled with (3), one finds
bl AL/ bl A1 = 1d 260 [ A1 +1d do[1;A] (10)
2
=10 fRo)- U= 1)
4(1-n")

with dot standing for the derivative with respect to n. i.e., the quasi-rational function (8) is the
solution of the JRef CSLE at lel equal to

o) =¥, 0 +1, +1)2. (12)

It then directly follows from the identity

&;[n;X;S]/d)o[n:X]E—{lo[n;iohiO(XZ)}F[n;X;S]+E[n;X;8]
-n

+2lddoln; 2] xFn; Ase] (13)

that the function (7) satisfies the Bochner-type ordinary differential equation (ODE) with the
polynomial coefficients:
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d2 d )
(nz—1)d—2+zpl(k+’l—)(n)a+%(x_+x+ +12-|e| |xFIn;hie] =0 (14)
n

with the polynomial coefficients. It is essential that the resultant ODE is well-defined for any real
values of the variable 1, including the border points |A_|=1 or | A, |=1between the LP and LC

regions (which require a special attention and were sidelined for this reason in our current
discussion). The ODE (14) turns into the conventional Jacobi equation

(2 -0p St P+ 2+ A yp e P )y (15)

MmO+ +m+1P+2=) () =0
at the energies
leleem®)= ¥, 0y +1_+2m+1)2.

(16)

In following [5,20,21], we say that the polynomials in question form the Jacobi DPS.

Note that, in addition with the renowned polynomial solutions, the ODE (14) has 3 other infinite
sequences of the q-RSs listed in Table 1 in [26] (or Table 2 in [17]). It is worth pointing out to the
difference in our terminology, compared with that in {17,26]. Namely, we restrict the term
‘eigenfunction’ only to a solution of a Sturm-Liouville problem (SLP), i.e., in our terms only the
classical Jacobi polynomials constitute the eigenfunctions of the Sturm-Liouville differential
expression (), assuming that the corresponding polynomial SLP (PSLP] is formulated on the interval
(-1,+1), using the boundary conditions (10) in [9].

By choosing

A, Ay, A_+A +m=-K  for any positive integer k<m (17)

(see [42, Chapter 6.72]), we assure that the Jacobi polynomial in question has exactly m simple zeros
ni (X; m) . i.e., using its monic form,

Bi+M) (m) = [ AR M), (18)
where by definition
om
Mm[ninl= IHl[n—m] : (19)

It is crucial that the Jacobi indexes do not depend on the polynomial degree, in contrast with the
general case [40,41]. This remarkable feature of the CSLE under consideration is the direct
consequence of the fact that the density function (2) has only simple poles in the finite plane [25] and
as a result the ExpDiffs for the CSLE poles at +1 become energy-independent [1].

We conclude that the JRef CSLE with the density function (2) has four infinite sequences of the
q-RSs

pmln ] =11 np 23D 1 204D p0 ) (20)

(12t [F20;4)

at the energies (16), with the vector parameter A restricted to the one of the four quadrants for each
sequence.
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Each infinite sequence starts from the q-RS (8) with A restricted to the corresponding quadrant.
Substituting (9) into the identity

Ny Y 2 AT Y

do[M: A1/ doln;A]=1d“¢o[n; A1 +1d do[m;A], (21)
where the symbolic expression Id f[n] denotes the logarithmic derivative of the function f[n], we find
that the function (8) is the solution of the Riccati equation

14 golmA1-1d%60[m 71 + P71+ 2~ (29)
1-n

3. ‘Prime’ Forms of J-Ref CSLE on Finite and Infinite Intervals of
Orthogonalization

The gauge transformation
Fpln;Mie]l = p %[n;k]d)[n;k;s], (23)
with an arbitrarily chosen positive function J@[T]] , converts the JRef CSLE (1) into the SLE of the

generic form:
{& pmi1S—q, DAl + sgn—nd)ewpin]l Feikis] =0, 24)
dn dn 'F

with the weight

wp[n;A]:= p[nl/ pln;Al. (25)
The PF representing the zero-energy free term is given by the following generic formula [42]:

q, A= pIu AP AL+ S{pInAl}  (26)

with

0 . e
SFI}= Y4 F 21/ fnl— 35 ] (27)

and the sign of the sought-for spectral parameter ¢ is dictated by the constraint (6).
Let us choose the leading coefficient function in such a way:

1—n2 for —1<n<+1,

[n] = plnl= (28)
F yL n-1 forn>1
that the SLP of our interest can be formulated as the Dirichlet problem:
lim ;%<0 29)
n—Nx

at the ends of the given interval of orthogonalization M+ =1 or n_ =1, n, =. It has been

proven in [28] that the eigenfunctions of this Dirichlet problem must be square-integrable:

N+ 2 —
J dnyjInAdwin] <o (30)
N—
and mutually orthogonal:
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M+ R - -
[ dnyjmirolyjmroIuinl=0 (j=J),  (31)
Nn-

with the weight

1 for —1l<n<+1,
Winl=w, [nl = . (32)
@+n) <% for n>1.

Due to the very special choice of the leading coefficient function (28) for the ‘prime’ SLE (24), the
two ChExps for each singular endpoint differ by sign, while having exactly the same absolute value,
which assures [42] that each DBC unambiguously selects PFS near the given end. In other words, the
DBCs (28) unequivocally determine the PFSs near the both singular ends of the given interval of
orthogonalization.

Substituting (28) into (27) gives [43]:

(1—112)_1 for —1<n <+1,
S{pinl}= (33)

V-7t forn>1,

which shows the free-energy term of the prime SLE with the leading coefficient function (28) has
simple poles in the finite plane.

As discussed in Section 7, the concept of the prime SLEs allows one to select the sequences of the
nodeless PFSs, which assure that the corresponding X-Bochner operators are regular inside the given
interval of orthogonalization. This is one of the most important achievements of this paper.

3.1. Dirichlet Problem on Interval (-1,+1)

The crucial advantage of representing the conventional Jacobi equation in the prime SLE form is
that the g-RS

wiln A= @ 2 @ 2R e

represents the PFS near the poles at F1 iff the corresponding Jacobi index A is positive. In

particular, the g-RSs

o)y (1<n<1)  (35)

formed by the classical Jacobi polynomials with positive indexes necessarily satisfy the DBCs at F1

WJ[[T], Xo] = (1+n)%7\'0;— (1_n)%7\.0;+ PjO\.OH_,

and as a result constitute the eigenfunctions of the given Dirichlet problem. The orthogonality
relations (30) thus turn into the conventional orthogonality relations for the classical Jacobi
polynomials

Id p( oo, )( )P(x0+’ 0 )(n)mn[n;io]=0 (1=1) (36)
-1

with the weight function
W[ A= A+ )= @-n)*+ for -1<n<1. (37)

Since the jth+1—solution has exactly j zeros between -1 and +1 and the positive eigenvalues
converges to 0 as the polynomial degree tends to infinity, the Dirichlet problem in question may not
have any other eigenfunctions.
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One still needs to prove that the q-RSs (34) form the complete set of the eigenfunctions of the
given Dirichlet problem. This can be performed, for example, by converting the JRef CSLE (1) to the
hypergeometric equation on the interval (0,+1) and then follow the arguments presented by the
author [40] for the exactly solvable JRef CSLE with the properly chosen density function.

On other hand, choosing

plniAl= - WAl = @)= a-mt (38)

we come to the Sturm-Liouville form [44] of the Jacobi equation:
d A d A o~ Y (}" l}\‘—) _
15, PIAI - - g, Iial oo}y =0 @9)

It is crucial that the leading coefficient function (38) for Ay >—1 vanishes at the ends of the
interval [-1,+1], which assures that the ‘generalized” [45] Wronskian (g-W) of two classical Jacobi
polynomials

(14 ho;-)
0 4P

0, P{ ) = plyAIWEPL 9 ), Py 40)

for0<j <j<jmax

vanishes at +1.

Since our approach allows one to formulate the spectral problem only for positive values of the
Jacobi indexes, this limitation restricts one’s ability to construct the X-Jacobi OPSs formed by the
RDC8s of the classical Jacobi polynomials with negative indexes, as it has already become clear
[20,21] in the particular case of Xm-Jacobi OPSs. However, the certain advantage of our approach is
that it allows one to treat in parallel the RSLPs for both intervals (-1,+1) and (1,%°) as seen from the
simplest example discussed in next subsection.

Our next step is first to consider all the q-RSs of the given prime SLE, which vanish at one of the
endpoints of the infinite interval (-1, +1) and then select the subsets of the collected PFSs below the
lowest eigenvalue.

In following our olden study [18] on the Darboux transforms ( D&s ) of radial potentials, we use
the letters @and b to specify the PFS near the singular endpoints F1 (cases I and II in Quesne’s
[46] commonly used classification scheme of q-RSs according to their behavior near the endpoints).

We use the letters cand d [18] to identify the N, eigenfunctions and respectively all the q-RSs (34)

not vanishing at both ends (case III in Quesne’s classification scheme). For the given SLP there is the

one-to-one correlation between the labels t=a, b, ¢, d and the sign C+ of the Jacobi indexes 7»;

, as specified in Table 1.
Re-writing the dispersion formula (16) for 6 =%+ F as

Table 1. Correlation between labels ¥ and signs of Jacobi indexes.

t a b c d

C- O+ + - -+ ++ + -

We find the PFSs of types @or b lie below the lowest eigenvalue
5y 2
gc,0(ho) =(ho:— +Aoy4 +1) (42)

iff
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or

accordingly.
It has been proven by us in [27] that the Jacobi polynomials do not have zeros between -1 and +1
iff

m < %(xo;_ —h_+hgy =Ny ) (45)
And
OM (A +1) (A +D) =
(A_—m) (A, +1) =(h_+1) (-A,-m) >0,  (46)

where <V> m s the rising factorial [48]. We come to (43) and (44) by choosing

3.2. Dirichlet Problem on Interval (1,00)
Examination of the q-RSs
e Aoga (Aot —Ag—)
Wil g 1= o) 220 (g 2bor pllore o)y (ag)
reveals that they satisfy the DBCs at the both ends of the interval (1,) for

and therefore represent the eigenfunctions of the RSLP in question, which brings us to the
orthogonality relations

o P P - o
fanp! o o) plo oy tiTl=0 G20y @9)
1
with the weight function
Ui kol= @) 0 (=10 for n>1. (50)

One can easily verify that (49) is nothing but another form of the conventional orthogonality
relations for the R-Jacobi polynomials

| dz JE""B’ (E)JEQ'B) (2) 00, pl2]=0 (i #J) (51)
0

with the weight function
9(1,13[5] = go‘ (g'+1)_IBI for ne[l,») (52)

under constraint a > 0, § <0, where we adopted Askey’s [49] definition of the R-Jacobi polynomials
which, as proven by Chen and Srivastava [50], is equivalent to the elementary formula

Jgohﬁ) (2) = Pr(la'B) (2z+1) for a.>-1, B+2n<0, (53)
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with
2= (n-1). (54)

Note that we [5,20,21,24] (see also [51]) changed the symbol R for ] to avoid the confusion with
R-Routh (Romanovski/pseudo-Jacobi [30,31] polynomials denoted in the recent publications [51-55]
by the same letter ‘R’.

Our next step is to determine all the q-RSs vanishing at one of the endpoints of the infinite
interval [+1, +e0) and then select the subsets of the collected PFSs below the lowest eigenvalue. To
explicitly reveal the behavior of the Jacobi-seed (JS) q-RSs (54) near the singular endpoints in
question, we [5,20,21,47] label them as indicated in Table 2 below, with &, specifying either the
decay (+) or growth (-) of the given JS at infinity.

We underline the symbol t by tilde to indicate that the classification of the JS solutions is done
on the infinite interval (1, «°). We then mark the given symbol by prime if the polynomial components
of the given sequence of the q-RSs do not include a constant. (Note that the ‘secondary’ sequences of
such a type do not exist for the potentials with infinitely many discrete energy levels which were the
focal point of Quesne’s analysis [46].)

By definition

etg.m m (o) ==25 m(o). (55)

Note that the PFSs of the series b’ may exist only if the SLE does not have the discrete energy

spectrum. We thus need to consider the three sequences of the quasi-rational PFSs: two primary
(starting from m=0) sequences @ and b as well as the infinite secondary sequence @' starting from

m:ng.

Table 2. Classification of JS solutions on the infinite interval (1, ) based on their asymptotic behavior near the

endpoints.
to,m O_ 04 Oy m
a + o+ - 0<m<ow
a' - o+ - M2nN¢ = jmax +1
b S 0<m< ¥ (ho:m +ho1 -1
b’ S 0<m< ¥ (hotr —Ao——1)
¢ - o+ 4 0<M < Jmax
d oo - L (ko —ho——D<m<oo
d - - - m> 1) (ho;— + 1o —1)

d0i:10.20944/preprints202503.1653.v1
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The primary sequence @ is formed by classical Jacobi polynomials and consequently may not

have zeros between 1 and . As expected, all the PESs of this type lie at the energies
ga,mo)=—s4 mo) (56)
below the lowest eigenvalue
g¢,0( o) =—€4_ 0(ko)- (57)
The PFSs from the primary sequence b at the energies
§t~>,m(7:o)5—5——,m(7:o) (58)
for
0<m< (kg +ho:y —1) (59)
do not have real zeros larger than 1 iff
gb,m*o)—g¢,0(ho) = —4(hg;- ~M—=1)(hg;4 —m) <0, (60)
ie., iff
0<m<Ag 4 <Ag._-—1. (61)
Similarly the PFSs from the secondary sequence @' at the energies
€a, mo)=—64_m(o) for m=nc 62)

do not have real zeros larger than 1 iff
e m(o)~&c,0ho) = ~4M(hg: 1 Ao, +M+1) <0 (63)

or, in other words, iff

Mm> g —hgp —1. (64)

4. RDCT of JRef SLE Using Seed Jacobi Polynomials with Common Pair of
Indexes

We call the DCT rational if it uses quasi-rational seed functions. In this Section we focus solely

on the RDCTs using the seed functions (20) with the common Jacobi indexes M. Let us consider the
RDCT using an arbitrary set of p seed functions,

Mp = ml,..., mp .

Denoting the Jacobi polynomial Wronskian (JPW) as

oA ) (1= wop A=)
Wity I Mpli= WA, = ()} (65)

and substituting the Wronskian

Wom, p[n:X]}=¢8[n:X]wg§(+h—j;—))[n|Mp] (66)

into (A18), we come to the RCSLE

2

d o o
7+ "M+ san(—n)s ol Rl AislMp] <0 (67
n
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with the RefPF [22]

1°[n: XM ] = 1°[; Ro] +2p\/p[n]j—nw—p(p—2) o}

Vel
0 19WoiGry 1 ¥p]
A T 0

Let us now show that the first three summands can be then re-arranged as

1°[n;% + pi] = 1°[n: Ro] +2 /L] j—nw (69)

Ny lul

. |dwg‘(+l\_}lz—))[n||\7|p] ,
+2 p[n]a m -p(p-2)9{11-n“ [}

and then prove that

1° [n: AIMp] = 1°[n: &+ p1] + 21d wggg,\—;,t-))[m Mp]

~1d pln]ld vvg;g;—gm Mp]  (70)

which represents one of the most important results of this section. To prove (70), we first re-write the
second summand in (69) as

2p\/p[n]j—n%=zmé dolmiil-pldp[nliddolniZ].  (71)

Taking into account (9), coupled with

1 1

|dp[n]=—n—+1—n—_1, (72)

gives

2p\/p[n]j—n%=zplé dolmAl-pldp[nlid dolmi]  (73)

00D POt PO thytD)

2n-9% 2m+)? 2%

Combining (74) with the definition (3) of the RefPF of the JRef CSLE (1), and also taking into
account that [ ]

S SR
Am-1% 4m+1? 2(n%-1)

H11-n?}=

(75)
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one can directly confirm that the three distinguished singularities appearing in the right-hand side of
(74) can be grouped as follows

2p\/p[n]j—nwz 1°[m; & +pI] - 1°[; Ao] + (76)

Vel

+p(p-2)§{I1-n?}.

Before proceeding with the further analysis of the RefPF (66), let us first illuminate some
remarkable features of the JPW (65).

Theorem 1: The [PW (65) is finite at the singular point F1 if Az > 0.
Proof. Let us examine more thoroughly the TF (A19) for the rational RZT (RRZT) applied to the
RCSLE (67). Making use of (66), one can easily verify that it has the following quasi-rational form

ol - IWG i) I [ M a]

AM 1= (M1 77
¢mp+1[n’ | p]_ %p (}\‘+,7\‘_) _ 7 ( )
i.e., taking into account (2) and (8),
- - Ao A _
ol LW | Mipa]
¢mp+1[n,7v|Mp]: W(;\'+’7\'—) (78)

If we assume that the JPW in the denominator of the PF on the right remains finite at F1, then,

according to (70), the power exponent of n+1 coincides with one of the two characteristic exponents
for the pole of the RCSLE (67) at F1. The TF (78) thus represents the PFS near the pole in question iff

7»; > 0. This implies that that the numerator of the PF may not have the zero at 1. This completes
the proof of Theorem 1, since it necessarily holds for p=1 due to the constraint (17) imposed on the
seed Jacobi polynomial. o

Corollary 1: The Wronskian of classical Jacobi polynomials with positive indexes may not have zeros at F1.

As illuminated in subsection 7.2, this corollary plays the crucial role in the theory of the RDC8s
of the R-Jacobi polynomials using the quasi-rational seed functions formed by the classical Jacobi
polynomials with positive indexes.

Preposition 1: The JPW does not generally have zeros at F1, regardless of the sign of 7»_—'_.
Preposition 2: The [PWs in the numerator and denominator of the fraction (77) do not have common zeros.

Theorem 2: The [PW in the numerator of the fraction (77) has only simple zeros, assuming that both
Prepositions 1 and 2 hold.

Proof. Based on our prepositions, any zero of the JPW in the numerator of the fraction (77) is a
regular point of the RCSLE (67) and therefore the polynomial in question may not have zeros of
order higher than 1. (Otherwise the solution (77) of the RCSLE (67) and its first derivative would

vanish at the same point which is possible only for the trivial solution identically equal to zero). o

Let
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ﬁ(m|\7|p)1=ﬂ|:1,__,@1(|\7|p)(7v||\7|p) (79)

be the 9((M p) zeros of the JPW (65), i.e.,

MOLA ) S 1o e = (90 (31—
W@z(+|\7|p) [“|Mp]—H@z(Mp)[ﬂ’ﬂ( )(7»||V|p)]-—

T Mp) .-
flill [h—m/AMp)]  (80)

Re-writing (72) as

dpll=——"  (81)

n° -1
and taking into account that
— ° — m 1
Qmnl=ldpmn]=-% ——, (82)
1=1 -]
we can decompose the RefPF (70) as follows
(M p) 2

P MMp]=1°[n;A+pl]- ¥ o
N R TTCALTEY)

on 9(Mp) 1

+ 2 f,
n°-1 ¢=1 - @*Mp)

in agreement with (87) in [21] for p=1.
The indicial equation for the extraneous poles of the RCSLE (67) has exactly the same form
p(p-1)-2=0. 84)

The equation has two roots -1 and 2, which implies that the JPW in the numerator of the fraction
(78) may have a zero of the third order [56]. However, as it becomes obvious from the analysis
presented in [56], this is a relatively exotic case which will be simply disregarded here.

5. Four Infinite Sequences of q-RSs with Polynomial Components Represented
by Simple p-Wps
The RCSLE (67) has 4 infinite sequences of the q-RSs:

b, I AV 1= o (85)

with

and
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|25 =0 - (87)
The g-RSs (78) represent the simplest case (¢ = + ) when the polynomial components turn into
the JPWs.
Theorem 3: The polynomial components of the q-RSs (74) can be represented in the form of simple p-WPs
defined via (92) below.

Proof. In following [26}, let us first introduce the eigenfunctions of the Jacobi operator:

fId 16, 1=t A 181P0 "), (88)
where
P A |8]:= b0l A1/ doln; 341, (89)
~ 1 g 2R (90)

N=%

(see Table 1 in [26] for details). We can then re-write the Wronskian in the numerator of the PF (85)
as

_4Pp+1 - WP(ML';“
(I)O [n’ ]>< { mk:1 .....

Making use of Jacobi polynomial relations (92) in [25], we can represent the derivatives of
functions (4.1) in in the explicitly quasi-rational form:

|
k18 01= A 18,0005° ] R

) At
an J;a(p_n[n!}“ 6] (92

with the polynomial components:

P ymnisl=aQiarel e oDy, 03

Njgl (K 1-Viel ~ iHel),
where
_ (1-641)
Oy 6|1 = Nl;[i 1- Nn)% L 099
|Gl:=0,1+¢_1, (95)
and

e (k) = i-1+ (k+DA- 11 81). (%)

The proportionality factors in (93) are determined by the elementary formulas [25]:


https://doi.org/10.20944/preprints202503.1653.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 March 2025 d0i:10.20944/preprints202503.1653.v1

16 of 37

27 (Al + j+1), if g=++,
(-2)'(j+1) if G=——,
dg)j ") = (97)
' D' (j+14), if G=—+.
<j+7»'_>| if &=+—,

The listed formulas can be directly verified by expressing the hypergeometric functions in terms
of Jacobi polynomials in 2.1(20), 2.1(27), 2.1(24), and 2.1(22) in [57], with a = -m. While all four Jacobi
polynomial relations (92), (93), and (97) were obtained in [25] based on the translational shape-
invariance of the trigonometric Poschl-Teller (t-PT) potential, we prefer to refer the reader to the more
general relations 2.1(7), 2.1(9), 2.1(8), and 2.1(22) for hypergeometric functions in [57] as the starting
point for validating (92). The cited relations are valis are within a broader range of the parameters,
beyond the limits of the Liouville transformations implicitly used in [18].

Substituting the derivatives (92) into the Wronskian in the right-hand side of (86), we can
represent the quasi-rational form

Oy 1) W16, 0= fin A 510" R
wipy - p(n),f[n,xla,ﬂ}—f[n,x|a]®1_%|¢|[n]@%Wpu)[n,x|¢,Mp,ﬂ, (98)

with the polynomial component represented by the polynomial determinant:

@@{(afmp;j)[n;X'|asl\_/lp;j]: (99)
(hy.2o) (A+.22) p (A4 L)
Py () Py, ) O %|¢|[n] Pi )
i (7\‘ l>“—) i ()\‘ 77"—) (1) A
dnpm1+ (m) anm; m) . Pnj;|¢|(p_1)[n,?~ ]
@ plpi)gy gty () [mdle]
dPy ™ Py M2 g (0"

Keeping in mind that

ITIORIEFAL] (100)

one verify that the polynomial determinant (99) has the degree not larger than
(3 Mp: ) =@ Mp)+i- 1|81, (101)

where [58]
_ p
%(Mp):kzlmk—%p(p—l). (102)

One can easily verify (101) using the cofactor expansion of the determinant (99) in terms of the (
p—1, p+1) minors (1=0,...,p). The first term in the sum brings us directly to (101), while the degree
of the( p+1—1)-th column element and degree of the corresponding cofactor polynomial minor then
increases and respectively decreasesby 1 as | grows. confirming that all the polynomial summands
have the common degree. As stressed by Bonneux [26], the determinant degree can be smaller for
some particular values of the Jacobi indexes. Here we assume that the degree of the polynomial
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determinant (99) is equal exactly to (101) and we refer the refer the reader to [26] for the discussion
of the necessary constraints on the Jacobi indexes.
The numerator of the fraction (85) thus takes the form:

W{dmy_y o (21,0002 T = 0 i 2105  [nlo[mi ]

X (gt A1 6:Mp ] (103)
Making use of the identity
O ldolm; 21 = do[m; A +p(@x1-1)], (104)
we can then re-write (103) as
W{dmy_y o [iA10j00: 2 Th= o[ A Jgo[mi &'+ p(@ < L~ D]
XQ@((&EMp)+j[n;X’ |3:Myp; ],(105)
so the fraction takes the sought-for form:

Tor (g:Mp )+ (A 18 Mp; ] (106)

dg, il AMMp]=do[n; 8 x (A +p1)] o —
WGy Tl Mip]

which completes the proof. o Setting p =1, |\_/|1 =M brings us to (125) in [21], as expected.

In particular, if we choose ¢ =—+, A, =a, A_ =, ie,

fl—B,a|=+]=@+n) P  (107)
and

O_,[nl=1+n,  (108)

we come to the generalized Jacobi polynomials (2.7) in [26], with ; =pand Iy =1.

It is however crucial for our discussion that the power exponents of n 1 for the weight function
of the PF in the right-hand side of (106) coincides with one of the characteristic exponents for the pole
of the CSLE (63) at F1, This is the unique feature of the simple p-WPs which by definition have
only one column formed by polynomials (88). As illuminated in Section 6, it assures that the p-WPs

in question form a X-DPS.
To illustrate the above assertion, let us represent the Wronskian (103) in the alternative p-W

form:
Wi, _y o [0 012/ = O Tnlooln: A 102 1] (109)
xSy (imy,mo; I A8, 5 mymal,
where

B (gimy,my; j) A | B f;my,mp] = (110)
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A OO I 2 [n]P,Q;”“-)(n) P+ )
® 505

P [nA 18] P [ 18] (n)
RV 94127912

p® mA18] P miklel PO+
M9 }p=5- 2 9412792

(the generalized Jacobi polynomial (2.7) in {26], with A, =o,A_=-0, =1 and Iy =2).
Comparing (109) with (103) gives
g)é)’c(aiml,mz;j)[nix|(D‘,J'iml,mz]=®é[ﬂ]@@1(¢§|\7|p;j)[ﬂ;x'|(D‘f'\_ﬂp;j], (111)

i.e, the p-WPs (108) vanish at least at one of the points F1, other than the trivial case @ =+ +,

when the polynomials in question turn into the polynomial Wronskians. This is the main reason why
we restrict our analysis solely to the simple p-WPs, which do remain finite at both points, at least if
the ExpDiffs for the poles of the RCSLE (67) are not positive integers.

6. X-Jacobi DPSs Composed of Simple p-Wps

Our next step is to prove that both JPW (65) and all three p-WPs in the numerator of the fraction
in the right-hand side of (106) for @ #++ satisfy the Bochner-type ODEs.

Theorem 4: The polynomials (99) satisfy the Bochner-type ODEs and therefore form four distinguished X-
Jacobi DPSs.

Proof: Let us consider the four alternative gauge transformations
O[n;Ao; elMp]=do[n; AolMp; 81xFn;Ag;eMp; 6] (112)

with the gauge function

dolm 291 = POMEXAPDL 11y
W@l(M ) [nIMp]
satisfying the RCSLE
?i;o[n;ill\_/lp;a]+{|8[n;7vll\7lp]—W do[mAMp;81=0  (114)
with the RefPF
19 AMp 1= 1°[n; A+ pI]+ 2QIm AV MM )] (115)

#20d4olni6 = DI W )i Mp),

where [47]

_ 2
QInil=— Y iy [n; n] SMmmal - (116)

d0i:10.20944/preprints202503.1653.v1
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S = 2 e
2MpMminl 112, [n7]
The PF (116) is related to the Quesne PF [59-61]

S 21—
O[n: 7] = Hm[n,ﬁ)] _Hzm[nn_ﬂ
O] Hmininl

(118)

in the elementary fashion:

At =1 A= Om[nn]
Qhﬂﬂ—thﬂ+§ﬁ;E§ﬁ (119)

m o=
—_y 1 I Hm[n’ 11] (120)

1=t [n-n1° 20mInAl

In our earlier works [47,62] we adopted the Quesne PF in the form (118) (see, i.g., (39) in [61],
with g(l?) standing for ITy[N;M] here), overlooking its alternative form (82) without any mixed
simple polesat M|=1  m-

Substituting (112) into the RCSLE (67) and taking advantage of (114), coupled with (115) and
(120), we come to the second-order ODE:

Dy (MMp;8) +C oy () [ 258 | Mp; ST} Ao el Mp; 61 =0, (121)
where DT] (X| M p’ @) is an abbreviated notation for the second-order differential operator in n:

o o~ — . d?
D, (RMp:8) = (n” ~ DTy gy It~ (& ol g o)

~ = d
with the polynomial coefficient function of the first derivative

Bor (W) +2[Mi A1 Mp: 8]:=(n? 1) Ty iy [T 70 (] Mp)]

N R S L S e
w=t 2(n-x1) =1 n—-n*;Mp)

The e-dependent polynomial of degree m representing the free term of the ODE (121) is linear
in the energy:

WALy Xy =90 3 1 (A
C ox (W) [ M3 8] = C oy iy [V 3 8] el Ty iy [ ([ Mp)], — (129)
with the energy-independent part represented by the following polynomial of degree 9t(M p) :

C or (i1, [M:AIMp; 8]+ (& +pax D ™) (AIMp)

d0i:10.20944/preprints202503.1653.v1
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= (n? DWW Tinl My T PTG T - IB AT 129

_ Z[n ~ Pl(x'+ +, 10 +6_1) (n)}W (@lx zl\L/pr_))[n Vo]

- -y w il Mgl (126)

Making use of the Jacobi equation (15), one can verify that (121) turns into (151) in [121] for p=1,
|\_/|1 =m.

7. ‘Prime’ Forms of RDCSs of J-Ref CSLE on Finite and Infinite Intervals of
Orthogonalization

Starting from this point, we discuss only the admissible sets M = m,....m, of JS solutions

P
assuring that the corresponding JPWs do not have nodes within the given interval of

orthogonalization for the specified ranges of the parameters A_, A .

Using the gauge transformations
Pn;die | Mp] = (1—112)_% D[n; A;e| Mp] (127)

and

‘P[n;X;gmp]:(n—l)‘% D[n; hie| Mgl, (128)

we then convert the RCSLE (67) to its prime forms on the intervals (-1,+1) and (+1,0):
{&@-nA S g% | M)+ s PP Kie | Mgl =0 (129)
dn dn

for ne(-1,+1)

and

{5 -0 S g | g 25 Fe e M) =0 (130)

for ne (@, o),

with the leading coefficient function and weight function defined via to (28) and (32) respectively.
In this paper we only discuss the seed solutions represented by the PFSs near the same endpoint
under condition that they lie below the lowest eigenvalue. Since the RDCTs using the seed functions
of types + - and - + are specified by same series of the Maya diagrams [25], any RCSLE using an
arbitrary combination of these seed functions can be alternatively obtained by considering only
infinitely many combinations 1\7[p ={my,my,..., mp}of the PFSs of the same type + - or - + [25,63]. In

particular, the Jacobi polynomial of order m with the indexes A can be represented as the

Wronskian of Jacobi polynomials of the sequential degrees M=1,...,m with the indexes .

Here we consider only the Wronskian net of the Jacobi polynomials with the indexes
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Ar =Fhg:z for Inl<land A=2%q forn>1,  (131)

while

Az =FAz (& =—+)in both cases. (132)

We will refer to the X-Jacobi DPS constructed using p seed Jacobi polynomials of the degrees
My, My,...,My as being of series J1(p). The selection (131)-(132) for the p-WEOP sequences under

consideration is consistent with (2.9) in [26], with o =Ag-4, B =Ao:— However, it is worth noting

that the net of X-Jacobi OPSs of our choice starts from the Xm-Jacobi OPSs of series J1, but not with

the traditional Xm-Jacobi OPSs [9,16], referred to in our works as being of series J2.
Note that Gomez-Ullate et al. [9,16] took advantage of the Klein formulas [64] to select all the Jacobi
polynomials without zeros between -1 and +1 under constraint

hy =—a-1<0, A_=p-1>-2, (133)

whereas our approach allows us to identify only the bulk part of those polynomials with one of the
first Jacobi indexes restricted solely to positive values. However, to our knowledge there is no theory
extending Klein’s renowned results to the JPWs. This is why we consider Preposition 2 as one of the
most significant achievements of this paper.

Coming back to our discussion, we conclude that the chain of the sequential RRZTs of the
prime SLE (129) specified by the Jacobi indexes (131) must be truncated when the ExpDiff for the pole
at -1 reaches its minimum value

0 < Pmed) =ho_ —prax <l (134)
with

Pmax =| *o; |- (135)

Below we always assume that p in (129) does not exceed (135), without explicitly mentioning
this restriction.
Examination of the q-RS

o @%(ﬁp)+j[n;7»’l—+ EMp;j]
W JE ] = o R .2y +Pl
WA=

Sy

(136)

for 0<j<jmax-
where

I a2 Qo for <L -
YolmA—,Apl=
1+ n)%(’“—”) (11—1)%7‘+ for n>1,

reveals that it obeys the DBCs at the endpoints +1 and therefore represents the eigenfunction of the
prime SLE (129). Consequently it is the PFS of this SLE near the singular endpoint +1 at the energy

€j (7?) . The latter assertion also valid for the branch of this g-RS on the interval (1,%0) with the energy
(1) =—5,(0).

d0i:10.20944/preprints202503.1653.v1
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Furthermore, since the functions ¢g[n;—Ag _,Ag:+] and dg[n;—Ao _ —P,Ag:4 +p] have exactly

the same asymptotics at infinity and the eigenfunction (47) of the prime SLE (24) on the interval (+1,e°)
vanishes at the upper end by definition, we conclude that the q-RS (136) obeys the DBC at infinity

and therefore represents the eigenfunction of the corresponding prime SLE (130) at the energy g; (X')

Theorem 5. A PFS near one of the endpoints +1 may not have zeros inside the given interval of
orthogonalization if it lies below the lowest eigenvalue of the given Sturm-Liouville problem.

Proof: For the Sturm-Liouville problem on the interval of orthogonalization (-1,+1) the formulated
assertion directly follows from the Sturm comparison theorem (see, i.g., Theorem 3.1 in Section XI
of Hartman’s monograph [65]), keeping in mind that the logarithmic derivatives for the all PFSs
(including the eigenfunction in question) have the same asymptotics near the pole in question:
lim [(1 N2 Pshg;_ A e | —+: Mp]} —a P,

n—-1
(138)

and as a result the condition (3.4) in [65] turns into the identity. To apply the Sturm Theorem to the
PFSs near the upper end +1, one simply needs to replace n for the reflected argument -n.

It is a more challenging problem to satisfy Sturm'’s constraint for the logarithmic derivatives in
the limit n—e° and we refer the reader to the proof of this assertion given in Appendix B in [21] for
the PFSs of the prime SLE (24) solved under the DBCs at the ends of the interval (+1,0). The arguments
presented in support of this proof can be equally applied to the prime SLE (130) without any
modification. O

Theorem 6. If the sequence of the eigenfunctions (136) starts from a nodeless eigenfunction, then the set of

the seed functions Mp+1 is admissible (assuming that the latter is true for Mp )-
Proof: Let us consider the q-RS

W)
e [ ]
O (Mp+1) s (139)

Vi, mp g [ AMg] = yolni —ho;— + P, ki1 +P] W)

SrauuiLly

used as the TF for the RRZT converting the prime SLEs (129) and (130) into the next SLE in the given
chain of the RDC8s of the prime SLE (24) on the intervals (-1,+1) and (+1,%) accordingly. Repeating
the arguments presented by us for the g-RS (136), we assert that it is the PFS near the pole at +1. Since
the eigenfunction (136) is nodeless for j = 0 and the energy of the (p+1)-th seed solution is smaller than
the eigenvalue in question, the PFS may not have zeros inside the given interval of orthogonalization
and therefore this must be also true for the numerator of the PF in the right-hand side (139). o

The proven theorem represents the very important milestone in our analysis of the admissible
JPWs. The concluding step is to confirm that the p-WEOP starting the given sequence does not have
zeros inside the interval of orthogonalization. It is proven in Appendix D that the RDC8s in question
constitute the isospectral net of the solvable RSLPs, in particular assuring that the necessary
prerequisite for Theorem 5 to be automatically hold.

It has been proven in [28] that the eigenfunctions of the generic SLE solved under the DBCs must
be mutually orthogonal with the equation weight function on the interval in question. Therefore

n+ - e aa = ey ~
[ dnye jd |—+:Mplye y[mA | —+:MpIwin;A0]1=0 (140)
n—

for0<j' <j<jmax: P <Pmax-
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Consequently, the polynomial components of the quasi-rational eigenfunctions (136) must be
mutually orthogonal with the weight function
2
o wAmA_—pAg+p]
WA= +:Mp === —— WAl (p<pmax) (141)
W -+ M)
N(Mp)

for Inl <lorm>1;

namely,

it Vl-+iM 0|+ By [N |4

D gaepr A [MA | =+ Mo 19 zm - in[MA | =+ :Mg; TV A | =+:My] =0
[ dn @’L(é:Mp,j)[n | 0 1] @l(asz,J)[T] | o; S0 | o]
for 0<j <j<jmax, P<Pmax-(142)
In the following two subsections we discuss separately the X-Jacobi OPSs conventionally defined

on the interval (-1,+1) and the RDCSs of the R-Jacobi polynomials orthogonal on the infinite interval
(+L>).

7.1. Infinite Net of Isospectral SLPs Solved by Simple p-Wds of Classical Jacobi Polynomials

Let us set A = —Ao:— Aot A'=%o, Pmax = p\‘o;_“, and jpax = . This brings us to the
net of the X-Jacobi OPSs composed of the p-WEOPs

@@((ﬂp)ﬂ[n;xo | _+5Mp;j] = (143)
Ao —Ag— Aora—Ag— Ao hgi—
ooy plor oy epparp oo

d _(Ag+—Agi— d (Ag:ri—ro— -
O U U NS
L YO o L ¢ P o _
dpnpfnf'* o)) dpnpfnz"'* %y PPl

Note that the first p elements of the first row are represented by the R-Jacobi polynomials while
the last element is the classical Jacobi polynomial multiplied by a constant. The weight function
(143) takes the form:

2
o Vol —Ao;— —P. Ao+ +P]
WIn; =g, Ao | —+iMp]i= — 02— =0 (144

R

o1 (My)

for -1<n<1 (pSP\.O;_J),

where the Wronskian in the denominator is formed by orthogonal R-Jacobi polynomials and
therefore is the subject of the general conjectures formulated in [58] for zeros of the Wronskians of
orthogonal polynomials inside the normalization interval (real zeros larger than 1 in our case).
Preposition 2 in Section 5 assures that the polynomial denominator of the fraction (144) remains finite
inside the interval (-1,+1). This was the main rationale for us to consider only the seed polynomials
with common pairs of Jacobi indexes.
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On other hand, we could not pinpoint the similar proof for the polynomial denominator of the
quasi-rational weight function (2.36) in [26]. From our point of view, the definition of the X-Jacobi
OPS is incomplete until one can assure that the weight function in question does not have poles in
the interval (-1,+1).

Another important new element of our approach is the proof that polynomials from each X-
Jacobi OPS obey the Bochner-type ODE (121) with the regular singularities.. This was the central
reason for restricting our analysis solely to q-RSs with the polynomial components represented by
the simple p-WgPs.

In particular, based on Theorem 2.1 in [58] (summarizing Karlin and Szego’s results [66]), we
assert that any Wronskian of an even number of the R-Jacobi polynomials of sequential degrees may
have only negative real zeros smaller than -1. This is one of rare cases when Preposition 2 above has
been accurately confirmed.

7.2. Infinite Net of Isospectral SLPs Solved by RDC8s of R-Jacobi Polynomials

An extension of Theorem 5 to the infinite interval (1,%) is complicated by the mentioned
constraint on the ratio of the logarithmic derivatives of two solutions as the prerequisite for the Sturm
comparison theorem. We refer the reader to Appendix B in [21] for the rigorous arguments in support
of Theorem 5 for the interval (1,e°).

Below w focus solely on the RDCTs using the infinitely many PFS of type @ as the seed

functions, i.e., by definition A= XO and Pmax = % . The corresponding eigenfunctions of the prime
SLE (24) solved under the DBCs on the interval (+1, ) are care formed by the R-Jacobi polynomials
with the Jacobi indexes X' = —7\.0;_ , Ko;_i_, , and their total number is equal to

Ne = imax +1=| Ao |- (145)

This brings us to the net of the finite EOP sequences composed of the p-PWs

gP@l(ﬁ\p).,.j[n;_7“0;—’7‘0;+ |-+ Mp,J] = (146)
Ao s Ao Ao e Ao — Ao 4, —Ag—
I R R 1 R ©
d _(otiho—) d (ot ho-) a .
Tnm10+ *~ () Tnmz°+ M P e Ao+

L PO Y AP (grrron)
dTPmlo’+ %~ (n) dTPm20,+ %) . Pj(p)[n:—%;_,%o;+|—+]
n n

This time the first p elements of the first row are represented by the classical Jacobi polynomials
with positive indexes while the last element is the the R-Jacobi polynomial multiplied by a constant.
The weight function (141) takes the form:

w%[n:—lo;— —P.Ag:+ +p]

(7b ;+,7M ;—) 1M
Wyl A

Win—Ao— Agrr | —+iMp]i= (147)
for —-1<n <1,

where the Wronskian in the denominator is formed by the classical Jacobi polynomials with positive
indexes.
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Again, based on Theorem 2.1 in [58], we conclude that any Wronskian of an even number of the
classical Jacobi polynomials of sequential degrees may have only negative real zeros smaller than -1.
However, this particular example is of less importance, compared with that on the finite integral of
orthogonalization, because Theorem 5 assures that the JPW composed of the seed polynomials in
question has no zeros larger than 1, which constitutes the question of fundamental significance for
this study.

8. Discussion

Let us first point to the most essential element of our RSLP formalism — the advanced technique
for selecting the sequences of the admissible RRZTs, using PFRs below the lowest eigenvalue as the
g-RTFs. Each such sequence can be then re-interpreted as the admissible RDCT. In terms of [10] we
suggested the systematic way for constructing a subfamily of the regular X-Bochner operators. To be
more precise, we laid down the mathematical grounds for this innovation in Section 7 by converting
the RCSLE (67) to its prime forms (129) and (130) on the intervals (-1,+1) and (+1,%) accordingly and
solving the resultant SLEs under the DBCs. The formulated SLPs allowed us to prove [27] that each
RDS$ of the PFS constitutes itself the PFS of the transformed SLE at the same energy.

As mentioned in Introduction, the RZT represents the generalization of the DT (in its original
sense [13]) to the CSLEs in the same way as the factorization of the X-Jacobi differential operators [10]
constitutes the natural extension of the conventional factorization technique in the framework of the
SUSY quantum mechanics. The factorization chain of the rational operators analyzed in [10] is
equivalent to a RDCS§ of the JRef CSLE in our terms.

To illuminate advantages of our formalism developed here, compared to the PSLP
accomplishments [9,10,15], let us formally re-formulate the results of subsection 7.1, based on the

argumentation used in [9] to derive the explicit expressions for the Xm-Jacobi polynomials.

Let us start by introducing the Sturm-Liouville expression
9 oA -+ Mgl g [l —+iMg]  (148)
an T R FEL

H 2\ N — . W ) vy R N . W - i =
rejCONI K| —+ Mo T} o 3o fIVR | 65 11=0
with the leading coefficient function related to the weight function (144) via the generic formula
PITA =+ Mg]:= Q- | —+iMp] for-1<n<+1, (149
assuming that the density function of the corresponding CSLE is given by (2). Note that we replaced
the indexes FAg. of the weight function (144) for A+ in an attempt to expand its definition

beyond the limits supported by Preposition 1.
Examination of the numerator of the fraction

A=A —p.A
pluiAl—+:Mp]= L Jwgln P ++p]2 (150)

(0+’
Wty i —+iM]

shows that it vanishes at F1

A'IF + p+1>0 7

(151)
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provided that the denominator remains finite at both singular ends. Preposition 1 assures that that
the leading coefficient function vanishes under the latter constraint. As mentioned above, this was
one of the reasons for restricting our analysis to the RefPFs (68).

Based on the stated observation, we conclude that the p-WPs forming the polynomial
components of the g-RSs (139) under the constraints (151) obey the boundary conditions

%{{@%(agMp;j)[n;X' | —'*'EMp; j]’@@z(agﬂp;j')[nix' | —'*'EMp;O]}( =0

n=t1
for0 < <j<jmax (P <Pmax). (157

where
W AP, Py (0} = plnk |-+ M IWAP (). Py} (153)

Our next step would be to further narrow the range of the indexes A, restrained by (151), in
such a way that the denominator of the fraction (150) does not have zeros between -1 and +1. For the

Xm-Jacobi OPS this was achieved in [9], using the Klein formula [64] for the numbers of zeros of a
Jacobi polynomial in the interval (-1,+1). However, even the fact that we deal with the Wronskian of
the mutually orthogonal R-Jacobi polynomials does not give any additional insight into how to
handle this problem for p>1. In particular, Duréan et al’s conjectures dealing with the zeros of the
Wronskians of orthogonal polynomials focus on the numbers of zeros inside the interval of
orthogonalization, i.e., on the numbers of real zeros larger than 1 in our case. On the contrary, we are
interested in the question how many of other zeros lie between -1 and +1. The striking feature of our
approach is the use of the completely different technique to answer this question.

In summary, we have constructed the infinite net of the X-Jacobi DPSs composed of the simple
p-WPs . Each X-DPS contains the finite EOP sequence formed by the RDCS& of the R-Jacobi
polynomials using the classical Jacobi polynomials with the common positive indexes as seed
polynomials. In addition, a finite subnet of these X-DPSs contains X-Jacobi OPSs, using the R-Jacobi
polynomials with the common pair of indexes as the seed polynomials. The crucial point of our
approach is that all the constructed EOP sequences obey the X-Bochner ODEs with polynomial
coefficients. In the case of the X-OPSs there exists the one-to-one correspondence between these ODEs
and regular X-Bochner operators in terms of [10]. On other hand, the finite EOP sequences are
generally formed by X-orthogonal eigenpolynomials of irregular X-Bochner operators.

The net of the trigonometric (In! < 1) or radial (n > 1) quantum-mechanical potentials exactly
solvable in terms of the constructed infinite or accordingly finite EOP sequences can be obtained in
following the prescriptions outlined by us in [21] for p=1.

The Liouville potentials quantized via the EOPs introduced in subsections 7.1 and 7.2 have the
generic form:

VIni Ao ho IMp]=Vicpr[mAo]l  (154)

+(1—n2){|0[n;xo]— |0[T];_7¥0;—’7”0;+|Mp]} for-1<n<1
and

Vi AolMp]=Vh_pt[niAo] (155)

2 N 2 AR
H? -D{CAo]- 1TikoMy]}  forn >1
after being expressed in terms of the variables:

n(x)=cosx (—n<x<0) (156)
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and

n(ry=coshr (0<r<ow) (157

respectively, where the t-PT potential on the finite interval and the radial h-PT potential are
parametrized as follows:

2 2
Y- AS._ —

Vi—pTIN()i Aoir s A1 = — 2%+ : 2% (-m<x<0), (158)
4sin % 4cos %

and

2 2

ASo — AS._ —

0,+2%+ 0 2% (O<r<wm). (159)
4sinh % 4cosh %

As mentioned in Introduction, the rigorous mathematical studies [10,37] on the X-Jacobi and X-

Vh-PT (040 ho;-1=

Laguerre OPSs made a few misleading references to the quantum-mechanical applications of the
EOPs. To a certain extent this misinformation is traceable to the fact that the cited applications do not
properly distinguish between the terms ‘X-Jacobi DPS’, “X-Jacobi OPS’, and ‘finite EOP” sequences’
(formed by the RD8&s of the R-Jacobi polynomials), simply referring to the representatives of all the
three manifolds as “X-Jacobi polynomials’.

While the latter perplexity has already been detailed by us in [20,21], it seems useful to clarify
again the sharp distinction between the TSIPs of groups A and B in Odake and Sasaki’s [38] TSIP
classification scheme. Namely, the prominent feature of the density function (2) is that the latter has
only simple poles in the finite plane [24], which assured the energy-independence of the ExpDiffs for
the poles of the JRef CSLE (1) at F1[47]. Consequently, the coefficient function of the first derivative
of the second-order ODE with polynomial coefficients turned independent of the degrees of the
sought-for polynomial solutions, which allowed one to convert this equation into the eigenequation
with rational coefficients [9,10,16].

The same comment is applied to the RDCS8s of the three families of the Romanovski polynomials
[29], namely, to the finite EOP sequences composed of the Romanovski-Bessel (R-Bessel) and
Romanovski-Routh (R-Routh) polynomials analyzed by us in [67] and [68] respectively, as well as to
the RDC8s of the R-Jacobi polynomials discussed in this paper. The associated Liouville potentials all
belong to group A in Odake and Sasaki’s [38] TSIP classification scheme and are indeed solved via
the finite EOP sequences.

In the general case of the rational density function, allowing the solution of the JRef CSLE in
terms of hypergeometric functions [40], the energy-dependent PF in (1) has second-order poles in the
finite plane and as a result the associated Liouville potentials are quantized by the Jacobi polynomials
with degree-dependent indexes. If the numerator of the given rational density function has no zeros
at regular points of the JRef CSLE (or similarly of its confluent counterpart), then the associated
Liouville potential turns into a TSIP of group B, with eigenfunctions expressible via the Jacobi (or
respectively Laguerre) polynomials with at least one degree-dependent index, which have no direct
relation to the theory of the EOPs.

To conclude, let us point to the crucial difference between the RDCS8s of the R-Jacobi polynomials
and those of the R-Bessel and R-Routh polynomials analyzed by us in [67] and [68] respectively. The
common feature of the latter RDC nets is that each net is specified by a single series of Maya
diagrams and as a result any finite EOP sequence allows the Wronskian representation [69]. On other
hand, the complete net of the RDC8s of the R-Jacobi polynomials is specified by the two series of
Maya diagrams, similar to the RDC8s of the classical Jacobi and classical Laguerre polynomials
forming the X-Jacobi and X-Laguerre OPSs accordingly [25]. This implies that we managed to
construct only a tiny manifold of the finite EOP sequences composed of the RDC8s of the R-Jacobi
polynomials.
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We refer the reader to [25] for the scrupulous analysis of the equivalence relations between the
various p-WPs . It should be however stressed that grouping of equivalent p-WPs together
represents only a part of the problem. The next step would be to select the preferrable representation.
For example, the RD$ of the h-PT potential with the TF b,m seems easier to be dealt with, compared
with the RDCS$ of this potential with the m seed functions a,k=1,2,...,m, though the final results will
be absolutely the same.

The additional complication comes from the fact that one has to analyze the order of p-WP
zeros at F1 to construct the appropriate X-Jacobi DPSs. And finally (assuming that the partitions
selected in [26] are suitable) one has to require that the generalized Jacobi polynomials in the
numerator of the weight function (2.36) in [26] do not have zeros inside the given interval of
orthogonalization. The complexity of the outlined procedure helps to understand why our analysis
was restricted merely to the relatively simple case of the seed Jacobi polynomials with the same pair
of indexes.

Funding: This research received no external funding.
Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
ChExp characteristic exponent
CSLE canonical Sturm-Liouville equation
DBC Dirichlet boundary condition
DPS differential polynomial system
DCT Darboux-Crum transformation
DC§ Darboux-Crum transform
DT Darboux deformation
D§ Darboux transform
EOP exceptional orthogonal polynomial
ExpDiff exponent difference
GDT generalized Darboux transformation
h-PT hyperbolic Péschl-Teller
JPW Jacobi-polynomial Wronskian
JRef Jacobi-reference
JS Jacobi-seed
LC limit circle
LDT Liouville-Darboux transformation
LP limit point
ODE ordinary differential equation
OPS orthogonal polynomial system
PD polynomial determinant
PF polynomial fraction
PES principal Frobenius solution
p-SLE prime Sturm-Liouville equation

p-WP pseudo-Wronskian polynomial


https://doi.org/10.20944/preprints202503.1653.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 March 2025 d0i:10.20944/preprints202503.1653.v1

29 of 37

p-WEOP pseudo-Wronskian exceptional orthogonal polynomial
p-W§ pseudo-Wronskian transform

q-RS quasi-rational solution

q-RTF quasi-rational transformation function
RCSLE rational canonical Sturm-Liouville equation
RDC rational Darboux-Crum

RDCT rational Darboux-Crum transformation
RDCS§ rational Darboux-Crum transform

RDT rational Darboux transformation

RD§ rational Darboux transform

restr-HRef restrictive Heun-reference

R-Jacobi Romanovski-Jacobi

R-Routh Romanovski-Routh

RRZ3 rational Rudjak-Zakharov transform

W§ Wronskian transform

Appendix A. RZT of Generic CSLE

Let ¢[n; XO] be a nodeless solution of a CSLE
2

d - _
—5 +1°[nikol+eplnl ¢ @NiAg;e] =0 (A1)
dn
at the energy
e=e7(ho), (A2)
ie.,
d® o - < ~
d_2 + 17 nido]+ &1 (ho) pIn] p oo [Mi o] =0.  (A3)
n
We define the RZT of the given CSLE via the requirement that the function
U /2
“elniro] - 2L (A4)
q)r [11, 7"0]
is the solution of the transformed CSLE:
> o - =
5+ PIdo [ eplnl 0liToeld=0  (A5)
n

at the same energy (A2), i.e,,
2

j—2+l°[n;io|r]+af(io)p[n] *0[nTe]=0.  (A6)
n

Representing both CSLEs (A3) and (A6) in the Riccati form:

190 %01 = —1d 29[ %]~ 1d & [1: Ko ] — ¢ (o) pIN] (A7)
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and

190n; %o | Tl i=—ld 2% o[ K]~ 1d *c [N Aol - (o)l  (A8)

subtracting one from another, and also taking into account that the logarithmic derivatives of the TF

o[ 7\.0] and its reciprocal (A4) are related in the elementary fashion:

1% [ Ao] = ~1d ¢ ;o] - 15 1d o] (A9)

one finds [70]

Or % 11— 197 d |d¢r[n,7»o]
"I Ao | ] = 1P Ao]+2 \/p[n]d Lol +§lplnl}, (A10)

where the last summand represents the so-called [27] “universal correction’ defined via the generic

ffmy=2 [Fin d Idf[”] (A11)

Appendix B. DCT of the Generic CSLE as a Sequence of RZT's

formula

Let (])12 [n; XO] be another solution of a CSLE (Al) at the energy &, (XO) . Then, as it was

shown in [19], the CSLE (A6) with t =T has the solution

W{o., 12[n,xo]}

y 2 [ml¢niro]

dey 20 | 1] = (A12)

Using this solution as the TF for the next RZT, we come to the CSLE

2 R -
{3_2“0[11;%|T]+8p[n]}®[n:7»oi8|ﬂ‘0 (A13)
n

with the zero-energy free term

1°In; Aoltk=g 21= 1°[Mi Ao | 11] (Al14)

g 1d g, [nig ]

dn el
Substituting (A12) into (A14), coupled with (A10) and (A11), then gives [69}

ld W{o,, . [iko 1}
© Aol 21= Pl Aol + 24AlT ¢ d jﬁ °2 (a15)

+ ${pnI}-

+24pn] —

Let us now assume that the function [22,71]
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W{ory o [MikoLdelnido 1}

(I)r[nixo“k:l,...,p]: y (Al6)
P2 W{o,  [nikol}
satisfies the CSLE
2 o, - )
dn—2+l [Mi%o | 1k=1,.. pl+epnl ( PniAge] k=, p] =0 (A17)

with the zero-energy free term [22]

1° [ Roltiet,...p] = 1°[: Ao ] (A18)
ldW{o;, . [mAol}
12 p[n]:—n kJ,lTﬁ) O p(p-2) eI}

The RDT of the CSLE (A17) with the TF (A16) then results in the CSLE with the zero-energy free

Theorem B. The function (A16) is the solution of the CSLE (A17) at the energy Srp (XO) .
Proof: Suppose that both functions d)tp x| Tkzl,...,p—l] and (I)Tp+1 [M%o | Tk=1,..., p-1] are solutions
of the CSLE (A17) with p replaced by p-1. Itis also assumed that the energies are equal to Srp (XO)

and 81p+1 (XO) accordingly. Then, by definition of the CSLE (17), the function

Oty 1[0 %0 | Tk=1,...p] (A19)

- W 070 | t1,..,p-1] by, 70 | Tt p-l}

p+1

P2 M., 2o | Tk-t.... p-1]

drp1 [0 %0 | Tk=1,...p] (A20)

W, InTolh Wb, [nTol it p 1l [iTol}]

p%p[n]vv{mk:l,,_,p_l[n:io1}

Choosing m = p-1, n = p+1, n-m =2 in the general Wronskian decomposition formula in [72] then
gives:

W{¢Tk=1,...,p+l[n;7\'0]} (A21)
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p+1

Wiwfp, , Inkolh Wb, ok, p-aloy I Tol}]

then brings us back to (A16) with T = 1,4, which completes the proof. o

Here and in the other publications we refer to the CSLE (A17) with the zero-energy free term

(A18) as ‘Darboux-Crum transform’ (DC8 ) of the CSLE (1) with the seed functions T,_; ;.

Appendix C. RDC Sequences of PFSs Near a 2nd-Order Pole with an Energy-
Independent ExpDiff

Let q)¢[”r]; X; 8||\_/| p] be the PFS of the RCSLE (63) near the pole at F1. Then the functions

_[mEelMy]= A-n?) 2 0_[mXielMo] for [n]<1 (A22)

and

(1—n2)_% @, [n;X;elMp] for [n|<1,
Y [nAeMp]= (A23)
(Tl_l)_% q)+[11;x;—8“\7|p] forn>1

are the solutions of the prime SLEs (129) and accordingly (130), satisfying the DBCs at the
corresponding singular endpoints:

lim W [n;Ae[Mp]=0. (A24)
N—Nx
Representing the RRZ3s of the PFSs (A22) and (A23),

WP Riemp,q R)IMp], ¥ _ [ RielMp ]}

- (A25)

lP[’fl;7zi<‘3|'\7|p+1;¢] =

as
Wl AselMp,g; F]=I1-12 I% W[ AielMp] (A26)

|11 I% Id ‘P[n;i;%:mpﬂ M) IMpI¥ £ [n;A;e[Mp]

shows that
lim W[n;X;e[Mp,1;F]=0 (A27)
n—>F1
and therefore
‘P[n;i;all\_/lpﬂ:%:] = ‘P:F[n;x:sll\_/lpﬂ] (A28)

iff the ExpDiff for the corresponding pole of the RCSLE (67) lies within the LP range:
98 - +pl>L. (A29)
Finally let us prove that the RRZ§ of the PFS ¥, [n;X;§|I\7Ip] of the prime SLE (130) near

the pole at infinity vanishes in the limit n—e. Taking into account that differentiating of the function

na decreases the power exponent, we find that both summands in

d0i:10.20944/preprints202503.1653.v1
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Vi KielVp 1] =0n2 1) 2 Wl KielVig]  (A30)

(2121 W ~emg g WMo [52:6IMp],

vanish at infinity which confirms that the q-RS (A30) is indeed the PFS of the transformed RCSLE
near its pole at infinity.

Appendix D. Exact Solvability of the Prime SLEs (129) and (130) Under the
DBCs.

Theorem 7. All the Dirichlet problems for the prime SLEs (129) or alternatively (130), under the constraints (131) and
(132) in both cases, have exactly the same discrete energy spectrum as the precursor prime SLE (24) solved under the DBCs
on the intervals (-1,+1) or (+1,%0) accordingly.
Proof: Let us first remind the reader that the theorem statement necessarily holds for p=1. For the
prime SLE (130) it has been proven in [22] and one can reproduce very similar arguments for the
finite interval. We shall come back to these arguments in the general case of p > 1.

Re-writing (78) with p =1 as

V—+my, M=o, Ao Im] = woln; —Ao;— —L A4 +1]x (A31)
(—Ro;—ho;+-)
Wi 05 054 my, mo ]
Ao hg: !
P( 0, 0,+)(n)

m

we find that the power exponents of n+1 coincide with halves of the ExpDiffs

2L =0z +pl=hor TP >0, (A32)
Keeping in mind that the exponent powers (Ag.; +1)/2 are positive in both cases, we conclude

that the listed solution vanishes in the limits 1 — 1F and therefore represents the PFS of both prime

SLEs (129) and (130) near this singular endpoint. We thus assert that the JPW (65) with the Jacobi
indexes restricted by the conditions (131) may not have zeros inside the corresponding interval of
orthogonalization.

Since each prime SLE (129) and (130) is exactly solvable for p=1 and Mz is the admissible set
of the polynomial seed solutions, we use the mathematical induction, assuming that the prime SLE

(129) or (130) for the admissible set of the polynomial seed solutions, Mp = Mp_l, has exactly the
same discrete energy spectrum as the prime SLE (24) with the leading coefficient function (28). First,
one can repeat the above arguments to prove that the JPW (65) with |\_/|p = ﬂp is nodeless inside
the corresponding interval of orthogonalization and therefore Mp is the admissible set of the
polynomial seed solutions. Our next step is to prove that the given prime SLE with ﬂp = A_Ap has
exactly the same discrete energy spectrum as (24).

Suppose that the given prime SLE has another eigenfunction ¢ n[n;2'|Mp] at an energy
E, with the absolute value| E |# € j (\") foranyj < jmaxand therefore, by definition, it must obey
the DBCs
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lim e nln 7 | W] =0.
n—Nx
(A33)
P-1)

If *xgﬁ’l >1 (which assures ExpDiffs *Xgﬁ

advantage of the arguments presented in Appendix C to show that the RRZT with the TF

lie within the LP range) then we can take

P_yf [n]
Omp [N AIMp_1]

converts the extraneous eigenfunction into the eigenfunction of the prime SLE (129) or (130) with

“Ormp [ AMp_1] = (A34)

Mp =Mp_1 . However this conclusion contradicts the assumption that the prime SLE in question

has exactly the same energy spectrum as the prime SLE (24). We thus assert that q-RSs (136) represent
all possible eigenfunctions of the prime SLEs (129) and (130), which completes the proof of Theorem
7.0

The direct consequence of the proven theorem is that the p-WPs (99) with |\_/|p =Mp and

@ = —+ have exactly j real zeros larger than 1.
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